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X-RAY AND GAMMA RAY SPECTRA
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J. I. Trombka

ABSTRACT

It is suggested that changes in the slope of a measured dis-

tribution may be explained partially by the effect of the measure-

ment process itself. We have developed a method which allows us

co determine both the pulse height spectrum from a known photon

spectrum, and the photon spectrum from a measured pulse height

spectrum. Information derived from these two spectra differs sig-

nificantly. For example, if, using a. 3" x 3" NaI(Tl ) detector, we

attempt to measure a photon differential energy spectrum charac-

terized by a V(F) _ E- 1, 5 dE distribution, we obtain a pulse height

spectrum with a i-wmber of breaks in slope: a -1.5 slope in the

energy region up to 60 ke V, a -1.7 slope in the energy region up to

300 keV, and a slope of -2.3 from .3 MeV to 2 Me V. The technique

for derivir. g the photon spectra from the measured pulse height

spectra eliminates the- effects of instrumental response, and further

allows for meaningful comparison with data from different detectors.
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ON THE INTERPRETATION OF COSMIC

X-RAY AND GAMMA RAY SPECTRA

INTRODUCTION

A number of papers have been published recently that consider the cos-

mological implication of the diffuse X-ray and gamma ray background. 1-4 Cer-

tain breaks in the slope of the measured spectra have been noted, and some the-

oretical models have been proposed to explain these changes in slope. It is

suggested that these changes in slope of the measured distribution may be ex-

plained partially by the effect of the measurement process itself.

The measured pulse heights reported are not identical with the true photon

spectra (which are of theoretical significance). This is because the response of

a real crystal detector to a delta-function photon spectrum is not a delta function

pulse height spectrum, but is a characteristic continuous response function de-

scribing the energy imparted to the crystal via the various mechanisms to be

discussed. For example, Figures 1, 2, and 3 show the characteristic crystal

response of NaI(T1) detectors to input photons in the three important energy re-

gions. Figure 1 characterizes the respoase function around 200 keV. Figure 2

characterizes the response function for energies less than 1 MeV. Figure 3 is

characteristic of the response function for energies greater than 1 Mev. There

is a transition from one region to another, and we cannot obtain sharply defined

limits for the transition.
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It is further suggested that Ix-fore we attempt to compare theory with exper-

iment, with respect to th ,.! measured pulse height spectra, the detector effects

be eliminated from thr,ge spectra. 'Techniques developed at our laboratory for

accomplishing this end will be presented.

RELATIONSHIP 13ETWEEN PHOTON SPECTRUM AND PULSE HEIGHT
SPECTRUM

Information concerning the differential energy photon spectrum is obtained

by measuring the interaction of these photons with a detector system. This meas-

ured interaction spectrum, or pulse height spectrum,* does not necessarily re-

flect a one to one correspondence with the photon spectrum. Consider Equation (1).

max
Y(V)	 T(E) "(F., V) dE	 (i)

where T(E) is the differential energy photon spectrum as a function of (E),

S(E,V) is the detector interaction function which reflects the mechanisms of

converting photons of energy, E, into a pulse height signal, V, at the output of the

detector, and Y(V) is the measured pulse height or interaction spectrum as a

function if pulse height, V .

*The term, pulse height, is used to describe the spectra, because the detector output is usually

an analog voltage or current signal. This analog signal is digitized using a multi-channel pulse

height analyzer.
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The information that is desired, in terms of correlating various theoretical

models with experimental measurement, is the differential energy photon spec-

trum, T( E). The problem is to obtain the photon six!ctrum, T(E), information

from the measured pulse height spectrum, r; V), knowing only the nature of the

interaction process, S(E, V) .

NATURE OF THE FUN C TION, ^(E, V)

In order to solve equation (1) for 'C(E) , we must consider the nature of the in-

teraction function, S(E, V). This function depends on the nature of the detector

system. Proportional counters, solid state detectors, and scintillation counters

-e most important among the detectors used in .space flight to determine the

diiiuse gamma ray and X-ray background spectra. In our discussion, we con-

sider the properties of the scintillation detectors. Similar considerations can

be carried out both for solid state and proportional counters.

