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ABSTRACT

The existence of multiple solutions to a general
Problem of Bolza in the calculus of variations is inves-
tigated. These multiple Statioﬂary solutions are of
several distinct types, each of which is briefly dis-
cussed{

The most important type of multiple stationary
solutions occurs when a complete set of necessary and
sufficient conditions have not been applied. A suffi-
ciency test to eliminate some multiple solutions of
this type is developed. It is shown that a sufficiency
test can be broken down into a path sufficiency test and
an endpoint sufficiency test and that once the first
necessary conditions of the calculus of variations have
been applied, the path sufficiency test and the endpoint
sufficiency test can be applied independently.

Only the endpoint sufficiency test was investi-
gated. Analytical application of this condition requires
the analytical integration of a set of nonlinear differ-
ential equations subject to mixed boundary conditions.
Since this is often difficult or impossible, an algo-
rithm is developed for numerically implementing the end-

point sufficiency condition. A geodetics problem is

Ix



solved analytically to illustrate the theory and demon-
strates that the sufficiency condition is an effective
computational tool, by eliminating certain classes of non-
optimal solutions from consideration.

A survey of numerical methods for solving differ-
ential equations with mixed boundary conditions arising
from problems in the calculus of Variations is presented.
The generalized Newton-Raphson method for solving such
problems 1is developed in detail and digital computer
programs for implementing it are included.

The problem of determining minimum fuel, orbital
transfers for low-thrust space vehicles is treated as a
final comprehensive example. Transfers are considered
which begin in an initial circular orbit and terminate
in any final elliptic orbit in the same plane. In addi-
tion the final argument of periapsis, the final true
anomoly, the final range angle, and the final time are
all unspecified and considered free. Several examples of
multiple stationary solutions to a given terminal orbit
are presented. Digital computer programs for solving
this problem and for implementing the endpoint sufficiency
test are included. The results of a comprehensive study
of fixed mass, single thrust, orbital transfers from
initial circular orbits to a wide range of final elliptic

orbits are presented.



CHAPTER 1
INTRODUCTION

A renewed interest in the theory of the calculus of
variations has been witnessed in the past decade due in
part to the development of sophisticated automatic control
systems. When the concepts of state and control variables
from the theory of automatic control systems were incor-
porated in the theory of the calculus of variatibns, an
entirely new practical viewpoint resulted. Once left com-
pletely to the realm of pure mathematicians, the calculus
of variations, in its new formulation, speaks a language
easily understood by engineers. With the potential use of
the calculus of variations made apparent to a much broader
spectrum of technology, rapid theoretical development has
been inevitable.

Significant advances have been made in casting
heretofore diverse calculus of variations problems into a
single generalized formulation, e.g., the Problem of Bolza
(Bliss, 1946, pp. 187-265). Altrough not entirely com-
plete, the formulation of the theory of the calculus of
variations in control notation used by Vincent and Mason
(1969) is applicable to most problems cf engineering impor-

tance,

-~



A limitation to the engineering effectiveness of
the calculus of variations in its current formulation has
been the lack of a complete set of sufficiency conditions
expressed in control notation. Although a fairly complete
set of sufficiency theorems has been developed for the
classical problems of the calculus of variations (Bliss,
1946, pp. 235-265), they are formulated in a manner and
in a mathematical notation which is difficult to apply to
most practicai problems. For the most general problems
expressed in control notation, a complete set of suffi-
ciency conditions is not known. The lack of such a com-
prehensive engineering formulation has placed heavy
emphasis on the more easily understood necessary condi-
tions.

Trajectories which satisfy all of the necessary
conditions of the calculus of variations are referred to
as stationary solutions. Stationary solutions are often
accepted as optimum trajectories without further investi-
gation. For most elementary problems this practice is
adequate. However, stationary solutions are only candi-
dates for the true optimum. When an investigator obtains
two or more distinct stationary solutions to his problem,
this point becomes quite clear. Chapter 2 partially
resolves the problem of multiple stationary solutions by

developing a sufficiency condition in modern control
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notation for problems with variable endpoints. This suf-
ficiency condition 1s related to classical sufficiency
conditions. In addition, a numerical algorithm will be
presented which allows an investigator to apply the end-
point sufficiency condition in cases where the differen-
tial equations describing the optimum trajectory cannot
be integrated analytically.

However complete a theory may be, it is of 1little
use to the engineer unless it leads in a direct fashion
to solutions of real-world problems. Unfortunately, the
theory of the calculus of variations inevitably‘requires
the integration of a set of nonlinear ordinary differ-
ential equations with mixed boundary conditions. In
all but the simplest academic problems, analytic solu-
tions cannot be obtained. In order for the calculus of
variations to be a useful engineering tool, a practical
computational algorithm must be developed. The problem
of finding numerical solutions to differential equa-
tions with mixed boundary conditions is the subject of
Chapter 3.

