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ABSTRACT

After initial experimentation at lower altitudes, the American commercial

communications satellites program has settled on, and is likely to continue

exclusive use of, geosynchronous orbits perhaps making use of orbital incli-z=: 
.t

nation to the equatorial plane to obtain specific geographical coverage.

System capability during the next decade will exceed current economic and

rate regulatory considerations. Hence, reliability and long life will be empha-

sized to lower communication costs even more than commercial communications

satellites have achieved. It is anticipated that system capability will be extended

to relay TV channels on a routine basis and provide broadcasting to community

receivers for educational purposes. Further, the system capability will provide

higher gain, multiple access, and special-purpose links heretofore not served

operationally by satellites. One special-purpose link would be intercontinental

communication and air-Traffic control combined with data collection.

This discussion deals first with the service functions required for satel-

lites: spacecraft power systems, attitude control, and spacecraft propulsion

for stationkeeping. The anticipated capability of antenna systems in large

reflector structures and multiple beam systems is treated next. The remaining

sections concern a variety of multiple-access techniques and the extension of

present communication capability into the millimeter wave region.
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SPACECRAFT POWER SYSTEMS

PRESENT-DAY TECHNOLOGY

Substantial improvement ir solar array and battery reliability can be

expected during the next 2 years to ensure a 5-year life expectancy for com-

munication sateliites. Solar arrays producing 10 to 12 watts per pound at array

efficiencies of 7 to 8 percent on oriented systems will be within the state-of-the-

art. Neither basic efficiency nor radiation resistance will improve significantly

in 2 years, bu+ weight should be reduced through the use of 8-mil-thick silicon

solar cells rather than the present 12 to 14-mil ones. Production quantities

can be anticipated in the near future. Nickel-cadmium storage batteries with

50 percent depth of discharge will be used routinely. Power conditioning

electronics with efficiency ranges of 85 to 90 percent will make overall power

systems of 1 to 2 kw available by 1970.

TECHNOLOGY IN FIVE YEARS

The power-to-weight ratio of deployable solar arrays will double to 20

watts per pound without changing the array efficiency of 7 or 8 percent on

orientedi systems; 8-mil cells will have replaced thicker cells. If the lithium-

doped cell realizes i's potential for improved radiation resistance (effectively

advancing the technology by an order of magnitude). arrays generating up to

10 to 15 kw should be readily available. Only 5 percent degradation per year

at synchronous-orbit altitude will be experienced. Silver-cadmium batteries

with the same capacity but only 60 percent of the weight of counterpart thin

nickel-cadmium cells should be available and capable of 50-percent depth of

discharge. In addition, silver-zinc secondary batteries weighing only 35

percent as much as nickel-cadmium cells may be available. Five years should

be enough time to solve the problem of zinc dendrite growth tl^at is currently

limiting the cycle life of these cells. Reliable 10-kw static-power converters

with a 5-year life are also feasible.
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In 10 years, deployable solar arrays generating 25 watts per pound at the

same oriented system efficiency of 7 or 8 percent can be made available through

the use of lighter structures. If thin-Mm solar cells prove their flight capa-

bility. perhaps 30 to 35 watts per pound at 4 to 5-percent efficiency will be

possible. Despite the resulting increase in area, oriented systems ranging

from 40 to 50 kw would result from the production of large-area cells. Silver-

zinc batteries weighing 35 percent and zinc-oxygen batteries weighing 25

percent of present nickel-cadmium systems will be available. Power condition-

ing electronics using solid-state static converters should be 85 to 90 percent

efficient on the large systems.

Special missions may use radioisotope-thermoelectric generators (RTG),

but on a severely limited basis because of their cost, hazard, and political

considerations. Furthermore, RTGs require considerable system complexity

(e. g. , intact reentry for the isotope fuel). Other solar-power schemes, such

as solar thermoelectrics, solar- thermionic and solar-Brayton, appear to be

too inefficient or complicated for use in space during the next 10y ears. Large

power systems of 50 kw or higher, for possibie use on broadcasting satellites,

would apparently require nuclear reactors using thermoelectric, thermionic,

or rotating machinery. Development of such systems will require more than

10 years. These anticipated advances in battery technology and nuclear systems

presume that support for such development will become available.