The pulse height spectrum obtained when monoenergetic gamma rays are

detected using a scintillation system, is never a line. Its shape is determined

by gamma ray energy a.id source detector configuration. The shapes of these

monoenergetic pulse height spectra are primarily determined by:

1. The relative magnitude of the photoelectric absorption, Compton scatter-

ing, and pair production cross sections; and,

2. The losses and statistical fluctuations that characterize the crystal,

light collection, and photomultiplier system.5
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Let us examine the case where photoelectric absorption predominates, and

Compton scattering and fair production are thoughi to be negligible. In this

process, the kinetic energy imparted to a secondary electron is equal to the en-

ergy of the gamma ray minus the electron binding energy. This binding energy

can be reclaimed in terms of the scintillation process by the absorption of the

X-rays produced after photoelectric absorption. There is also the possibility

that the X-rays may escape the crystal without being ahsorbed. The pulse height

distribution caused by photoelectric absorption is characterized by two regions:

the r:.-gion of total absorption (the photopeak), and the region of total absorption

minus X-ray escape energy (the escape peak). This distribution spre

the Gaussian spreaOiag previously discussed, yields a pulse height sp

similar to that shoe a in Figure 1.

When Compton scattering becomes ran important energy loss mec.

another region, the so-called Compton continuum, is observed in the 1

spectrum. In teruis of the scintillation process, all the energy lost in

will be given up to the electron as kinetic energy. The gamma ray m,,

of its energy to the crystal; furthermore, after suffering a Compton c

a number of Compton collisions, it may suffer a photoelectric absorpi

lose its remain i ng energy. Thus the gamma ray either loses all of it:

the crystal, or loses part of its energy in the crystal while the remaii

ray escapes the crystal at a diminished energy. See Figure 2.
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:1t energies higher than 2 MeV, pair production becomes appreciable. Two

false "photopeaks" are then observed. Figtire 3 is the pulse height spectrum of

Na 24 . The gamma ray energies emitted by Na 24 are 2.76 MeV and 1.38 MeV.

The three peaks of greatest pulse height are caused, in order of increasing

pulse height, by:

. Pair production with escape of both annihilation quanta;

2. Pair production with the absorption of one annihilation quantum;

3. Pair production with absorption of both annihilation quanta, and total ab-

sorption by photoelectric effect nr any combination of other effects lead-

Ting to total absorption.

In addition to the photopeak, the iodine X-ray escape peak, the Compton con- 	 A

tinuum, and the pair escape peaks, there are a number of other regions charac-

teristic of experimentally determined monoenergetic pulse height spectra. 1.7hese

are:

1. The multiple Compton scattering region: Because of such scattering from

materials surrounding the source and crystal, thus degrading the pri-

mary energy, there is a continuous distribution of gamma rays incident

upon the crystal with energies less than the rraximum energy. This tends

to spread out the true Compton continuum produced by gamma rays of

undegraded energy scattering in the crystal.

2. Annihilation radiation from the surroundings: Positrons emitted from

the source may annihilate the surrounding material. Some of the 0.51



MeV gamma rays produced in such a manner will reach the crystal, and

a pulse height spectrum characteristic of 0.51 MeV gamma rays will be

superimposed on the monoenergetic pulse height spectrum (see Figure :).

3. Coincidence distribution: If two gar:-.ma rays in; eract with the crystal

during a time which is shorter than the decay tiniu of the light produced

in the scintill^tion process, a pulse will appear whose height !s propor-

tional to the sum of energies lost to the crystal by both interacting gamma

rays (see Figure 5).

Because the interaction time of both single and multiple interactions is

shorter than the decay time of the light in the crystal, a single gamma ray inter-

acting with the crystal uroduces only one pulse. The magnitude of the pulse height

is affected by the type or number of interactions for a given gamma ray. Thus,

if the above-mentioned coincidence effects are negligible, the measured mono-

energetic pulse height spectrum can be considered as a distribution of the prob-

ability of energy loss as a function of energy for the giver. gamma ray energy

and geometrical configuration. In addition, the shape of the monoenergetic pulse

height distribution depends on the source dete -tor geometry.

