THE SHAPE OF THE ELASTIC CURVE OF A WEIGHTLESS ROTATING SHAFT
CARRYING ECCENTRICALLY LOCATED POINT MASSES OR DISKS

Docent A. N. Ogurechnikov

The study of the shape of the elastic curve of a rotating shaft which /5
precesses as it undergoes resonance vibrations is of no particular practi-
cal significance, since the theoretical basis in calculating the vibration
frequency is Wiedler postulate, in which the elastic curve is regarded as
plane, and its shape during resonance is assumed to be similar to that of
the elastic curve in unrestrained oscillation. However, it is quite fre-
quently claimed that the elastic curve of a vibrating shaft, by virtue of
the different directions of eccentricities of its associated masses, is
actually a space curve. This assertion, which is entirely correct for
forced vibrations of a shaft, becomes invalid when extended to the case of
resonance vibrations.

The elastic curve of a shaft undergoing precession during resonance
vibrations must be a plane curve, since the shaft vibrates in all axial
planes with the same frequencyj; thus, all the projections of the outline
of the elastic curve onto these planes should be similar, which can occur
only if the elastic curve is a planar one.

Academician B. S. Stechkin has rigorously proven the validity of
Wiedler's postulate for systems executing torsional vibrations. We shall
prove the validity of this postulate for systems which execute flexural
vibrations, namely:

1) for a shaft with two eccentrically located point masses;

2) for a shaft carrying an eccentrically coupled point mass and an
obliquely seated ideal thin disk.

Without detriment to the generality of proof, we shall consider the
case of direct synchronous precession, where the eccentricities and the
torque transmitted to the shaft by the drive are the sources of the
vibrations.

A PERFECTLY ELASTIC WEIGHTLESS SHAFT /6
WITH TWO ECCENTRICALLY COUPLED POINT MASSES

A schematic of the shaft system is shown in Fig. 1. The axis of the

system at rest is denoted by point 0. We use the notation: & and ey -

eccentricities of the coupled point masses; 2t - angle between the direc-

tion of above eccentricities; my and m, - point masses coupled to the

system; 91 and 92 - points of the elastic curve of the bent shaft at the

sections passing through the sites of coupling of the point masses;
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y and x - coordinate axes; here y is the axis /6
parallel to the bisector of angle 271; @l and

©

) direction angles of the shaft deflections.

When the shaft rotates with velocity w
lower than the critical one, a direct synchro-
nous precession ensues. Due to the eccentric-

ities e and e, of the coupled masses m, and

m, the shaft axis will be deflected and thus
become a spatial curve; the shaft sections, to
which these masses are connected, will occupy
positions gl and 92'

r..—..xz——

Figure 1. The Pro-
jection of the Elastic
Curve of a Shaft with Since
Two Point Masses onto
a Plane Perpendicular O Ocr
to its Axis.
the shaft deflections are described by

="y, + €, cos 1) m,0%; -+ (y, + &, cos T) My,
Yo="(y1-+ €; COs T) M08, 4 (y, -+ €, COS T) Myw2Byy;
Xy=(; — €, SInT) m078y; 4 (X, + €, 5In T) M3y

Xy ==(x; — e, sinT) m,w2, |- (X, €, 5in T) mye2,,,
where %5, 959, 8y, 0» are the compliances of the shaft. If we denote

e, cosT==9; e,cosT==",;
e sint=10;; e,sinT=40,;
M =ny; Mo ,=n;

M0 gy == Mg} Mg0 28y = Moy,
then this system of equations can be written as /7

yi (g — 1) ny g, == — iy — Byng,;
Yl Yo (gy — 1) = — 15 — By,
X (R — 1) - Xpng == 01my; — Oyryy;

XMy~ Xy (Mgg — 1) = 0,721 — Gy1igy.



As can be seen, this system of equations contains two parts: the first two

equations contain only b2 and Yy while the last two contain only % and
X, .
=2

The determinant composed of coefficients of the unknown h2} and b2
(of the first two equations) is

Dy=(ny;—1)(ny—1)—nphty.