SPACECRAFT ATTITUDE CONTROL

INTRODUCTION

Current and projected capabilities of satellite-control systems are sum-

marized in Table 1. The first column lists gravity-g-adient systems that have

not yet been demonstrated conclusively at synchronous altitude. These com-

pletely passive systems are either stabilized in the gravity field of the earth or

augmented with a pitch wheel. Accuracies c;f better than 10 degrees have been

2
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achieved in low earth orbit. To date, 20-degree a.ccuracy has been demonstrated

in near-synchronous orbit. The pointing accuracies given in the table represent

low and medium a?tibzde capability. At synchroncus altitude, the numbers may

double their values.

Altitude has little effect on the pointing accuracy of spin- stabilized satel-

lites, which have, in fact, been flown at all altitudes. The accuracies listed

represent errors in north-south pointing from the equator and assume an equa-

torial orbit and a spin axis normal to the orbit plane. Sensors used for the

alignment of the spin axis may be sun sensors, star mappers, or the communi-

cations link itself. Ground observations of sensor data over a long period of

time are used to precess and align the spin axis.

The dual-spin-stabilized spacecraft (gyrostats) having a spinning body and

a despin platform represent a class of satellites that combine many of the

advantages of spinning and three-axis active, stabilized satellites. The spin-

axis accuracy is less than that of a spin-stabilized satellite, because the

spinning portion is not free to rotate about a principal axis. Since the spin

axis is constrained by the bearing axis, inaccuracies will develop from the

misalignment of the bearing axis and the principal axis of inertia of the spinning

portion. Under the conditions outlined for the spinner, north-south earth-

pointing accuracy is determined by the spin-axis pointing accuracy. East-west

pointing accuracy is determined by the accuracy of pointing about the spin axis.

This latter is limiter; primarily by sensor accuracy and roughness in the

bearings. If an infrared (IR) earth sensor is used, accuracies approaching

0. 1 degree can be expected within the next 5 years. In 10 years the accuracy

should approach 0. 03 degree, probably the ultimate limit because of variations

l
	 in the earth's IR radiation. If RF sensors are used, the acr- -racy couid be

limited only by bearing roughness.

If north-south pointing from the equator is desired on a dual-spin satellitF

a gimbal must be supplied on the despin portion to provide this extra degree of

4



freedom. The pointing capability in this direction would he limited by the gimbal

and the error sensor. The earth sensor or RF attitude-sensor limitations will

be the same as those for east-west Pointing.

Three-axi p , active attit-,ade stabilization is outlined in the last column of

Table 1. The accuracies of these systems are lin-i t.ed primarily by the sensors

and, to a lesser extent, by the dynamic and thermal structural stability of the

satellite. The earth sensor or RF attitude-sensor limitations wi:t be the same

as those !fisted for the dual-spin satellite. Pointing to any spot on the visible

earth can be accomplished at the stated accuracy.

If the accuracies projected in Table 1 are to be achieved, star trackers or

precision inertial quality gyros must he used as sensors. The achievement of

fract?r.nal arc-second accuracies in an earth-oriented direction for communi-

cation will require development of an error signal from the RF link. If the

accuracies projected in the last column can be exceeded, the theee-axis active

system can he flown to those accuracies. The numbers stated are best esti-

mates, and variance may be large.

SPACECRAFT PROPULSION STATIONKEEPING

Extensive use of the synchronous altitude over the next 10 years may

lead to satellite congestion and may require more precise station-keeping

control than is currently in use.

FRESENT-DAY TECHNOLOGY

Long lifetime, active attitude control that includes precise stewing will

require precisely controlled onboard propulsion with high specific impulse and

low thrust levels.

Most of the basic technology required for these applications has been

developed, and the next few years will see it demonstrated in orbit.

i
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Monop cope Rant hydrazine thrusters in the few-pound thrust ra^vP have recently

peen flows, successfully. Millipound-th;-ust-level hydrazine systems are unriev

development. Electri:!ally heated gas systems (resistojets) have also been

successfully etr:plo."ad in orbit. Low-thrust--level (i. e. , 10 micropcundsi,

Liquid ammr,nia propellant, res.stojet systems have been flown experimentally

and will be flown again ir. the next 2 years. A cesium-contact ion engine

system with variable i:nrust lt:vel and thrust vector control is being deveioNd

fo; flight on AnOcations Test Satellite (ATS)-D. A radioisotope-heated

amrvonir thruster with 20 millipounds of thrust bas been developed and sub-

je,• ted to a continuous operational tz^si for 9 months. Further development has

been suspended pending the results of a safety stud y that ma.v dictate ;hanger

irp the capsule design. Low-thrust-level, pulsed electric tnrusters are :n an

advanced stage of development and are available for experimental flight test

or appU ration.