Chapter U4 presents an interesting example problem
in which bounded control gives rise to multiple station-
ary solutions in a unique fashion.

The complex problem of optimum low-thrust orbital

transfers is investigated in Chapter 5. Several types of
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multiple stationary solutions are exhibited and the end-
point sufficiency condition is used to distinguish the
true optimum from among the candidates. In addition, the
results of a comprehensive study of minimum time low-
thrust orbital transfers is presented. The investigation
concerns the qualitative aspects of transfers from an
initial circular orbit to any given final elliptic orbit
with the angle of transfer and relative argument of

periapsis unspecified.

1.1 Historical Background

The historical development of the calculﬁs of
variations has been sporadic, and not entirely free of
controversy. Without going into the detalls of the
early development, it is appropriate to mention the out-
standing contributions and references of historical
importance.

In 1696 the Brachistochrone problem was proposed
by John Bernoulli (Ostwald, 1911, no. 46, p. 3). He
sought the path which minimized the time required for a
mass under the influence of gravity to slide without fric-
tion from one point to another. In 1744, Euler (1911)
discovered the characteristic differential equation which
must be satisfied by optimum trajectories. Lagrange analyt-
ically formalized the work of Euler and extended the scope

of problems to two independent variables. While Euler



and Lagrange considered necessary conditions for a sta-
tionary curve, Legendre (1786), through the use of the
so-called second variation, developed a further necéssary
condition that distinguished maximal extremals from mini-
mal extremals. Jacobi (1837) constructed an essential
modification of the Legendre necessary condition, and
from it deduced a further test, which set limits on the
range of the independent variable. Clebsch (1858) and
Mayer (1868) conducted further investigations connected
with transformations of the second variation.

Much of modern theory of the calculus of varia-
tions is based upon proofs employing strong variations
which were first developed by Welerstrass. The work of
Welerstrass, although never formally published, is well
known largely through the publications of his contempo-
raries; among them, the works of Bolza (1913), Kneser
(1900), Forsyth (1927) and Hilbert (1902) have had the
most lasting influence. The work of Bolza has been of
particular influence on current investigators. He formu-
lated a general problem, now known as the Problem of
Bolza, which included the problems of ILagrange and Mayer
as special cases (Bliss, 1946, pp. 189-193). A consider-
able intereét was taken in the Problem of Bolza, and a
summary of the works of many investigators is presented

in the comprehensive book by G. A. Bliss (1946). Recently
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Hestenes (1966) has reformulated the Problem of Bolza from
the classical dependent variables notation to the modern,
control variable, state variable notation. He obtains
only path sufficiency theorems for problems with fixed
endpoints and does not discuss the sufficiency condition
for problems with variable endpoints to be develocoped in

Chapter 2.

1.2 The Problem of Bolza

Since much of what is to follow depends upon an
understanding of the Problem of Bolza as formulated in
control notation (Vincent and Brusch, 1966, pp. 4-5), a
bfief statement of the problem in its simplest form is
appropriate.

Among the set of all continuous state functions,

yi(t) i=1,2,...,n; to-i t < tf (1.2.1)
and continuous control variable functions
uk(t) k=1,2,..., m<n (1.2.2)

satisfying differential equations and end-conditions of

“the form

y. = fi(y

: W Lt) J o= 1,2,...,n (1.2.3)

J
t;"Je(yio’yif’to’tf) =0
£ =1,2,...,p < 2n + 2 (1.2.4)

find the set which will minimize a sum of the form:
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t
£
- _ i .
J 8(yi05¥5ps Eooted + /7 Ly (B),u (B),8)at. (1.2.5)

o} to
Here it is assumed that the functions fj, L, g, and wz
are of class C2. In the above and throughout this presen-
tation, a dot above a variable will be used to represent
the derivative of the variable with respect to £, the
independent variable. Likewise the subscripts o and T
will indicate the evaluation of the wvariable or expression
at the initial and final value of t, respectively. For
the sake of>brevity, the range of subscripts 1, Jj, k, and
£ will be as given above and will not be repeated in what
follows.

Following the conventional method of lLagrange
multipliers (Bryson and Ho, 1969), minimization of the

augmented function

%
f
¥ = —
J gt ugy, + /0 [L-agfy + gy, ldt. (1.2.6)

t
0

is considered. In the above equation and throughout the
presentation, repeated subscripts will be used to imply
summation. Equation (1.2.6) was obtained by adjoining
equations (1.2.3) and (1.2.4) to relation (1.2.5) as fol-
lows:

(a) multiplying relations (1.2.3) by the vari-
ables.xi(t), respectively, integrating from



to to t,. and by adding the sum of the inte-

£
grals to expression (1.2.5),
(b) multiplying equations (1.2.4) by the param-
eters My, and adding the sum of the products
to expression (1.25).
It is convenient to define the following functions:

G(V1oTipotyste) =8 F 0,0, (1.2.7)

Hly; (t) 2, (t),u (t),t] =20, - L (1.2.8)

The function H is often referred to as the Hamiltonian.