The value of ¥y is the fraction

where Azl is a determinant which is obtained from the system's determinant

by replacing the first column by the column of free terms
Ayy= — By -+ Bn9) (1199 — 1) - (317215 Bortng) 11y,
and, consequently,

— (317111 + Bangy) (n1ge — 1) + (8439 + Syngy) gy

L’ pon—3
ik (n;1— 1) (ngg — 1) — nyang;

Similarly,
Ayy= — (31 — 1) (317015 + Dpr0) + 1215 (8172 Bpr2a1)
and

— ($1712 + Bonge) (myy — 1) + (317111 + Ygng1) Pyo

b= (ny; — 1) (ngg — 1) — mppngy

The determinant composed of coefficients of unknown %Xy and X, (of the
two last equations) is

D = (ny;—1)(ny— 1) — nyony=Dy;
Axy = (87113 — By729) (r1gg — 1) — (0,735 — By1230) 11y,

hence we find in the same manner as above

__ (8371 — Bom91) (r122 — 1) — (87119 — Bgmg) iy

X
! (11— 1) (g — 1) — nyany

and, using the expression

Axy=(ry3— 1) (017115 — By7209) — (0,72 — Og7201) Ry,



we get

. (Bamyg — banog) (n1y — 1) — (B ny — Bangg) ;g

Xo
(ngo —1)(ny; — 1) —nypny

From the deflection coordinates thus found we can obtain the deflec- /8
tions themselves

Q== ]«’,-’\? 4] and Q= Vm,

as well as the angles between the direction of deflections and the y axis

X1 X2
tan@;=-— and tan @, =—"=,

Y1 y2

Let us now ask two questions: 1) is the elastic curve of the shaft
planar? 2) How do angles (,01 and P, vary with changes in the rpm?

If the elastic curve of the shaft is to be planar, then angles 21
and ?s must be equal, i.e., the ratios

X
X1 o,nq 22
Y1 14

*

must be equal; representing this in terms of previously found values of
X and y

Xy (8ymyy — Bomgy) (ngg — 1) —= (817119 — Bgnog) My
g1 — (81 + 8ongy) (192 — 1) + (81719 + $onoo) nyy
and
Ko (Bymg—8origo) (my — 1) — (Byrery — Ozmo1) 713
yo  — (8ymg - Song) (g — 1) -+ (3y11y + Y9n9;) Mg

We first consider two cases: 1) if 27 = 0 and consequently r = 0,
i.e., if the eccentricities are codirectional away from the shaft, then

%, =e; and ¥, =e,,
and

6,=0 and 6,=0.



It can be seen from the expressions for x5 and X, that the numerators

become zero so that wl = 0 and wz = 0, since the denominators then are not

zero, Then also y; # 0, and Yo #0, since %4 # 0 and 82 # 0. As far
as Dx = Dy # 0 is concerned, the expressions for these terms are finite

when 11 # 11

cr

When w = w__, D =

D= (ny— )y —1)—nyny =
= (mo? 3y, —1) (mgZ By — 1) — g2 Bigmgw? By ==
=wérm,m2 (P11Bgy — B1aBpy) — W2 (myBy + mydy) 4 1=0,

since the last expression is a periodic equation when written in the
standard form.

In analyzing the first case we see that when the eccentricities are
directed in the same direction, the elastic curve of the shaft will be
planar if

o Fw . and ¢1=0p,=0.

Since D - 1 as w > 0 and
remains greater than zero for
all the w < S then the

m
2
m critical angular velocity
‘1 .
w, . is smaller than the par-
t%al angular velocity wpart'
Since
Figure 2. The Shape of the Elastic ° . 1 ° . "
Curve of a Shaft Rotating at Suberit- Tpart™ mpdy Pt mgdon

ical Speed.
and further 0 < n,, <1l and 0 < n,; <1 when 7,0 and 1y >0,

then

1 >0 and g, >0.



Consequently, at w < W, p the elastic curve has a deflection in the di-

rection of the initial eccentricities (Fig. 2).

When the speed is raised by an infinitessimal increment above the
critical, the sign of the determinant will change to minus and therefore

the deflections >4 and Y will become negative (Fig. 3).

When w »~ «© — e, and Yo T T ey (Fig. 4), since

Y= — eynyyMys — eaNyyMyy + erfy1My2 + eaftgMys e
2= =6
Mg — Ajgfing

and

g=— e1n11Mpy — €oMloofly) + €1Migfyy + My
= —e.
nyifag — nyofgy

2) If the eccentricities are oppositely directed, so that
2t=mn; t=n/2,
from which
9, =0and¥,=0,andf; = €;and 0, =6y,
then, when w # w, > One obtains
X £0 5=0, x#0; y=0
and

| tan’ 91[:| tan @,

==oo].