TECHNOLOGY IN FIVE YEARS

Dual-spin-stabilized spacecraft, because of their fine pointing requirement,

wilt requires pulsed thrusters having precise, small impulse capability. Ad-

vanced electric thrusters (e. g. , the colloid thruster) promising greatly improved

pc- rfornvmce are tinder development and will be available for flight testing within

5 years - TeC.,n-logical difficulties lie partly in the thruster-spacecraft interface.

In most cases, the bade thruster systems are fai advanced in their devel-

opment. however, there is ;still a clear need for experimental investigation of

interaction betweet the thruster system and the Spacecraft (e. g. , impingement:

of the exhaust plume on parts of the spacecraft). These rou%ne, ye' crucial,

investigations are not currentl y being conducted and may hold pcinting and

station-keeping capability below the discussed values. These problems cat, be

solved in the next 5 to 10 years if research is started soon.

6



SPACECRAFT ANTENNA SYSTEMS

While total earth :overage within the line of sight of the satellite is re-

quired when many ground receivers are served simultaneously, other appli-

cations exist in which point-to-point communication among few stations with

limited area coverage is required. The dual requirement for less expensive

ground installations and multiple access dictates the development of higher-

gain antennas. These antennas must provide multi-beam patterns and a pointing

capability. Two classes of antennas are discussed: parabolic dishes and

phased arrays.

PRESENT-DAY TECHNOLOGY

The evolution of spacecraft communication antennas originated with the

Telstar and the Relay designs which have near-omnidirectional coverage and

low gain (0 db) because of the wide range of look angles required in the low-

altitude orbit.

SYNCOM was placed in a synchronous orbit that permitted narrowing the

fan-shaped beam for full earth disc coverage with a resulting antenna gain of

7 db. No special control or pointing provisions were required. This pattern

provides North Pole-to-South Pole coverage of the earth; however, the antenna

radiation from the spacecraft is equally distributed in a 360-degree torus

around the spacecraft. But since the earth subtQnds only 18 degrees, most of

the energy is wasted in space.

The AT:J-I spacecraft is designed with an electronically phased array

antenna concentrating transmitted spacecraft RF power in a 20-degree cone

(permitting 18-db gain). Internal loss3s .,n the antenna electronics limited the

effective gain of this approach to 13. 5 db.

ATS-III carries a mechanically despun - eflector antenna using a parabolic

sheet reflector to shape east-west coverage. It uses the SYNCOM antenna

7



concepts mentioned above for north-south beam shaping. The losses in the

design are very small, and the resulting gain is very nearly 18 db. Fixed

antennas, which illuminate the earth (18 db), are planned for ATS-D and -E.

Electromechanically positioned arrays with apertures up to 15 feet in diameter

can readily be designed today. Larger apertures (e. g. , 30 feet) require

development of new structural concepts where the antenna reflector becomes

the main component of the spacecraft.

At the present time, only a few beam patterns can be formed simultaneously;

these can be pointed up to 5 beam diameters off the bore-sight axis by moving

the phase center of the feed. Electromechanical means are applied on ATS to

accomplish this end; however, pure electronic steering is equally feasible. The

ATS-F antenna reflector uses an aluminum honeycomb-petal structure covered

with fine mesh. The petals are side-hinged; thus, deployment in orbit does not

require latching of parts.

Currently, parabolic antennas 30 feet in diameter can be launched and

deployed in space. The technical problems of folding the antenna for packaging

within thf- shroud and withstanding the launch environment are within the state-

of-the-art.

x.
Present technology also permits maintaining the dimensional stability re-

quired of the dish to operate at X-band frequencies, despite severe thermal

pi oblems. Although technology will permit construction of high-gain antennas

in space, the size of the antenna used depends directly on the requirements of

tM particular spacecraft mission (i. e. , there is no limit to the size of an

antenna constructed during the next 10 years). Large-antenna technology is

being developed in such projects as the ATS-F and -G 30-foot aperture and the

LI,1SC 25-foot unfurlable antenna.

8



TECHNOLOGY IN FIVE YEARS

Technical problems in the present antenna configuration should be solved

for diameters up to 100 feet.

Within 5 years parabolic antennas using lighter construction techniques,

such as the electrostatic principle, can be developed and deployed in orbit. In

principle, two metalloid fiber meshes could be joined by a ring and then, in

space, charged electrostatically with opposite polarity. The parabola would

then be formed by electrostatic repulsion. Parabolas with diameters of 200

feet could be launched and deployed.

