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ABSTRACT

Three double-gimhaled control moment tyros constitute the actuators
for one of file attitude control system modes of 11W Apollo Telescope Mount.
A distribution law and a rotation law for the individual angular momentum
vectors of the control moment gyros are developed because the attitude control
law, in controlling the magnitude and the direction of the total angular moments
vector, uses only three of the available six degrees of freedom. Without a
distribution law, a highly undesirable distribution can develop where two of
the three individual angular momentum vectors are parallel and the third is
antiparnilel, reducing the total angular momentum available to one third of
that which could be available with a desirable distribution. The desirable
distribution is such that, after equilibrium is achieved, the individual nngular
momentum vectors have equal components along the total. Other results are
equal angles between the individual vectors and equal angles between the
individual vectors and the total. V-1-ecnuse of the equal angles, the desired
distribution is called the "isogonal distribution." Isogonal distribution has
the following advantages: (1) antiparallel distribution is avoided, (2) the gain
available for the attitude control lair- is maximized, and (3) the cross coupling
is minimized. Tile distribution law uses two degrees of freedom; rotation
about the total angular momentum vector still remains free. Therefore, a
rotation law is added to minimize Lhe inner gimbal angles with the result that
hitting of the inner gimbal stops is avoided as much as possible. Operation
of the distribution and rotation laws in case one of the control moment gyros
fails Is also discussed.
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DEFINITION OF SYMBOLS

i,	 ),	 k cyclic permuted subscripts (1, 2, 3, or 2, 3, 1 or
3,1,2)

M, n general subscripts (range 1,2,3; all possible	 f
combinations)

a bar below a letter indicates a vector quantity 	 {

' a dot above a letter indicates a time derivative

A i a 2x3 matrix (eq. 9)

Hi a 3x2 matrix (eq.	 11 and lla)

c = cos

ei a unit vector in direction of the ith CMG angular 	 F

momentum

e mn direction cosines of e	 (i = m) with respect to thei
vehicle axis n

e ik ' eik2)

e T	 _ e t + 22 + e 3 . Normalized total angular momentum

of the CMG cluster ( maximum value: 3)

e T	= I !IT I

e Ti	 components of e T in vehicle space

E 	 intermediate quantity used in the digi'.al program

IV



DEFINITION OF SYMBOLS (Continued)
1

= 0	 -e 3	 +e2

e =	 +e 3 	0	 -e 1

-e2	 +e 1	0

h , see eq. 5

h mn components of h i ( i = m) in vehicle space
I

K  gain of the isogonal distribution, [ 1/s]

K D I maximum of I K D I , [ 1/sJ

K R rotation gain ( KH > 0) , [ i/s)

q determinant ( see eq. 13)

i	 r intermediate quantities used in the digital program
mn

s = sin

{	 t = tan

u , unit vector along the ith vehicle axis
—1

x V , y V , z V	 vehicle axes

ai \ angles used in conjunction with the rotation law,

/3 i 1	 defined in Figure 4

V



DEFINITION OF SYMBOLS (Concluded)
	 i

b 1(1)	
inner gimbal angle of ith CMG

outer gimbal angle of ith CMG

—i	

630)

E1	 error of the isogonal distribution, [ 1 1s]

E R	 rotation error, [ 1 /s]

ERi	 part of ER stemming from the ith CMG, [ 1/s]

Efit^	 - e T2 ERi / 73

A 	 gain modi:ier for isogonal distribution

w i	 actual angular velocity of a 1 , [ f/s]

Sl	 angular velocity command for rotation, [ 1 1s]

vi
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TECHNICAL MEMORANDUM X-53696