With these definitions, equation (1.2.6) may be written as

-t
% f .
J =0 + j [-H + Aiyi]dt (1.2.9)
to
By considering small variations in the path and endpoints
about a nominal path, it can be shown that if the func-
tions u, (t) and yi(t) are a solution to the Problem of
Bolza, then they must satisfy the following necessary con-
ditions (Hestenes, 1966, pp. 346-351):
Condition I. There exist continuous multipliers
hi(t) and Hamiltonian function as defined in equation
(1.2.8) such that:

(1) the Euler-lagrange equations,

\, = - %%%' (1.2.10)
1
%%é-z 0 (1.2.11)



are satisfied at every point along the path and,

(2) the transversality conditions

oG

3%—‘ -+ HO = O (1.2.12)
O

§§%-~ hig = O (1.2.13)
1.0

0G _y =0 (1.2.14)

5%; e T

oG -0 1.2.1

3§€E'+'Xif = (1.2.15)

are satisfied by the endpoints.
Condition II. The inequality

H[yi(t),Ki(ﬁ),UEO(t),t]_i H[yi(t),Xi<t),uK(t),t] (1.2.16)

must be satisfied for all to-i t < tf and for all non-

no. This is referred to as the

optimal control functions u
necessary condition of Welerstrass.

Condition ITITI. The k by k matrix

52y s =1,2,...,k
dugouy t o= 1,2,...,k (1.2.17)

must be negative semi-definite for a minimum. This condi-
tion is known as the Legendre-Clebsch necessary condition.
Condition IV. A fourth necessary condition is
discussed by Bliss (1946, pp. 226-228) in classical depen-
dent variable notation. He proves that the second order
variation of a sum similar to J* must be non-negative

*
along a stationary arc, if that arc minimizes J .
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Hestenes (1966, pp. 283-286) verifies this conclusion in
modern control notation for the Problem of Bolza with
fixed endpoints. As developed by Hestenes, the fourth
necessary condition represents a necessgary condition on
the path alone; variations in the endpoints are not con-
sidered. If Condition IIT is satisfied, Condition IV is
usually referred to as the Jacobi Condition. A further
geometric interpretation of this condition is presented

in the following section.

1.3 The Nature of Multiple Stationary Solutions .

It is helpful in understanding the nature of mul-
tiple stationary solutions to classify them by the cir-
cumstances pertinent to thelir occurrence. The classifi-
cation is not an apriori one, but rather one based on

experience.

1.3.1 Fixed Endpoint Problems and Path Suffi-

ciency‘Cohditions. Multiple stationary solutions are

often obtained for problems with fixed endpoints, because
only the first three necessary conditions have been con-
sidered. Bliss (1946, p. 235) has shown in dependent
variable notation that the fourth necessary condition of
Jacobi, taken together with the first three necessary
conditions, suitably strengthened, forms a sufficient set

of conditions for the Problem of Bolza.
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Although analytically complex, the Jacobi condi-
tion has a simple geometric interpretation for problems
with one state variable. 1In this case the set of all
solutions forms a one dimensional family of extremal arcs,
v = y(t,c), which all pass through the initial point as
shown in Figure (1.1). With each arc is associated a
particular value of c. If arcs y(t,c) and y(t,c + €)
intersect in the limit as € goes to 0, the point of inter-
section is called a conjugate point. The locus of such
intersections is called the discriminant locus, also shown

in Figure (1.1).

Discriminant

Family of
Optimal Solutions

Fig. 1.1 A Family of Extremals and the Discriminant
Locus
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In terms of this geometry, the Jacobli condition
requires that an optimal trajectory contain no conjugate
point. Alternatively, the condition requires that an
optimal solution may not touch the discriminant locus.
Figure (1.1) shows that there are two solutions Joining
points O and A, one of which touches the discriminant
locus and is therefore non-optimal. If the fourth neces-
sary condition of Jacobi is applied in such cases of mul-
tiple stationary solutions, all but one of the trajector-
ies will be shown to contain a point conjugate to the
initial point, thus rendering them non-optimal.

Examples of this occurrence are many. The
Brachistochrone problem with fixed endpoints graphically
1llustrates the problem. Consider the problem of a bead
sliding down a wire under the influence of gravity alone.
Wnat should the shape of the wire be in order to minimize
the time of transit between two points in a vertical plane?
It is well known that the solution curves are cycloids.
However, as shown in Figure 1.2, there are several differ-
‘ent cycloids which satisfy the necessary conditions of
the calculus of variations. It can be seen that the
x-axis forms the discriminant locus and that the points
where solutions 1 and 2 touch the discriminant locus are
conjugate points. Since solutions 1 and 2 violate the
Jacobl condition, it is evident that solution 3 is the

true optimum,
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Discriminant Locus

2 s
- s i ST Sl

Yy

Fig. 1.2 Multiple Stationary Solutions for the Brachi-
stochrone Problen

In this case it has been possible to distinguish
the true optimum from the candidates by applying suffi-
ciency conditions pertaining to the patﬁ. Although the
fourth necessary condition of Jacobi has been exhibited
in control notation for fixed endpoint problems
(Hestenes, 1966, pp. 250-286), it has not been frequently
used in engineering problems due to complications in
applying it to cases where the Euler-lLagrange differential

equations cannot be integrated analytically.

