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FOREWORD 

This report presents the results of work performed by 
Lockheed's Huntsville Research & Engineering Center, under 
Contract NAS8-21146 for the Aero-Astrodynamics Laboratory 
of the NASA/Marshall Space Flight Center. "
 

It is the last of a series of reports prepared by Lockheed 
from 1966 through 1969 under Contract NAS8-18036 and under the 

above mentioned contract. 

The NASA technical coordinator for the present study is 

Mr. Roger R. Burrows, S&E-AERO-GG. 
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SUMMARY 

This study considers the problem of flight scheduling in the planar 
two-burn minimum fuel rendezvous of an interceptor with a target vehicle. 
A set of equations is developed which takes position and velocity of the interceptor 
and of the target as input data. These equations allow calculation of five control 
parameters: the durations 	 of the coast,of the first burn, and of the second burn, 
and the average thrust direction for each burn period. 

In order to set up the rendezvous conditions, Levi-Civita's regularized 
variables and the corresponding orbital elements are used in contrast to most 
other papers on rendezvous problems. This brings several advantages compared 
to the use of polar coordinates: 

* 	An elliptic target orbit can readily be handled. 

* 	 A near-circular coast orbit of the interceptor does not cause difficulties 
because the (badly defined) periapsis is not used. 

* 	 The resulting equations are fairly simple and their numerical treatment 
is stable. 

The scheme uses some simplifying assumptions which, however, are 
satisfied in most practical cases: 

" 	 The burn durations are assumed to be short compared to the duration 

of 	the coast. 

* 	 The Keplerian 'llipses involved must have small eccentricities. 

* 	 Instead of dealing with a variable thrust vector, the scheme uses a 
constant average value during each burn. 

Due to these simplifications, the scheme will furnish values of the control 
parameters which generally do not result in an exact rendezvous of the two vehicles. 

iii
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However, updating these control parameters throughout the first burn yields 
a more accurate rendezvous after the coast and the second burn. 

Thu, due to the simplicity of the equations (resulting in short computa
tion time) the scheme can also operate as a first-burn guidance scheme in the 
sense that the flight scheduling is done repeatedly based on current position 

and velocity data. 

In order to accomplish the rendezvous accurately by the second burn, 
a closed loop terminal guidance scheme based on measurements of the relative 
position and velocity is necessary. The approximations and simplifications in 
the present scheme are too rough for this purpose. 

Such a scheme, the Dual Phase Plane Method, has been derived and 
simulated in Ref. 3. Hence, in this report rendezvous missions are only simu
lated up to the end of the coast, where the terminal guidance scheme can take 
over. The second burn is handled without updating according to the latest 
values of the control parameters calculated at the end of the first burn. 

Simulation results for a typical rendezvous case are included in this 
report. 

iv 
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NOMENCLATURE 

a semi-major axis 

a., j regularized elements 

T flight path angle 

D total burn duration 

DO, D first and second burn duration 

A j, AAi element increments 

6 separation angle 

6jk Kronecker symbol 

e exit velocity of the thruster 

F- perturbation function 

f thrust acceleration 

I interceptor 

P earth's gravitational parameter 

O earth's center, origin 

.j perturbing forces 

q. generalized forces 

r distance from the origin 

s regularized time, value for the interceptor at rendezvous 

so, s increments of s durifg first, second burn 

a value of s for the target at rendezvous 

T target 

t time 
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NvDMEUNCLATtR (Continued) 

t -	 coast duration 
coa
 

ttar rnission duration
 

"burn-out duration" initial mass of I divided by mass flow rate 

u. Levi-Civita' s variatble s 

v velocity 

wj 	 modified derivatives of the u 

frequency 

x. 	 Cartesian coordinates 

X thrust angle (measured from the fixed x 1 -direction) 

Z side condition 

Ayj, Go, G?, X, M, q9 auxiliary quantities 

Subscripts 

j= 1,2 

The subscripts with the following meanings are mostly omitted in the preceding
list. In the text; however, th6y are used in addition to the subscripts appearing
already here. 

0 initial values of the interceptor, first burn 

1 coast 

2 	 rendezvous, second burn
 

3 	 initial values of the target 

vii 
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Section 1 

INTRODUCTION 

Optimum rendezvous problems are boundary value problems for differential 

equations (DEQ) where a certain cost function must be minihized by an appropriate 

choice of control functions. By the modern methods of the calculus of variations 

(for instance Pontryagii's principle, Ref. 1) it is possible to solve problems of 

this kind exactly, but only with a considerable computational effort. 

The goal of this study is to simplify the rendezvous probleni in an appropriate 

way, 'such that the results can be obtained within seconds by an onboard computer, 

but without losing too much accuracy (5 km position'aerror). 

The way to obtain simplifications is to introdicce restrictions which are 

satisfied in most practical cases: 

e 	 The interceptor's trajectory is ,assumed to lie in a narrow circular 
ring. 

Then the resuired velocity increments are rather small and can be attained by 

o 	 short burn durations. 

This allows linearization with respect to the s& burn durations. 

" 	 The thrust forces are considered as perturbing forces acting on the 
interceptor, I, whose unperturbed orbit is a Kepler ellipse. Only first 
order perturbations are considered. 

" 	 During each of the short burns the thrust is put constant in magnitude 
and direction. 

This reduces the problem of calculus of variations to an ordinary minimum problem. 
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Even if all these simplifications are made the system of equations to be 
solved is quite complicated. Much depends upon the choice of the coordinates 

for describing the trajectory in the powered flight phases and upon the orbital 

elements used for characterizing the coast periods. Three possibilities are 

considered: 

1. Polar Coordinates Associated with Classical Orbital Elements 

This choice is striking because of the simple geometric meaning of the 
polar coordinates and the classical elements. Unfortunately this method fails 

in many cases we are concerned with, since the classical elements are badly 
defined for near-circular orbits (the perigee for a circular orbit is undefined). 

This approach has been the subject of earlier publications (Refs. 2, 3). In these 

reports a very efficient terminal guidance technique, the Dual Phase Plane Method 
due to I. Kliger and W. Trautwein, has also been described (see in particular 

Refs. 4, 5). 

2. Levi-Civita's Regularized Coordinates and the Corresponding Elements 

Although the application of this set of parameters yields more complicated 

equations, it is advantageous due to the "linearizing" effect of Levi-Civita's 
transformation (see Section 3). Transition through a circular orbit causes no 

difficulties in these parameters. Most of the present report is concerned with 

the derivation of the control laws in this case. 

3. True Anomaly as Independent Variable 

The Kepler motion, described by direction unit vector and reciprocal 

distance as functions of the true anomaly satisfies a system of linear DEQ with 
constant coefficients (Ref. 6). Thus, applying these parameters has the advantage 

of Levi-Civita's variables, yet transformations of that complexity are not used. 

Only a short description of the parameters and the corresponding DEQ 
will be given in Section 6. 
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Section 2 

THE RENDEZVOUS 

Let T be a passive Sart vehicle moving on an elliptic orbit about the 
earth's center 0. In the same orbital plane a steerable interceptor I is assumed 
to coast on an elliptic parking orbit. A rectangular coordinate system x1 , x 2 

centered at 0 is used in-the common orbital plane. The rendezvous mission 
consists of transferring I to T such that they meet with equal velocities and the 
least possible amount of fuel is used. The interceptor's engine is supposed to 
be ignited for the first time at a given time t = 0. 

The system of the two vehicles is characterized by the quantity 

= earth's gravitational parameter 

and by two parameters associated with the interceptor's thruster: 

r = initial mass of I divided by the engine's mass flow rate 

e = exit velocity. 

The situation at time t = 0 is given by the initial target data 

r3 = distance OT 3 

v3 = initial target velocity
 

Y3 = target flight path angle
 

and the initial interceptor data 

r0 = distance 010
 
v0 initial interceptor velocity
 

Y0 = interceptor flight path angle
 

= initial separation angle according to Fig. 1.
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r 

3 

f( 0) 

0 0X 0 

- Fig. I - Initial Situation and Rendezvous 
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The rendezvous between I and T will be attempted by two burn periods (one 

at the beginning and one at the end of the mission) and a coast phase in between. 

This is the simplest strategy closer to reality than the two-impulse rendezvous. 

No variation of the thrust force is allowed; the engine of I is assumed to 

be either on or off. But since the mass of I decreases during the burns, the 

thrust acceleration f increases during the burns with time t according to 

(2.1)f(t) = -t* 

where t' is the current total burn time. 

If the first and the second burn durations are denoted by D 0 and D2 

respectively, the accelerations during these burns will be approximated by 

e e 

f - D f2 e D (2.2) 

Y-- 0- 2 

respectively. If the total burn duration 

D = DO + D2 (2.3) 

is minimized, fuel optimality of the rendezvous (in our approximation) is guaranteed. 

Since the optimal trajectory will be sought only among the ones with constant 

thrust direction during each burn, only discrete angles must be introduced in 

order to characterize the thrust. We choose the angle X0 between the thrust 

direction and the fixed x 1 -direction at t = 0 and the angle X2 with the same meaning 

at the rendezvous. 

Thus, the quantities D0 , D2 , X 0 , X2 are the control parameters to be 

calculated from the initial data, while quantities s, ay to be introduced later for 

characterizing the location of the rendezvous are merely unknowns in the mathe

matical problem. 

5 
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Section 3 

LEVI-CIVITA'S REGULARIZATION 

Regularizing is removing singularities from differential equations and 
their solutions by introducing new variables by appropriate transformations. 

Methods for doing this depend strongly upon the nature of the singularities that 
are to be regularized. In the case of the two-body problem in celestial mechanics 
the corresponding DEQ 

dx. x.d2 X

dt 2 + r = 0, j= 1,2 (3.1)r 

have a singularity at the origin r = 0, but in the solution x.(t) this singularity 
becomes manifest only when the vehicle collides with the central body. 