Under these conditions the elastic curve will lie in the plane of the
axis.

| 4

When w » «

€111111199 — €oligalla) — €y1119Mla) -+ €9MNgalig)

X = =€,

ny1ftag — Nyoliyy

. ___ ennnyg — eaNgolyy — eynyitye + Mg Ny

Ky= —————=== : = —8,.
Ny Ngg — Mg



Figure 3. The Shape of the Figure L. Schematic of a

Flastic Curve of a Shaft Cantilevered Weightless

Rotating at Supercritical Elastic Shaft Carrying Two
Speed. Point Masses.

For small w (as compared with Yo and wpart) D >0, nynyg >nyn, and

the sign of X will depend on the sign of the expression

L]
8,121 1199 — BaMgplyy — 817211 - Ba72ay — By 7511015 OyMgaMin

in which, by collecting terms with 61 and factoring out 61, we get

By (12317199 — M1y — Mygin) + Bgly =
= &) (11,02, 028 gy — Mm%, — 1,078, my028y,) + €yy0%8y, =

=e,; [0'mym, (31185 — 015801)) + €m0, — eym 0?3,

Analysis of this expression shows that if we neglect m4 and divide the
expression by mz, we will find that the sign of % depends on the sign
of the expression e,mudy—e;m, 6.

Proceeding in the same manner, the sign of X, will depend on the sign
of

e,myla; — eyt By,
If w - 0, then

— 0yn1yy - Bongy
By + Bongp

—Bimg + Byngy —

fan g1 = and tan P2 (0) = 919 + Bgn199



Returning to the initial notation, we get

mydey —
tan ¢; ) =tan T _eamydy; — eym ¥y,
e m 3y -1 egmade;
e9Miglog *91'”1512,

tan 9o (o) =tan T
e1mbyp + eamalyy

We now find angles npl and <p2 for w >> wcr and for any angle 271

817211199 — 8ongong) — 017119791 + Borgengy

tan ¢, = =
31
— S99 — Sangang; + S1nyenyp + dangong;
Bi(nunge—mnonyy) 6 gsinv Lo
— 81 (137190 — nygnay) 9 e1cosT
Consequently,
(Pl =1,
tan o. — — 01nie — Oonyngy — Binyymyp + Bgngime
T2 = =
— 81ny3m9 — Yonyngy 4 $yn11050 + Song o
— 85 (nyynge — noyn i €9 sin T
= (ryng —nunp) 8 e —tanT,
— &3 (ny1n9y — ngynpy) ¥  egcost

from which
Py =T.

Comparing the expressions just obtained with those for tan spl and
tan 2 derived at low rpm, we see that the multiplier of tan ¢ in the

latter equation contains fractions not equal to unity. Consequently,
angles ¢ and 2 depend on the shaft rpm.

We shall now consider a system in resonance. If it is assumed that
the shaft resonance amplitude is limited by frictional forces and that
the resonance vibrations become steady if the system is operating in
vacuum, and, furthermore, assuming perfect (i.e., frictionless) bearings
we will have to assume that the amplitude will have to be limited by the
friction between the fibers of the shaft.

As is known from literature and as can be seen from one case of angle
2t = 0, when the system passes through the critical velocity, the direc-
tions of eccentricities relative to the elastic curve of the shaft shift



by the amount w. It is also known that at the critical velocity, the
phase shift is w/2 in the direction of the rotation; i.e., at the instant
when the system goes into resonance, the shaft is twisted about the axis
of the elastic curve. This also should happen in a system with any value
of 27.
tions of eccentricities should remain 2t (we shall neglect the torsional
deformations of the shaft), the shaft of our system will be twisted so

that the directions of the eccentricities will form angles T with the y
axis.

From the expressions derived above for 91 and cpz, we can write equa-
tions for w = w

cr
N ==y
tan o, = /:‘l) _ (8inyy — Byng)(mpy — 1) — (17212 — Byige) myy
i ky; e — @y + $an91) (g — 1) 4+ (8 nyp + Songe) ny

8; (713 g — Myn Mlay) — B3 (MaoMiay — Tiag iog) — By + Bomyy
—9 (11799 — N2 Ma1) + 83 (nipongy — nigg ) 8171y + 8ongy

8y (1) ngs— Ryorer) — 81y + By
— &) (ryynga ~— nya nay) + ¥y nyp + Bany

We collect some terms of the numerator and denominator in parenthe-
ses, and reduce the expressions in parentheses to the form