1.3.2 Variable Endpoint Problems. Problems with

variable endpoints require that the éndpoints of the tra-

Jectories, as well as the path, be gelected in an optimum
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fashion. Consilder the geodesics problem of trying to
find the minimum distance from the origin to a given
parabola as shown in Figure (1.3). It will be shown in
Chapter 2 that two stationary solutions exist, viz., OA

and OB. Once an endpoint is determined, the problem

Fig. 1.3 Multiple Stationary Solutions to a Geodetics
Problem

becomes one of fixed endpoints, and the path sufficiency
conditions previously discussed can then be applied. 'In
this case, with the endpoint, A or B, thought of as being
fixed, it can be shown that both solutions satisfy the
Jacobi sufficiency conditions regarding path (Bolza, 1961,
pp. 84-86). Since both paths satisfy sufficiency condi-

tions, but the endpoints were determined from necessary
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conditions only, it 1s apparent that a sufficiency condi-
tion regarding endpoints is needed to distinguish the
true optimal. Such an endpoint sufficiency condition
does exist and will be derived in Chapter 2. It will be
shown that only one of the solutions will represent a
local minimum with respect to variation of the endpoint

along the parabola.

1.3.3 Problems Requiring Path and Endpoint Suffi-

ciency Conditions. In the last two sections, the neces-

sity of using path sufficiency conditions and endpoint
sufficiency conditions was illustrated separately. It is
not unusual, however, to encounter problems requiring the
application of both sufficiency conditions to distinguish
the true optimum from the set of multiple stationary solu-
tions. To illustrate this situation, reconsider the Brach-
istrochrone problem where the final endpoint, instead of
being fixed, is required to be on curve E as shown_in Fig-
ure (1.4). Both trajectories OAB and OB satisfy the end-
point sufficilency conditions; that is, both solutions
represent a local minimum with respect to small variations
of the endpoint along endpoint manifold E. As discussed
before, nmoint A is a conJjugate point, thus violating the
Jacobi path sufficiency condition. Trajectory OC

violates the endpoint point sufficiency condition; that

is, endpoint C represents a local maximum with respect to
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Fig. 1.4 A Problem Requiring both Path and Endpoint
Sufficiency Conditions

small variations of the endpoint along E. Thus through
the use of both sufficiency conditions, OB i1s selected

as the true optimumn.

1.3.4 Problems with Periodic Solutions. Consider

a, syétem of equations (1.2.3) which exhibit periodic oscil-
lations when no control effort is applied. It is not
unusual for the optimal controls and adjoint variables of
such a system to also demonstrate periodic motion with

the same period. This is especially true if the magnitude
of the control is small. By restricting the magnitude of
the control to sufficiently small values, the deviation

between the solution from one period to the next can be
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made as small as desired. Problems with bounded control
often have controls with such small magnitudes.

The criterion by which the solution is terminatéd
is often periodic for problems exhibiting periodic oscil-
lations. The terminating or cutoff condition is obtained
from the transversality conditions (1.2.12) - (1.2.15) by
eliminating the My parameters, to form a single relation-
ship among the state and adjoint variables. The zeros of
the cutoff function then represent the terminating condi-
tion. As an example, consider the problem of a thrusting
harmonic oscillator: a mass is connected in parallel by a
spring and dashpot to an inertial reference. The mass is
capable of generating a bounded thrust in the upward direc-
tion. The problem is to get the mass to a Specified
height while minimizing the integral of the thrust with
respect to time. For simplicity it is assumed that the
mass 1s constant. This problem is discussed in detall in
Chapter 4. For small damping factors and null thrust,
the state variables, position and velocity, the adjoint
variables, and the cutoff function all exhibit damped
periodic oscillations. As shown in Figure (1.5) the cut-
Ooff condition is satisfied during each period. For suffi-
ciently small thrust amplitudes the cutoff function will
deviate only slightly from that generated for null thrust,

and will be satisfied at several points.



Cutoff Function 18

Optimal PFinal Times

Tine

Fig. 1.5 Multiple Solutions Due to a Periodic
Cutoff Function

Bach time the cutoff conditiocn is satisfied, a
potential optimal endpoint and a corresponding stationary
solution is obtained. Thus in periodic systems with weak
bounded control, multiple stationary solutions may be
encountered. Examples of such systems are presented in

Chapter 4 and Chapter 5.