INDIVIDUAL ANGULAR MOMENTUM VECTOR DISTRIBUTION
AND ROTATION LAWS FOR THREE DOUBLE-GIMBALED

CONTROL MOMENT GYROS

SUMMARY

A distribution law and a rotation law for the individual angular momentum
vectors of the three control moment gyros of the Apollo Telescope Mount are
developed. The attitude control law controls the magnitude and the direction of
the total angular momentum vector, using only three of the available six degrees
of freedom. Without a distribution law, a highly undesirable distribution can
develop where two of the three individual angular momentum vectors are parallel
and the third is antiparallel, reducing the total angular momentum available
by two thirds. The total is always fully available with the desirable distribution
as provided by the distribution law, unless gimbal stops interfere. the desirable
distribution has the following advantages: (1) antiparallel distribution is
avoided, (2) the gain available for the attitude control law is maximized, and
(3) the cross coupling is minimized. The rotation law minimizes the inner
gimbal angles with the result that hitting of the inner gimbal stops is avoided
as much as possibie. Operation of the distribution and rotation laws in cage
one of the CMG's fails is also discussed.

INTRODUCTION

The Apollo Telescope Mount (ATM) carries three double-gimbaled con-
trol moment gyros (CMG) [ 1, 21 . The magnitude of the angular momentum of
each CMG is fixed, and the arrangement has six degrees of freedom. The
attitude control law will command the magnitude and the direction of the total
angular momentum; therefore, it utilizes only three degrees of freedom. The
distribution of the individual angular momenta is not controlled. This freedom
can lead to highly undesirable distributions, such as the antiparallel situation
in which two vectors are parallel and the third is antiparallel. To avoid un-
desirable distributions, a distribution law is developed. The desirable



distribution is such that, after equilibrium is achieved, the individual angular
momentum vectors have equal components along the total. Other results are
equal angles betwoon the individual vectors and equal angles between the
individual vect o rs and the total. Because of these equal angles, the desired
distribution is called the "isogonal distribution" ( Fig. 1). The isogonal dis-
tribution has the following advantages: ( 1) antiparallel distribution is avoided,
(2) the gain available for the attitude control law is maximized, and (3) the
cross coupling is minimized. The distribution law uses two degrees of freedom;
rotation about the total angular momentum vector still remains free. There-
fore, a rotation law is added to minimize the inner gimbal angles with the
result that hitting of the inner gimbal stops is avoided as much as possible.

The existing gimbal angles are the inputs to the -iistribution and rotation
(D&R) laws and the gimbal angle rate commands are the outputs. These rate
commands are in addition to those from the attitude control law. To develop

FIGURE 1. ISOGONAL DISTRIBUTION
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the D&R laws it is assumed that the angular velocity of the vehicle is negligibly
small and that the contribution of the gimbal rates caused by the D&R laws
to the total angular momentum is negligible. For simplicity, unit vectors
along the individual angular momentum vectors are used and are called
e i ( i = 1, 2, 3) ; their sum is e T (0	 eT 1 < 3) . To avoid interference of

the D&R laws with the attitude control law, it is necessary that these laws do
not result in any change of the total angular momentum vecior of the CMG
cluster 0. e. , no acceleration on the vehicle) .

The ratio of the angular velocity command to an angular error function
may be called the gain for the D&R laws. In addition to a selectable constant,
there is an inherent gain which varies with the gimbal angles. This is accept-
able if the loop is stable with the highest inherent gain.

D I STk I BUT ION LAW

e'er the sake of argument we can assume that two of the a i -vectors are

summed first and then the third is added to form e 
T. If we desire to redis-

tribute the first two without disturbing the total (d T, = 0) , we can only rotate

the first two about their sum. The angular rate e , about this sum is made

proportional to the scalar function E.
1 

which, for e 1 and e 2 , is given by
—	 —

K  (e i . e T - 112 . e T) . This scalar function provides a signal proportional

to the deviation from the desired orientation. To assure rotation about the sum
of the first two vectors, e 1 

is also made proportional to their cross product.