NUMERICAL SOLUTION

The problem of the analysis of gamma ray pulse height spectra in this par-

ticular spectral region lies i^ the fact that we cann,)t yet perform this inverse

transform analytically. Numerical methods must therefore to used.
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, he first step in th.: developm, i of a	 method is to show that the

integral in equation (1) can be written as a SUM of discrete components. Re-

member also that T(E) is not a discrete distribution in energy, but (in terms of

the observations we are interested in) a continuous energy distribution. The fol-

lowing technique for obtaining T(E) is based on a theorem in samplims; ► heory,6-8

and upon the fact that there is a finite energy resolution of the detection system.

If a distribution has no oscillatory component with a frequency greater than f 	 ,max

then, the Shannon S-impling Theorem asserts, samples at discrete points not

further apart than 1/2 f m x describe the origin al function exactly. The original

function, in fact, may be reconstructed from the samples. 7 If this theorem is

applicable, equation (1) can be written as:

Y _ ^T j S i j	 (2)

where V i is the measurement of Y(V) in channel or pulse height V , T, is the to-

tal number of gamma rays in energy group AE, about E . , and S, i is the value of

the jth standard spectrum in channel i. The Si i components are, for example,

the response of a NaI('TI) detector to an incident monoenergetie gamma ray.

The sampling functions S(E. V) are written as arrays of numbers, Si i .

characterisiic shapes of thes° distributions are shown in Figures 1-5. Con;

ing only the energies where pair production is negligible, these spectra can

described by a Compton continuum and the photopeak. The Compton cons ;.:,u

7



y(x)	 - N .--xp X-
2-7.

	
l

M2
(3)

is a more slowly varying function than is the photopealc. As a first approximation,

the photopeak can be described by a Gaussian equation,

where x	 (V •- Vm ) in pulse height units, V ,n is the pulse height corresponding

to energy, E n , and ;,m is the standard deviation and a function of Vn,'

It is further assumed that y(x) is negligible and/or equal to zero for those

values of pulse height where y(x) -- N x 10-3 in Equ .tion (3) . This assumption

does not affect the analysis significantly, because these values of y(x) will be

lost in the noise (background) of the system.

Finally, it is assumed th-t the Gaussian Equation (2) can be closely approx-

imated by a cos 2 kx distribution, i.e., that the amplitudes of the higher frequen-

cies are negligible in terms of the analysis (the comparison is shown in Figure 6).

Then the frequency of oscillation or rate of change of shape of the photopeak (re-

sponse function 3, j ) is determined in tiie following manner:

The val ►.ie of k is chosen so that for x = 0 , and for x C2 o-m (i.e., the e- 1 on

the Gaussian), the amplitudes of the Gaussian and cos 2kx function are equal. We

assume that N = 1 in the equation (3), and k is found to be equal to -T14. Mom' The

frequency, f , can be found in this manne-:

1
cos 2 kx	 1 (1 + cos 2kx) .

8
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The frequency is, therefore,

__ 2k _	 l
f	 n

M

The photopeak is assumed to contain the oscillatory component with the max-

imum frequency. This is the frequency found in equation (5). It is now possible

(5)

to relate this frequency to the total width at half maximum, W 1	From Eaua-

tion (3), with y = W2 when x - W 1 2 9then:

W 1 %2

° m 	 2.35

Substituting this value of a m into Equation (4), the maximum

is found in terms of W 
1 2 :

.1
f	 1.03 W1/2m

For all practical purpose`, therefore, the maximum freque

proportional to the total width at half maximum. The criteria f

separation (M.S.) between sampling components to be used in E

then be found using Shannon's Sampling Theorem,

1
M. S. _ -2-f - — ~ 1/2W1 2

max

9



The sampling components should be chosen so that their separation in en-

ergy will be no greater than the half width at half maximum of their photopeaks.

