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NOMENCLATURE
 

A parameter related to the main flow turning angle 

c curvature of the X-axis in the curvilinear coordinate 

system 

Cf skin friction coefficient 

F, f functional relations 

G, g universal functions of rI= y/6 

h distance measured from the wall to a.point outside 
the boundary-layer 

H shape factor 

P0 total pressure 

P s static pressure 

Q, q dynamic head 

R' perpendicular distance of the particle from the axis 
of rotation in curvilinear coordinate system 

r local radius 

R = r/rt non-dimensionalized radius 

r, e,y rotating cylindrical coordinate system 

T temperature 

u, v, w velocities in (8, y, r) directions 

ut, w' fluctuating velocities in 0 and r directions 

u* frictional velocity 

X, Y, Z curvilinear coordinate system 

+ Yu* non-dimensionalized distance 
Y= 

Rr, R, R6 * Reynolds number based on r, 6 and 6* 

-i 
a tan S limiting wall streamline angle 

OIL = tan-l local flow angle 



ix 

6boundary-layer thickness 

6* momentum thickness 

K1 displacement thickness 

n = Y/6 non-dimensionalized parameter 

8 distance in tangential direction 

V kinematic viscosity 

p density 

T wall skin friction0 

Tolu , To~w components of T in 8, r directions
 

9angular velocity
 

angular velocity in (X, Y, Z) directions
X "' "Z 


%s non-dimensionalized pressure coefficient
 

Subscript
 

t refers to values at the tip
 

L local
 

s static
 

1 refers to the components of the velocity
 

in the curvilinear coordinate system in
 

Equations (11) through (14)
 



1. INTRODUCTION
 

1.1 Origin of the Study
 

The use of multibladed inducers in liquid rocket feed systems is
 

of great practical importance. These devices are used for various
 

purposes such as to handle cavitating flow in pumps, to increase the
 

suction specific speed of the centrifugal impellers, and to regulate
 

the flow before it enters the impeller.
 

The inducer blades are usually designed in the form of helical
 

surfaces as shown in Fig. (1).
 

Rocket pump inducers operate at high rotational speeds. At such
 

speeds the Reynolds number of the flow is high enough to produce a
 

turbulent boundary-layer on the blades. Because of the existence of
 

a centrifugal force, the fluid particles near the blade surface are
 

thrown out in a radial direction giving rise to a component of the flow
 

velocity in that direction,which imposes a severe restriction on the
 

performance characteristics of the inducers. Thus it becomes necessary
 

to investigate the three-dimensional boundary-layer characteristics
 

on these blades in order to understand flow behavior within the narrow
 

passages of the inducer blades. Since great difficulties are associated
 

with such an investigation it is proposed to carry out a study of a
 

simplified model, namely a single helical blade of large chord length
 

enclosed in an annulus. The influence of pressure and velocity changes
 

that would normally exist in the inviscid stream of an axial inducer
 

passage is neglected. However, it is hoped that this attempt will be
 

useful in a series of systematic studies toward a better understanding
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of the three-dimensional boundary-layers in general and the flow through
 

narrow inducer passages in particular.
 

1.2 Statement of the Problem
 

The boundary layer which develops within various parts of a
 

rotating machinery, for example, turbomachinery blades, propellers,
 

rocket inducer blades, and helicopter blades, is not two-dimensional.
 

Because of the rotation of the system two additional forces are intro­

duced. These are centrifugal and Coriolis forces, which in addition to
 

viscous and pressure forces make the direction of the flow within the
 

boundary-layer different from the flow outside, thus forming a three­

dimensional flow configuration.
 

The velocity vector in such a boundary-layer when it is traversed
 

normal to the surface appears to be skewed. Along the normal, the
 

cross-flow velocity component varies in magnitude from zero at the
 

surface to some maximum and then to zero at the edge of the boundary­

layer0 The reason for the existence of the cross-flow can be found in
 

various publications. In the case of a stationary configuration such
 

as a curved duct, the particles near the flow axis which have a higher
 

velocity are acted upon by a larger centrifugal force than the slower
 

particles near the wall. As a result there will be cross flow inside
 

the boundary-layer.
 

Boundary-layers of the type described above where the three­

dimensional perturbations in the layer are caused by the transverse
 

pressure gradient are commonly referred to as "secondary-flows".
 

In the case of turbomachinery blades fluid particles adjacent to the
 

blades are carried by them through friction and are thrown outwards due
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to centrifugal force, thus giving rise to a cross-flow velocity component.
 

In what follows this cross-flow component is referred to as the radial
 

velocity.
 

1.3 Methods and Means of the Investigation
 

The complexity of turbulent flows does not allow us, for the time
 

being, to carry out an exact analysis of this flow using Reynolds'
 

equations. Instead,approximate solutions may be obtained using
 

momentum integral equations and empirical knowledge of the flow. This
 

technique consists of assuming suitable velocity profiles and an
 

empirical relation for shear stress variations so that the momentum
 

integral equations may be solved. The validity of these assumptions
 

are then checked by experiment.
 

The purpose of the present investigation is to study both
 

analytically and experimentally the turbulent boundary-layer
 

characteristics on a rotating helical blade of small aspect ratio
 

enclosed in an annulus as shown in Fig. (5-a). The investigation
 

includes the measurement of main stream and radial velocity profile,
 

boundary-layer growth and skin friction
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2. THEORETICALCONSIDERATIONS
 

2.1 	Brief Account of the Related Works
 

A survey of the existing literature on the subject of three­

dimensional turbulent boundary-layer showed that very little theoretical
 

and/or experimental works are available; even these depend largely upon
 

two dimensional considerations. Moreover, momentum integral equations
 

have been used along with assumed velocity profiles and the empirical
 

knowledge of the skin friction to obtain approximate solutions
 

The first general model is suggested by Prandtl [3] and has the
 

following form:
 

u/U = G 	 (1)
 

W/l = C g G (2) 

where 0 = tan a. Here, G and g are universal functions of rj = y/6, 

u and w are velocities in streamwise and cross-flow directions and 6, 

the boundary-layer thickness. The angle a is commonly referred to as 

the "limiting streamline angle",which is the angle that the limiting
 

position of a streamline makes relative to the direction of the flow
 

outside as the blade surface is approached. The boundary conditions
 

are: 

y =6, G = 1, g = 0 

y 0, G = 0, g = 1 

If this model is valid the product of Gg should be a universal function 

of n. 

Prandtl's flow model has been applied to various three-dimensional
 

turbulent boundary-layers with specific powers of g and G. Mager [1]
 

using some of the Grushwitz's [8] data for a flow through a curved duct
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concludes that gG is in fact a universal function of Vo Specific
 

powers of g and G used by Mager are
 

G 1() (3)
I /n 


n)2
g= (1 - (4) 

Even though these correlations agree with Grushwitz's data for YJ= 7, it
 

is not known whether similar unique coupling of the velocity profiles
 

exists for all three-dimensional layers0
 

Johnston [9] using some of his own three-dimensional boundary-layer
 

data generated by secondary flow found that such a flow model resulted
 

in a typical spread,meaning that Gg is not a universal function
 

Johnston's experiment was performed over the flat wall bounding a two
 

dimensional air jet forced to flow against a perpendicular backwall.
 

Therefore,a second model is proposed by Johnston. It is argued that
 

the usual representation of the velocity profiles as a function of the
 

distance from the surface does not lead into a satisfactory solution as
 

compared with w as a function of u and a parameter A. This model has
 

the general form of
 

w/U = w/U (0 , A, u/U) (5) 

The parameter A is related to the main flow turning angle Equation (5)
 

shows that the y dependency of w has been discarded. However, the y
 

dependency of u still remains to allow for a complete profile change in
 

the boundary-layer. A polar plot of Johnston's profile is shown in
 

Fig. (2-a). At a given position normal to the wall, the locus of the
 

tip of the velocity vector projected on a plane parallel to the wall
 

and corresponding to the outer 90% of the layer is a straight line
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u/U = 1 corresponds to the main flow whereas u/U = 0 is the point at
 

the surface. Two regions are defined. In the region near the wall
 

w/U = C u/U (6)
 

and in the region near the main flow
 

w/U = A (1 - u/U) (7)
 

A more detailed experimental investigation of this phenomenon is
 

carried out by Perry and Joubert [13]. It is found that the triangular
 

model of Johnston is indeed valid for their experiment. Francis and
 

Pierce [15] on the other hand, have carried out another experimental
 

investigation of skewed turbulent boundary-layers in low speed flows
 

and have reported that the triangular model is not universal since
 

their data shows various degrees of rounding off at the apex of the
 

triangle. Also the slope of profiles in the region II is not always
 

approximated as constant. Ina similar experiment on a rotating free
 

disk, Stain [10] reports that the universal description of two­

dimensional turbulent boundary-layer flow by Cornish [18] can be
 

extended to the tangential component of the three-dimensional layers
 

However, a new wake function is developed and combined with Cornish's
 

wall function to give a description of the cross-flow profile.
 

Analysis carried out by von Karman [12] for a free rotating disk
 

using Prandtl's model assumes that
 

u/U = 1l/7 (8)
 

0 nI / 7 
w/U = [1-n] (9)
 

The expression used for shear stress is
 

2 U6 -1/4
 
0 o 0.0225 pU2 C-)V (10) 
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where T is the value of the skin friction at the wall. In this case
 

e is the tangent of the angle that T0 make with the tangential direction.
o 


Goldstein [16] assumes a logarithmic law for the shearing stress
 

at the wall and expresses the radial velocity profiles in two parts.
 