Pairing e i and a 2 , for example, we have (Fig. 2)

6  =	 E3 (e 2 x e 1 )	 (i)

e2 =	 E3(el x e 2 )	 ( 2)

with E3 = K  ( ti • e T - e 2 • t T) = KD (e I • t3 - S2 • t3)	 (3)

By cyclic permutation the equivalent equations for the other two pairs
can be developed. The constant K  can be chosen, from other considerations

( see discussion at the end of this section) . The cyclic permutation allow us



=2

e, _ e2

TUAL

FIGURE 2. DEVELOPMENT OF DISTRIBUTION LAW



to use index notation with the understanding that we have the following three
sets of values for i, j , and k:

i	 j	 k

J	 2 j 3

2	 3	 1

3	 1 12

The vector pairing can be assumed tc be simultaneous and the resulting
velocities vectorially added to form:

e
i —i —i

= h xe	 (4)
— 

with	 h .
i	 ^
-	 e 1. 

+ c j —ke	 (5)
—— 

It car. be seen ( after expansion of e quations 4 and 5) that no matter

what value is chosen for KD , the sum of the a is (or a T) is zero (.Appendix A).

To develop the equations for the gimbal velocity commands, we must
consider the following built-in reiationship (Fig. 3):

e..

e i =	 e..	 = cu 1(1) cu 3li) u i - cu1(i)sb3(i)uj - S6	 (6)uk	 (E)

eik

where the a 1.'s are unit vectors along the vehicle axes with the indices permuted_

as previously shown, and the u's are gimbal angles defined in Figure 3. The
second index on the components of e i refers to the vehicle axes; for example,

e.. is the direction cosine of e . with respect to vehicle axis j. Therefore we
it	 —i

can also write:

5	 1
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# OUTER GIMBAL

! TORQUER

^
^	 U3(3)
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_ I

'	 Z CMG /0
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GIMBAL
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TORQUER

_	 PLANE

CID
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Y V

SI(i) Y CMG MOUNTING PLANE
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GIMBAL — X CMG MOUNTING PLANE
TORQUER

a3(I)

FIGURE 3. CONTROL MOMENT GYRO ORIENTATIONS



I	 ell	 e12	 e13	 u 1 1

	

t 2 	-	 e21	 e22	 e23	 R2

	

1 t3 I	 ezi	 e32	 e33 J u3J

The generally nonorthogonal direction cosine matrix in equation 7 will be
needed 'Later. The e,

1j
's are gi%en in terms of gimbal angles on page 20.

For an existing gimbal velocity we have

A 
i 6 (i)
	 (8)

(7)

with	 e , .
iz

e .	 =	 e..

e.
- ik_

and	 o () ol(i)

S3(i)

s6 1(i)
c6

30) -c61(i)s63(i)

A i
 = [+CS6 i(i) 

S6
3(i) _c6iU)C630)

	-ai(i)	 0

Aso .-command law we need (see Appendix B and proof below):0

^_(i)	 Bi hi

B =

	

+s63Q)	 +C6 3Q)0

-t8
1WC630) tt6IQ)s63Q) -1

with

(9)

(10)

( 11)

e i =

7



or in terms of direction cosines (with e ik' = V 1/(1 - c ikZ ) )'

B =	 eik e i j
i

eik(eik') 2eii

e. 'e..	 0,
ik ii

- e ik(ei0 le i .	 -1
J

( A a)

The existing hardware implementation through resolvers or the gimbals provides
the direction cosines of equation 7 whereas the gimbal angles are not available
explicitly. Thus, B  is expressed in terms of the direction cosines ( see
Appendix C).

By multiplying, it can be shown that

e. = A. B, li	 = - e. x h. = h , x e.
— i 	 i 1 — 1 	 —1	 — 1	 — 1 —1

if it is assumed that the actual and the commanded gimbal rates are identical.
Equation 10 is, therefore, the proper solution for the gimbal velocity commands
to solve equation 4.

A discussion on the freely selectable isogonal distribution gain K  (equa-

tion 3) is in order. When this gain is positive, we get a right-handed con-
figuration ( right-handed means that when we look down e T and identify the

individual vectors counterclockwise, we find the sequence 1 - 2 - 3) ; for a
negative K D , we get a left-handed configuration. Both configurations are stable.

Since neither sign has a basic preference, we can dynamically ( during oper-.lion
of the CMG's) seiect the sign of the gain K  so that the vectors are driven

toward the closer solution. This action implies a knowledge of whether the
instantaneous distribution is right- or left-handed. The following determinant
affords this knowledge.