Thus, from information theory, it has been shown that the integral given in r qua-

tion (1) can he described as a sum of discrete energy components which describe

	

an energy interval, i. , about a given	 and that the energy intervals between

the -A E samples will be no greater than I 2W 1 2 ma X , the half width at half maxi-

mum of the photopeak for the function, S(E. V) . In this way, the approximation

formula, Equation (2), is obtained. Equation (2) is now in a form where a valid

numerical transformation can he obtained using techniques derived from the

analysis of variance. The details of this derivation can be found in Re

and 10. Briefly, using the least square principle, the method requires

'^1 	 .. i ( Y i	 'ri Si i ) 2

LL.. i^^	 (ice

be a minimum, where w i is the statistical weight corresponding to the

ment of Y i in channel i, and co, = 11o, 2 (where 0- 2 is the variance of 1

	

i	 1

in channel i). The other terms have been defined. The partial derival

are taken with respect to T in order to determine the minimum. The ;

matrix form is given by Equation (10) .

(SWST SAY
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where Y is a vector describing the pulse height spectrum, S is an m,, n matrix

describing the discrete set of detector response function using the selection rule

ti
derived above, S is the transposition of S, a) is a square diagonal matrix of the

weighting functions, and T is a best estimate of the differential energy photon

spectrum.

A semi-empirical method is used to derive the function, S, i . This method

is described in detail in Reference 11.

Two types of calculation are now available to us. If we know the differential

energy photon spectrum, T(E), the expected pulse height spectrum can be ob-

tained using Equation (2). On the other hand, the hest estimate of T(E) can be

obtained from the measured pulse height spectrum, Y(V) , using Equation (10).

Algorithms for finding such solutions are described in References 8, 9, and 10.

The use of both methods will be discussed in the next section.

PULSE HEIGHT AND PHOTON SPECTRA

We will now present a number of illustrations to show the nature of the prob-

lem, and solutions that can be obtained. Let us assume that we are trying to

measure a photon spectrum, T(E), which can be described by a differential en-

ergy distribution, T(E) dE _ E -1 • 5 dE. Figure 7a shows such a distribution, and

T(E) dE is indicated.

The spectrum is measured using a 3" x 3" NaI(Tl) crystal. The pulse height

spectrum, Y(V) dE , that would be obtained using Equation (2) is indicated in Fig-

ure 7a. If we attempt to determine the slope of the line of the pulse height

11



spectrum, we find the slope to be Y(V) (IV - V-2-3 (IV; significantly different from

T(E) . Further, if we measure the pulse height spectrum only in the region up to

about 60 keV, Y(V) dV - V- 1 - 5 (IV. If we measure the spectrum from 100 to about

300 kvV, Y(V) (IV 7:
	 1 , 7 (IV, and Y(V) (IV (IV-2.3 dE if we determine the slope from

300 ke V to 2 Me V. Of course the shape of Y(V) will depend on the size of the de-

tector used, the resolution of the detector, the angular distribution of the inei-

dent :lux, and other factors. What lxecon? -ven more important is, that if we
M

f
'rte

assume that superimposed upon this power law distribution is some type of dis-

tribution like the photon inelastic scattering process proposed in Reference 1

( Figure 7b), there is a deviation of T(E) A from the power law distribution at

higher energies. The problem that occurs is that the detection system damps out

this deviation in the photon spectrum, T(E), and we lose the information concern-

ing this power law process if we analyze the pulse height spectrum alone. This

damping will depend, again, on such factors as the crystal size, the resolution,

and the angular distribution of the incident flux. Thus, it becomes possible to

obtain almost any kind of solution if the pulse height spectrum is mistakenly used

for correlating theory with experiment.

The analysis te:^hnique that has been developed in our laboratory requires

no a priori knowledge of the incident flux for obtaining the solution, T(E) dE . All

that is required is a knowledge of the nature of the interactioi, process, S(E, V) ,

for the given detector used for the measurement. Figure 8 shows both the meas-

12



tired ixilse height spectrum (a), and the analytically derived photon spectrum (b)

obtained using the analytical method just described.

The measured pulse height spectrum (Figure Ra) was obtained during a balloon

flight at approximately 100,000 feet, using a 3" - 3" NaI(V) detector. 12 The

0.51 MeV annihilation ray peak is easily recognized in the pulse height spectrum.

Without assuming any a prior i knowledge of the incident photon spectrum, the

numerical transformation was performed and the photon spectrum obtained.

After the numerical analysis, two other discrete lines became more distinct

above background. These lines were later identified as the potassium 40 (K-40)

line caused by the presence of this material in the atmosphere, and the mag-

nesium (Mg-24) line which can be attributed to excitation induced by the incident

cosmic ray faux on the gondola structural material. Once identified, these dis-

crete lines could he subtracted from the total photon spectrum to obtain the pure

continuous spectrum.