1.3.5 Problems with Singular Control. In the case

of optimization problems with bounded control variables,

for example, u >u >u

min > » one encounters the intrigu-

max
ing problem of the possibility of singular control. In
cases where the Hamiltonian is linear in a bounded con-

trol variable, the control cannot be determined from
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Euler-ILagrange equation (1.2.11). 1In this case the

Hamiltonian can be written as

H = 8(yiagt)u + Qyysny,t) (1.6.1)

for scaler control. S is referred to as the switching
function. The well-known Maximum Principle for problems
with bounded control developed by\Pontryagin_gﬁigl, (1962)

requires that

u = umax when S > O (1.6.2)
u = umin when S8 < 0O

However, for the case when S = 0 over a non-vanishing
time interval, the Maximum Principle is indeterminant, and
u may take on intermediate values. This is the case of
singular control. George Leifmann has pointed out that
(1966, pp. 57-58), "While it is possible in a particular
problem...to rule out the possibility of [singular con-~
trol], this cannot be done in general.” Thus, whenever
the switching function goes to zero, the control will
change, i.e., the control will switch to the opposite
extreme or to singular control.

To demonstrate the existence of multiple station-
ary solutions in the case of singular control, examine the

problem of minimizing
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subject to the constraints:

Xy = X, + U x1(0) = x5  xq(w) =0

(1.6.4)
X, = - U x5(0) = %55  Xp(w) = 0O
lul] <1

This problem was first discussed by Johnson and Gibson
(1963).

The Hamiltonian is

2 o .
H= (A=ho)u + Ayx, - x7/2 = A(xy, + 1) - Ao(u) - xq /2

In this case S = xl = Ao- If S is identically zero for
a non-vanishing time interval, singular control exists.
By taking a suitable number of time derivatives, 1t can be
shown that the singular control is given by u = ~Xq "X
and that the singular arcs are two lines Xl(t> = 0 and
x,(t) +2x,(t) = O.

Figure (1.6) shows two possible stationary solu-
tions to the problem starting at point A, one of which
has a singular subarc. The first arc AB is the same for
both solutions. In both solutions u = -1 on arc AB.
However, at point B, two choices can be made for the
optimal control. One can continue with u = -1 along arc
BC and then follow arc CO to the origin with u = + 1.

This is the so-called "bang-bang" solution. Alternately,
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at point B one may elect singular control, u = X5 and

proceed to the origin directly along arc BO.

Bang~Bang Solution
C
“ B _¢ 1. Singular Arc Xy = 0
g N !
i N |
Optimal S Ty
Solution e w N O
- - N 1 T
e = KX%%“%A Qﬁ%ﬂ;ﬁ/~—281ngular Arc
jy e Xl + 2X2 = 0
-1

Fig. 1.6 Multiple Solutions Arising from Singular
Control

Unfortunately, there is no guarantee that the
solution with singular control is minimizing or that it
will always enter the optimal solution, even if the possi-
bility of singular solutions does exist. In this case the
‘solution with bang-bang conﬁrol, arc ABCO, has an index of
performance almost 12 per cent larger than for the true
optimal control which uses the singular control arc BO.

Recently, Kelly, Kopp and Moyer (1967) and Robbins
(1965) have developed a new necessary condition for test-

ing the optimality of singular subarcs. Although this
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necessary condition will certainly eliminate a substan-
tial number of non-optimal singular solutions, a complete
set of necessary and sufficient conditions still remain

to be found.



CHAPTER 2
AN ENDPOINT SUFFICIENCY CONDITION

In Chapter 1 it has been shown that failure to
apply sufficiency conditions to problems in the calculus
of variations often results in multiple solutions, some of
which are non-optimal. The examples have established that
multiple solutions occur in many types of variational prob-
lems and for the simplest of problem formulations. In
addition, a complete set of sufficiency conditions needed
to select the true optimal has not been formulated in
modern state-variable, control-variable notation.

In this chapter an endpoint sufficiency condition
18 developed for variational problems with variable end-
points. Among the multiple stationary solutions that may
exlst, the condition provides a test for distinguishing
those stationary solution endpoints which represent a mini-
mum. By way of proving the endpoint sufficiency condition,
a novel proof of the transversality necessary condition is
also exhibited. The endpoint sufficiency condition is
related to sufficiency conditions of the classical calculus
of variations in section 2.4. In section 2.5 the suffi-

ciency condition is illustrated with an example problen.

23
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Finally, a numerical algorithm is developed for applying
the endpoint sufficiency condition to problems with no

analytic solution.