Experiment carried out by Gregory, Stuart, and Walker [14] for the
 

free disk shows that von Karman's profile gives better agreement at the
 

maximum value of radial velocity than Goldstein's logarithmic profile.
 

On the other hand, away from the wall the latter gives a closer fit with
 

the experimental results. Thus, generally speaking, neither of the
 

profiles matches the data throughout the boundary-layer.
 

Another theoretical investigation by Banks and Gadd"[7] on
 

boundary-layers over a free rotating disk indicates that the value of the
 

power of g = (1- T) lies somewhere between 1 and 2. Cham and Head [111
 

report that their measured tangential velocity profiles can be
 

represented with considerable accuracy by Thompson's two-dimensional
 

profile family while the theory based on entrainment and Mager's cross­

flow model gives the best over all agreement0
 

In the final analysis it can be said that there is still not a
 

perfect model of the velocity profiles or shear stress correlation
 

available for the three-dimensional case.
 

In the present investigation Mager's quadratic expression for the
 

cross-flow and the shear stress profile used by von Karman are employed
 

as the starting point. The validity of these assumptions will then be
 

checked by experimental observations.
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2.2 Equations of Motion
 

The momentum and continuity equations for the boundary-layer in
 

three-dimensional curvilinear rotating frame of reference was first
 

derived by Mager [1]. Allowing for the simplifications within the.
 

boundary-layer these equations simplify to give:
 

-
Ul- 4 + V I--+w l -+ cuW =f2RL 2 yw1
 

X - momentum
 
1a Xy
+ 


1Wl + Vl-Y	w,Wl 1 Wlz - 11 a Yl
 

+1 (11)
 

l-ax 	 1 R + 22u
 

Y - momentum
 

+ - (12) 
DUDv D 

1ax 1Y DY 1az ± i ix 
E2 RI ---- W (13)+ 2 (Qzul-Qxl 0 


+
1 + ++-- w c = 0 	 (14)
 

where RI 	is the perpendicular distance of a particle from the axis of
 

rotation, c is the curvature of the X-axis, Q1is the angular velocity
 

and (QX', Qz) ard the components of vector in curvilinear coordi­-l 


nate system. It is convenient to express the above equations in a
 

rotating cylindrical coordinate system (r, e, y) with a constant angular
 

velocity Q and the y axis perpendicular to the (r, e) plane. This coor­

dinate system is shown in Fig. (2-b). The following transformations
 

are made: 



= = 0IX 11Z 

X+ r 0; Y + y; Z + r
 

C 1ri = 

The mean motion turbulent flow equation governing the flow over the
 

rotating helical blade can thus be written as:
 

+ L +v-L = 0 continuity (15)
r3Do ay 3r r 

U* Du + vy +W Dur w (20r-u) = y
ra90 ay Dr r p ay 

G - momentum (16) 

u w 3w 3w _(6r-u) 
2 1 atw u + v +wa r p 

r - momentum (17) 

Here, T and T are the components of shear stress in the tangential andu w 

radial directions
0
 

The assumptions made in deriving the above equations are:
 

1. The helical blade is approximated by a flat circular plate with
 

leading and trailing edge. This is permissible because the helix angle
 

is small. The asymmetry of the flow is maintained by assuming that the
 

leading edge is not under the influence of the trailing edge. 

2. The flow is turbulent over the entire blade surface,
 

3. The pressure gradient is zero everywhere in the boundary-layer
 

meaning that the pressure gradient of the main flow is impressed upon
 

the viscous layer near the wall.
 

4, The flow is incompressible.
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5. Turbulent energy terms like p-- and pw'2 are small and hence
 

not included in the equations. Shear stress terms T and T include
u W 

both viscous and Reynolds stresses.
 

The boundary conditions to be satisfied by these equations are:
 

y =0; u =v =w= 0 

y =; u= rd, w = 0 

In order to obtain boundary-layer momentum integral equations,
 

equation (15) is used to eliminate the v component of the velocity from
 

Equations (16) and (17), and integrating the results from y = 0 to y = h
 

where h is a distance outside the boundary-layer. This gives
 

h h h 

aT 0 r (r )dy+ of_u12uw r (r dy + 0 r 2 3wr)dy 

+ _dU w I2 (18)
P r Qr dy 2 o
 

aET/-2i- @ r 0/ 2rp r

h h .h w2h ( 

722dy + Dw-_ + O 2 dy -i -ar) dy= 

03~ fYr d/ f 

1 (19)
 
22
pn w,o
r 

where T and T are the components of the wall shear stress in the e
 
a rde W,O
 

and r direction respectively.
 



2.3 Approximate Solution of the Momentum Integral Equations
 

In a previous section it was mentioned that the usual method of
 

attack to three-dimensional turbulent boundary layer equations is to
 

solve a pair of momentum integral equations assuming suitable profiles
 

for the velocities and an empirical relation for the shear stress at the
 

wall. In a situation involving rotating boundary-layers there are essen­

tially no other theoretical techniques available and in these cases the
 

momentum integral method becomes a morp.practical means of flow analysis.
 

Using Mager's profile and von Karman's shear stress relation in the
 

following form
 

Tu,= 0.0225 pU2 R6 (20)
 

T =6 t (21) 
0 U,OWo 


momentum integral equations can be integrated. The resulting equations
 

so derived by Lakshminarayana [2] are (see Appendix A)
 

.09755 + 0.208e d + .052 e r + 0.052 dr r
 
0 ~ 0 3r 9 

-1/4 
= 0.0225 r (R6 ) (22) 

and
 

2 02 @6
0.324 0.'216 0°2 r 0.108 r E oa
-0,207.2--0o07 (eO6) 0 6,- e d r- Doo-- 0 @-­

-1/4
 
+ .028 6 = .0225 sor (R6 ) (23)
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The solution to the above two first order partial differential equations
 

should give a good quantitative measure of the boundary-layer growth and
 

the limiting streamline angle at all radial and tangential locations.
 

The solution is very difficult to obtain because of the non-linear terms
 

in these equations.
 

In solving Eqns. (22) and (23), the effect of physical constraints
 

such as the hub and the annulus wall must be taken into account. This
 

means that the radial velocity should vanish at these boundaries. One
 

would also expect eO to vanish at the tip. This is confirmed by the
 

experimental observations reported in the next chapter
 

An approximate solution to momentum integral equations is obtained
 

by Lakshminarayana [2], assuming that the blade is infinitely extended
 

radially. This means that the radial velocity gradients in the
 

boundary-layer approximately satisfy the following equations
 

au (24)
 

Dw w(25) 

Using these assumptions in momentum integral equations, the equations
 

(22) and (23) reduce to the following form
 

dA
d-A - 2.68 c A + 0.29 r (26) 

de 
de 2 o 

d =0.135 + 0.54 e -
0A 

0.34r a (27) 

where the transformation of the variable 6, 

1/4 72 5/4 1/4
 
A = (R) 6 = -) R6 * 6 (28) 

is used to eliminate Reynolds number from the above equations. Here, 6 

is the momentum 'thickness'j vei'by
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6
 

2
_U o u(U-u) dy (29)
 

The boundary conditions to be satisfied are
 

A o = 0 at 0 = 0 (i.e. at the leading edge
 

of the blade)
 

For any given r, these equations give A and e variations with 6, the
 

distance from the leading edge.
 

Equations (26) and (27) are solved numerically using a fourth order
 

Runge-Kutta method without taking the effect of constraint due to the
 

annulus wall. The solution is valid provided the flow is fully turbu­

lent from the leading edge. Experiments described in Chapter 3, however,
 

show that near the leading edge a laminar region exists and that the
 

transition to turbulent flow occurs at a critical Reynolds number less
 

than that of a flat plate. The analysis developed by Banks and Gadd
 

[7J is used to correct the solution for the initial laminar effect
 

The final results are plotted in Figs. (3) and (18). It is one of the
 

purposes of this investigation to check the validity of this solution
 

by experiment.
 

2.4 Asymptotic Disk Values of 6 Taking into Account the Flow Constraints
 

Due to Annulus Wall
 

For large values of 6 the flow should approach the asymptotic disk
 
a 

values. Thus it is permissible to drop the terms of the form h from
 

Equations (22) and (23), and using the transformation given by Equation
 

(28), the following equations can be derived:
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d-= -o 4.78dA 0.54 rt i25 Ao dodRA 1. (30)
dR Es R C R(0 

d dA 0.104r
 
S 14 C 
 014 t (31)
 

dR - - - dR e R A00 

where R = It is now suggested to predict a function for co f(R)

r 0 

based partially on theory and the experiment and then to obtain an 

approximate solution for A from the above equations. A typical experi­

mental and theoretical variation of a0 with R is shown in Fig. (4) at 

e = 270 degrees. Among all the continuous functions that could be 

fitted to these points, a hyperbolic tangent appears to be the most 

suitable one. The equation has the following form 

e = 0.23 tan h [14.2(1 - R)] (32)
O 

where 0.23 is the asymptotic value of c derived theoretically in
0
 

Sec. (2.3)o-Substituting Equation (32) in (30) and (31) gives
 

dA - 3.58 CothX - 4.78 + 17.75 A SechX CshX (33) 
dR R 

0 - momentum 

dA =6.12A 2A 

-. - Coth2X - 1.73 CothX - 3.5 - + 35.5 A CschX SechX 
dR R 

r - momentum (34) 

where X = 14.2(l - R) 

For the solution of the above equations it is assumed that boundary­

layer growth at the hub is zero i.e., 

A = 0 at R = 0.5 
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Equation (33) is solved numerically using the fourth order Runge-Kutta
 

method. Large boundary-layer growth near the tip is observed. The
 

results are shown in Fig. (4). The second solution obtained from the
 

r-momentum equation is found to be drastically different from that of
 

Equation (33). The reason for such a discrepancy may lie within the
 

assumptions made in deriving the r-momentum equation. In other words the
 

turbulence energy and pressure terms that are neglected in the present
 

analysis are likely to play an important role near the tip. Thus, the
 

future analysis should not only include pressure gradient terms, whose
 

measured values are found to be appreciable as described in Sec. (3.4),
 

'
but also turbulent terms such as pw and pu'2 It is also obvious
 

that the order of magnitude of terms in Equation (33) is much larger
 

than those in the r-momentum Equation (34). Hence the neglection of
 

pressure and turbulence terms is likely to introduce larger errors in
 

Equation (34) than in Equation (33). In summary, it can be concluded
 

that the physically realistic model assumed above for 6 near the tip
 

cannot be handled mathematically by a simple differential equation. One
 

has to resort to the solution of the Reynolds' equation in such a case.
 