Regularizations of (3.1) have been known for a long time. In 1906 T. Levi-
Civita (Ref. 7) found his regularization of the planar two-body problem, but only 
recently in 1965 it has been extended to three dimensions by P. Kustaanheirno and 
E. Stiefel (Refs. 8, 9). The importance of these transformations lies in the fact 
that they produce not only regular but also linear DEQ for the Keplerian motion. 

In the sequel we give a brief outline of Levi-Civita' s regularization as 
well as a collection of the formulas we need for the further development. For 

the derivations we refer to Ref. 9. 

3.1 THE KEPLER MOTION 

Levi-Givita's regularization consists of introducing the generalized 
coordinates u, u 2 in the physical xl, x 2 -plane according to the conformal 

transformation 

6
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2 2 
x1 = u I -2 2 ' x? = Zu U2 (3.2) 

and of introducing the parameter (regularized time) 

t 
r 

= 
' f (3.3) 

0 

as independent variable instead' of the time t, where r is the distance of the point 

(X1 , x.) from the origin and satisfies the relations 

2 + u2 2= X + x22 Ul (3.4) 

The velocity components xl, 4 are transformed according to 

du1I
 
dsT.= - (u I x 1 +u 2 x 2 ) 


(3.5) 

du _ 

ds* Z (-2 Z 

The application of the transformation (3.2), (3.3) to the DEQ (3.1) of the 

unperturbed Kepler motion vields the linear system 

dU. 

+ CO,Z u2 = 0, j = 1,2 (3.6) 
2ds 

where wo) is an energy constant given for instance by initial values ri, v I of 

distance from the origin and velocity: 

2 
2 1 I10 ( r ) (3.7) 

7
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Equations (3.6) are 	solved by 

u. 	 = a.cos W s* + sinc I s* 

j = 2 . (3.8) 
du. 

-ds=3 01 (-a. sin& I s* + sin(i s*-') 

The integration constants a 0j are referred to as the regularized elements of 
the considered Kepler orbit because they characterize the orbit completely, as 

the classical elements do. 

3.2 	 PERTURBATIONS 

Equations (3.8) give a starting point for handling-the perturbed Kepler 
motion 	given by the differential equations 

d2x. x. 
+ = p. 	 (3.9)

rdt 

where pj are the accelerations due to the perturbing forces. The generalized 

forces qj corresponding to the coordinates u,, areu 2 

ql = 2(ul Pl + u2 P2 ) 

(3.10) 
q2 = 2(-u 2 PI +u l p) 

The presence of perturbing forces causes the frequency Wto be variable (the 
value '1 given by (3.7) being merely an initial value), and it generates an in
homogeneous term on the right-hand side of (3.6). Furthermore the elements 
a5, j defined by (3.8) are now functions of s- rather than constants. 

It can be shown (Ref. 9) that by introducing an independent variable, s 
by a transformation slightly different from (3.3), one can come up with regularized 

8 
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equations where the frequency wI is again constant according to (3.7). The new 

timie transfornation involves the seni-major axis a of the ellipse osculating the 

perturbed Kepler orbit: 

a = 2, 1 (3.11)a v2 

r A 

where v is the interceptor's current velocity. When primes denote differentiation 

with respect to s, this parameter is defined by the differential equation 

ti = J Tar (3.12) 

where 

ai = /i__(3.13) 
a P012 

is the initial value of the semi-major axis. 

Applying the time transformation (3.12) together with the conformal 

mapping (3.2) onto the differential equation (3.9) of the perturbed Kepler motion 

yields 

u." +0 I . F.j' 1,23 iW j = 5 = (3.14) 

with the perturbation functions 

U.1 
Fa (rq q(+ ft
=4aI 2 k=l kUk ) (3.15) 

9
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The velocity transformation (3.5) reads now 

u z X z
 , 1 - Xl + U

I aT ('2 

(3.16) 
1 [ (-u 2 +ux 2 ) 

2 2 a 1 21 

Equations (3.15) are solved by the method of "varying the constant, which yields 

equations 

u. = a.(s) cos (01 s + (s) sin 601 s 

j=1, 2 

u= 6[- aj(s) sin6a) s + (s) cos WI s] 

similar to (3.8). With the abbreviation 

U.1 
w = 5 = 1, 2 (3.17) 
S I 

they read in matrix notation 

) 
 coscs sinw(
 
w1 = sin 60Is Cos 6is I(s) ?(S)
 

The elements a.i(s), 7.(s) are now obtained by integrating 

1 1 

=n FF. Wsns, '=- F cos W1s (3.19) 

The semi-major axis a can also be written in terms of the elements: 

1 222 2 
2a = I (a1 +a 2 + P3 + P2 ) (3.20) 

10 
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Section 4 

DERIVATION OF THE CONTROL ITAWS 

The equations yielding the guidance laws will be established according 
to the following ideas: 

* 	 Describe all motions involved in terms of Levi-Civita's variables 
and regularized orbital elements. 

* 	 When two trajectories match in position and velocity at a certain 
time, their elements agree. 

In the sequel the subscripts 0, 1, 2, 3 (second subscript if there are two) denote 
values associated with the parking orbit or first burn, coast, second burn or 
rendezvous, target orbit, respectively. 

4.1 	 MOTION OF THE TARGET 

The semi-major axis a 2 and frequency Wnassociated with the target orbit2 

are given by (3.11) and (3.7): 

2 
1 2 v 3a 2 r 3 4 2 (4.1) 

According to Fig. I the target's initial position is defined by the coordinates 

x13 = cos 6 , = sin 6r 3 x2 3 r 3 

Inverting Levi-Civita's transformation (3.2) yields the target's first two regularized 

elements: 

a 13 = cos a 23 (4.2)CO 	 sin6 

I2
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On the other hand, the initial velocity of T is 

13 - v 3 sin (73 - 6), x2 3 = v 3 Cos (73 - 6 ) (4.3) 

as seen in Fig. 1. From the definition (3.17) together with (3.5) we obtain the 

remaining orbital elements 

13 1 3 x 1 3 + a 2 3 x 2 3 )
 

P23 - 2 (-a 2 3 x 1 3 +a 1 3  23
 

or by using (4.2) and (43) 

= 3v36 

-2o sint - 23 

(4.4) 
2 3v 3 6 

)fP23 &02 cos (Y 3 -

The quantities a. 3 , P j3 are the initial values for solving the unperturbed regularized 

system (3.6) defining the target's motion. 

We now assign the values s = 0 and s = a to the initial point T3 and to 

the rendezvous point T on the target orbit, respectively.
Z 

According to (3.18) T 2 is then given by the regularized coordinates 

\w 2 u22  (a.23 . = o 2Z0Z V s n t 2 u 2Z3 4. )fU3(45\-wsino a CosW) a)
i\12 2 2 2 P 13 231 

iz
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The time tta r taken by the target to move from T 3 to T 2 is calculated 

from (3.12), putting 470= 1 and using (3.4) and (3.18): 

a2
 
ttar = [(a13 cos W2 s + 0 1 3 sin0 2 s
 

0 

+ (a23 	 cos W)2 s + P 2 3 sinw 2 S) ] ds 

or
 

t =a a+ a1 3 g 1 3 + ot2 3 023 (1 Cos &0 r 

2a2 22 (4.6) 
13 2 23(.6+ a13 2. +a23 242+
 

+c 4 2 	 sin 2w2 

Here we have used the relation (3.20) which can also be written as 

1 2 2 2 2 
a 2 = 12 +u 2 2  +w 1 2 +w 2 2  (4.7) 

according to (3.18). 

4.2 	 THE BURN PERIODS 

In order to deal with the interceptor's motion we must define the 

quantities 

2
1 	 2 v0 
 0-, 	 (4.8)
 

0 0 

analogous to (4.1). 

13
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The motion of I will be described in terms of the regularized elements 
a., f3j. Their values aj 0 , IjO at the beginning of the mission (t = s = 0) agree 
with the corresponding values uj0$ w of the regularized coordinates. These 

are found by a sequence of transformations similar to (4.2) through (4.4). Taking 
into account the particular situation of Fig. 1, we obtain 

U10 a F1 0 U2 0 = a2 0 = 0 

(4.9)
Vo 7 VO o 

w 10 = 1 0 = - CO0 w2 0 = p 2 0  - 2 - cos Y0 

The intermediate elements (the constant values of the elements during the coast) 
will be denoted by ajl , Pjl and the final elements a1j 2 , P3j2 (at the rendezvous 
T 2 ) are related to the regularized coordinates uj. , WjZ by means of (3.18): 

(i2 w oscoo s cs ) 2 22) (4.10) 

\12 w222 = -sin o 0 s cozs CO0 01 z 2 

The unknown quantity s now stands for the value of the regularized time on the 
interceptor's orbit at T 2 . 

We further introduce the element increments 

Aa = jZ -a jO 

j 1, 2 (4.11)43. = f3. j
APi jZ jO 

which are caused by the perturbing effect of the thrust during the burn periods. 

The next step is to relate the element increments to the control parameters. 
These relations are based upon an approximate solution of the DEQ (3.19) for the 

14
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burns. The right-hand sides will be evaluated at the rendezvous during the 

entire second burn (at the beginning t = s = 0 during the first burn). This is 

the principle of first order perturbations. Thus we obtain 

a - a jO0
 
jl 0
 

j °
Pjl -PjO 0 

s 	 j = 1, z (4.12) 

a. 	 -a -- F sinOco5 
J2 jl - 0 j2 0 

Pj2 -jl 0 co) 0 

where s o and s 2 are the increments of the regularized time in the first and second 

burn, respectively, and Fj0 and Fj2 are the values of Fj at the beginning and at 

the rendezvous, respectively. 