TECHNOLOGY IN TEN YEARS

The state-of-the-art should permit very large antenna structures to be

launched and deployed in space during the next 10 years. The basic principle

presently envisioned will probably involve a web-like structure rotating about a

central mast. Centrifugal force will slowly deploy the structure, forming a

parabolic surface of extremely low density. This t ype of structure will reduce

weight and thermal problems. Parabolas of up to 1 mile in diameter could be

formed in orbit.

Surface tolerance (including surface deformation caused by space environ-

ment) will allow the reflector to collimate RF energy at 8 GHz, producing a

3-db beamwidth of 0. 3 degree with a gain in excess of 50 db. A surface

tolerance variation of f X1 16 is expected. Surface tolerances capable of

collimating an RF beam at K-band (= 16 GHz) can be accomplished .vithin the

next 10 years; the capability for lower frequencies can be scaled 1) oportionally.

Size limitation is dictated more by available shrouds than by structural dish

technology.

9



PHASED-ARRAY ANTENNA SYSTEMS

An almost unlimited number of beams and channels can be achieved with

phased arrays. There are two general types of phased arrays. The first type

of antenna uses phasing networks and element space separation. Switching or

electronic phasing combines element si gnals so that beams are formed in the

desired direction. External command signals or spacecraft-borne error

detectors (horizon sensors) can control beam formation and operation. Ex-

amples of this type include conventional phased arrays, lens arrays, and

switched multiple-feed arrays. Systems using these principles are highly

dependent on satellite poin+ing and platform stability . This is not the case for

the second type, retrodirective arrays, in which pilot carriers or tones are

sensed and electronically processed so that phasing to form beams in the

desired direction is accomplished automatically.

For multiple access by a large number of subscribers distributed over the

visible earth disc, use of these antenna systems is advantageous and offers

reduced ground station cost because of the potential of high satellite antenna

gain. Table 2 estimates the critical design parameters achievable in the time

periods stated. 'While the principle is well understood today, physical reali-

zation in the future will depend upon progress made in component development

in the millimeter wave region, reductions in element weight, and increase in

elemental power. During the next 5 years some of these antennas will be

tested in orbital flight in the ATS program. Table 2 also lists array size,

array gain, and other important characteristics for five frequency bands ranging

from 2 to 94 GHz.

Two primary limitations for the self-phasing retrodirective (type B)

systems in the lower frequency bands (2 to 4 and 6 to 10 GHz) are the availa-

bility of small, efficient RF power amplifiers, and the weight per element of

the systems. Present solid-state devices are capable of 1/2 watt at 2 to 4 GHz

(transistor) anu 100 mw at 6 to 10 GHz (varactor up-converter). : his limits

10
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equivalent radiated power, while the weight per element limits the number

of elements allowable.

Continued development of solid-state devices and small, efficient traveling--

wave tubes indicates that 1-watt amplifiers will be available with modest devel-

opment for use in 100 to 200-element systems. With a major development

effort, 5-watt devices should be small and light enough for 300 to 400-element

systems. The RF bandwidth in these bands is expected to increase to 500 to

1000 AIHz, and could be wider if traveling-wave tubes are employed. Multiple-

beam systems employing separate independent transponders could simultane-

ously relay many channels of video signals or provide extensive redundancy if

required. In the 6 to 10-GHz band, systems employing 25 independent video

channels could be realized in 5 years, and 100 or more channels in 10 years.

The use of integrated microwave circuits and increased refinement in IF

and signal processing circuitry would lower subsystem weight. However,

increased RF power requirements would maintain the weight per element at

currently achievable levels. The actual weight varies drastically with the

complexity of the transponder system, the number of independent beams

required, and the technique utilized.

Similar limitations hold for the type A systems at the lower frequency

bands. Furthermore, platform stability must be achieved to overcome limits

on high-gain performance.

The present technology of millimeter wave sources and amplifiers pro-

hibits a retrodirective system from being considered in the near future.

However, development of the limited space-charge accumulation (I.SA) diode

and of small, efficient traveling-wave tubes could produce systems with the

required ERP for synchronous operation.

12



The projections given above are in terms of transmitter applications, but

the array figures are equally applicable to steerable receivers. The sensitivity

and noise characteristics would be coincident with the state-of-the-art in the

low-noise receivers described below.