Although the analysis that has been carried our so far is only
 

preliminary, the experiment has shown relatively good agreement between
 

the two.. This is discussed in the next chapter.
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3. EXPERIMENTAL PROGRAM
 

3.1 	Apparatus Used in the Experiment
 

a, - Helical Blade
 

For the purposes of experimental investigations a helical blade of
 

constant thickness with an axial advance of 10 inches was designed and
 

built out of fiberglass. The blade is mounted within an annulus with
 

0.08 inches of clearance between the blade and the annulus wall. The
 

details of the blade are shown in Fig. (5-a) and (5-b). The circum­

ferential extent of the blade is 300 degrees from the leading edge.
 

Metallic tubes of 1/4 inch in diameter are embedded in the blade at 300
 

degree intervals for a total of 10 stations, These tubes are used to
 

determine the limiting streamline angle as well as the static pressures
 

on the front and back surfaces of the blade. The notation given in
 

Fig. (5-b) is used throughout this report, i.e., 8 = 1500 and r = 17"
 

refers to a tangential location of 150 degrees from the leading edge and
 

a radial location of 17 inches from the axis of rotation.
 

Unless otherwise stated, all profile measurements are carried out
 

at the rotational speed of 450 rpm corresponding to a Reynolds number
 
1+5
 

of 7 x 10 based on the tip radius, Since all the measurements are
 

taken relative to the rotating system, the following two devices are
 

used
 

b. -	One Channel Pressure Transfer Device (PTD) 

This is a modified and improved version of the three channel (PTD)
 

explained in Ref. [6]. The object is to transfer pressures from the
 

rotating blade to a stationary precision manometer. This device is shown
 

in Fig. (6). The surface of the shaft in contact with the 0-rings is
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coated with self lubricating teflon for smoother contact and also to
 

prevent leakage. This device is mounted inside the hub nose cone with
 

the shaft clamped to stop it from rotating. However, the main body
 

containing the O-rings rotates along with the hub to allow the pressures
 

to be transferred from the blade through the channel between the O-rings
 

and to the manometer. The schematic diagram of the entire assembly is
 

shown in Fig. (7).
 

c. - Ammonia Transfer Device (ATD)
 

This device is similar to the PTD and is used to transfer the ammonia
 

gas from the stationary source of ammonia contained in a cylinder to the
 

desired location on the rotating blade surface. It is mounted in a
 

similar manner to PTDo The method of measuring co is described in
 

Sec. (3.3-b).
 

3.2 Instrumentation
 

Three different kinds of probes are used in measuring the velocity
 

profiles, wall skin friction and the flow angle within the blade
 

boundary-layer. A photograph of the probes is given in Figure (8).
 

Probe No. 1 is a boundary-layer probe which is essentially a total
 

pressure probe. The tip of the probe is flattened to minimize the shift
 

in effective center. This probe is used to determine tangential
 

velocity profiles at various stations on the blade as well as the
 

boundary-layer thickness.
 

Probe No, 2 is a total pressure probe commonly referred to as
 

Preston tube, since it was first used by Preston for skin friction
 

measurements, It is bent as shown in Fig. (8) for least interference of
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the flow in the boundary-layer as well as for better adjustment at
 

different radii.
 

Finally, probe No. 3 is a two hole yawmeter used to detect the flow
 

angles inside the boundary-layer. Detailed dimensions of all these
 

boundary layer probes are given in Fig. (8).
 

All three kinds of probes introduced above are installed on the
 

same mounting mechanism for different experimental purposes. A
 

schematic diagram of this device is given in Fig. (7). The distance
 

between the mounter and the point at which the data are taken is far
 

enough (8 inches) to insure the least interference with the flow in the
 

layer. Thus the probes are inserted into the layer from outside and
 

proper adjustments are made prior to each individual measurement. The
 

methods of recording the data are described in the subsequent sections
0
 

3.3 	Flow Visualization Experiment
 

a, - Location of the Flow Transition Zone
 

The analysis carried out by Lakshminarayana [2] and summarized in
 

Sec. (2.3) is based on the assumption that the flow is completely turbu­

lent over the entire blade surface If the extent of initial laminar
 

region is known, it is possible to combine this analysis with those
 

developed by Banks and Gadd [7] for laminar flow to predict accurately
 

the boundary-layer growth throughout the blade surface The procedure
 

adopted here for finding the extent of initial laminar region is known
 

as the sublimation technique. The method consists of coating the blade
 

surface with a smooth, white thin film of a chemical solid, spraying
 

it with a chemical liquid until the film becomes transparent, and
 

then exposing it to the air flow for a few minutes until evaporation has
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taken place. The evaporation takes place faster in the turbulent region
 

than in the laminar region and an indication is given by the whiteness
 

of the former and the darkness of the latter regions.
 

After several methods are tried it is found that the technique
 

suggested in Ref. [4] is the most suitable one to apply0 The solid
 

chemical selected is china clay and a solution is prepared according
 

to the following formula:
 

China Clay 160 gr.
 

Water 250 ml.
 

Acetone 300 ml.
 

Glycerol 5 ml.
 

The mixture is sprayed over the surface and allowed to dry. The result
 

is a white film of china clay uniformly coating the surface. When a
 

chemical liquid of the same index of refraction is sprayed over the
 

coating, the film becomes transparent, but the white deposit reappears
 

as soon as the evaporation is completed.
 

The liquid selected is nitrobenzene. An indication of the
 

transition zone is obtained after the blade is allowed to rotate for
 

about three minutes. A typical photograph of the transition zone is
 

given in Fig0 (9). The line of transition of the mid chord length
 

corresponds to a distance of 44 degrees from the leading edge The
 

5
corresponding Reynolds number is 3.0 x 105 which is smaller than the
 

critical Reynolds number of a flat plate boundary layer, 3.2 x 105o
 

Figure (9) also indicates that near the tip and the hub, the flow
 

becomes turbulent much earlier. This is further confirmed by the
 

velocity profile measurements reported in the next section. The
 

sharp leading edge of the blade has caused early transition to
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turbulence to take place but relaminarization occurs immediately
 

thereafter.
 

b. - Measurements of the Limiting Streamline Angle
 

The limiting streamline angle e is determined using the ammonia
0
 

transfer device described in Sec. (3.1-b). A second method is also
 

used at lower rpm as a check on the accuracy of the ammonia streak
 

method. This method is described first.
 

A solution of titanium tetrachloride and carbon tetrachloride is
 

prepared. When exposed to the airflow this solution generates a white,
 

dense smoke capable of being photographed. The mixture is brushed on
 

the surface-of the blade at the desired locations and photographs are
 

taken while the blade is rotating. The deflection of the smoke filament
 

from the tangential position gives an indication of so This technique
 

is found to be successful at lower angular velocities (100 rpii) where
 

the flow is predominantly laminar, but the smoke rapidly diffuses at
 

higher speeds (450 rpm) when the flow is turbulent, before any pictures
 

can be taken0 Figure X10-a) shows a typical af such measureents o
 

However, as it was mentioned earlier, this method is used to check on
 

the accuracy of the ammonia streak technique described below.
 

First, a number of small diameter holes are drilled on the blade
 

surface through the metallic tubes. Using ATD a small amount of
 

ammonia gas at very low velocities is fed into the tubes at various
 

tangential locations. A sheet of ozalid paper sensitive to ammonia
 

is pasted along the edges of the static holes and thus traces of
 

ammonia are recorded on the ozalid paper while the blade is in rotation.
 

Figure (10-c) shows some typical traces of ammonia at a particular
 

location The amount of deflection from the tangential direction gives
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the value of E0 at that location. This procedure is repeated several
 

times at each point to make certain the angles obtained are accurate.
 

In Fig. (3) variations of e with e are given. The vertical lines
 

indicate the amount of experimental scatter This experimental scatter,
 

however, is only a few degrees at the most.
 

A few interesting conclusions may be deduced by comparing experi­

mental and theoretical values of s from Fig. (3). It is seen that much

0
 

larger values of c are obtained in the laminar region than in the turbu­0
 

lent region. This is in conformity with the analysis of Banks and Gadd
 

[7] for a screw propeller. At the trailing edge (e>5 rad,) a consistent
 

decrease in values of s are observed at all radii accounting for the
o 

decay of the radial velocity as the flow leaves the trailing edge.
 

Radial variations of Co are shown plotted in Fig. (11) for various
 

fixed tangential locations on the blade surface For accurate predic­

0
tions of e , the Equations (22) and (23) have to be solved simultaneously
 

without neglecting any terms. The analysis carried out in Sec. (2.3)
 

does not take into account constraint due to the annulus wall and hence
dE:
 
=
predicts -- 0. Experimental results seem to indicate chat this is 

true at most of the radial locations except near the tip, where a 

decrease in e is observed, This important boundary condition must be 

taken into account when the complete momentum integral equations are 

solved, Thus, it can be said that the solution of Equations (26) and 

(27) which predicts a constant value of e with radius may not be valid
 

near the tip.
 