From (4.11) and (4.12) there follows 

s2

Aa~ = 2ZFJ2s in CO S
 
AP - s 0 S +(4.13)
 

s2 	 s
 o
Ap. = -°oFj eo008 s +-%FO 

and, by eliminating Fj 2 from these two equations we obtain 

Ayj o F 0 sin 0 s, 	 (4.14) 

where 

Ayj = Aa • cos00c s + A j sino 0 s 	 (4.15) 

Equations (4.13) and (4.14) will further be used; to this end we prepare the expres

sion for Fj, from (3.16): 

15 
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-)
U.1
I O0 2 

!=r2 q + -2 (ql ul' + q 2 u 2 ' 

2 0 

"(4.16)
1 0 (rS + W wI 

1 0 

Here istewoekrsybl 6 jk n . j, are give by 

Here 6k is the Kronecker symbol, and r 2 , q.2 are given by 

2 2 
r 2 = U12 +2 , (4.17) 

q12 2e D12 u22 \ (s2) (4.18)
22 - 2 -22 u 12 ] sin X2D _ 

according to (3.4), (3.10), (2.2). The quantities u j w are defined in (4.5)., 

Thus, (4.13) is of the form 

Ac 1 / cos X2 
=-M (4.19) 

At2 / sin X2 

where M is the matrix 

2
s2 e sinfl)o s C6) 2 w1 2 f U 1 u2 

DD- 2 w 2 22 D m2 w 12 w22 r 2 + 
2 '22- 2 u121 (4.20) 

The two equations (4.19) easily allow the elimination of the unknown thrust direc

tion XZ (we intend to keep only the unknowns s and a in the equations): 

16
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/Aa
(Ai A2 ) (MMT) 
Aa 2 

1 (4.21) 

where M T is the transpose of M. We record a few intermediate results of the 
evaluation of this matrix product: From (4.20) we obtain 

T s2 0 e 2 
MM = r 2 - 22 D sinW0 s 

z - D 2O 


r2 + w12 w12 w22
 
W1 2 w 22 r2 + w22
 

by using (4.17), and the inversion yields
 

( T - s2 a2 r2 3/2 '0 e sin(S)2 
29 Ti - Ds0) 

(4.22)
( 2 
rZ +wzz -w12 w 2 

-w12 w22 
 r12 + w12
 

when (4:7) is applied. Multiplying the matrix in (4.22)from the left and from the 
right by the vector (Ao1 , A&2 )further yields the expression 

2 2 2 2 

r2 (Aa 1 + AU 2 ) + (r 2 + a2 ) (w 2 2 A 1 - w, 2 Aa 2 )2 (4.23) 

when again (4.7) isused.
 

17
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Finally, the time equation (3.12) is integrated approximately (first order 

perturbations) resulting in 

(00
 

D = 0 s - r s 2 (4.24) 

for the burn durations Do, D2 . Using equations (4.22) through (4.24) in (4.21) 

now yields the equation 

#e D2 

- sin )0 s - D2 =G 2 (T - D o 2 (4.25)4 02 

with 

r(__a A 
= )23 GrZ(Aal 2 + 2) + (1 + wi2 Au (4.26)2 2 ) (w 2 2  a I 1 ) 2 

which contains no other unknowns than s, a, Do, D 2 

A similar equation can be derived from (4.14) in the same way; the 

result is 

D
 O
 
R-e4 sin 0 s- D GO (T- -) (4.27)
4 0 00 2 

with 

3 ro (y-+(I+aO 2 
3 2 2=} 0 4r(Ay 1 + A 3+(1 + ) (w 2 0 Ay, - w1 0 Av92 (4.28) 

and A-yj from (4.15). 

In order to obtain the total burn duration D we first solve (4.27) for D0: 

T G 

D0 (4.29) 

18 
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where X is the abbreviation 

A=1
A=Z w e sin c0 s (4.30) 

Using this in (4.25) then yields 

1 
T G 2 (- G O ) 

D2 I 100 (4.31) 
(+ G0) (X+ G2 ) 

Hence the total burn duration D = 0 + D2 is the function 

D(s, a) = -r 0 = min (4.32) 
(X + - GO) (k+ I G2) 

which is to minimize according to the requirement of fuel optimality by appropriate 

choice of s and a . 

4.3 THE COAST 

The coast trajectory of the interceptor is characterized by the intermediate 

elements axj 1 , fj3 which can be obtained from the first and the last two equations 

of (4.12) 

a.1 = a.j0 

j = 1, 2 (4.33) 

= +pi, Pj2 Aa. cotanCoo s 

These quantities allow us to define the coast semi-major axis a I and the cor

responding frequency 01 
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1 2 2 2 2 a1 = 2( 1 1 + a 2 1 +[31+fzl 

(4.34) 

Now we can calculate the time too a the interceptor takes for the coast
 
by integrating (3.12) from 
s o to s - s2 

toa =411 (aicos W1 s + 1 1 sin 1 s) 2 

s0
 

+ (a21 cos COs + 02 1 sin co s)21 d s 

or 

toa = 1 cs - s o - 2) 

+all 01, +a 21 P321 
2:6) I1 (cos2Un1 s 0 - cos 2co1 (s - s2) (4.35) 

a1 1 +a 2 1 - 2 - zi 
+ 4(sin (s -2) - sin 2W 1 s o 

xpressions for so, ins terms of s, a are obtained from (4.24). 

Dm0 

0 0 2 


O D 2 

- C0 r 2 (4.36) 

The condition 

Z (s, a) = tco a + D - ttar = 0 (4.37) 

consequently guarantees that the two vehicles arrive at the rendezvous location 
simultaneously. 
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Thus the rendezvous problem is reduced to the problem of minimizing 

the function D(s, a ) while the side condition Z(s, a) = 0 must be satisfied. 

If once s and ar are calculated, the burn durations are found from (4.29) 
and (4.31). Starting with (4.19) we will finally establish equations for the thrust 

angles X0, XZ . Equation (4.19) can be written as 

AaI r 2 +w12 W12W22 Cos (X 2 -0 2 ) 

' ) (4.38)a= wiz1 22z r2 + 22222zZ sini ((X2 -A= 2 
2const w w z z 

where 

(4.39)(P = arg (u 1 2 + iu 2 2 ).2 


Inverting (4.38) and forming the quotient yields 

tan (X2 ) = r 2 At 2 - w 12 (w 2 2 AU 1 - w 1 2 Act 2 (4.40) 
X2 - 2) = r 2 Act I + w2 2 (w 2 2 ActI _ w1 2 Act2 ) 

Starting from (4.14) we similarly obtain (since (P0 = 0) 

tan X0 r0 A7 2 - w1 0 (w 2 0 A7Y1 - wl 0 A 7 2 ) (4.41)r 0 Ay1 + w2 0 (w 2 0 Ay 1 - wl 0 AY 2 ) 
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Section 5 

THE CONTROL LAWS 

Here we summarize the equations derived in the last section in an order 

appropriate for computer programming. The numbers at the right-hand side 

refer to the corresponding equations in the previous sections. 

Input Variables 

u, r, e, 6, r 0 , v 0 , y0, r 3 , v 3 , y 3
 

Constants (Independent of the main unknowns s, )
 

2
 
ao 2 ( "ro 1 

a) r 0 = p/4a0 (4.8) 

2 
- i 

v 3 
= (r 

2 
- ) , = j//4aZ (4.1)a2 

aCo = 0 a 0 0 (4.9) 

4 o vo -o v o
 

=
3 I 0 - sin Y- 207 2 C 0 (4.9) 

66(.)
 
a 1 3  cos 2 Z3 - r 3 sin ( 

'F7 V 63 4r 3 63 
313 = T sinF-g 2" Z3 T- T (V3 ) (4.4) 
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The Functions D(s,a), Z(s,j) 

a2 3
a1 3 
sin Co2JO 2 a 

= Ccos (4.5)
u22u 12w12 w22 -si 2.O cos(0 2 0c313 123 

a 1 2  a2) cos 0 s -sin W0 s uu12 u22)2 Sf~lS ) (4.10)= CS 

P12 22 sin to0 s co 0 s w12 w2 

r 2 = u12 +u22 (4.17) 

A 5j0 = 1, 2 (4.11) 

dyj = AC cos 0 s + (P j2 - PjO) sin co s (4.15) 

Ay 2 )2G0 =m 0 0 r (7Yl2 + Ar 2 ) + (I + 0) (p0 Ay1 - pi0 (4.28) 
r0
 

2 2 a2
 

+2A22)+(1 1)(WzAalG2 Nr2 (Aal + -wl Aa2 )A (4.26) 

1 

.= P e sin(o s (4.30)4 G0 

D - 1 (4.29) 
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rX(G0 + Gz ) 
D(s,1) = D = 1 (4.32) 

(X+ G0 ) (X+z Gz ) 

D = D - D (2.3) 

=Pjl j2 + Aaj cotan W0 s j = 1, 2 (4.33) 

1 1 2
 

P 2 1 )
a1 = f (ro +P 1 + ) = 4/4a 1 (4.34) 

DO I2D2 
So - r s2 - 0 (4.36) 

rS0 2 CO0 r 2 

t 0 [a I (ss - s 2
 
=ca W [ 1 0
 

1 

2W3c (1 1 0 P 1 1 
+ a 2 0 P21) (cos 2(01 so - cos 20 (s - s2) (4.35) 

+- (r 0 - a1) (sin 20c1 (s-s ) - sin 2w so)
 

1 1
 

P23 ) ( I - cos Zs2 a)ttar = aw + 2- (a 1 3 P13 +a 2 3 

(4.6) 

- a sin ZCO a 
+ (r 3 

2CO2 3 2) 2 

Z (s, a) =Z = tcoa + D - ttar (4.37) 

The minimum problem D = minimum with the side condition Z = 0 can 

be solved iteratively without using derivatives of the function D(s, a) for instance 

by the method described at the end of this section. 
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Output 

The variables s, a , s o , S2' D0 , D2 , D, ttar are available from the 

computation of the functions D(s, o), Z(s, a). In addition X0 and X2 are 

obtained from 

tan X r 0 AY 2 - 1310 (320 A21 - lo AY2) (4.41)0 ro AYl + 20 (2o A'1 - P 1A)' ) 

2 = arg (u 1 2 + i U2 2 ) (4.39) 

tan (X2 - = - AatI r 2 Ac 2 w 1 2 (w 2 2 W1 2 Ac 2 ) (4.40)
2 2 Aa I + w2 2 (w 2 2 Aa - W1 2 Act2 ) 

The Minimization Technique 

The idea is to seek the smallest value of the function D along the line 
Z(s, g) = 0 of the (s, (o)-plane. A two-stage iteration process is used to improve 

an appropriate initial guess sop a 0 almost to machine accuracy. A step size h 

indicating the order of magnitude of the error in the initial guess must be known. 