Table 3 and Figures 1 and 2 estimate the state-of-the-art to be achieved by

low-noise receivers in the time periods indicated. Table 4 and 1 ,igure 3 give

estimates for transmitter components of both ground and spacecraft systems.

Another important advance may be achieved by use of large scale integrated

circuitry (LSI). While this technology is still in its infancy, it can profitably

be applied to current logic design; high-frequency applications will probably

be developed in the next decade. Applying LSI techniques will permit highly

redundant design and associated switching logic to be used in retrodirective

arrays for the design of' electronic components.

Comparing the efficiencies of parabolic and phased-array antennas

(dc to RF) is of substantial technical interest. A general analysis encompassing

the complete systems will be followed by a discussion of the specific points

of comparison.

MULTIPLE-ACCESS TECHNIQUES

1	 Present-day ground station access to commercial communication satellites

it

	

is limited to a few high-gain stations that serve as gateways to and from highly
i

developed ground communications networks. Where such networks do not yet

exist, direct satellite access from many less expensive stations may be

advantageous.

The most likely way to achieve cost-effectiveness for the communication

satellite system is to maxiiaize the RF output paver of the spacecraft trans-

mitter. But, at the very least, this requires operation of the final RF ar-,plifier

at or near saturation levels and gives rise to most multiple-access problems.

13
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Figure 1—Spacecraft receiver technology for 1970, 197E, and 1980.
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Table 5, a modified version of Table 5 of the reference cited*, lists

comments on the major multiple-access techniques. The following techniques

are considered:

FDMA—Frequency Division Multiple Access

SSB/PAlAIA—Single Sideband/Phase Modulation Multiple Access

TDMA—Time-Division Multiple Access

SSMA— Spre ad- Spectrum Multiple Access

PAlv'IA—Pulse-Address Multiple Access

The number of projected maximum capability ground stations having access

is given for 1970, 1975, and 1980. The figures indicate the number of inde-

pendent ground terminals transmitting 'simultaneously" to a single spacecraft.

The number of voice channels transmitted by a single terminal could range

anywhere from one to the capacit y of the system.

FREQUENCY DIVISION MULTIPLE ACCESS

Progress in frequency division multiple channel access technology is likely

to be slow until the late 1970's. While three-channel access has already been

operationally achieved with a single hard-limiting transrnnder, little further

progre3s is expected before 1970.

In 1975. 20-channel access could be achieved by using components

(integrated circuits) available in the 1970's to develop a multiple IF and/or

transponder in order to provide an onboard level control capability and to 	 -

ensure continuing optimum-level operation of the transmitter outpat.

Its 1980 large-scale integrated circuit technology should make practical

individual, 5-watt solid-state transpon:lers with overall efficiencies of

*"Modulation Techniques for Multiple Access of a Hard-Limiting Satellite
Repeater," J. W. Schwartz, J. M. Aein, and J. Kaiser. Proc. IEEE, Vol.
54, No. 5, pp. 703-777.
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10 percent, permitting communication of up to 100 channels. As before,

onboard level control to optimize the output stage offers the advantage of very

simple network operation.

SINGLE SIDEBAND/PHASE MODULATION

Four-channel access has been achieved experimentally in the ATS program.

The present limitation on this technique is simply the frequency-control method.

The situation is not expected to change significantly before 1970.

Within 5 years technology will make possible the operation of 1200 channels

per transponder, using improved methods of frequency control (essentially on a

per-channel or access basis), greater output power, and larger spacecraft

antenna gains. The primary consideration in that time period will be economy

of operation rather than the maximum number of channels that can be handled.

The technique of accessing and level control is a closed-loop system; L e. , the

transmitting station monitors its signal as it is received and returned by the

satellite and automatically makes continuous adjustments in the frequency and

level of the transmitted signal.

Using individual transmitted beams from the spacecraft (multiple antennas

and/or steerable arrays) to achieve small area coverage will require the

development of other techniques. Onboard spacecraft processing of' the received

signals and strict network operating procedures would be needed. A well-

developed s-istem could be in operation by 1980, if planning starts in the

near future.

TIME-DIVISION MULTIPLE ACCESS

A 10-channel system has been experimentally demonstrated at Goddard

Space Flight Center (GSFC) with the Relay II medium-altitude satellite.

System design can be readily modified to accommodate synchronous orbit
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satellites. By 1975, the only limit in the performance of TDMA will be the

extent to which logic circuits operating reliably at high rates are used. By this

time a 100-megabit system should be a reality and will permit 1000 channels

per transponder to be designed. Advances achieved by 1980 will depend on

advances in LSI technology. Logic-circuit bit rate will determine the maximum

number of channels. By then a 300-megabit system should be in operation,

permitting 3000 channels per transponder.