Generally speaking the agreement between measured and predicted
 

values of e is very close at most tangential locations Departure
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between the theory and experiment near the leading edge at R = 0.55 and
 

R = 0.965 is due to early flow transition at these locations,
 

3.4 Blade Static Pressure
 

The theoretical analysis presented in Chapter 2 is based on the
 

assumption that the pressure gradient of the flow is zero everywhere in
 

the field. To check the validity of this assumption, the static pres­

sures are measured on the back and front surfaces of the blade using the
 

PTD and the static holes drilled on the surface The radial variations
 

of the non-dimensionalized static pressure coefficient 4s at two typical
 

locations are plotted in Fig. (12). 'sis defined as
 

%s = 2gh/Ut2 (35)
 

where U is the tip velocity and h is the static head. It is seen from
t
 

the figure that the radial pressure gradient is negligibly small through­

out.the flow field except, perhaps, near the tip. A flag test carried
 

out near the tip shows that there is no appreciable pre-swirl existing
 

in the incoming flow. Thus the reason for such a large radial pressure
 

gradient at the tip may be due to high turbulence mixing, interaction
 

between blade and annulus wall boundary layer and clearance effects0
 

Therefore, in the analysis of the flow near the tip, energy terms such
 

' '2 
as pu 2 and pw are likely to be large and play an important role in
 

the radial momentum equation.
 

3.5 Tangential Velocity Profiles
 

This section describes tangential velocity profile measurements
 

carried out by means of the boundary-layer probe described in Sec. (3.2).
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The probe is clamped rigidly to a mounter such that the stem is parallel
 

to the axis of the rotation and the sensing head is in the direction of
 

the relative tangential flow. The block (a) shown in Fig. (7) is capable
 

of moving up and down to enable the measurements to be taken at various
 

radial locations. Boundary-layer profile measurements at other tangential
 

blade locations are carried out by shifting the entire mounting assembly
 

to desired tangential stations. Thus at each fixed (r, e) location, the
 

probe is traversed in a direction normal to the blade surface until the
 

free stream velocity is observed. This axial distance is taken to be the
 

boundary-layer thickness at that location. The-total pressures sensed
 

by the probe are transferred to a precision manometer through the pres­

sure transfer device PTD . If P is the pressure recorded by the0
 

manometer the dynamic-head of the relative flow is given by (the blade
 

static pressure is the same as the ambient pressure)
 

1 PU2 = P + (r)2 (36)
 

o 2
 

where r is the radial distance at which P is recorded. At the edge of
o 

the boundary-layer where the value of u = rf = U, P will be zero.
 o 

Knowing P and the local blade speed, the values of u can be computed
 0
 

from Equation (36). The velocity profiles so measured are shown in
 

Fig. (13). The agreement between the 1/7 Power Law and the experiment
 

is generally good. The departure of the measured profile from the 1/7
 

Power Law occurs only near the tip. This is the region where appreciable
 

radial pressure gradients are found to exist. Note that at 8 = 300 and
 

r = 11, 13 and 15 [Fig. (13-a)], where the measurements are taken within
 

the initial laminar region, the shape of the velocity profile is
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parabolic, typical of laminar profiles. This is in conformity with the
 

Banks and Gadd [7] theoretical prediction plotted in the same figure.
 

Near the hub and the tip, where the flow is turbulent, the shape of the
 

velocity profiles are typical of turbulent flows. These quantitative
 

results are in agreement with the earlier qualitative results obtained
 

in Sec. (3.3-a). Apart from this particular tangential location, the
 

profiles obtained at other locations on the blade show good agreement
 

with the assumed 1/7 Power Law.
 

It is also advantageous to replot Fig. (13) using momentum thickness
 

6 given by Equation (29) instead of 6 as a non-dimensionalizing parameter,
 

because the experimental values of 6 may have been overestimated.
 

Therefore, using measured values of u, U and 6, momentum thickness is
 

determined by numerical integration of Equation (29). Velocity profiles
 

are replotted in Fig. (14) using this approach. The agreement with 1/7
 

Power Law is extremely good except near the tip radius where the profiles
 

are steeper. The tabulated values of complete tangential velocity
 

profiles are given in Table I.
 

It is now possible to determine the shape factor H, defined as
 

61
 

H =- (37)
6"
 

where 61 is the displacement thickness given by
 

6
 

6 (U-u) dy (38)

U
 

0 

The shape factor gives the change in the velocity profile of the
 

boundary-layer. These values are tabulated in Table III. The correspon­

ding value of H for a flat plate at zero incidence is 1.285. At e = 300
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(Table III), values of H are closer to 2.00,indicating the region where
 

laminar flow exists. This is consistent with velocity profile and flow
 

visualization reported earlier, At all other tangential locations the
 

values of shape factor are very close to that of a flat plate at zero
 

incidence.
 

3.6 Radial Velocity Profiles
 

The method of obtaining radial velocity profiles is to determine
 

the flow angle within the boundary layer at various locations by means
 

of the two hole yawmeter probe. The probe is mounted in the same way as
 

the boundary-layer probe discussed in Sec. (3.5).
 

The usual way of finding the flow direction is to nullify the
 

pressures read by each individual probe hole of a yaw or wedge probe by
 

turning it through appropriate angles. This method is found to be
 

difficult and time consuming since the probe is rotating. An alternate
 

method is to align the probe relative to a fixed direction (tangential
 

direction in the present case) and record the pressure difference
 

registered by two faces of the probe. Then using the calibration curve
 

given in Fig. (15) it is possible to determine the local flow angle
 

a1 within a reasonable degree of accuracy.
 

Ifse denotes the local values of the tangents of the flow angles,
 

then
 
w (9 

= tan = (39) 

and the measured g function is given by
 

w = (40)

sOu eO
 
0 0
 

whereas the theoretical assumed function for g is given by Equation (4).
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Equation (4) is shown plotted in Fig. (16) by a solid line. To
 

compare assumed and experimental profiles, the values of e are divided
 

by E0 at the wall and are tabulated in Table II. In obtaining these
 

values, the difference in pressure detected by the probe is divided by
 
1 2
q =2pu , which is the local dynamic head of the tangential flow. This
 

may give slightly higher angles at the large values of w, the radial
 

velocity. Therefore, a second approximation is carried out using the
 

dynamic head of the resultant flow given by
 

1 2 1/2 
Q p(u 2 +w)41 

The angles are found to be a few degrees smaller near the blade surface.
 

These values are plotted.in Fig. (16) vs. y/. All the curves show a
 

similar trend at all radii. The experimental curves reach a maximum
 

value slightly away from the wall and drop to zero as the edge of the
 

layer is approached. This shows relatively large departure from the
 

assumed profile especially near the blade surface.
 

In Fig. (17) a triangular or hodographic plot of the velocities are
 

given. The curves show up to 6 degrees difference in the values of 60 

derived by this method and the ones obtained from ammonia stream tech­

nique. In the region II, however, a consistent trend is observed. The 

predicted angles by these figures at two different tangential locations 

differ only by a small amount. That is
 

-i
 
Tan A =.34.6 at e = 1500
 

-1
 
°
Tan A = 37.2 8 = 210
 

http:plotted.in
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It is evident from this discussion that the measured radial
 

velocities are in qualitative agreement with Mager's profile and in
 

quantitative agreement with region II of Johnston's model. It is likely
 

that the measurements very close to the blade surface are in error.
 

3.7 	 Comparison Between Predicted and Measured Values of Momentum Thick­

ness of the Boundary-Layer
 

Experimental and predicted values of the growth of momentum thick­

ness 6 at various locations on the blade surface are plotted in Fig. (18).
 

The agreement is reasonably good at all the radii except near the tip
 

where a large departure is observed. It is seen that at the trailing
 

edge (e>5 rad.) and at all the radii, experimental points deviate from
 

the expected steady state disk values. This might be due to the influence
 

of the wake, In general boundary-layer growth both in laminar and turbu­

lent flow regions are predicted accurately.
 

3.8 	Measurements of the Skin Friction
 

The two-dimensional turbulent boundary-layer measurements have
 

revealed that an adequate picture of the flow can be obtained if one
 

distinguishes between an inner region and an outer region. In the inner
 

region, or sometimes referred to as the wall region, the flow is influ­

enced by the fluid viscosity and the wall shear stress. The thickness
 

of this layer is approximately 0.16 to 0.26. The velocity distribution
 

may be described by
 

u/u* = f (u) f (42) 

TO 1/2 

where u* is the frictional velocity equal to (-) 
p
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The shear stress variation in this region is small and could be
 

considered constant to a certain degree of approximation. If the
 

wall is smooth there exists a viscous sublayer adjacent to the wall
 

whose thickness is approximately 0.0016 to 0.016. In this region the
 

viscosity dominates the entire sublayer and the mean velocity increases
 

linearly with the distance from the wall. A small transition region
 

connects the viscous sublayer to the wall layer. In the rest of the
 

inner layer the flow is fully turbulent and eddy viscosity varies
 

linearly with the wall, resulting in a logarithmic distribution of the
 

mean velocity. It is well known that the inner region is not directly
 

influenced by the flow conditions outside the boundary-layer.
 

The rest of the boundary-layer, about 80% to 90%, is called the
 

outer layer. Here, the mean flow may be descirbed by a relationship
 

known as velocity defect law
 

11-u
 
(43)
-___ F (y/6) 


This region is highly influenced by the external conditions.
 