D =y — 11199 — 1) — Ryglgy =Ny Mgy — Nypltyy — Ny — Nyy 4 1=0:

81 (my + mop—1) — 8y 4 Oongyy

tan —;_;1 = _ —_ - —
— 9y (ng; + ngy — 1)+ Bynyy + Bony
— Ol =N +0ny e (np—1) + egnn
—8; (g — 1)+ &y — ey (g — 1) + epnyy
or
- _
tan g, = —tan 71 (32 —1) + eony .
ey (g — 1) — eonyy
tan = __(f_i'_) __ Binpmp — 6onynoy — Bymyp L Banoy — By - oo Mgy
Toer— = - = - = s 2z w2 12721
S ANyoJor  —4mypngg—donping + 8ynyo 4 Yongy F Yy nyp + Sangany

—Ba(myy oy —yp ) — Bymyp + Bgmgy
— 8 (ngy ngg — mg ngy) + e + 8y gy

In this case, since even at resonance the angle between the direc-



— =@t =1 =0+ by — Oy — )6y

— 8 (myp + gy — 1) + 8175 + 8mp, —8(ny — 1)+ 8ynyp

ey (n;;—1) + eynyy
e;(ny —1)—egnyp

Itan Goep=tan T

We find the ratio

u\ 8O0y — i nyy) + 8y myy - Spmay T
(!/2 ) — 8 (nyyitgy — nya Mgy + Byrip + Bgmag .
=8 (ny e — 1)+ 8y + Bomyy _ — 8 (g — 1) + Yymyy
T % (mp e —) + Songy + 4y — 8 (nyy — 1)+

__er(ny—1)— gy
eo(np—1) —enye

Similarly,

(5_1_) __ 6i(np—1) + Bymyy _ _ei(np—1)+ ey
x2/er  —Oa(ny—1)—biny ey (myy— 1) + eyngp

When w - 0 and n > 0, and neglecting the product (Eik.n s), we find

critical speed is a planar curve.

that

(ﬁl_) - 811 + B37y __e1mbiy — epmaly

xp)o  —Bimp+ By eymybiy — eomodyy

(11_) S+ Sy ey + eymyly
valo  Sinpp+Smy e1mydya + epmadan

We shall now prove that the elastic curve of a shaft rotating at
This is equivalent to the condition

tan q’lcr = tan (chr

or, if we use the previously obtained expressions for the tangents, to

10

e (@2 —~1)+ e2’§1 _2 (Eu —1)+ eryo
—e(ngy— 1)+ egnyy  ex(np—1)—enyp

We shall show that this equality really holds



[ex (rgy— 1)“‘32;21] [e; (’—1—11 —1)— 31’_1-12] ==

=[—e (np— 1)+ e,n5) & (nu—1)+ eyny,].
We remove the parentheses

3192311;22 — 3132;1-11 + eg’_zu;-lm —eeny+ €,8,—
- 65’721 - 9%522212 + e?’-llz - 3132;127’-21 = — elezzn—’zzz‘}'
+ elezﬁll + 33;1—1171-21 + exezzzz — 16— 63321 -
- 3%71227112 + e%-’—llz"i‘ ¢ 32-’21271-21-

Canceling out identical terms [of opposite sign], factoring out and
dividing through by eqe,, we satisfy ourselves that the remaining terms

add up to D = 0, and hence the difference in sign does not disprove the

identity of the expressions.

It is thus proven that the elastic curve of a shaft carrying two
eccentrically coupled point masses with differently directed eccentrici-
ties and rotating at critical speed is a planar curve.

A PERFECTLY ELASTIC WEIGHTLESS SHAFT
CARRYING AN ECCENTRICALLY COUPLED POINT MASS /1h
AND AN OBLIQUELY SEATED PERFECT THIN DISK

Let there be a weightless, elastic cantilevered shaft carrying a
point mass and an obliquely seated disk (Fig. 5). The directions of the
eccentricity and of the obliqueness form an angle 2T7.

The coordinate axes y and x are associated with the shaft, but in
such a manner that on rotation the y axis divides angle 2t into two equal
parts; i.e., the axis is parallel to the bisector of this angle.

We introduce the notation: m, - the point mass; =]

ity of this mass; o - the angle of skewness of the disk (a small quan-
tity); 62 - the equatorial moment of inertia of the disk mass.