2.1 Functional Relationships for the Problem of Bolza

Heuristic arguments in Chapter 1 have implied that
the necessary and sufficient conditions for the Problem of
Bolza fall into two classes: those pertaining to the path
and those pertaining to the endpoints. It has been further
implied that sufficiency conditions pertaining to the end-
points can be considered independently from those pertain-
ing to path. Consider the Problem of Bolza as expressed
in section 1.2, equations (1.2.1) - (1.2.5). In this
formulation, and for the remainder of this chapter, the
controls u, are assumed to be unbounded functions of
time. In addition, it is now assumed that the Jacobian

is not equal to zero

dH JH dH
d | Ty, Oy, ..., du,
ST T £ 0 (2.1.1)
1’72’k
for all points (ul,ug,...,uk) in the control space. The

function H has been previously defined in equation
(1.2.8). If equation (2.1.1) is valid, the implicit func-
tion theorem (Buck, 1965, pp. 283-286) assures the

existence of the k functional relations

we = [y (6) 01 ()] (2.1.2)
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because of the k control variable Ruler-lagrange equa-
tions (1.2.11). Condition (2.1.1) specifically elimi-
nates from consideration those systems in which any state
variable derivative, y as defined in equation (1.2.3),
is a linear function of any of the control variables. It
is therefore assured that the control variable Fuler-
Lagrange equations (1.2.11) will be explicit functions of
Uy -

A solution to the Problem of Bolgza is specified
by solutions for the state variables ¥y, s well as the
control variables U, as functions of time. A selection
of the initial time and the final time completes the
solution. To obtain these solutions, the control variable
Euler-lagrange equations are first solved for the control
variables U, as functions of the state variables Vs and
the adjoint variables xi. The control variables in the L
function in equation (1.2.5) and in the fj functions in
the state variable differential equations (1.2.3) are then
replaced by the functional relationship for u given in
equation (2.1.2). The functions f, and the L function are
now explicitly dependent only on the state variables, the

adjoint variables, and time.
fi = fi[yj(t)3 uk(yj(t),kj(t))gt] (2.1.3)

L = L[yj(t)5uk(yj(t))kj(t))3t] (2'1'4>
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With relations (2.1.3) and (2.1.4) substituted into the H
function, equation (1.2.8), the H function becomes an
explicit function of the state variables, the adjoint vari-
ables, and time, alone:

10 = B2y, (6)3h (8) 50y (73 (8) 3, (8)) 5] (2.1.5)

Pfinally, by considering the adjdint variable Euler-Ilagrange
equation (1.2.10) in view of equation (2.1.5), it is evi-
dent that a similar functional relatlonship exists for the
time derivatives of adjoint variables,

g = AENORWORIES ggz- (2.1.6)

In summary, once the optimal control is selected,
the state variable differential equations (1.2.3) and the
adjoint variable differential equations (1.2.10) comprise
a set of 2n first order nonlinear differential equations
in the 2n state and adjoint variables and time. This set
of differential equations can be integrated in theory,

yielding

il

YV

5 yi(t,cr) r = 1,2,...,2n (2.1.7)

i

Ay o= ag(tsel) (2.1.8)

where the cr's are constants of integration. The p state
variable constraints (1.2.4) and the 2n + 2 equations
representing the transversality necessary conditions
(1.2.12) - (1.2.15) comprise a set of (2n + p + 2) non-

linear algebraic egquations in the 2n constants Cpa the p
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parameters by the initial time to, and the final time
_tf. These equations may be solved for the cr's, to and
tf. However, since the set of equations is nonlinear, a
unique solution for these quantities is not guaranteed.

The initial values (y;,,A;,st,) and the final
values (yif,xif,tf) are specified. Hence, the cr’s may
be determined as a function of initial and/or final val-
ues by evaluating equations (2.1.7) and (2.1.8) at either
the initial or final point. For example, a solution for
the cr's would be specified by the set (yio’xio’?o’tf)’
the set (yif’xif’ f).

While it is difficult to attach any physical meaning to

tf,to) or the set (yio,yif,to,t
the initial or final values of the lagrange multipliers,
the initial and final values of the state varisbles have
an immediate physical significance. For this reason, the
state variable endpoints have been selected to function-
ally represent the c. constants of integration for the
rest of this chapter. Thus equations (2.1.7) and (2.1.8)

can be written as

V3 = 535(E:750:T3¢:855t¢) (2.1.9)
and ty <t < tg
>‘J’ = )‘j(t’yio’yif’to’tf) (2.1.10)

By substituting the functional relationships exhibited in

3

equations (2.1.9) and (2.1.10) into relations (2.1.2) -

(2.1.6), it can be seen that the functions uk,L,fi,Ho,
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and Pi can all be written as explicit functions of the
set (t,yio,yif,to,tf). These functional relations,
together with that for the function G from equation

(1.2.7) are summarized for reference below:

U=y (t,yio,yif,to,tf) (2.1.11)
L =L (6,50sF3psbgsbe) (2.1.12)
T3 = 56750 psboste) (2.1.13)
Ny = Py (6Yy ¥ potyte) (2.1.14)

o o .
H =H [yj(t’yio’yif’to’tf)5 )‘j(t’yio’yif’to’tf)m’

uk(t,yio,yif,to,tf); t] (2.1.15)
G = G(“z’yio’yif’to’tf> (2.1.16)

S50 that there will be no confusion as to the meaning of

the subscripts, note that

.=y, 2.1.1
Y j0 yJ‘t:t ( 7)
.
o= 2.1.18
M o xJ\t:t ( )
O
L = V. 2.1.1
Vie =5, ( 9)
£
i =N 2.1.20
Mg = )g e ( )
=t

Using the functional relationships summarized

* .
above form the augmented function J = J + ) where
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I(Ti0:Vipborte) = 8(Y314:V3p:055t5) (2.1.21)

t
£ro L ,
f]ﬁ {’H (:¥30:71p5 %0 0p)
t

A (6,705 T 35t 00) yj(t,yig,yif,to,tf)] dt

By requiring the trajectory to satisfy certain necessary
conditions regarding path, equations (1.2.10) and (1.2.11),
the Problem of Bolza has been reduced to the problem of
minimizing J, a function of endpoints, subject to the wz
algebraic constraints on the endpoints.

Before proceeding with the minimization of J, it
is appropriate to consider a graphical interpretation of
the functional relationship for the state variables
expressed in equation (2.1.9). Figure 2.1 shows a general

state function y. (t.y t,ste) as a function of time.

10°Yir’
From the figure it can be seen that a change in the final
state Ayif while holding all of the other endpoints fixed
causes a change in Vs for all values of t. ILikewise a

change in the final time At_ while holding all of the

f
other endpoints fixed causes a change in the state Vi
for all values of t.

Formalizing this graphical interpretation in terms

of differentials yields results which will be of value in

the following sections. Using equation (2.1.9), the
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Fig. 2.1 A Representation of y; as a Function of
Vig and tf‘
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differential of the state variables may be written as,

| oy Oy | 3y,
dyl(t,yao,ny,to,tf) = 676"“ dat + ST QtO + 636—“ dt‘f (2.1.22)
e} £
Byi . oy .
+ y T sy T @
Byjo Jo Yijp ~IF

Evaluating this expression at t = tf gives

‘ oY -
_ n 1
dyi(tf’yjo’ 5eoborte) = Wi = 5% c dte (2.1.23)
Byi Byi Byi ‘Byi
el Yo T | e Ty Wio TIya | Wr
S T £ Jjo Jf
£ £

The sum represented by the last term in the above equation
can be separated into those products for which i # j and
that for which 1 = j. Transposing dyif to the right hand

side, equation (2.1.23) becomes

Byi Byi Byi
O= 13|, TE e 3551 Wio
f f £ Jo | ¢
Jy . [y,
i i
P e L Iy i=j
i#j

In the above equation the repeated subscripts on
the last term do not imply summation. Since t, t,, t.,

yio

(2.1.24) implies that -

s, and Yig have been assumed to be independent, equation
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i) R (2.1.25)
| T
oy .
5| =0 (2.1.26)
Ke)
£
ayi
| =0 (2.1.27)
V50 | .
Ay ;.
- _ 0 (2.1.28)
oF j5
£
1£J
RE| = 1 2.1.29)
T |, (129
1=]

By evaluating equation (2.1.22) at t = t, and

following arguments similar to the ones above, 1t can be
shown that

Byi Byi
ot

i

o (2.1.30)

0 i o

=
| - 0 (2.1.31)
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oy,
55.3, = 0 (2.1.33)
Jo |,
1#J
Byi
3y . = 1 2.1.34
V50| . ( 34)
i=]

These identities will be useful in the proofs of

necessary and sufficient conditions in the next section.

2.2 Derivation of Transversality Conditions

In determining the functional relationships in
the last section, it was assumed that the control and
adjoint variables were chosen so ag to satisfy the Euler-
Lagrange Equations (1.2.10) and (1.2.11). Equations
(1.2.10) and (1.2.11) are referred to as the first path
necessary conditions. 1In this section the endpoint neces-
sary conditions (transversality conditions) are derived
assuming that the first necessary conditions for path are
satisfied.

The solution to the path necessary conditions
determines one or more trajectories (see section 1.3), any
of which may be expressed functionally as a set
[y (075057500005 8e) o2 g (657500710580 Bp) s W (837305750
to,tf)] as shown in section 2.1. Once the functions
representing one of these trajectories is substituted into

the integral in equation (2.1.21), the integration can be
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performed. It is therefore clear that once the trajec-
tory is specified, J is a function of only the parameters

Y

io Specifying the path reduces the

> Vigo to and tf.
problem of minimizing J to the well-known problem of
finding the minimum of a function of several variables
subject to algebraic equations of constraint (Bryson and
Ho, 1969).