For the determinationof the wall skin friction To, the Preston
 

tube technique is employed. The fundamental principle governing this
 

technique lies within the meaning of the Equation (42). A pitot tube of
 

given dimensions resting on the blade surface in the direction of the
 

flow measures a total pressure P0, which is related to the wall shear
 

stress. This pressure-readink must obviously depend on p, V, and the
 

diameter of the probe d. Such a dependence is given by the following
 

general equation suggested by Preston
 

pv 
2 d2 = f p2Z
pv-
 (44) 
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where P is the static pressure. The above equation was further
 
S
 

developed by Preston [17] to the following form
 

Tod 2 
 P -P 
lOg 4- 2 ) = 2.64-+ 7/8 log C 2 d 2 ) (45)
10 4pv 10 4pv 

Using the above equation and the measured values of P - Ps, it is possible 

to determine the wall skin friction TO . This leads to the determination 

of the skin friction coefficient Cf from the following equation 

Cf = 	2T /pU2 (46)
 

where U is the free stream velocity.
 

In order to determine the effect of Reynolds number based on radius
 

and to compare it with the expression given by von Karman for a free
 

rotating disk, the values of T are determined at different rotational
 

speeds of 100, 200, 300, 450, 500, and 600 RPM. These values are plotted
 

in Fig. (19) and are compared with von Karman's expression. It is seen
 

that higher values of Cf are obtained for the helical blade. If an
 

average curve ts drawn through these points it may be expressed by the
 

following equation
 

Cf = 	.079 Rr- 1/5 (47)
 

Sr2
 
where R r 

r 

3.9 	 Application of the Law of the Wall and Wake to the Three-Dimensional
 

Boundary-Layer on the Helical Blade
 

The determination of T by the Preston tube technique requires that
 

the inner region exists. This may be checked as follows. If u* is the
 

frictional velocity then
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T(0)1/2 1/2
u = 0. 707 U C f (49)
 

*
 

u is a measure of the intensity of turbulent eddying and of the trans­

fer of momentum due to these fluctuations. Equation (49) can also be
 

written in the following form
 

* -1/2 

u/u* = 1.412 Cf u/U (50) 

From Equation (50) the values of u/u* are determined by substituting
 

experimental values of C and u/U. These values are plotted in Fig.
 
+= *u
 

(20) vs. y+ using the logarithmic velocity distribution of the
 

form 

u/u = A log y + B (51) 
10
 

where A and B are experimentally determined constants. The values of
 

A and B used here are 5.8 and 5.0 respectively. These numbers may be
 

varied at different locations to obtain a better fit with the data
 

points.
 

It is interesting to observe that the two-dimensional logarithmic
 

velocity profile does indeed give good results in this particular three­

dimensional configuration even though the constants used are slightly
 

different. As in the case of high Reynolds number flow with zero
 

pressure gradient, the law of the wall [Equation (51)] is obeyed by the
 

tangential component of the boundary-layer velocity on a rotating
 

helical blade.
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4. CONCLUSIONS
 

The following conclusions may be drawn from the theoretical and
 

analytical investigations reported in this thesis.
 

1) The solution of approximate momentum integral Equations (26)
 

and (27) predicts reasonably well the boundary-layer growth A [see
 

Equation (28)] and the limiting streamline angle s0 at various locations
 

on the rotating blade surface. Although the effects of physical con­

straints due to annulus and hub walls are neglected, these predictions
 

seem to agree closely with the experimental observations at all radii
 

except very near the tip. Large departure from the asymptotic disk
 

values of A at the tip may be due to substantial turbulence mixing and
 

interaction between annulus and blade boundary-layers. These solutions
 

also predict a constant value for O with e, the limiting streamline
 

angle, at all radii, but the experiment seems to indicate that s should
o 

vanish at the tip. The solution to Equations (22) and (23) should give
 

a more realistic estimate of the boundary-layer flow over a rotating
 

helical blade. The fact that turbulent energy terms are likely to be
 

high near the tip indicates that they may not be neglected in the
 

complete analysis of the flow in this region.
 

2) The static pressure measurements on the blade surface show that
 

no appreciable pressure gradient exists in the flow except near the tip.
 

Such large radial pressure gradients substantiate the existence of high
 

turbulence levels and other factors described above.
 

3) Agreement between the assumed and measured tangential velocity
 

profile is generally good. Some departure from 1/7 P6wer Law'iccurs as
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the tip is approached. In this region, the exponent in the Power Law
 

representation of the velocity profile is likely to be 1/8 or 1/9,
 

4) The radial velocity profiles show a substantial amount of dif­

ference between Mager's profile and the experimental observations. This
 

is in contradiction with the recent report of Cham and Head [11] whose
 

measured values on a free disk seem to agree with Mager's profile better
 

than any other existing flow model, Application of Johnston's triangular
 

model seems to give closer agreement in the outer region although such a
 

model predicts larger limiting streamline angles than those obtained by
 

the author,
 

5) The skin friction measurements carried out on the helical blade
 

surface are generally 40% higher than the expression used by von Karman.
 

It seems that the skin friction can be expressed as a function of one
 

variable, r -), the Reynolds number based on radius.
 

6) Application of the two-dimensional velocity profile to this
 

three-dimensional configuration results in an almost perfect fit with the
 

measured data points, except near the tip where the general trend of the
 

curves remains unchanged but seems to yield,different constants in the
 

Law of the Wall. It is the author's feeling, based upon experimental
 

observations, that the two-dimensional Law of the Wall could very well
 

be extended to include three-dimensional flows.
 

7) The use of three-dimensional momentum integral equations
 

together with (a) the circumferential velocity profile represented by
 

the 1/7 Power Law or the well known Law of the Wall, (b) the radial
 

velocity profile represented by Mager and (c) the skin friction expres­

sion given by the author should provide a fairly good estimate of the
 

boundary-layer characteristics over the rotating helical blade.
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APPENDIX A 

Derivation of Equations (22) and (23) is as follows: 
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Substituting Equations (2), (3), 
 (20), and (21) in the above integral
 

equations and carrying out the integration process gives Equations (23)
 

and (24). In a similar manner, Equations (26) and (27) may be derived
 

using the fact,that w and L inside the boundary-layer.
ar r 3r r 
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Figure 1: Photograph of an Inducer
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Figure 2: (a) Johnston's Profile Model, (b) Coordinate System and the
 
Assumed Velocity Profiles
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Figure 5: (a)- Photograph of the Blade with the annulus wall Removed 
(b)- Schematic Diagram of the Blade 
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Figure 7: Photograph and the Schematic Diagram of the Test Assembly 
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1- Boundary-Layer Probe: 

D.02" 

2- Preston Tube:
 

1/16 O.D.
 

3- Two-hole Taw-meter Probe: 

0.04 inch O.D. of each hole
 

Figure 8: Photograph and the Dimensions of the Probes
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Figure 9: Visualization of the Location of Flow Transition Zone 
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(a) 

(c)(b) 

Smoke Filament Method of Visualizing the Limiting Streamline
Figure 10: (a)-

(b)- Ammonia Streak Technique of Visualizing the Limiting 

Streamline
 

(c)- Photograph of the Streamlines
 

kNOT REPR1ODUCIBLE
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Figure 11: Radial Variations.of the limi~ting Streamline -Angle 
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Figure 12: Blade Static Pressure
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Figure 13-c: Tangential Velocity Profiles 
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Figure 14-a: Tangential Velocity Profiles 
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Figure 14-b: Tangential Velocity Profiles 
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Figure 14-d: Tangential Velocity Profiles 
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Figure 14-e: Tangential Velocity Profiles
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Figure 15: Calibration Curve of the Two-Hole Yaw Meter Probe 
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Figure 16-a: 	 Comparison Between the Assumed and Experimental Radial
 
Velocity Profiles.
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Figure 18-d: Tangential Variations of the Momentum Thickness 
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TABLE I 

Tangential Velocity Profiles 

0 

8 = 30, r"= 10, T = 64 degrees F0 

y 
(inch) 

y/6 u 
(ft./sec.) 

u/U 

0.011 
0.020 
0.050 
0.070 
0.090 
0.125 

0.088 
0.160 
0.400 
0.056 
0.720 
1.000 

14.8 
27.1 
34.4 
35.7 
36.9 
37.1 

0.399 
0.730 
0.926 
0.988 
0.995 
1.000 

do= 30, r"= 11, T = 64 

y 
(inch) 

y/6 u 
(ft./sec.) 

u/U 

0.011 
0.030 
0.050 
0.090 

0.122 
0.344 
0.555 
1.000 

12.4 
31.6 
38.1 
41.6 

0.299 
0.758 
0.915 
1.000 

o° = 30, r9= 13, T = 64 

y 
(inch) 

y/6 u 
(ft./sec.) 

u/U 

0.011 
0.025 
0.060 
0.080 
0.082 

0.134 
0.0305 
0.733 
0.976 
1.000 

19.0 
27.7 
46.7 
49.0 
49.2 

0.387 
0.564 
0.952 
0.977 
1.000 

EP= 30, r' 15, T = 64 

y 
(inch) 

y/d u 
(ft./sec.) 

u/u 

0.012 
0.045 
0.055 
0.065 
0.070 
0.074 

0.162 
0.608 
0.743 
0.877 
0.946 
1.000 

24.6 
47.5 
52.5 
56.0 
56.6 
56.9 

0.432 
0.835 
0.923 
0.984 
0.966 
1.000 



80 

TABLE I (continued) 

e = 30, r = 17, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.11 0.0552 43.4 0.676 
0.022 0.110 45.4 0.706 
0.075 0.375 55.7 0.867 
0.110 0.500 60.5 0.947 
0.160 0.800 63.4 0.986 
0.200 1.000 64.2 1.000 

e = 30, r = 18, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.016 45.9 0.660 
0.030 0.0435 47.9 0.680 
0.070 0.102 52.9 0.750 
0.110 0.160 58.3 0.840 
0.150 0.218 61.0 0.877 
0.200 0.290 64.5 0.928 
0.240 0.348 64.6 0.930 
0.320 0.464 65/0 0.935 
0.410 0.595 65.1 0.938 
0.590 0.855 66.9 0.961 
0.690 1.000 69.5 1.000 

0 = 90, r = 10, T = 64 

y y/ U u/U 
(inch) (ft./sec.) 