In the first stage for the three fixed abscissas so, Sl = So +h, s2 = - h 
the one-dimensional secant method (starting from a 0 ) is used to find values 

a = .-* (j=O, 1, 2) which approximately zero the function Z(s, a) at s = s.:
J3 

max JZ(s.. a.') 1e1 Zs 0 (5.1) 

where e1 is a small positive number, for instance EI 0.005. 

A necessary condition for the feasibility of these operations is 

az (5.2) 
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in the region in which the arguments vary during the process. If (5.Z) is violated 

the method works when the roles of s and a are exchanged. 

In the second stage the values D. = D(s., .-.*) are calculated. Quadratic
3 3 

interpolation then yields the approximate abscissa s of an extreme value of 

D(s, &) with Z(s, ca)= 0: 

s s h (5.3) 
m 0 2 D 1 2D 0 + D2
 

Finally, the corresponding value a is calculated by quadratic interpolation 

with the collocation points s. and the values o.*:3 3 

- - a2* 02 * - 2g0* + U2* a= 0 + + (s . (5.4)2
I m 0 2h Zh

The iteration cycle is closed by assigning the values sm, Uan to the 

variables so, r0 and by taking 

h = Cz (sm- So) 

as the new step size, where 62 is another small number, for example 

E = 0.1. Figure 2 illustrates the meaning of the various quantities introduced 

here. 

Applied to the case of the functions D(s, a), Z(s, ar) this technique con

verges very fast. 

Tabulation of D and Z for typical rendezvous situations has shown that 

the solution of the minimum problem is unique in the rectangle 

05W0s V
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Z(s, aj =O 

pa rabola 

ic 

t h 

S2 Sm So S S 

Fig. 2 - Minimization Technique 

Furthermore the line Z = 0 lies inside a narrow strip around the line 

W0S = coZma, and the partial derivatives of Z in this strip are quite large. Thus, 

the line Z = 0 is well defined. 

With the initial guesses 

7T a 7
0 0 0 = - (Za 

convergence was achieved in all cases considered. Results of a five digits' 

accuracy were obtained with less than 25 evaluations of the functions D and Z. 
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A Fortran IV subprogram FCT(S, SIG) for the evaluation of the functions 

D(s, a) and Z(s, c) consists of about 40 statements. A calling program (the 

program CONTRL) which determines the control parameters from the current 

position and velocity data, can be written with some 80 statements. The run 

time of the program CONTRL on an IBM7094 computer is in the order of 

0.1 sec. 
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Section 6 

OTHER PARAMETER SYSTEMS 

The set of the control equations recorded in Section 5 is not too complicated. 
However, many simplifying assumptions have been used. The most serious one 
is the linear approximation during the burn periods. The solution =(h) of 
the system of DEQ 

ds g (y, s) , Y(o) 'yo (6.1) 

was approximated by 

" = y0 + hg (yo, 0). (6.2) 

A much better approximation would be the value obtained from applying the 
trapezoidal rule to the DEQ (6.1) 

yl -- 4o-, 0)+ yl, ]. (6.3) 

Here one would introduce two more unknown control parameteters, namely the 
thrust directions at the beginning and at the end of the coast. This would weaken 
the assumptions of constant thrust directions, but one would have to solve a 
minimum problem in four variables. 

This idea might be applied in connection with the third parameter system 
mentioned in Section 1. There is a good chance that the simplicity of the equa
tions corresponding to these parameters compensates somewhat for the complica
tion of introducing two more unknowns. A summary of the most important rela
tions and properties associated with these parameters is given here. For more 

details see Ref. 6. 
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We start with the DEQ (3.9) of the perturbed Kepler motion and introduce 

the direction unit vector 

X. 
= j = 1, 2 (6.4)Yj r 

and the reciprocal distance 

p 1 (6.5) 
r 

These quantities define the position of the vehicle uniquely. If the parameter 9 is 

introduced by 

dtd fr d (6.6) 

the dependent variables yj, P and t satisfy the DEQ 
2 

Y" + p- Yj PkYk j=l, 2 

P + uIp TZ 
2 

PkSk 
(6.7) 

1 

t 1 (6.8) 

where 2 is the semi-latus rectum of the osculating Kepler orbit. 2 is defined by 

I dx - dx 1 2=U (xI dt x2 dt 

and satisfies the DEQ 

2 
S 2 Z Pk Yk (6.9) 

jIP 1 
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If there are no perturbations (Pk .: 0) Eqs. (6.7) are linear DEQ in y., p 
with constant coefficients (because of (6.9)). They describe a harmonic oscil-

Ilator xxvith the center yj = 0, p = - . Hence, a simple treatment of first order 
perturbations is possible, which is analogous to the method applied to Levi
Givita's variables in Section 4. In addition the parameters yj, p and the cor
responding orbital elements (Ref. 6) do not show any singular behavior in a 
transition through a circular orbit. 

- In the derivation of the rendezvous conditions one can take advantage of 
the simple geometric relations given by (6A) (6.5) and of the fact that in the un
perturbed case the independent variable q is proportional to the vehicle's true 

anomaly. 
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Section 7 

COMPUTER SIMULATION 

Simulating a rendezvous consists of imitating on a computer all opera

tions influencing the trajectories of the two vehicles. The motion on their 

orbits is represented by theoretical or numerical solutions of the corresponding 

differential equations. 

For handling the coast phases it is necessary to calculate the position 

and velocity vector of the interceptor where it is influenced by the earth's 

gravitation only. This is the initial value problem of the Keplerian motion. 

Levi-Civita's variables allow solution to this problem in a stable and efficient 

way. 

From the vehicle's initial coordinates xl, x 2 and initial velocity com

ponents x 1 x 2 (at time t=O, relative to an inertial coordinate system centered 

at the earth's center) the corresponding regularized coordinates and elements 

can be calculated by formulas of Sections 3 and 4: 

r+ 
= 2 2I zZ(,1 
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x~2
 

01 =~ Mr-+i-x) = za2 

1l 1 .~a 

1 =- (a1i1 4- az 2 ), fl = 2- (-a 1 ix2 (3.5) 

These quantities being known, it is possible to establish the equation 

sm(nAt = au + 
0) 

[ (r-a) cosco + (ai 81 +a? f 2 ) sincj0g (4.6) 

which relates the true increment At with the parameter value ar corresponding 

to the vehicle's position at time t = At. This is essentially Kepler's equation; 

it is most efficiently solved for u by Newton-Raphson's iteration starting with 

the initial approximation 

I /alti 1 + a2ft2 
= 
a 0 a (At 62 

Finally, the transformations 

uU\ cosmau sinma a ae 

(4.5)
WI w (Sinwacoswu 

2 2z 
x I UI - u 2 , x2 2u I1 u2 (3.2Z) 
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Uu w - u W2)
1 12 + U22 1 1 2 w2 

- 1
2 + (u2 wl +ulw2 ) 

yield quantities xl, x 2 , xl, xz representing now the position and velocity of 

the vehicle at time t = At. A subprogram KEPLER collects the set of the 

above formulas. 

The trajectory of the interceptor during the burn periods is calculated 
by numerical integration (for example Runge -Kutta) of the differential equa

tions 

= - 1 e cosX 
r 

(7.1) 

= 3 -x 2 + eT_t1. sinXi 
r 

in the Cartesian coordinates xl, x., where X is the current thrust direction 

measured from the x1-axis. 

The two computer programs CONTRL and KEPLER as well as the sub

program INTGRT for the Runge-Kutta integration of (7.1) are put together to 

a simulation program according to the rough flow chart shown in Fig. 3. 

The control parameters are updated during the first burn only, when the 

logical variable UPD is TRUE. The fixed updating time interval is DT, while 

TINT denotes the current updating interval. 

The computer output sheets (Fig. 3) give an account of the two vehicles' 

motions and of the control parameters for twvo test cases. The lines in the 
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INPUT 

Earth's gravitational Burn-out exit Updating 
parameter duration velocity interval 

P r e DT 

radius velocity flight path angle polar angle 

r3 v3 '3 6 target 
*r0 v 0 YO ( interceptor 

TINT = DT; UPD = T 

CONTRL 

defines D0 , D2 , tcoa, X X 
L coa'0' 2 

Yes TINTD 0 ? 

r - _' No 

TINT = IDO; UPDI) FLS 

KEPLER for target calculates new values of r 3 , v 3 , y3,
 
A according to the time increment DT.
 

INTGRT for interceptor calculates new values for r , V
 
y0 , (P according to the time increment DT and the tRrusp 
angle X0 . 

Yes UPD? 

No 

KEPLER for target calculates new values of r3 v3 y3 6 
according to the time increment (tcoa + D 2 ) I 
Fig. 3 - Flow Chart of the Simulation Program 
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OUTPUT 

r 3 ' v 3 ' y3' 6 final target data 

KEPLER for inteceptor calculates new values of
 
v 0 , Y, p0 according to the time increment t 
coa" r0' 

INTGRT for interceptor calculates new values ofr0

vol Yl (P according to the time increment D and the
 
thrust angle X 2 .
 

OUTPUT 

ro' Vol Y0, (P final interceptor data 

Fig. 3 - Flow Chart of the Simulation Program (Continued) 
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section Control correspond to successive iterations in the minimization procedure. 

The last line gives the values of the control parameters. 