- the eccentric-

If the skewness of the disk is expressed in terms of its shift
(from vertical) at radius r, then

a
tan @ = —
r

11



tﬁ Figure 5. Schematic of a Canti-
levered Weightless, Elastic
Shaft Carrying a Point Mass and
an Obliquely Seated Disk.

ks

Ry

The angles made by the skew disk with axes y and x are

acost
tan @, = =—=tand cos T;
asint .
and @, == —=tanosinT
r

or

Q=0 C0ST and a,=asinT,

We now write the equation of shaft deformations when the shaft /15
rotates at any w # W,
4= (gym w2 -} wem, cos T) By; - 0 (@ — @) 028y ; (1)
Ya== (gm0 w?en; os 1) By - 0y (ay — 9p) 028y (2)
@y=(grmy* |-, cos 1) &y 0, (0 — 9p) 028y (3

We introduce the notation

myeRy =1; meBy=rn,y; esint=~6;

8,028, == Mg; 0,070y, == 1yy; ecost="9,.
Then, Eqs. (1 ) and (3) form an independent system

Yy (g — 1) — @ty = — Dy — Qg
Yilyg— Py (g -+ 1)= — Hs3, — aynigy,

whose determinants are

12



D= —(ny; — V(g + 1)t nypng = — nyigy 4 gy — nyy - ngy + 15 /15
Ayy=A(n1gg 1) (B172y; F ayng)) — 1y (31710 Fayntgy) =
=8, (Ry1lgy — Mipftoy + 11y) + 0y (Roghoy — Mgl + 1g) =

=38, (ny17t9p — Nigllay - 111) F Oyltyy
and

Apy=(ry; — 1) (— Y7233 — @yitgy) + 1o (h7yy +ayny,) =
=47110 0y (1190 + 1ol — Ny Map)-
Consequently,
—An
D

Agy
and @, == .
% P2 D

The coordinate Y3 of the second equation is written in terms of b2
and @, in the form

Y=Yzt 017015+ Qylloy — Pyt
Setting up the equations of deformations in the x direction, we get
X =(% — 0p) gy (@ — W) Mgy
Vo= (X, — 0;) 71y (@, — W) 7g2;
Xg=(x; — 0y) g3+ (@ — W) a5

The first two of these equations form the system

xy(ny —1)—¥any = i1y — 0oy
Xy — Wy 1)==011p— M4,

the determinant of which is

D= —(n); — 1) (nyy+ 1) F 115121 == — nyfigy~+ Ryghyy — iy + Nop -+ L.

The determinant, as should have been expected, proves to be the same
as for the system of equations for deformations (Xl, )

AX = — By (Myyl1gy — Mgl + 11y) - @My /16
AV = —a, (ny gy — Nygllyy — Ngg) — 0171503
Ax AV
Xy == ! and \Ir2=_l ,
D D

and

Xy=X 13— Tongy — By1115 -0 M.

13



We now seek the tangents of the angles of deflection of the shaft
sections as w + 0

X —0n axn
tan 31(0)':(-1) e T U Ol
nlo 8ynyy + ayny
—esin T-md;; + aby sin 1-8y;
mye cos T-3;; + By cos T-Byg

myedy; — Gsad
— —tan T 18011 20091 ,
medyy + 8208y
X —esint-md3+ Basint.d
tan ¢, (0)== 23N\ 1713 28 .
y3 ecosT-mydg + B2a cos T-Bg3

- em b3 — Byadoz

em1613 -+ 820.523

== — tan

We shall find the direction angles of the deflections of the elas-
tic curve as w > «; here we shall drop all terms containing w raised to
the lowest powers

lim D= — nyfy + nighty,

oo

Hm Ay, =8 (37299 — Ryplty) @y (1g220) — Ngatty)) ==
o)~ 00

=3, (nyyNgy — nypny);

. A 84 (nyyn99 — nyon
hm!h:'Dg!: 1 (g — npgfyr)

._81
A — (ny1ngp — nyang;)
Y= —31= —eCcosT,
lim Axy= — 8, (1,715 — 13Ry),
w-»oo
. Ax —8(n — nyoft
lim x, =251 — (11317199 — n1oMy1) =8,
wve D — (nyyngy — nyony)
x;=0;=esinn,
W00
X1
tan @)(e)=—— == —tanT;
n
__—ay(nng — nyontyy)
P2(e)=

=aqy.
—{ngyngp — nyonyy)