0.011 0.0275 i6.2 0.433 
0.020 0.050 21.2 0.566 
0.050 0.125 27.6 0.738 
0.100 0.250 30.0 0.802 
0.150 0.375 32.2 0.861 
0.220 0.550 34.6 0.925 
0.270 0.676 36.0 0.962 
0.330 0.825 36.8 0.984 
0.360 0.900 37.0 0.989 
0.400 1.000 37.4 1.000 
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TABLE I (continued) 

6 = 90, r = 11, T = 64 

y y/d u u/U 
(inch) (ft./sec.) 

0.011 0.0339 21.4 0.509 
0.045 0.138 31.2 0.742 
0.052 0.160 31.7 0.754 
0.080 0.246 33.8 0.804 
0.140 0.431 36.5 0.869 
0.195 0.600 38.4 0.914 
0.250 0.770 40.1 0.945 
0.300 0.922 40.8 0.971 
0.320 0.985 41.1 0.978 
0.325 1.000 42.0 1.000 

e = 90, r = 13, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.0333 29.2 0.592 
0.030 0.090 34.6 0.701 
0.060 0.183 38.1 0.772 
0.100 0.303 41.0 0.831 
0.180 0.545 45.0 0.912 
0.270 0.816 48.4 0.981 
0.320 0.970 49.2 0.997 
0.33 1.000 49.3 1.000 

8 = 90, r 15, T = 64 

y y/ u u/N 
(inch) (ft./sec.) 

0.011 0.025 31.0 0.549 
0.020 0.0455 40.2 0.712 
0.050 0.1135 43.1 0.764 
0.145 0.330 49.4 0.575 
0.200 0.455 51.6 0.914 
0.280 0.636 54.2 0.960 
0.345 0.784 55.7 0.987 
0.390 0.886 56.2 0.996 
6.440 1.000 56.4 1.000 
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TABLE I (continued) 

o = 90, r = 17, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.026 36.6 0.575 
0.02 0.0392 40.9 0.643 
0.057 0.100 46.1 0.724 
0.100 0.192 51.4 0.808 
0.200 0.392 56.8 0.893 
0.280 0.550 61.6 0.968 
0.350 0.686 62.1 0.976 
0.380 0.745 62.6 0.984 
0.440 0.863 63.3 0.995 
0.510 1.000 63.6 1.000 

o = 90, r = 18, T = 64 

y y/6 u n/U 
(inch) (ft./sec.) 

0.011 0.0142 37.9 0.644 
0.030 0.0387 44.0 0.748 
0.080 0.103 48.2 0.819 
0.125 0.161 50.8 0.863 
0.175 0.226 52.3 0.889 
0.275 0.355 54.2 0.921 
0.375 0.484 56.6 0.962 
0.475 0.614 57.7 0.976 
0.575 0.743 58.4 0.993 
0.775 1.000 58.8 1.000 

o = 150, r 11, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.023 17.7 0.426 
0.024 0.050 28.2 0.679 
0.120 0.250 34.0 0.819 
0.140 0.292 35.1 0.845 
0.270 0.457 37.2 0.896 
0.240 0.500 37.8 0.910 
0.280 0.583 38.8 0.934 
0.320 0.666 39.8 0.959 
0.400 0.834 40.8 0.983 
0.440 0.916 41.1 0.990 
0.480 1.000 41.5 1.000 
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TABLE I (continued) 

o = 150, r = 13, T = 64 
y y/6 u u/U 

(inch) (ft./sec.) 

00011 0.025 25.4 0.516 
0.044 0.100 38.4 0.780 
0.066 0.150 39.3 0.789 
0.088 0.200 40.3 0.819 
0.123 0.280 41.2 0.837 
0.190 0,432 42.9 0.861 
0.210 0.480 44.2 0.898 
0.264 0.600 45.6 0.926 
0.308 0.700 46.7 0.949 
0.385 0.875 48.1 0.977 
0.415 0.943 48.7 0.989 
0.440 1.000 49.2 1.000 

o = 150, r = 15, T = 64 
y y/ u u/U 

(inch) (ft./sec.) 

0.011 0.0212 30.8 0.541 
0.026 0.050 38.1 0.669 
0.035 0.0673 41.0 0.720 
0.052 0.100 42.6 0.748 
0.080 0.154 44.8 0.787 
0.120 0.231 47.1 0.827 
0.130 0.250 47.2 0.829 
0.210 0.406 50.0 0.878 
0.310 0.596 53.0 0.931 
0.400 0.780 54.9 0.904 
0.500 0.962 56.8 0.998 
0.520 1.000 56.9 1.000 

8 = 150, r = 17, T = 64 

y y/6 U u/U 
(inch) (ft./sec.) 

00011 0.01355 36.2 0.565 
0.065 0.080 46.6 0.728 
0.111 0.137 49.2 0.768 
0.211 0.260 53.2 0.831 
0.311 0.383 57.0 0.890 
0.411 0.506 59.6 0.931 
0.511 0.630 61.6 0.926 
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TABLE I (continued) 

e = 150, r = 17, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.611 0.754 63.0 0.993 
0.711 0.876 63.6 0.993 
0.811 1.000 64.0 1.000 

e = 150, r = 18, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.0091 31.6 0.536 
0.111 0.917 42.5 0.721 
0.182 0.150 47.0 0.797 
0.210 0.174 49.0 0.831 
0.310 0.256 51.3 0.870 
0.410 0.339 53.2 0.903 
0.610 0.504 55.2 0.937 
0.810 0.670 56.8 0.964 
1.010 0.835 57.5 0.976 
1.21 1.000 58.9 1.000 

e = 210, r 10, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

00011 0.022 22.0 0.601 
0.030 0.060 25.8 0'.704 
0.050 0.100 29.0 0.792 
0.075 0.150 30.3 0.827 
0.090 0.180 31.0 0.846 
0.100 0.200 31.1 0.849 
0.120 0.240 32.0 0.874 
00150 0.300 32.7 0.893 
0.170 0.340 33.3 0.909 
0.220 0.440 34.5 0.942 
0.300 0.600 35.4 0.967 
0.325 0.650 35.6 0.972 
0.400 0.800 36.1 0.986 
0.500 1.000 36.6 1.000 
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TABLE I ( continued ) 

0 = 210, r = 11, T = 64 

y y/ 6 u u/U 
(inch) (ft./sec.) 

0.01 0.026 27.5 0.650 
0.025 0.0467 32.7 0.773 
0.053 0.100 34.3 0.810 
0.091 0.170 35.7 0.843 
0.120 0.214 36.5 0.862 
0.161 0.300 37.6 0.888 
0.188 0.350 37.8 0.983 
0.220 0.410 38.7 0.914 
0.240 0.450 39.4 0.931 
0.240 0.450 39.4 0.931 
0.320 0.598 40.0 0.945 
0.420 0.785 41.5 0.981 
0.520 0.972 42.0 0.992 
0.535 1.000 42.3 1.000 

G = 210, r = 13. T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.020 19.2 0.389 
0.021 0.0396 21.6 0.438 
0.053 0.100 38.3 0.776 
0.100 0.190 41.2 0.835 
0.120 0.226 41.9 0.849 
0.185 0.350 43.4 0.880 
0.205 0.387 43.8 0.888 
0.380 0.716 47.1 0.955 
0.480 0.905 48.5 0.983 
0.530 1.000 49.3 1.000 

0 = 210, r 15, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.0202 35.1 0.617 
0.071 0.130 45.1 0.794 
0.110 0.202 46.2 0.812 
0.153 0.280 48.0 0.845 
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TABLE I (continued) 

G = 210, r = 15, T = 64 

y y/ 6 - U u/U 
(inch) (ft./sec.) 

0.164 0.300 48.3 0.850 
0.207 0.380 49.7 0.875 
0.246 0.45 50.8 0.894 
0.300 0.55 52.6 0.926 
0.400 0.735 45.4 0.959 
0.540 0.990 56.6 0.996 
0.545 1.000 56.8 1.000 

6 = 210, r = 17, T = 64 

y Y/S u u/U 
(inch) (ft./sec.) 

0.011 0.0136 30.3 0.469 
0.060 0.074 45.3 0.072 
0.11 0.136 50.7 0.786 
0.121 0.150 51.6 0.789 
0.160 0.197 53.0 0.821 
0.243 0.300 55.1 0.880 
0.310 0.383 58.4 0.905 
0.410 0.506 60.5 0.937 
0.510 0.630 62.8 0.973 
0.610 0.754 63.4 0.982 
0.710 0.876 64.0 0.992 
0.810 1.000 64.5 1.000 

G = 210, r = 18, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.0175 40.6 0.725 
0.030 0.0476 44.5 0.796 
0.130 0.206 49.3 0.880 
0.158 0.250 50.2 0.896 
0.230 0.365 52.8 0.942 
0.330 0.534 54.4 0.964 
0.430 0.682 54.5 0.973 
0.630 1.000 56.0 1.000 
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TABLE I (continued) 

e = 270, r = 10, T =64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.0319 13.0 0.386 
0.030 0.087 23.4 0.696 
0.090 0.261 28.2 0.839 
0.121 0.530 28.6 0.851 
0.150 0.135 30.4 0.904 
0.200 0.580 31.7 0.943 
0.240 0.695 32.4 0.964 
0.300 0.870 33.4 0.994 
0.345 1.000 33.6 1.000 

e = 270, r = 13, T 64 

y y/6 U u/U 
(inch) (ft./sec.) 