The photon spectrum (Figure 8b) can be used to re-_,onstruct the pulse height

spectrum (Equation 2). The results are shown in Figure 8a. As can be seen,

it is almost impossible to differentiate between the two curves.

Finally, in Figure 8b, we see that the last two points are higher than the con-

tinuum. These two points contain information of all the energies striking the

crystals with energies greater than that observed in the measured energy region.

These so-called "end effects" will occur when only parts of the total spectrum

are analyzed.

13



DETECTOR SIZE

'We can generalize this discussion to consider the effects of detector size

and resolution. These factors can greatly affect the shape of the pulse Height

spectra. Calculations of pulse height spectra obtained by using smaller ;;rystals

have been carried out in our laboratory. The major noticable effect is a steepen-

ing of the slope of the curve, and the breaks in slope, that occur at lower energies,

of the pulse height spectrum. Th' i steepening, and the changes of break in slope,

can be attributed mainly to two factors: decrease in detection efficiency, and in-

crease in the size of the Compton region as compared to the photopeak region

characteristic of the crystal response function. The latter result indicates that

sons -)rs with minimum contributions of the Compton continuum are the most con-

sequential for measuring the continuous photon spectrum. Thus, even though tale

energy resolution is significantly better with small solid state detectors (e.g., Ge

(Li)), we would choose a large scintillation detector (e.g., NaI( T1)) with a sig-

nificantly lower Compton continuum contribution to measure a continuous photon

spectrum. On the other hand, if we wish to determine discrete energies above the

background, we will sacrifice the reduced Compton for the improved resolution

of the solid state detectors.

SUMMARY

We have described a method which allows us to determine both the pulse

height spectrum from a known photon spectrum, and the photon spectrum from a

measured pulse height spectrum. Information from these two spectra differs

14
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significantly. For example, if, using a 3'' 3" NaI(Tl) detector, we attempt to

measure a photon differential energy spectrum characterized by a V(E) : E ' - 5 A

distribution, we obtain a pulse height spectrum with a number of breaks in slope:

a -1.5 slope in the energy region up to 60 keV, a -1.7 slope in the energy region

up to 300 keV, and a slope of -2.3 from .3 MeV to 2 MeV. The information of most

interest is that which can be derived from the photon spectrum. The technique

for deriving the photon spectra from the measured pulse height spectra elimi-

nates, in a sense, the effects of instrumental response. It further allows for mean-

ingful comparison with data from different detectors.

In a future paper (Part II), this method will be used to correlate the data ob-

tained from a variety of experimenters in 	 ler to obtain a valid photon spectrum

over the energy region 10 keV to 10 MeV. A joint effort by the author and Dr.

F. Stecker is underway to collect the data, perform the analysis, and appraise

the theoretical applications of the resultant spectrum.
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FIGURE CAPTIONS

r igure 1.	 Sc° 7 gamma rays on 3" x 3" Nal(TI) crystal. Source at 3 cm.

Figure 2.	 Cs, 37 gamma rays on 3" x 3 " NaI(T1) crystal. Source at 10 cm.

Figure 3.	 Nat s gamma rays on 3" x 3" Nal(TI) crystal. Source at 3 cm.

Figure 4.	 Zn6 5 at 0.24 cm from Nal(TI) crystal. Source at 10 cm.

Figure 5.	 C06 ° gamma rays on 3" x 3" Nal(TI) crystal. Source- at 10 cm.

Figure 6.	 Comparison of Gaussian distribution with a cos 2 kx distribution.

Fitted at x = 0 and x = 4F.

Figure 7.	 Effect of detect or interaction with ins-i6on'l photon flux in the meas-
(a&b)

urement of gamma rays.

Figure 8a. Pulse height spectrum. 3" x 3" Nal(TI) crystal atmospheric

spectrum.

Figure 8b. Photon spectrum. 1 channel = 14.9 keV.
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Figure 1. Sc 47 Gamma Rays on 3" x 3" NaI(TI) Crystal. Source at 3 cm.
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