Let us consider the state of the system when it rotates at critical
velocity
D= — (13— 1) (nga -+ 1) - 1y, =0;

D= —nyny+nysliy —ny+ npp+1=0

or

Axicr
o —
tan Plor™=

=8 (nyyngy — nypongy + myy) + agny

Ayjer $; (mngy — nypngy 4 npy) + agng

14
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If in the parentheses of the numerator and denominator we reduce the
terms to D, then

— 81 (ngp + 1) + ayngy
91 (ngg + 1) + oynyy’
X. x113— Uottgs — B0 an
tan (‘Dacr=<._3.) — XU oftog — 81713 + Gty
Y3 /xp Y1113 — Pangs -+ $yn33 -+ Qynag

tan @, cr—

Multiplying the numerator and denominatoryby ch = 0, we get
__Axlnlg—A\F2n23

tan @ =
v3cr -
Ayimz — Aggngs

In this case, the third and fourth terms of the numerator and denomina-
tor become zero. Then

tan o, - 01 (M F 1)z = @emyinig — Oy (n11—1) g3 + 81719093
73 - - B , -
r 8 (nag + 1) ny3 + agngyngz — ay (nyy -— 1) nog — $yngongg

If it is assumed that the elastic curve of a shaft rotating at
resonance speed is planar, then we must have

tan @) o, = tan P3 ¢y-

However, this expression will hold only when it will be proven that the
expressions in parentheses are proportional to the corresponding expres-
sions outside of parentheses, which means that we must prove

— 01 (g + 1) + ayxngy _ — 0 (1 —1) + 81749
$1 (g + 1) +aynyy  —ay(ny —1) =81

since

a __a+tka__a(l+k)

b b+kb  b(14k)

We change to a somewhat different expression

—esint-(ngy+ 1)+ asint.y  —asin T (ry—1)+-esinvt-ng
ecosT-(ng + 1)+ acost-ny —acost-(ny—1)—ecost Ny

Dividing through both sides of the expression by tan 1 and, cross multi-
plying, we get

[—e(ny+d Dtany] [ —alny—1)—eny|=

=[e(nay-+1)-Fanyl [—a(n,—1){eny).

We remove the parentheses

15



ea(nyy+1)(nyy— 1) (ngy+1) njy — a2 (nyy — 1) ny —aenpng = {18

=ea (nyy+ 1) (113, — 1)+ €2 (ng2 - 1) nyg— a2 (g — 1) 1 -+ ae12591:.

Cancelling out identical terms with opposite sign and dividing through
by e, we get

@ (g Moyt 1y — Ny — 1) —angyng =

= —a(nylgy+ny — Ny —1)F-anns.

Then, factoring out o and dividing through, we shall satisfy ourselves
that the remaining expressions are equal to D = 0, which proves that

tan 9y o, =tangy,

as well as the assertion that when the system rotates at resonance rpm,
the elastic curve of the shaft is a planar curve.

It is also possible to prove the validity of the Wiedler postulate
for systems more complex than those presented above, but this would only
involve more complicated calculations without changing the substance of
the argument. Thus, Wiedler's postulate, stated as a theorem, has been

proven.

In closing, we present two numerical examples which illustrate the
fundamental tenets of this article.

Example 1 (see Fig. 4). Given an elastic, weightless bar, carrying
two eccentrically coupled point masses my and m, (with eccentricities e

and 32) at an angle 21 from one another, find the critical speeds El and

w
2’
at w = 0 and w = ». The system data listed above are tabulated below:

91 and Pos construct the elastic curve at critical rpm, as well as

Quantity | Iy ] EJ l my my T & ey
Value lw é ‘ 4 ‘_1 l ~3 ( 1——?‘~45°~' 2 l —4
The matrix of effect coefficients is /19
511 B2 % —239—
Y21 Ba2 ) 20 64
3 3

16



The equation of 2, the natural frequencies of the system, is

Qi.3.1 (—g— .—%_@)_92 (3.—3-.{_ 64)+1=0

37 9 3
or
88 3
Q44— — g2 =
2 L rie=o
from which
1
o =55t «=0,19
and
3
Q%:T; 9, = 0,865,
When w > O

— By + Bomgr.