0.011 0.018 20.8 0.423 
0.025 0.041 32.7 0.665 
0.050 0.082 36.2 0.739 
0.090 0.1475 38.6 0.786 
0.130 0.213 40.8 0.830 
0.200 0.328 43.2 0.879 
0.214 0.350 43.4 0.883 
0.300 0.491 45.5 0.926 
0.500 0.820 48.1 0.979 
0.600 0.983 49.0 0.997 
0.610 1.000 49.1 1.000 

0 = 270, r = 15, T = 64 

y y/ 6 u u/U 
(inch) (ft./see.) 

0.011 0.0177 26.4 0.463 
0.031 0.050 38.7 0.680 
0.04 0.0646 40.7 0.715 
0.07 0.113 43.0 0.755 
0.093 0.150 45.0 0.790 
0.11 0.177 46.0 0.808 
0.118 0.190 46.6 0.818 
0.140 0.226 47.7 0.838 
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TABLE I (continued) 

y y16 u u/U 
(inch) (ft./sec.) 

0.200 0.323 50.3 0.884 
0.248 0.400 51.2 0.899 
0.300 0.484 52.8 0.927 
0.400 0.646 54.0 0.949 
0.500 0.806 55.5 0.975 
0.600 0.968 56.5 0.992 
0.620 1.000 56.9 1.000 

0 = 270, r = 17, T =64 

y y/6 U u/U 
(inch) (ft./sec.) 

0.02 0.0264 44.0 0.688 
0.045 0.0591 48.0 0.751 
0.07 0.092 50.2 0.785 
0.114 0.150 52.2 0.816 
0.170 0.224 54.9 0.859 
0.270 0.356 57.9 0.906 
0.370 0.486 59.4 0.929 
0.470 0.617 61.1 0.956 
0.570 0.750 62.4 0.976 
0.67 0.881 63.0 0.985 
0.760 1.000 63.9 1.000 

e = 270, r = 18, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.02 0.116 40.6 0.678 
0.04 0.0233 43.6 0.729 
0.07 0.0406 47.0 0.785 
0.150 0.0872 50.9 0.851 
0.210 0.122 51.3 0.857 
0.44 0.256 56.3 0.941 
0.580 0.337 55.5 0.928 
0.80 0.495 56.4 0.943 
0.860 0.500 57.2 0.956 
1.29 0.750 59.0 0.986 
1.72 1.000 59.8 1.000 
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TABLE I (continued) 

E = 290, r = 10, T= 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.011 0.0314 8.55 0.263 
0.03 0.0856 17.9 0.550 
0.05 0.143 19.9 0.612 
0.10 0.286 22.6 0.695 
0.125 0.357 27.4 0.843 
0.170 0.485 30.1 0.926 
0.22 0.727 31.7 0.975 
0.30 0.856 32.2 0.990 
0.350 1.000 32.5 1.000 

' = 290, r = 13, T = 64 

y y/6 u u/U 
(inch) (ft./sec.) 

0.016 0.02 28.9 0.589 
0.05 0.0625 35.0 0.713 
0.12 0.15 40.8 0.831 
0.23 0.277 43.6 0.888 
0.34 0.425 45.4 0.925 
0.480 0.600 47.1 0.960 
0.580 0.725 47.9 0.976 
0.720 0.900 48.5 0.988 
0.780 0.975 48.9 0.996 
0.80 1.000 49.05 1.000 

G = 290, r = 15,T 64 

y yi6 u u/U 
(inch) (ft./sec.) 

0.08 0.118 41.2 0.716 
0.12 0.1765 46.1 0.801 
0.20 0.294 50.0 0.869 
0.310 0.456 53.0 0.921 
0.45 0.661 54.5 0.947 
0.530 0.779 56.0 0.973 
0.61 0.897 56.7 0.986 
0.65 0.955 57.2 0.994 
0.68 1.000 57.5 1.000 
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TABLE I (continued) 

0 = 290, r = 17, T = 64 

y y/6 u u/u 
(inch) (ft./sec.) 

0.021 0.021 28.4 0.439
 
0.08 0.08 49.4 0.763
 
0.10 0.10 51.4 0.794 
0.20 0.20 56.2 0.868 
0.31 0.31 59.4 0.918.
 
0.40 0.40 60.9 0.941 
0.52 0.52 62.5 0.965 
0.62 0.62 63.2 0.976
 
0.71 0.71 63.9 0.987
 
0.82 0.82 64.1 0.99 
0.90 0.90 64.5 0.996
 
0.98 0.98 64.6 0.998
 
1.00 1.00 64.7 1.000
 

The units of 0 and r are in degrees and inches respectively. 
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TABLE II 

Radial-Flow Velocity Profiles 

G = 210, r = 11, c = 0.158 
0 

y y/6 u/U S1 2 E2 w/U 
(1st. app.) (2nd. app.) 

0.02 0.0374 0.74 0.263 0.225 1.42 0.167 
0.06 0.112 0.819 0.199 0.194 1.23 0.159 
0.10 0.187 0.85 0.158 0.153 0.97 0.130 
0.15 0.281 0.88 0.092 0.092 0.58 0.081 
0.25 0.467 0.929 0.0875 0.0875 0.55 0.081 
0.35 0.655 0.96 0.0697 0.0697 0.44 0.067 
0.45 6.84 0.98 0.0068 0.0068 0.054 0.067 
0.535 1.00 1.00 0.0 0.0 0.0 0.0 

= 210, r = 13, e 0.142 

y y16 u/U Ei E2 E2/E: w/U 
(1st. app.) (2nd. app.) 

0.02 0.0388 0.665 0.383 0.373 2.63 0.248 
0.05 0.0944 0.785 0.281 0.277 1.95 0.218 
0.10 0.189 0.835 0.23 0.23 1.62 0.192 
0.15 0.283 0.86 0.167 0.167 1.18 0.144 
0.20 0.378 0.88 0.105 0.105 0.74 0.924 
0.30 0.655 0.926 0.0874 0.0874 0.615 0.0801 
0.4 0.755 0.960 0.00873 0.00873 0.615 0.0083 
0.53 1.00 1.00 0.0 0.0 0.0 0.0 

e = 210, r = 15, 60= 0.161 

y y/6 u/U ( 1 S2 . 2/o w/U 
(1st. app.) (2nd. app.) 

0.02 0.0368 0.665 0.262 0.235 1.46 0.158 
0.05 0.0915 0.78 0.227 0.217 1.34 0.168 
0.10 0.183 0.81 0.185 0.185 1.15 0.15 
0.15 0.276 0.85 0.144 0.144 0.89 0.122 
0.20 0.368 0.88 0.122 0.122 0.76 0.107 
0.3 0.55 0.928 0.0436 0.0436 0.271 0.0405 
0.4 0.735 0.96 0.0261 0.0261 0.162 0.025 
0.545 1.00 1.00 0.0 0.0 0.0 0.0 
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TABLE II (continued) 

e = 210, r = 17, c = 0.161 

y y/& u/U I 2 2/Cl w/U 

(1st. app.) (2nd. app.) 

0.02 0.0247 0.51 0.354 0.32 1.99 0.163 
0.05 0.617 0.69 0.277 0.263 1.63 0.181 
0.10 0.124 0.78 0.199 0.190 1.18 0.148 
0.2 0.247 0.87 0.136 0.136 0.845 0.119 
0.30 0.371 0.90 0.0655 0.0655 0.407 0.059 
0.4 0.495 0.94 0.0261 0.0261 0.162 0.0246 
0.60 0.74 0.985 0.0174 0.0174 0.108 0.0171 
0.81 1.00 1.00 0.0 0.0 0.0 0.0 

E= 150, r = 11, ca= 0.169 

y u/U E1 £2 C2/So w/U 
(1st. app.) (2nd. app.) 

0.02 0.0417 0.650 0.386 0.359 2.12 0.233 
0.03 0.063 0.7 0.3 0.291 1.72 0.204 
0.06 0.125 0.75 0.218 0.217 1.28 0.168 
0.13 0.27 0.834 0.105 0.105 0.62 0.0876 
0.20 0.416 0.872 0.083 0.083 0.49 0.0723 
0.025 0.0522 0.92 0.074 0.074 0.437 0.0681 
0.40 0.835 0.985 0.048 0.048 0.274 0.0473 
0.48 1.00 1.00 0.03 0.03 0.177 0.03 

e = 150, r = 13, £ = 0 0.169 

y y/6 u/U Ei12 E2 w/U 
(1st. app.) (2nd. app.) 

0.02 0.0455 0.721 0.241 0.235 1.39 0.170 
0.05 0.114 0.784 0.217 0.20 1.18 0.157 
0.105 0.238 0.83 0.16 0.16 0.945 0.133 
0.21 0.48 0.897 0.019 0.019 0.645 0.098 
0.28 0.636 0.94 0.048 0.048 0.284 0.045 
0.44 1.00 1.00 0.00873 0.00873 0.0515 0.0087 
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TABLE II (continued) 

0 = 150, r = 15, s = 0.169 

y y/6 U/U C 12 2 2/C° w/U 

(1st. app.) (2nd. app.) 