As an example, the circular rendezvous case mentioned in Ref. 2, page 9 

is considered. Initially, the interceptor and target are on circular orbits 100 km 
°and 400 km above the earth's surface, the target being 5 ahead of the interceptor. 

The table in Fig. 4 compares the results of the present simulation program with 

the exact calculus-of-variations solution (COV) and with the results of the guidance 

scheme in Ref. 2. In the present scheme three cases are considered: (I) no up

dating (DT =00), (Z) updating interval DT = 10 sec, (3) DT = 4 sec. 

COv Present Scheme Ref. 2 

DT= 0o DT=10 DT=4 

First burn DO (sec) 13.29 13.20 13.29 13.31 13.3 

Coast tco a (sec) 2522.7 2505.2 2512.2 2508.9 2318.4 
'Second burn D2 (sec) 11.97 11.76 11.96 1Z.00 12.1 
Thrust direction X 0 (deg) 64.90 64.60 64.60 64.60 6Z. 80 

Thrust direction at end of 
First Burn X 1 (deg) 66. 10 64. 60 66.30 67. 00 

Final thrust direction X2 (deg) -129.40 -106.0 ° -106.50 -105.00 -113.80 
Position error (m) 0 5616 971 566 

Velocity error (m/sec) 0 98 100 100 

Fig. 4 - Comparison of Simulation Results 

In the second example, the results of a rendezvous with a target moving 
on an elliptic orbit with semi-major axis 6793 km and eccentricity 0.0100 are 

shown. The interceptor is initially 8.60 behind the target and 6400 km away 
from the earth's center. Its orbit has the eccentricity 0. 0246. Initially, the 

first burn, the coast and the second burn are predicted to last for 35.0 sec, 
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2600.7 sec and 15.Z sec, respectively. Updating throughout the first burn 
in intervals DT = 10 sec modified these numbers to 35.8 sec, 2628.3 sec, 
15.9 sec. The final position and velocity errors of 9317 in and 137 m/sec, 
respectively, are in the same order of magnitude as the errors in the cir
cular case. The results in this case are collected in Fig. 5. 

Further testing showed that the present flight scheduling and guidance 
scheme yields good results when the assumptions of the scheme - small 
eccentricity in all Keplerian ellipses and short burn durations - are 
satisfied. A closed-loop guidance scheme being applied to the second burn, 
however, would necessarily use a burn duratioh somewhat longer than the pre 
dicted one in order to compensate for the more pronounced velocity errors. 

COv Present Scheme 

DT= DT=20 DT=10 I 

First burn D0 (sec) 34.96 35.65 35.82 

Coast tco a (sec) 

Second burn D 2 (sec) 
Thrust direction X (deg) 

0 
Thrust direction at end of 

First Burn X1 (deg) 

2600. 7 

15. 16 
129.80 

129. 80 

2626. 2 

15.64 
129.80 

132. 00 

2628,3 

15.90 
129.80 

135.80 

Final thrust direction X 2 (deg) -83.50 -81.6 ° -80.4 ° 

Position error (m) 0 37653 29842 9317 
Velocity error (rn/sec) 0 144 145 137 

Fig. 5 Elliptic Case 
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CIRCULAR CASE, NO UPDATING 
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CIRCULAR CASE, UPDATING AFTER 10 SECONDS iV 
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4 1 .64/52E Ia7 5.4 -0.128t7F 02 @.785741 04
 

0. 60K.OtIl .,5 2t 17 .2,3)62 05 -0.1,2931: 02 1./8638E 064 

-0.51429F05 --0.2')714E~ 02 0.78/103E 04
 

U.49.99k 4I , .6,762EE7 @10.690J. 05 -0.62129- 'A2 .7b6 

v~0'999F ki .b4/.)2L 77 

68164
 

0.59V99E VI v.6-4,1t 07 0.47183h. 05 -0,3659t V12 O.7883.SE 04
 

_tbvyvYE ii ;.b0,Y6E 07 "-0.550i69E 05 - .44943 @2 0.78d98 @4
 

i.1Q9999 01 A.6'4/60L 07".-0.-b2Q62b- 05 , ... 51342L.02" g7Z8963-EJ4
 

4.US'VV"t /1 I./IOde2EL -0.5/765*L2 0.79028F 04
A.b4/00t7 0 
0.9099 .I Z..'9 0.i8768t -0.64123 2 o.790936 44
E 7 05 

)JL 06 JOA 02 C i C 2I 1UN 
900 4 02 246.141_1t48.516.1 O-.O.0..5/11h-to -_.3/St-43 -36.5366 25.4 10o 2 	 14;849 

j.142 F 	 0.2941 25P.1bb5 11.9644 1.583 -l.,34090.57979t-k6 h.i/W14c-oJ 15.2565 

lA6Ei I I E-.. - uA&cSIAN OORUINATEs ANo. VELOCITY MPINEI.. .s 

ei.l3e"4t, tc /@.0oI/S 07 )'.D9182&1 06 -0.7b328E 03 0.76286[ 04 

INeRv 1T1-, 	 COORLINA rES ANO "VELOCITY COMPONENISC ,;ASIAN 

'.64129t 07 4.,d/6d 15 , -0.6412,5t 12 vi.7909db 04
o.y9v99E V 


0. 4OocYE - 67 1.6i47405 -0.6b89 q.79114P 04_.. ...........
V2 .64/ 9: 

40.lbdobbbV de 4.'>629b 07? I.6698OF1 05 -16.684)5 -62 0.716 

A.",28E 05' 6.llvd§o k 	 167 4.8o,tIh .7,, . 161L__ 
4 

0.1ijilt're i.t /e8t 47 1..b919,L 05 -M.7/1 t 62 e.79179E 164 

10.141E k'4 	 1"7 £.q16141 05 -/.74948b 02 1.79201E 040.b'47.8k 


0.1>3/bt 1,. v.64"e8E d 6? .9,141613t5 1./ 04 492226 04
 

v.1211{! te -A.6,.7t 07 0.g?{42d 05 -ki.7)2/4k 42 0./9244E k-4
 

0.120tb L-4 v.oq'/t 7 /7 .s. yQ@Oakr -F$4 6E 2 1.726665
 
-. 4.04/27. 07 3).±1124E )6 -- -g;$oSV?1,9 02 W.79287EZ 0
 

-0.1ev01,te

9
A.1.3e qt hi 77. b'Cdtt 07 1 t4'4M-016 -$.6 T5Tlt, -2" 1.9609F- @4-

U Plt ISIb "uLfhI 

40 
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I AIbhb I I,b CAhItSIAN G O Ou IJ ,IA riUS AN.J VELOU I Y 'iMPUY',NTS 
zI. c e: . -,A.tuo'z W7-T 0.L?. .5428E V,4-o I2 - -. 16,5$68t -04 

SL(,UN.:. t-Un',., 

1,ES CORui,]NlWl,.. liMb, IbqAJ 5 "U VELOCIIY CLIuMPO EN\S 
u2 4 1 -t.6o'4tj5.i3122r -1 V,4 v4i7 h 146oe -k,.?4,65 

).25eo5 v 4 -0 .to4o8E. 07 W.23VIn6L 7 04 -0.-4684- 04-'o -0.14526t 
-i .601486t= 07 . i29):4L wl -141442ih 04 -vi./4393'e_ 04 

bt9. ('g '4. -'.6o9 i3t 07 v-l. Ihe C47 - 0. 14316- 04 -0.74402E 04 
0.25c h (4 t'.oItV o7 @7 4 - 4 ./ 4 4 1 1Ev... 0 .12/0b -0. 1421 04 
i.25o -4bf- , -46u5 7 b 07 0.1207/- 07 -0.14106E 04 -0. 7442)E 04 

vj o. t 2 -V.6no:41: 0-Y A.12nte8E V7 -&j1l4 owl 0-4 -06.7f4 42 $C0-4
O.25o6.oh j,,q -/.6n<I'.19 W7 £ 124c qt 07 -0lob5bb o4 -0.7443/P 014 

0. e550r- "- .-6od7 o7 0, 124: 0 1EW -7'0. b 1 04 -0.74445E 04 
0. 2O- t'' -A .cob4E 0 7 1. 125 1t V7 -0 looboL 04 -0.74456b 04
 
6.256/qE ,.4 -0 .6 6 2 oc 07 A I2.,.2L V,7 -0? 1 58A A40 74461E 04
 

I' K U t v t Ui 

'KIRSl, L:_C[;,rU MJN'.. IL4.J6.-;4W-h .!196 02 v4,ISEUN A2 4 .,2 4.25.,>741= 
R-:LA1 I " k' bj I IU\ \,cU,, ,L IDC.d - , 2 k . 96b9 .At - 9io 
RE!ArtV- VLLOullY '1 5 /Iot o 2 0..956972e- v020_,hfl',ENTS o:,
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ELLIPTIC CASE, UPDATING EVERY 10 SECONDS 

INPUT
 
I 02 

R5 5 . AS DEL O',68000E o/ A. l6t)$O 04 -0.99999VE-V2 .15000 10 
RIO t tAM PHI 0.640000E 07 0./8000E 04 0.999999E-02 ). 00L t)0 

MU -rU 1t1 '1i98.665fr 15it 4; 8613bt 00 0.41814vE 04 11.1I000L 

StMI-mAJOR AXLS O INIERCPIOR, TARGET 0.62592E 07 0.67934E 07
 

TARGEI TIME, CAIfESIAN COOROINATES AND VELOCITY COMPONENTS 
0.00000E 00 0.6/266r 07 0.10161E 07 -0,12187E 04'.0,75522E 04 

Si7 7 0 00 , COx D2 CHO CM2 
0.S9680E-06 0.41027-106 -254.6309 145.8677 90.9155 2366.9336 57.3522 2.8885 -0.0603 
0.39,222-116 0.tJV 4t-i,3 -0.02e4 504.1244 34.9603 2599.0747 15.1641 2.2648 -1.4558 
0.40d89L-06 J.40063L-03 0.1196 50.1757 65.0400 2651,9336 15.1356 2,2687 -1.,063 
0.69,32-.5 
0.49 4b2-06 