I e ll	 e12	 e13

q = I e 21	 e22	 e23

e 31	 e32	 e33

8



It can be *recognized that this is the determinant of the direction cosines for
the angular momentum vectors. If these vectors are mutually perpendicular,
we nave an orthogonal coordinate system, and it is well known that the value
of the determinant q is +1 for a right-handed system and -1 for a left-handed
one. For a continuously deformable system as the one at hand, the detr
minant can be anywhere between these limits and the sign of the determinant
can be used as the sign for the distribution gain KD. A value of zero for q

indicates that the three vectors are in a plane. A change in sign for q occurs
under certain conditions. Gimbal stops may disallow the isogonal distribution
and deform the distribution so much that q changes sign. The distribution gain
is much lower than the attitude control gain (as discussed later), and maneuver
commands can cause a relatively fast change in the distribution which could
resuit in a sign change of q. Finally, whenever e 

T -asses through zero, q

changes sign. Regardless of the reason for the sign change, it is always bene-
ficial for the system behavior. A further improvement in system behavior
can be Trade through the introduction of a multiplier 

AD so that the isogonal
distribution gain becomes

% = A DKD' sgn q

where
KD1	 KD' max

and
0 < ).D 5 +1

The multiplier 
XD is a function of e  = le T 1. For small e  we desire X  = 0,

thus avoiding the possibility for large angular redistributions wher. e T passes

close to zero. When e  is in the vicinity of unity ( i. e. , without a distribution

law, antiparallel is a problem), the multiplier 
X  

should be at its maximum.

For large e T , a small X  
is sufficient. The exact function of X D(eT) is not

critical, and straight line segments may be used (Appendix C). The inaximum
distribution gain KD ' should be large enough to avoid antiparallel, but not

larger than necessary because gimbal stops sometimes disallow the isogonal
distribution and the attitude control gain must be higher than the distribution

9



gain so that the attitude control takes over in case of conflict. During normal
operation there is no conflict because the distribution and rotation laws do not
result in an acceleration of the vehicle.

Temporary evviations from the isogonal distribution can be tolerated to
a large extent. For example, for the .intiparallel case, e T = 1. This case is

depicted in Figure 1. The dot product between any of the isogonally distrii,uted
vectors and the antiparallel direction is - 1/3, or there is an angle of almost
110 degrees between the desired individual hector direction as demanded by
the isogonal distribution law and the antiparal:el direction. This indict tes
that even a de%iation of 40 or 50 degrees from the desired direction can be
temporarily accepted.

ROTATION LAW

The isogonal distribution law concerns itself only with the relative
distribution between the individual and the total angular momentum vectors.
A rotation about the total leaves the distribution unaffected. The rotational
freedom can therefore be used for some benefit. To reach some desired
orientation about a I,, an angular veiocit\ , Q of the following form must be
commanded.

	

S? = E 
R 

e 
T
	 (14)

where E R will be developed later. For the individual angular momentum

vectors, the relation exists

	

= S^ xe.	 (15)

Equation 15 is identical in form to equation 4; only Q is substituted for h..
Therefore we get analogous to equation 10

	

o (i) = B i 5?
	

(16)

No unique law exists for the rotation contrary to the unique isogonal
distribution law. In the application of the three CMG system to ATM, the
most benefit can be derived from a rotation law if the inner gimbal angles
are minimized. Even under this assumption, minimizing must be first defined,
since no unique definition exists. Avoidance of hitting the inner gimbal stops,
which are at ±80 degrees, was given priority. It was also desirable to have a
continuous function rather than a switching function for the rotation law. Be-
cause the three vectors rotate as a unit about e T , none of the inner gimbal angles

10
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3
ER = Z ERi	

(17)
i=1c

with

will ;generally be at an absolute minimum, but a compromise will be reached
for all three. The following form xns selected for t 

R :

s
i

K
ERi	 e

=	
R to1(i) sa 

ico i	 (18)
T

Because E R will become zero a: equilibrium and KR is a freel y selectable

positive constant, no additional constants are necessar% in equation 17.