0.02 0.0385 0.632 0.336 0.3096 1.83 0.195 
0.05 0.096 0.745 0.244 0.235 .1.39 0.175 
0.10 0.192 0.808 0.217 0.217 1.28 0.175 
0.15 0.288 0.84 0.145 0.145 0.86 0.122 
0.25 0.48 0.90 0.1139 0.1139 0.672 0.1015 
0.3 0.576 0.93 0.0927 0.0927 0.547 0.0892 
0.35 0.673 0.948 0.0857 0.0857 0.508 0.0811 
0.45 0.865 0.98 0.0289 0.0289 0.171 0.0283 
0.52 1.00 1.00 -0.0087 -0.0087 -0.051 -0.0087 

0 = 150, r = 17, co= 0.179 

y y/6 u/U ( 1 62 C2/Co w/U 
(1st. app.) (2nd. app.) 

0.02 0.0246 0.572 0.404 0.354 1.98 0.202 
0.04 0.0493 0.68 0.336 0.324 1.81 0.22 
0.08 0.0986 0.745 0.286 0.267 149 0.111 
0.12 0.148 0.779 0.19 0.187 1.04 0.081 
0.2 0.247 0.83 0.114 0.114 0.635 0.0946 
0.3 0.37 0.885 0.0655 0.0655 0.366 0.056 
0.4 0.494 0.922 0.0524 0.0524 0.292 0.0483 
0.5 0.616 0.945 0.0436 0.0436 0.244 0.0412 
0.6 0.74 0.975 0.0131 0.0131 0.073 0.0128 
0.7 0.865 0.99 0.0131 0.0131 0.073 0,013 
0.811 1.00 1.00 0.0 0.0 0.0 0.0 

o = 150, r = 18, co= 0.140 

y Y/6 u/U i 
(1st. app.) 

ap.2 
(2nd. app.) 

2/eo w/U 

0.02 0.0161 0.73 0.34 0.322 2.28 0.235 
0.035 0.0289 0.741 0.313 0.272 1.94 0.202 
0.1035 0.0855 0.785 0.201 0.20 1.42 0.157 
0.2035 0.168 0.83 0.0742 0.0742 0.53 0o0616 
0.3035 0.242 0.87 0.0786 0.0786 0.56 0.0684 
0.4035 0.333 0.902 0.0436 0.043 0.312 0.0394 
0.5035 0.416 0.928 0.0306 0.0306 0.218 0.0283 
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TABLE 11 (continued)
 

e = 150, r = 18, E
0 
= 0.140 

y/6 u/U 61 62 C2/So w/U 
(1st. app.) (2nd.app.) 

0.7035 0.581 0.956 0.0227 0.0227 0.162 0.0217
 
0.9035 0.746 0.978 0.0393 0.0393 0.0281
 
1.21 1.00 1.00 -.00695 -0.00695 -0.049 -0.0
 

0 = 30, r = 10, c = 0.176
 

y y/6 u/U El12 El/C0w/U 

(1st. app.) (2nd. app.)
 

0.02 0.16 0.73 0.131 - 0.75 0.096 
0.05 0.40 0.926 0.0506 - 0.288 0.047 
0.1 0.72 0.995 0.0 - 0.0 0.0 
0.125 1.00 1.00' 0.0 - 0.0 0.0 

0 = 150, r = 13, 60= 0.367
 

Y/6
y U E1 62 2 wiU 
(1st. app.) (2nd. app.)
 

0.02 0.244 0.51 0.487 0.383 1.04 0.195
 
0.04 0.488 0.826 0.189 0.181 0.494 0.15
 
0.06 0.733 0.952 0.158 0.158 0.431 0.15
 
0.082 1.00 1.00 0.161 0.161 0.44 0.161
 

The units of (3and r are in degrees and inches respectively.
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r 
(inch) 

11 

13 

15 

17 

18 


r 

(inch) 


10 
11 
13 

15 

17 

18 


(inh) 

11 
13 

15 

17 

18 


TABLE III 

Values of 6*, 61, and H 

E = 300 

(* 6 
(inch) (in h) 

10102 - 2
0.978 x 1.948 x 10 
1.023 2.301 


1.092 2.362 

1.126 2.328 

1.810 2.667 

5.375 6.802 


e =900 

6* 61 

(inch) (inch)
 

- 2 23.828 x 10 5.590 x 10 ­

3.434 4.797 

3.238 4.520 

3.613 4.809 


4.055 5.501 

4.543 5.770 


e = 1500 

6* 6 
(inch) (inch) 

- 2 24.380 x 10 6.011 x 10­

4.164 5.592 

4.836 6.462 

6.82 9.075 

9.680 12.58 


H
 

1.991
 
2.248
 
2.162
 
2.069
 
1.429
 
1.265
 

H
 

1.462 
1.396
 
1.398
 
1.33 
1.356
 
1.272
 

H 

1.372 
1.342
 
1.336
 
1.329
 
1.298
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TABLE III (continued) 

0 = 2100 

r 6* 61 H 
(inch) (inch) (inch) 

10 3.45 x 10- 2 4.63 x 10- 2 1.343 
11 4.013 5.148 1.282 
13 4.62 6.465 1.399 
15 4.943 6.430 1.300 
17 6.318 8.674 1.372 
18 3.727 4.516 1.211 

0 = 270 

3y 6* 6 I 

(inch) (inch) (inch) 

10 3.09 x 10-2 4.73 x 10-2 1.53 
13 5.15 7.018 1.361 
15 5.23 7.036 1.345 
17 5.733 7.554 1.308 
18 9.36 11.4 1.21 
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TABLE IV
 

Skin Friction and Reynolds Numbers
 

e = 60 

r RPM Cf R 
(inch) r 

- 3

200 7.66 x 10 0.114 x 10611.5 


11.5 300 7.07 0.171
 
11.0 400 6.39 0.228
 
11.5 450 6.36 0.256
 
11.5 600 5.95 0.342
 
11.5 700 7.73 0.399
 
13.9 200 6.97 0.166
 
13.9 300 6.50 0.249
 
13.9 400 6.29 0.332
 
13.9 450 6.10 0.374
 
13.9 600 5.71 0.499
 
13.9 700 5.41 0.582
 
17.0 200 6.97 0.249
 
17.0 300 6.39 0.373
 
17.0 450 5.42 0.560
 
17.0 600 5.05 0.745
 

0 = 90 

r RPM Cf R
 
(inch) r
 

- 3

700 6.09 x 10 0.379 x 106
 11.2 


11o2 600 6.28 0.325
 
11.2 450 6.70 0.244
 
11.2 400 6.84 0.217
 
11.2 300 7.16 0.162
 
11.2 200 7.66 0.108
 
14.1 700 5.66 0.601
 
14.1 600 5.76 0.515
 
14.1 450 5.86 0.386
 
14.1 400 6.16 0.343
 
14.1 300 6.70 0.258
 
14.1 200 7.18 0o171
 
16.95 700 4.78 0.866
 
16.95 600 4.91 0.743
 
16.95 450 5.28 0.557
 
16.95 400 5.47 0.495
 
16.95 300 5.90 0.372
 
16.95 200 6.49 0.248
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TABLE IV (continued)
 

e = 150 

r RPM Cf R
 
(inch) r
 

200 7.06 x 10-3 0.121 x 106

11.85 

11.85 300 6.80 0.183
 
11.85 400 6.36 0.242
 
11.85 450 5.94 0.273
 
11.85 600 5.65 0.363
 
11.85 700 5.58 0.424
 
14.17 200 6.93 0.176
 
14.17 300 6.52 0.260
 
14.17 400 6.02 0.346
 
14.17 450 5.74 0.390
 
14.17 600 5.34 0.520
 
14.17 700 5.14 0.606
 
17.0 200 6.60 0.249
 
17.0 300 5.88 0.374
 
17.0 400 5.50 0.498
 
17.0 450 5.37 0.560
 
17.0 600 5.03 0.798
 
17.0 700 4.81 0.873
 

G = 180 

r RPM Cf R
 
(inch) r
 

-3

200 7.05 x 10 0.125 x 106
12.05 


12.05 300 6.79 0.188
 
12.05 400 6.27 . 0.250 
12.05 450 6.14 0.281
 
12.05 600 5.75 0.375
 
12.05 700 5.53 0.438
 
14.35 200 6.99 0.177
 
14.35 300 6.43 0.266
 
14.35 400 6.02 0.355
 
14.35 450 5.76 0.399
 
14.35 600 5.36 0.533
 
14.35 700 5.21 0.621
 
16.65 200 6.83 0.239
 
16.65 300 6.29 0.358
 
16.65 400 5.83 0.477
 
16.65 450 5.59 0.537
 
16.65 600 5.10 0.716
 
16.65 700 4.99 0.836
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TABLE IV (continued) 

0 = 270 

r 
(inch) 

RPM Cf R 
r 

11.85 
11.85 
11.85 
11.85 
11.85 
11.85 
14.22 
14.22 
14.22 
14.22 
14.22 
17.05 
17.05 
17.05 
17.05 
17.05 
17.05 

200 
300 
400 
450 
600 
700 
200 
300 
400 
450 
600 
200 
300 
400 
450 
600 
700 

6.74 x 10- 3 

6.55 
6.14 
6.02 
5.68 
5.50 
7.01 
7.03 
6.51 
6.34 
5.95 
6.80 
6.23 
5.77 
5.60 
5.28 
5.09 

0.121 x 106 

0.182 
0.242 
0.273 
0.364 
0.424 
0.174 
0.262 
0.349 
0.393 
0.523 
0.251 
0.376 
0.502 
0.564 
0.752 
0.877 