0.39205t-/3 
d.392d02-03 

-0.0415 
-0.000 

50.1275 
50.1203 

34.9642 2599.7549 
34..9592 26020.8369 

15.1633 
15.1611 

2.2650 -1.4562 
, .2648 -1.-579 

0.A9 46E-06 JY.92?8t-03 -0.0005 50.1204 34.9590 2600,7295 15.1614 2.2648 -1.4578 

VELOCITY COMPONENTS
UANT2SIAN COORUINAT6S AND

TARGEI Tlli, 


07 @,10916E, 07 -QI.16058E 0R4- 0./5389E 04 

lNrERC TIML, uA9TESIAN COORJINA1Es ANU VELOCITY CJMPONENTS 
4
v.01 0._E v_ Z.6,0002 0/ 8.00000 00 0.71998E 02 0.77996E 04 

0.1 40b V-i 0.6'.C t 1 0./802~8 04 0.66678E 02 0.78051E 04 
0.A2000b V.1 .6412I 07 0.156110E 05 0.49350E 02 0.78106E 04 
0.600O0E @1 0.6q'6LI 07 0.23423 85 0.3 014E 02 0.78161E 04 
0.39999b 11 A.64001E 07 0.61242E 05 0.20611E 02 0.78216r 04 
0.49999E 01 1.64002E 07 0,69066E 05 0.66203E 01 0.78271E 04 
0,599991E 1 _5 0.783262 @4004001E 07 -0.4A6896E_ 0 -0.80385e 01 

o.ogv9E 01 0.64001t 07 0.s4732E 05 -0.22405E 02 0.78681E 04
 

9-/9y9(Al .,64A011E 07 0.o257AE 05 -0.367/9E 32 0.78436E 04
 
.89qv91 O1 .64001E 07 0.210419 05 -0.51162L 02 0.78491[ 04
 

10499999E V1 1.6q4wO1 07 0.78271E 05 -0.6&552E 02 b.78546E 04
 

CUNTRUL . . .. . . . . . . . . 
SIG 2 0 'Do COA 02 CHO CI2 

0.69546E-F 0.392/8E-03 -36.8467 49.7338 31.67.34 2t6/.2373 18,0604 1.',155 -y.c844 
_.3988E-0.5 0.39362_3 -0,0015 40.7866 2._ 889 2615.7324 1It.3977 t.2748 -1.9419 
0.39866E-06 0.39345L-03 0.0005 40.7864 25.6868 2614.5205 15.3996 2.2747 -t,4408 

TAtGEI lIME, CARTESIAN COORUINATES ANO VELOCITY COMPONENIS
 
0.200001: 02 1.669/5E 07 0.116691 07 -0.16888E 04 0.75246E 04
 

_INThRu TIME, CARTESIAN COORDINArES AND VELOCITY COMPONENTS 
0.99999b 01 Z.64O00k 07 0.78271E 05 -0.65552E 02 0.78!46E 04 
0.109992 02 l.ba999b 07 0.86128E 05 -0.80005L 02 0.786016 04 
0.119y9 k,2 J.6y98tE 07 0.939912 05 -0.94467E 02 0.78655E 04 
0.12999E 02 -.66997f 07 0.10185E 06 "O.i893E 03 0.78709E 04 
0.13999E 02 0.66996C 07 0.1097E 56 -0.12541E 03 0.78764E 04 
_0.14999E C2 -.66995E 07 0.11)61E @6 -0.1390E 03 0.78818E 04 
0.15999E V.2 .6a993t 07 0.12549 06 -0.i5239 03 0.78873E 04 
0.16999E 02 A.6992E 07 0.13338E 06 -0.166891 03 0.78927E 04 
0.17999E V2 0.669902 07 0.14126E 06 -0.18140E 03 0.78981E 04 
__.1899982 . .Z.66d8c070__14918E. 06 -0.19592E 03 0.79035E 04 
0.19999E @2 Z.669862 07 0.15708E 06 -0.21045e 03 0.79090e 04 

CONTIROL ____ 

s Sib 7 0 UO GOA 02 CHO Cs2 
-io..69b 6L-V, .6VA'345t-:03 -3,M.0 41.5457 22.<J319. 257/..8579 18. l642.64t!3 v. 4 3$ 
0.401//L-K6 0.9.564t-03 -0.09a 3.,31t2 I5.66 5 2626.6616 1,,o407 /.e916 -1.-248 
0.4UOIe-05 0.39Y5902-03 -4.4316 3i,3369 go.6197 ?61.:743 17,0192 2.,614-1lO 
t.401852-'6 vI.393v21-0 -o.0215 31.6088 1t.o66 262/.1577 1 .6404 2.2979 -1.4250 

NOT REPRODUuIB
42 LF 
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XE- GOORIUINA-rh AMUO VEFLITY COMPONENTS 
--04.i-- " 5 93 Q

INTR lle bm, 

0 60w_0_.6_ t _ . ... .6b"2 -4 --._t 2 0 eo, - 0,----6 

.66vb94t 07 ,lbv 06 -0.22511E 4 03@'9 

0.22999F V2 0.6.39/9t: U? 0.180844t 06 -0.25447E 03 

W.20 99y i. 


o.79249E 04
 

0.24999E 02 0.6.,974E 07 0.19670E 06 -0.28386E 03 0.79355E 04
 

10.26999E V-2 0.6,3967E 07 0.,2125GE 00 -0.31328E 0)3 0.79461E 04
 

__.p _ 2 9 9 t_- g__ 6 9 4 jZ 0,220566 06 -0.328012 0 .3 0.795 4E 04 . _ 
0,669C,1 07 0.22t548E 06 -0.34274E 03 0.79567E 04 

4_4 F_&0_0 0 . 3._7 L -- JU4_- -9_(L?. a 4 
05.28Y99L 


._ 2 9 2Syyl_ b-2--. 7,., -_ V . -O7 

CUNTROL
 

19.1105 2.9042 -0bO75
0.40191b-06 03939BE-o3 -675767 o3.9510 14.8405 2 8/3291 


1 0,9.00113 21.7160 5.8167- 2628.4478 15.8994 e.3707 -1.-026

04065ob-Od 


S~iAN GOURU iNATET" A-NO V{(,TTY CPON-ENTSTATRGEl 'TfM - -CA,-il 

INTbRb, lim UtISA¢ ORUATES ANU VELO£;ITY COMPONENTS
 

-0.3o629E 03 0.79649E 04
O.Sotldlt V12 ).6 9-55E 07 0.24107C 06 


Il.6220oh V,2 
0.62Y08L 04 

0..60Y49E 07 
h.nJ,516t 07 

0.25494E 
0.259Se)I 

0 
Ob 

-O.,Y2/5E 113 

-0.40157E 03 
{3:79734E 04 
0.79763E 04 

ki.Z346gb tQ ,I.b6944: 117 0.2642 ,E 06 -0 .41040E 03 0.79791r: 04 

10.d ot2t 
{ ...,5h 

0.65010k: 

P,2 
,, 
V2 

Z.O-~ 
,.,o-0,5bt 
).6 954 

7 
07 
07 

234 6 
.?/blSe 06 

W,28263F- 0b 

-0,428OoE 06 
- S4590k: 03 
-0.44574h 063 

0.79848E 04 
0.79877E G4 
0.79905E 04 

AND: TY Ct-MPONENTSr ---

V.26800E V4 -At.b/bqft 07 -6.4tO14& 06 0.4531"7E 


--TA -6-C-"[IEfOR 'E- IEA VE 

no -0.76 190E 04
 

Sk:CONu dURk
 

K-1 S''AN- -- 0 - Th"JA-f-bS A N VELOGI fY COMPONENT-S-..IT -RC. -1[-CA. . , .. 
. 26.04._E .... -i.6//dlt 07 -0.,5.3632E 06 0.28609E 03 -0.75480E 04 

0).265/ 04 -0.6/i716E 07 -OA50~g32t- 06 0O.29961E 03 -0.75459E P4 

00 0.31313L 03 -0.75438E 040.264b/,5E 04 -All,/iE 01 -0.31*232L 

0.326651: 03 -0.7/5417E 04
0.26059b: 1.4 -',.o/706h 01 -0.5/431F 06 


0.35367E 03 -0.lS75;7E k14

OR6/20Ff Vq -'I,,0/696t: 07 -O.o9629L 06 

6 /3 k 4 -b19 t7 -0.4102/E L6 0,L3 719 03 -0.715 51C 04 

10.26152E 94 -0.6,6h4E d7 -0.42225L 0 6 O.SbOlOC 03 -13.75329E 0,4 

0 . ? 660E 04@ - , 78 17 -0.43422F O0 0",39420t: 03 -0 .75.306E 04 

0Z6Ot7 -0.=446201; 06 0.4A7'1tC AS -0,7528SE0.26/84E 04 04
 

RELATJVE V~tOUITY -0.61E9ho W.2 0,.E.62 ;5V. 6V,1 ' i .. "CL).Il-VNEFITS t: 5 ! 

. . . . . ............ . .. . .. ~ ~ ~ ~ J -. . .. . . .. .. . .
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Section 8 

CONCLUSIONS 

Planning an optimal rendezvous and steering the intercepting vehicle 

is a complex problem of calculus of variations. Even a modern computer takes 

too long for solving such problems on a real time basis. 

For this purpose simplifying assumptions have to be introduced, and 

a trade-off between simplicity of the guidance equations and accuracy of the 

results has to be made. The simplest way, the impulse approximation, turns 

out to be insufficient in accuracy for realistic cases. 

The present approach is very successful in coming up with rather simple 

guidance equations due to the use of Levi-Civita's variables. The accuracy is 

such that a good closed-loop terminal guidance scheme could take over after 

the coast phase. 