t: Q)= .
1 (0) $yn31 + S

Dividing by sin T = cos T and by 1/3, we find

. ©) —2.3.8-4-4.1.20 1
an = —_—
P 2.3.8+4.1.20 4’
— 0 [i] —2.3-20+4-1-64
tan ¢y (0) = 1 + On90 +4-1-64 ~ 0,361;
81n12+32n22 2-3.20 +-4-1-64
(ﬂ) ~ b by =238 44120 o,
X9 Jw—+0 -— 01”12 + 62"21 —2.3:204 4- 1.64

(82) | bt 80y
Yo Jw—>0 817‘112 + 82’122 120 -+ 256~ ‘ :

We now determine the angles of deflection of the shaft's sections at
the first critical speed

e (’722—L)+€2;21=
e1(ng — 1) — eany
2(0,762 — 1)+ 40,238 1
2(0,762 —1)—4.0,238 3 '

tan Pler =— — tan 1

- 64 1
Ngg = m2522wgr= 1. —3~ . 58— =0,762;
- a 20 1
nay == mzﬁzlmérz 1. —é* . —Qg = 0,238;
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— o 8 1 .
Ny = mdp e = 3. ? . 55‘ = 0,286;
—_ ° 20 1 .
npy= lnl?mu\’cr: 3. —3— . '2—8‘ =0,714;

ex (i —1) + ey _

es(my—1)— 31_’712 -
4(0,286 —1) +2-0.714 1

= 10,286 —1)—2.0,714 3

tan goop = tant

From the fact that angles ¢. and p, are equal, we can conclude that

1
the elastic curve of the shaft is planar

&) _ ol =T —epny _ 2(0.762—1)—4.0.238 _ 1.
(\P:Z,Cr"eg(ﬁl,—u—eﬁm“ 4(0.286 —1)—2.0.714 3
X ) & Uiz — 1) =+ ey 2(0.762—1)+4-0.238 1
(;,cr=—gz,a,_1)+ern,2=_ 4(0,286 —1) +2.0.714 3 °

We now find the projections of the shaft's deflections at w > «

—$hiniingg —Sonpintyy + Yynpongy + Sangeny;

Yie™ nyngy — nyghay
ny1Nay — Mot }/2—
=9, 2B §e rcost=—21" =—1414
nyifigy — Nyoftgy 2
v o Banune — Bomopnar — Bimignay + Bonaomy
1o = =

ny gy — Nyofiyy
=0, =¢;sint=1,414;

y —Hnpinp—Sonnngy + hiynye + Sonppnyy
2 = =

— 8=

nypngy — Nygfiyy
=-—eycosT=—2828;
_ Sinyinye — Bonyyngg — Dyngyiyn + Bomypng,

ny1ftgg — Nyofay
= —fy == — gy sin v ===0,828,

Example 2 (see Fig. 5). Given an elastic weightless bar, carrying

one eccentrically coupled point mass my with eccentricity e and one

ideal disk with moment of inertia 62 and skewness angle o, the angle be-

tween the direction of the eccentricity and the direction of skewness
being 2a, find the critical speed and the coordinates of deflections for

w _, w=0and w-> =,
cr

Quantity l L 1 a e

EJ l my (72 2t

Value l? 4,1!2 3 90"‘0.1,2
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The matrix of effect coefficients is

1 b12 8/3 2

a1 bog 2 4

The equation for the frequency of direct synchronous precession is

8
_'_94.2.3(—2—4—4)-92 (2- ?——3-4)4- 1=

or
1 1
Qt—— Q2 . —0;
6 40
o 1 11 12145
=2V mt T 12
Q= 0,512,
When w - 0

tan ¢; (0) = —tan ¢ ”itﬁl-l—_—m _
myedyy + 0pady;
8
Q-Q.T_B.O‘I‘Q
= 8 =—0.895;
22— +3.0,1-2

20
emyd 3 — bByad 2:2.2-—3.0,1-8
tan ?3(0)=—tanr.~—1~1u _

emdiy + Oadyy

= -— 0,835,
20
2-2-—3— + 3.0,1-8

The angle of deflection of the elastic curve when the shaft rotates
at critical rpm is

— 81 (nge—1) + a,ny = —tant. ® (ngp—1)—any _
$1 (nge —1) + aynyy e(ng—1) 4 any
2(3,14—1)—0,1.1,57

92(3,14—1) -+ 0,1-1,57

gy = 0,02y = 3.0,262-4 = 3, 14;

ngy = 0,028, = 3.0,262.2 = 1,57.

tan Per =

= — 0, 93;

The tangent of the angle of displacement of the second angle is not

calculated, since the equality of these angles was proven in the general
case.
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