The reasons for the various quantities in the error function ERi are

given. To make P. independent of the magnitude of e 
T, 

we have vo divide

by eT . The tangent of the inner gimbal angle ( rather than the angle itself) is

chosen for two reasons: (1) to give the larger angles more weight and (2) to
make use of trigonometric functions which are readily available in the form of the
direction cosines (equation 7). Figure 4 defines the two other angles used for
i = 1. Consider, for the sake of the explanation, that the plane for which
S 1(i:) = 0 is the equatorial plane. Then the angle a  indicates the separation

of the meridian plane containing e i and the one containing e 
T' 

The combination

of tS i(i) sa i will select the proper sign for the angular velocity and go to zero

when the desired conditions are reached. The multiplier c9 
i 

takes the effective-

ness of a rotation in reducing 61(i) into account, eliminating the ERi -contribution

to ER completely when 3i = 2 whe re a rotation does not change 61(i)'

We can identify several cases; Figure 5 snows an opaque unit sphere, the
equator of which indicates b1(i) = 0. The vertical line is a longitude onto which,

for convenience, all intersects for the direction of e T have been placed. Usually

CT will not terminate on the unit sphere.

CASE I. — The circie of possible tip locations to e . (assuming a

rotation about e T ) does not intersect the equator, and the inner gimbal angle

b1(i) is positive. We find two equilibrium conditions: one stable and one

unstable.

11
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^I

	

^+-	 el2 ,
	 Y

	

I	 V
^II
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I(i)-+90•

CASE Y	 U
1 ^^ TL

UNIT
SPHERE

Cl i -+90°

ER i > 0

Sd

CASE U

ERI<0 U

eT

ERI<0
5

S

e	 ^— TL
—T

^— S ERi>0

8I(i)'0
ac i--90°

CASE X^ e/ "^-TL

U

TLm CIRCLE OF	 U = UNSTABLE
TIP LOCATIONS OF e i 	 8I0)=_9u°	 EQUILIBRIUM
FOR ROTATION	 S - STABLE
ABOUT e T	 EQUIUBRIUM

FIGURE 5. E'QUILIBRIIJbI CASES FOR ROTATION

CASE H. — The circle of tip locations intersects the equator. We find
four equ;:ibria: two are intersections and are stable, and two are unstable.

CASE III_. -- This case is equivalent to case I; only the sign on o f (i) is
reversed.

i



Determination of equation 18 in term-, of the readily available 
dk. ection

cosines and the components of the tot-al angular momentum vector leads to

(i ^ 1) .

	t6 
1(	

e l3e 13	 with e13-	

e13 2

eTIY	

q 
e T 

e 
T3	 e L
	

+ eT2 2c tr3 l = 

I _ (L	
- 2	 Je T

e

'T	

T	 T

elle T2 - 612eTl

	

Sa	
(elf 2 + e12 2) (e	

2	 e	 21
T1	 T2 '

elle T2 - el2e TI

2^	 2	 2)
e,3 , (e TI + e T2

	

E	
1 

2	 -e13 ( 813' 
)2 (elle 

T2 - el2e Ti	
(19)

T

Cyclic permutation of the indices leads to 'R2 and E 
R3 :

	

C	 --L I - e 2 : (e2l 
v ) 2 (e22e	 - e23e	

(20)

	

R2 ^ 
e T 

2	 T3	 T2)

	

E	 i ' 
i - e32 (0,,t)2 (e33e 	 - e3le	

21)

	

112 = eT
2 )

I	
-	 TI	 T3

14



DISTRIBUTION AND ROTATION LAW COMBINATION

Since the desired gimbal velocity commands from the distribution law
and from the rotation law are independent of each other, they can be combined
into

b (i) = Bi (h i + ER e T )
	

( 22)

These gimbal velocity commands should be added to the commands from

the attitude control law.