However, when larger and faster on-board computers are available, 

it might be worthwhile to seek more sophisticated guidance schemes which 

allow a more precise and a more economical steering of the interceptor. 
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APPENDIX 

COMPUTER PROGRAMS 

Prior to the program listings there follows a table giving the meaning 

of the most important program variables or the corresponding name in this 
report. The input the simulation program requires can be seen in the flow 

chart of Section 7, and the output is self-explanatory. 

Main Program 

DT updating time interval 

NSTP number of Runge-Kutta steps in one updating time interval 

SCH integration step 

TINT current updating time interval 

UPD = TRUE during updating period 

X0, YO initial guesses for s, a; 

XT, YT Cartesian coordinates of the target 

UT, VT velocity components of the target 

X(1) time 

X(2), X(3) Cartesian coordinates of the interceptor 

X(4), X(5) velocity components of the interceptor 

AO a0 DO R0DO r 0 

A2 a2 D2 D2 R2 r2 

AlO al 0 DA1 Aa I R3 r 3 

AZO a 2 0  DA2 Act z TAR ttar 

A13 a 1 3  DEL 6 TAU 7-

A23 a2 3 DGI AY 1 U12 Ul2 

BIO DG2 AY2 U22 u 
B20 P320 E e VO v 0 

B13 GAO Y0 V3 v 3 

A-i 
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B23 

CH0 

CH2 

COA 

D 

P32 3  

X0 

"2 

tcoa 

D 

GA3 

MU 

0MO 

OM2 

PHI 

73 

P 

w0 

02 

(P 

W12 

WZ2 

Z 

w1Z 

w22 

Z 

Subprogram CONTRL 

H 

NI 

TOL 

YOLD 

initial step size 

counts iteration cycles 

tolerance for stopping the iteration 

old approximation for a in secant method 

El 

E2 
1 

C2 

X 

X1 

X2 

s 

sI 

s2 

YO 

Yl 

YZ 

00* 

I* 

a2 

Subprogram KEPLER 

A 

Al 

AZ 

BI 

B2 

a 

aI 

a 2 

01 

P2 

DT 

OM 

R 

SIG 

U 

Ul 

At 

w 

r. 

x 

u1 

U2 

V 

Wl 

WZ 

X 

y 

u2 

2 

wI 

w 2 

x 

x 2 

A-2
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C 	 MAIN PROGRAM FOR RENDFZVOUS SIMULATION
 
PrAL MU
 

LOGICAL UPD
 

COMMON/PAPAM / MUTAU.ECOA,CHO,CH2
 
COIMCN/OTHERS/ VO,V3,GAO,GA3,DEL,PHI
 
COMMON/TPANSF/ XO.YO, AO.A2'0MOOM2,RO,R2,R3,D,DO,02,
 

1 DG1.DG ,DA1.DA2.I ES,DET,TAP,Z,SSO.SS2,
 
2 AIO,A2oBO,B20,AI3,A23,BI3,B23,UI2,U22,WI2.W22
 

CO'MON/RKG / X(5).DX()
 
READ (5.1) MU.TAUEDT,R3,V3.GAI.DEL,ROVO.GAO,PHI
 

I FOQMAT(4E16.6)
 
WRI TE(6,7) MUTAU,E,DT,R3,V3,GA-,DEL,PO,VOGAPHI
 

7 FORMAT( 6HINPUT/,

4
1 201 MU TAU DT 9 4E13,7/. 

2 2(H R- V3 GA3 DEL . 4E13.7/,
 
2 20H RO vC GAO PHI . 4E13.7/)
 

NSTP = 10
 
TT = 0.
 

X(1) = 0.
 
X(2) = U* COS(PHI)
 
X(3) = P* * SIN(PHI)
 

X(4) = VO * SIN(GAO-PHI)
 
X(5) = VO COS(GAO-PHI)
 

AC0 I./C(?.PO - \O*\l/MU)
 
xO = 3.141 9P636 * SORT(AO/MU)
 

A2 I./(2./P3 - V3*V3/MJ)
 
yG = 3. 1415926536 * SORT(A2/MU)
 
WRITF(6, 8) AOA2
 

8 FORMAT(///39H SEMI-MAJOR AXES Of INTERCEPTOR, TARGET. 2E13.7)
 
TINT = DT 

UPD 	 *TRUE.
 
XT = R3 * COS(DEL)
 

YT = P3 * SIN(DEL)
 

UT = V3 * SIN(GA3-DEL)
 

VT = V3 * COS(GA3-DEL) 

WRITE(6, 3) TTXT,YT.UT,VT 

3 FORMAT(//69H TARGET TIME, CARTESIAN COORDINATES AND VELO 
ICITY COMPONENTS/, 

2 F13.7, 2(4X,2F)3.7))
 
60 CALL CONTPL
 

IF (TINT .LE. DO) GO TO 61
 
TINT = DO
 

UPD =.FALSE.
 
61 CALL KEPLEP(TINT,XTYT,UT,VT)
 

TT = TT + TINT
 

WPITE(6, 3) TTXTYT.UT.VT
 

WRITE(6, 10)
 
10 FORMAT(//69H INTERC TIME, CARTESIAN COORDINATES AND VELO
 

ICITY COMPONENTS/)
 
CALL INTGPT(O.O)
 

WRITE(6.2) X(I),X(2),X(3)*X(4)*X(5)
 
2 FCRMAT(El3.7, 2(4X,2E13.7))
 

SCH = TINT / FLOAT(NSTP)
 

DO 62 N=1,NSTP
 
CALL INTGRT(SCH)
 

62 	WRITE(6,2) X(1),X(2),X(3) X(4).X(5)
 

RO = SORT(X(2)**2 + X(3)X*2)
 
PHI= ATAN2(X(3),X(2))
 
VO = SQRT(X(4)**2 + X(5I**2)
 

A-3 
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GAO = PHI + 1.q707963268 - ATAN2(X(5),X())
 
P3 = SORT(XT*XT + YT*YT)
 
DEL = ATAN?(YTXT)
 
V3 = SQRT(UT*UT + VT*VT)
 
GA3= DEL + 1.5707963268 - ATAN2(VT,UT)
 
IF (UPD) GO TO 60
 

ViRITF(6, 11)
 

11 	FORMAT( /18H END OF FIRST BURN)
 
CALL KEPLER (COA+D2,XTYTUT.VT)
 
TT = TT + COA + 02
 
WRITE(6, 3) TTXTYTUTVT
 
WPITF(6, 12)
 

IP FORMAT( /11H PFNDFZVOUS)
 
CALL KEPLER(COA,X(2).X(3),X(4).X(5))
 

DO 	= X(I)
 
X(I) = X(I) + COA 
CHO = CH2
 
WRITE(6, 13)
 

13 	FORMAT(///12H SECOND RURN)
 

WRITE(6, i0)
 
CALL INTGRT(C.O)
 
WPITE(6,2) X(1).X(2)-X(3),X(4),X(5)
 

SCH = O/FLOAT(NSTP)
 

DO 63 N =1.NSTP
 
CALL INTGRT(SCH)
 

63 	WRITE(6,2) X(I).X(2) X(3),X(4)qX(5)
 

WR ITE (6,12)
 

TE2 = X(2)-XT
 

TE3 = X(3)-YT
 

TF4 = X(4)-UT
 
TE5 = X(5)-VT
 
WRITE(6,14) DOD2vX(1)TE2,TE3,E4.TE5
 

14 	FORMAT(////29H FIRST. SECOND BUPN. MISSION * 3E13.7/, 

I 29H RELATIVE POSITION VECTOR * 2E13.7/. 
2 29H RELATIVE VELOCITY COMPONENTS, 2E13.7) 
STOP 

FND
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STf'LJOUT INC CO. FPL. 

REAL ""U
 

LOGICAL FLAG
" CZq'O'!/PA[;-tA / MUL,TAUl ., COA,'CI CHR 

COA'ON/OTHV2-/ VOI V3 I GAG, GA3, DE'L PHI 
CC 'lON/TRANSF/ XCYO, AL), A2, OHi, i. 1,3, U, DO *U2,O2, PO, P, 

DGI ,DG2, DA I,DA2, GPl,DE- II AR,-Zt Q,-, 
1IO, A2f lF31U,[U20, A 13A23,H 13,F23u,12,-2: * 'I 

A. = I */(2./P(' - V-vO/ML'U)
 
0M-' = SC(.h.T * -?tA.Ni/A0)
 

AZ = 1./(2./,f<3 - V*3V3/mU)
 
-M = SCRT( .25 YU/A2)
 

DE; = * - PHl
 
TElP'-= SriUPT (PC )
 
AIO = TIE-MP * COS(DF2)
 
A.U = TEMP h SI,(DF2) 
DI = CAG - DF2 
TE f *I-'= 'VO/O'1C.%*T'fP 

= 1 -- SIN(DE2) 
or = TE) * COS (OE2) 
P- = OEL/2.
 
TL.-,P= S(,i, T (R3)
 
A13 = TEMP * COS (DE;:')
 

MP3 = T-MI0- * SIll!(')F2)
 
DE2 = cAS - DE P
 
TEIf= '.4T rMP*\Is/OMR


-'5--',, VNO=1 . "MP*/DOl) 

P21 = TFP CnS (PF2) 

H = *, XC 

TOL= .U-GF-6 
Wf ITr- (6, /)
FOkIiflT(////5H C)N rRcI_/. 6X !H:, *i AS<H;,I Gi 10> i,'tAX, I HO *. Thee1,, 


L t~~~.X3HCuA, "X * bR 7> ,
11I ". .3110--f *S)X•[HC}-;j 

I=CG 
cTFM= H
 
'FLAG= FAL-UC-. 
y Y ,
 
CALL FCT(X 0 ,Y)
 
TC1 = - - LIO*DET
 
TE ;" = r> -I- 2 -' F-T
1 
C'!u = ATAN'(TCI, TCP)
TC" I = "-?*I>A--2 - '1 2'P.Fq 

R.2*DA ++ W22-DES 
CH2 = ATA/L.-(TC,TCP) I- ATA'J2(U2ZU12) 
';RF i T E(6, 6,) XL.Y.2,Dr)(,CGA,CD2,CI-GOCI-r 
F014;$AT(?F-I.C 'V1DQj. ?_F.'4) 

IF(NI .LF. 7) GO TO 43 
'C? ITF (6, 4/1 )

FOIMAT ( 1 ;1 7 I TERAT I ON STEPS//)
 
GO To ,j
 

ZC= El A-lS(Z)
 
IF C ZC .LT. TOL ) GO TO '-90
 
IF (FLAG) TEP = F'r Z 
DO 71 1=1,7
 

ZOLD= Z A-5 
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YOLQ= Y
 
Y = YOLD + STEP
 
CALL FCT(XC,Y)
 
IF (FLAG) GO TO 83
 
F = H / (ZOLD-Z)
 

FLAG= .TPUE.
 