SSMA and PAMA are not considered for commercial applications because

of their complexity and prime value for anti-gram and security system design.

After 1980 anti-gram characteristics may become important because of crowding

of the spectrum and satellite spacing at synchronous altitude.

ORBITAL SPACING

Orbital spacing can be discussed only very generally. Current proposals

for domestic satellite communication systems recommend spacings ranging

from 2 to 10 degrees for synchronous satellites employed in wideband FM

systems with a design capacity of one or more television channels and up to

1200 voice and data channels. None of these proposed systems requires major

technological developments. Since the initial domestic satellite systems are

likely to share the common carrier terrestrial frequency bands, mutual inter-

ference must be minimized.

Minimum satellite separation for systems sharing the same carrier

frequencies is determined by the protection ratio of interference or unwanted

signal power to wanted signal power in the worst telephone channel. The

protection ratios required to meet CCIR recommendations range approximately

from 27 to 34 db. This range covers interference of multiple-carrier

frequency-modulation systems with small and large numbers of channels: two

single-carrier frequency-modulation systems, with small and large frequency

deviations: a single-sideband with a frequency-modulation system; and a single
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carri(-' ._r quency-modulation system with a digital system. These comprise

.,I	 cases of mutual interference likely to be encountered during

.)E: ncr det;.^_.

Tn, r itec.,on possible depends primarily on the radiation pattern of the

earth-station	 ,nna. "'ypical earth-station antennas of current design range

d i ameter fro-r '1 tr,	 ieters (30 to 90 feet). In theory, these antennas will

affoi-O i.nterferrn.c f --^tection through angular discrimination of 35 db for

.,ai Aute separations --! 5 degrees and 2 degrees, respectively.

Recent experimental results .v;th both the ATS and Intelsat systems show that

separation of 2 degrees offers i :r, rference protection ratios of 30 to 32 db, using

paraboloid antennas with 40- and 85-foot diameters. Additional interference

protection may be realized with polarization dis cr:minatio z, larger diameter

antennas, greater side-lobe suppression, and iipproved beam-pointing

4	 accuracy and stability. These techniques cdn also minimize multipath fading.

Progress in these areas during the next 5 to 10 years can be expected to reduce

the angular separations of satellites tn approximately 1 degree without compro-

mising system performance. Smaller separations may be acceptable for short

periods of time; i. e. , 1 or 2 percent of the time for voice and telegraphy

signals. However, because of the wider bandwidth requirements, TV signals

will demand 2- to 4 -degree separations.

MILLIMETER WAVE PROPAGATION

Millimeter wave propagation cannot be exploited today because of the lack

of components (see Tables 2 through 4) and lack of detailed propagation param-

eters to design specific systems. Crowding of satellites and channels will

demand use of more spectral bands. In addition, ver y wide-band applications

will find this region attractive. In the next 2 years, the ATS-E millimeter

wp % ,e propagation experiment will probe the atmosphere at 15. 2 and 31. 65 GHz

to measure accurately the parameters that influence communications link
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performance. Parameters that influence millimeter wave propagation are

molecular absorption, particle scattering, and atmospheric turbulence.

Molecular absorption produces well-defined pass and stop bands. the stop

bands are located at 22 GHz and 60 GHz, corresponding to the H 2O and 02

molecular resonances, respectively. The pass bands are located from 10 to

20 GHz, from 27 to 43 GHz, and from 80 to 105 GHz. Attenuation due to

particle scattering, the second factor in atmospheric absorption, is less well

defined, but is a function of wave length and particle size (i. e. , raindrop size).

The third factor, atmospheric turbulence, produces wavefront distortions that

are equivalent to random gain variations in the receiving aperture.

Future prospects for millimeter-wave communications will, of course,

depend on advances in component technology in the areas of solid-state power

sources and millimeter-wave tube developments. Recent advances in LSA

diodes may offer millimeter-wave power sources for communications links by

1975 (Table 4). These devices could be used for 2-GHz bandwidth communica-

tions links at 19 and 37 GHz zi p, well as for satellite-to-satellite experiments at

60 GHz. Use of the 60-GHz frequency for satellite-to-satellite links is

particularly attractive because of reduced earth interference and simultap?ous

employment of small, high-gain satellite antennas.
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