The distribution is unaffected by the rotation as already indicated during
the development of the rotation law; i.e., the E.'s of the distribution law are

t
not affected. On the other hand, E R is affected by a change in tLe distri bution,

and it is advisable that KR (contained in E R ) is made smaller than K D' ^non-

tained in h l through E i ). A ratio of KR/K D' = 0.1 was found to be acceptable,

but it is not critical either way.

OPERATION WITH TWO CMG'S

A system with three CMG ' s has the capability to lose one and still be
able to control the vehicle, even if the performance is degraded. Two CMG's
have only four degrees of freedom, and three are being used for attitude con-
trol. There is no need for a distribution law since the two remaining angular
momentum vectors have inherently the proper distributior, but the rotation
law still can minimize the inner gimbal angles of the operative C N1G's. To
convert from the three to the two CMG opera,, ,on, it is only necessary to set
all the direction cosines of the inoperative CMG to zero. ( Gimbal angle velocity
commands issued by the computer to the inoperative CMG should be dis-
regarded.) No distribution command will appear for the operative CMG's.
But, as desired, the rotation law is working as usual, having now only two
error sources, rather than three ( equation 17) .

15



CONCLUSIONS

The isogonal di,cribution lav: and the rotation taw were implemented in
a hybrid simulation, and the behavior was studied with the aid of a three-
dimensional displa y .* Both laws performed as expected. It was also noted
that, if gimbal stops disallowed the isogonal distribution, the distribution
approximated the desired distribution as close as possible under the imposed
restric.;ons. Analysis of the dynamic performance of the attitude control law
showed a marked improvement in response of the desired channel and a strong
reduction of the cross coupling into the other channels.

*The three-dimensional_ display- shows the body- axes, the three individual
angular momentun-. vectors, their total, and the total commanded angular
momentum vector simultaneously, identified by appropriate coding. This
proved an invaluable tool for the investigation of the behavior of the system( 31 .

16



APPENDIX A

Sum of the e's

Expansion and combination of equations 4 and 5 yield

e
t 	—= (E3 e; + E Z e 3 ) X e,
— 

e 2 = (Ete3 + E , e i ) x e2	(A-1)

E'3 = (E2 e  + El ez ) x e3--

For the sum of the e.'s, we get

& T = +(e., x % + F3 x e, ) El

+ (e3X el + ti X e 3 ) EZ	 (A-2)

+ (e i x e2 + e., X e i ) E3

Because the vectors in parenthesis are all zero, 6  is zero and it is immaterial
what is chosen for the E.'s. The form chosen was (equation 3):

i

E i = KD(e 2 - e 3 ) . ei

E Z = KD(e3

E 3 = KD (e i - e2 ) . e3

Because the E i ' s are indenendent of each other, the K D's could be d?fferent for

each E. without affecting the condition. that e r = Q. This is not sensible though,

because it would no `reat the vector pairs alike, and there is no rease-i for that.
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APPENDIX B

Development of Matrix B

We desire to get the gimbal velocities to solve equation 4, which is
( subscripts dropped)

e = h x e
	 (B-1)

The actual angular velocity of a ca^i be defined as w and must be per-
pendicular to e because of the gimbal constraints. Then,

e = . x e	 ( B-2)

This leads to (equations B-1 and B-2)

(h	 x e = 0	 (B-3;

and this equation can only be solved because w and e are known in terms of the
gimbal angles and their velocities. With

el^	
+C61063	 +s6351

e =	 e2 I =	 -Cb l s63	 and .j _	 +C 6301

Le3 J 	—soil	 -6 3

we obtain for equation B-3

0	 -(h3 + 6 3 )	 +(h2 - 06361)	 +C61063^

0 =	 +(h3 + b3 )	 0	 -(hl - s636 1 )	 -C6 1 s6 3	lB-4)

h - C6361)	 +l h - S63b)	 0	 -sbl- ( 2	 3 1 )	1 	 1

18	 1



The third equation in B-4 yields

6 1 = + S6 3h, 1' C63h2
	

( B-5)