83 IF (Z .EO. ZOLD) GO To 80 

IF (ARS(Z) .GT. ZC) Go TO 72 
an y, = y 

CO= D 

GO 	TO 73
 
72 STEP= -Z / (ZOLD-Z)*(YOLD-Y) 

71 CONTINUE 
73 X1 = XU + H 

-Y YO0 + H
 
CALL FCI(XIY)
 

STEP= F * Z
 
DO 74 1=1,7
 
ZOLD= Z
 
YOLD= Y
 
Y = YULD + StEP
 
(ALL l(-I{XIY)
 

II- tL . U ZULU) (U I0 bi
 

ItI (ABS(Z) .bI. L) (,O 10 fb
 
tjl 	 YI = Y 

Cl D 
GU IO lb 

to Sl= -Z / /LZULU-ZJyOLU-YJ 

74 CONII NU
'16 X2 = X! - H 

Y = ?.*Y'-' - YI 

CALL F-CI(X;2,Y)
 
- =SIt- - * Z 

DO 	 71 1=I,1 
LULLD= L 
YOLD= Y
 
Y - YOLD + SLP 

CALL FCTCX2,Y)
 
II L .EU. ZOLD) GO Io 82
 
IF (ABSLL) *GI. ZC) GO I0 78
 

82 	Y. = Y 

C? = D 

GO TO 79
 
78 SIEP= -Z / (ZOLD-Z)*(YOLD-Y)
 

t7 CONTINUE
 
79 	SIH = --. %*(C1-C2) / (Ct-2.*CO+C2) 

X = XU + STP*H 

yu = YU + .b*SI--*(YI-Y+STP*(YI1-e'*YO+Y2)) 

H = L- *STP'*H 
GO TO 70 

u 	YU = y
 
DEI UPN
 

END 
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SUBROUTINE FCT(S.SIG)
 

REAL MU.LAM
 
COMMON/PARAM / MU.TAUECOACHOtCH2
 
COMMON/TRANSF/ XOYO, AOoA2*OMO,0M2,WO*R2,R3,D,DGD2,
 

1 DG1,DG2.DAl.DA2.DESDET,TAR.ZLSSOSS2,
 
2 A1O,A20,EBOB20,Al3,A23,Bl3,B23,U12,U22,Wl2.W22
 

co = coS(oMO*S)
 

SO = SIN(OMO*S)
 
C2 = COS(OM0*SIG)
 
S2 = SIN(OM2*SEG)
 
Ul? = C2*A13 + 2P*813
 
U22 = C2*A23 + $2*B23
 
W.12 =-S2*A13 + C2*B13
 
W22 =-S2*A23 + C2*B23
 
A12 = CO*U12 - SO*W12
 
A22 = C0*U22 - SO*W22
 
.ii2 = SOU12 + CO*W12
 
B22 = SO*U22 + CO*W22
 
P2 = Ul2*Ul2 + U22*U22
 
DAI = A12 - AIO
 
DA2 = A22 - A20
 
DGI = DAl*CO + (B12-BIO)*SO
 
DG2 = DA2*CO + (822-B20)*SO
 
DET = DGI*B20 - DG2*BIO
 
DES = DAl*W22 - DA2*W12
 
GO = OMO**3 * SORT(RO*(DGI*DG1+DG2*DG2) + (1.+AO/RO)*DET*DET)
 
G2 = 0M2**3 * SQRT(R2*(DAI*DA1+DA2*DA2) + (1.+A2/P2)*DES*DES)
 
LAM = o25*MU*E*SO
 

TEMP= LAM + GO/2o
 
DO = TAU*GO / TEMP
 
o = TAU * (LAM/(LAM+,5*G2)) * ((GO+G2)/TEMP)
 
D2 = D - DO
 
F1 = B12 + DAI*CO/SO
 

B21 = R22 + DA2*CO/SO
 
Al = (PO+BlI*Bl+821*B21)/2.
 
OMI = SORT(.25*MU/A1)
 

SSO = DO/PO 
332 = (OM2*D2)/(OMO*R2) 

TEMP= 2.*OMI*(S-SS2) 
TEMI= 2.*OMI*SSO 
COA = OMO/OMI * (A1*(S-SSO-SS2) 

1 + ((AlO*Bl+A20*B21)*(COS(TEM1)-COS(TEMP)) 
2 + (RO-Al) * (SIN(TEMP)-SIN(TE(Il))) / (2.*0M1)) 
TAR = A2*SIG + ((A13*B13+A23*B2:)*S2 + (R3-A2)*C2) * S2/OM2 
Z = CkA + D - TAP 

RETURN 

END 
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SUPOUTINE INTGRT (H)
 
CRKG THIS SUBROUTINE INTEGRATES FROM POINTS Y(T) TO THE POINT Y(T+H).
 
C THE DERIVATIVES ARE ALSO COMPUTED AT T+H. THE ROUTINE REQUIRES
 
C THAT N, Y. DY BE IN COMMON, AND THAT Y AND DY BE DIMENSIONED
 
C BY N. TO INITIALIZE CALL WITH H=O.
 
C ENTERING THIS ROUTINE WITH H=O CAUSES THE CONSTANTS TO BE SET,
 
C THE J VECTOR SET TO ZERO AND THE DERIVATIVES RECOMPUTED VIA THE
 
C SUBROUTINE CALLED DEO
 
C COMMON REGION
 

COMMON/RKG / X(5),DX(5)
 
DIMENSION A(4), B(4), C(4), 0(33)
 
IF ( H -EQ. 0.0) GO To 4
 

I 	DO 3 I= 1,4
 
DO 2 J=1,5
 
RRR=A(I)*DX(J)-B(I)*0(J)
 

Q(J)=0CJ)+3,0*RRR-C(I)*DX(J)
 

2 X(J)=X(J)+H*RRR
 

3 CALL DEG
 
RETURN
 
= 
4 	D 707106781E+00
 

A(1)= 0.5
 

A(2)= 1.0-D
 
A(3)= 1.0+D
 
A(4)= 1.0 / 6.0
 

8(1)= 1.0
 
B(2)= A(2)
 
B(3)= A(3)
 

B(4)= 1.0 / 3.0
 

C(1)= Al)
 
C(2)= A(2)
 
C(3)= .A(3)
 
C(4)= C.5
 

DO 5 J=1,32
 
5 	0(J)= 0.0
 

CALL DEG
 
DX(I)=I.0
 

RETURN
 

END
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SUBROUTINF DEG
 

PEAL MU
 
COMMONI/PARAM / MUTAU,ECOA.CHOCH2
 

COMMON/RKG / X(5),DX(5)
 
R = SQRT(X(2)**2 + X(3)**2)
 

P = -MLJ/(P*R*R)
 
S = TAU - X(1) 

IF (X(1) .GT. 500.) S = S-COA 
S = F /S 

DX(2) X(4) 

DX(3) = X(5)
 
DX(4) P*X(2) + S*COc(CHO)
 

DX(9) = P*X(3) + S*SIm(CHO)
 
RETURN
 

END
 

SUBROUTINE KEPLER(DTXYU,V)
 
X,Y,U.V ARE THE CARTESIAN COORDINATES AND VELOCITY COMPONENTS OF
 
THE VEHICLE. THEY APE INPUT AS WELL AS OUTPUT PARAMETERS. OT IS
 
THE TIME INCREMENT DURING THE KEPLERIAN MOTION. THE GRAVITATIONAL
 
PARAMETER MU OF THE CENTRAL BODY MUST BE IN COMMON.
 

PEAL MU
 
CONMON/PARAM / MUTAUECOACHO
 
r = SORT(X*X+Y*Y) 

A = 1. / (2./R - (U*u+V*V)/MU) 
CM = SORT(.25*MU/A) 

Al = SQRT(.5*(R+ABS(X))) 
A2 = *S5Y/A1 
IF (X *GT. .0) GO TO 11 

B = Al 
Al = A2 

A2 = n 
RI = .5*(AI*U + A2*V)/OM 
B2 = .ci*(AI*V - A2*U)/OM 

OC = P-A
 
QS = Al*B1 + A2*82
 
SIG= (DT - .5*0S/OM)/A
 
DO 12 1=1,7
 

S = qlN(OM*SIG)
 
C = COS(OM*SIG)
 
F = A*SIG + S*(QC*C+OS*S)/OM - DT
 
EP = A + QC*(C*C-S*S) + 2.*OS*C*S
 

SG = F / FP
 
IF (ABS(SG) .LT. 1.5E-IO) GO TO 13
 
SIG= $IG - SG
 
Ul = AI*C + B1*S
 

U2 = 22*C + B2*S
 
Wi = RI*C - AI*S
 
W2 = R2*C - A2*S
 
X = U1*U1 - U2*U2
 

Y = 2.*Ul*U2
 

B = OM / C.5*X+U2*U2)
 

U = B*(U1*W1 - U2*W2)
 
V = R*(U2*W1 + UI*W2)
 

RETURN
 

END
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