With equation B-5 the first cr second equation of B-4 can be solved to get

b3 = +tg l (S6 3h 2 - C6 3 h 1 ) - h3
	 (B-6)

or

ul	 +Sb3

b3	 -t6jc63

i. e. ,	 6 = B h

+c63	 0	 hl

+t6 j s63	-1	 h2

h3

It might be interesting to note that the cross-product law is

(XPR) = B A B

and that

e = - A B

where a is defined as

	

0	 -e3	 +e2

e = +e3 	0	 -el

	-e2	 +ei	 0

19
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APPENDIX C

Suggested Digital Computer Implementation
(Sequence of Operations)

Inputs_

'ell	 +co1(1)co3(1)	 K 
D

e12 = -c61(1)s63(1)

e 13 = -s6 1(i)

e21 = -s6V2)

x'22	 +c61(2)c63(2)

e23 = -c61(2)s63(2)

e31 = -co 1(3) s63^ 3)

e32 = -s6 1(3)

e33	 +c6!(3)c63(3)

The equivalences of the e mn's in termF of the gimbal angles are only

given for completeness. The e mn 's are provided by resolver chains in the

existing hardware and constitute the actual inputs to the digital computer.



Sequence of Computations.

(e13^)2 =	 (1 - e132)-1

e 13^	 - [(e 13^ )2) 2

( e2i ') ` _	 ( 1 - e212) -1

+i
e21 '	 = [ ( e21') 21 2

(e32 ') 2 = ( 1 - e322) -1

+e32 '	 - [(e32')`]2

both quantities are

needed in the following

e T1 = e il + e21 + e31

eT2 _ 
e 12 + e22 + e32

e T3 = e 13 + e23 + e33

eT2 
= eTl2 + e,, + eT32

eT = eT2

q = e ll (e 22e33 - e32e 23 ) + e21 (e32e 13 - e 12e33 ) + e31 (e 12e23 - e22e13)

sgn q = + t	 for q > 0

sgnq = -1	 for q<0

21



A D = 0 for
e 
	 5 0.25

x 
= 2e 	 - 0.5 for 0.25 < e < 0.75

x 
= +1 for 0.75 < e <	 1.25

x 
= +3. 5 - 2e  for 1.25 < 

e 
<- 1.65

x 
= +0.2 for 1.65 < e 

K  = K 
D 

I ,b sgn q	 I

E l = e 21e31 + e 22e32 e23e33

E2 = e lle3l + e l2e 32 + el3e33

E 3 = elle2l + e 12e 22 + ei3e23

El = ( E 3 - E2 ) K 

E, _ ( E l - E. K 

E3 = (E, - E,) K 

h li = E3e21 + E2e31

h 12 = E3e22 + E2e32

h13 - E3e 23 + E2e33

h21 - E1e31 + E3eli

h22 = E1e32 + E3e12

h23 = E1e33 + E3eO

22	
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r

.r

`t

r

hsi ° E2e11 + Eie21

h32 = E2e 12 + E1e22

hss = E2ei3 + E1e2s

ERi ' = e19(e13')2(e,2eTi - e11eT2)

ER2'= e21(e21')2(e2seT2 - e22eT3)

ER3'= el2(e32')2(e3ieT3 - e3SeT1)

IR

ER - ee T2 (ERi' + ER2 1 + ER3^ )

r11 = h11 +
,e TI

r12 = h12 +
,e T2

r13 = h13 + EReT3

r21 = h21 + EReTi

r22 - h22 + EReT2

r23 = h23 + EReT3

r$1 - h31 + EReTi

r92
- h92

+
EReT2

r93 = hS3 + EReT3



Outputs.

6 ' (1)	 _	 -e 13' (e i2r li - el1r121

6 3(1)	 = +( e 13)2e l3( e jj r jj - e12r:2) - r13

6 1(2)	 _ -e21' (e 25 r22 - C2-,r23)

63(2)	
+(e2:')'e21(e22r22 + e23r23) - r21

6 1(3)	 - -e32 ' (e31 r33 - e33 X31)

63(3)	 +(eJ2')2e32(e33r33 + e31r31) - r32

24
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