It is shown in Appendix A that if the arguments
of J in equation (2.1.21) are to satisfy the constraints
and minimize J, then it is necessary that the partial
derivatives of the auxiliary function, J% shown below,
wilith respect to Vigr ¥

to, and t. all be equal to zero.

if’? f

The J function is defined by J° = J + u,u, where

J is given by equation (2.1.21). Using the definition of
*

the function G from equation (1.2.8), J may be function-

ally represented as

* _ -
TY 0T ipobgrteoby ] = G [y sV 0005 Tpsm,l
tf
o o oy ..
-+J[ [—H (yiohgou ,B) + xi_ggk} dt (2.2.1)
JDO

In the above equation it is understood that Vi ., and

l)
W, are all functions of the set (t,yio,yif,to,tf). In
writing the functional relationship shown above, 1t has
been assumed that the controls Uy have been chosen in an

optimal fashion in accordance with the control variable
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Euler-Lagrange Equation (1.2.11). This is indicated by
the superscript o on Uy and on H. The partial deriva-

%
tive of J with respect to ¥io Can now be written:

. t 2
BJ% de f OH aki ayi 3 vy
Sy Sy T sy tesyo st A sy Tor| 9t
jo jo ¢ jo jo jo
(2.2.2)

Here Leibnitz Rule (Hildebrand, 1948, p. 360) has been
used for differentiation of an integral with respect to a

parameter. Using the identity

2 .
a |, ¥4 , 0y . Ory ¥4 (2.2.3)
t i 5?50 i Byjoét ot Byjo
and expanding ;H , equation (2.2.2) may be written as
jo
* tf 3 I
dJ_ _ 3G dH i adm M (2.2.1)
3o o . Y5 9y, Oy Wyg
) } t
o % s Ory 9yy 9y 9y a4+ | oY £
Buk Byjo éyjo ot at Byjo i Syjo .
o

Terms under the integral sign may be combined to give

SJ* = gG + s 73 - A R

Vio 50 A ‘. Y jo ‘, i 5 Yo s (2.2.5)
tf S5 By O ~ AN By

+[ - (B‘r - atl) 55— (%§~ +675i) S
t JO 1 Jo
© du




Note from equations (2.1.9) and (2.1.10) that once the
optimal endpoints have been selected,

Byi ~ dy . A ar

i _
3t T Ot and  5¢= = gE o

The integral term vanishes, since equations (1.2.3),
(1.2.10) and (1.2.11) were used to generate the func-

tional relations (2.1.9) and (2.1.10).

36

Using equations (2.1.27), (2.1.33) and (2.1.34),

it can be concluded that the sums represented by the two

remaining terms not containing G in equation'(2.2.5)

reduce to a single term, - XJ
t
o}

tions, equation (2.2.5) reduces to

357 _ 3G _
V5o  Vj, J

o

*
By taking the derivative of J with respect to yjf and

using arguments similar to those just presented (in

With these considera-

= 0 (2.2.6)

this case equations (2.1.32), (2.1.28) and (2.1.29) must

be taken into account), it can be shown that

¥
oJ  _ oG _

Two more necessary conditions remain to be

derived. These result from taking the partial deriva-

%
tives of J with respect to the remaining two variables,
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to and tf, Performing the first of these operations

yields

" T, , .

25" _ 3G, S ) Ny Wy , O3 4t
St < 3% 3t Tt ot i 3Tt
. .

Byi

- - H + Xi SE (2.2.8)

t
o]
Here again Leibnitz Rule has been used; this time the

limits of integration are functions of the differentiating

variable. Using the identity

a |, KER . A RE! +—aki ] (2.2.9)
dt i 5%6 oM 5t5to ot 5to T

and expanding-%%—, equation (2.2.8) may be written as
o)

. t
25" _ 3G, [ om i sm %
3t T 3t 3y, S, ~ h; I
to
) e Ny vy O Byi‘] at (2.2.10)
Su, 3t 3T ST T I I,
oV . 2 oy.
+ | & - |- "+ =
i 5%; i ot
to t

O

Terms outside the integral may be evaluated at
the endpoints indicated and terms under the integral sign

combined to give
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257 3G, 4 N 9y
ot T ot It i ot
¢} o) o + to
O
oy, oy 4
+ Xi . St - Xl ) o (2.2.11)
£ 9% R
f 0
-t p
£ sp . M|y
+ © \3y; T ot 9T,
tO
ou Vi) g fam ) % at
axi ot ot Suk Bto )

The integral again vanishes identically for optimal paths.
Using equations (2.1.26) and (2.1.30), the three terms
outside the integral representing summations can also be
equated to zero. With these observations, equation

(2.2.11) reduces to

*

oJ oG

S =5t H =0 (2.2.12)
tO tO tO

By taking the derivative of J* with respect to
tf, following a line of reasoning similar to that just
given, and using equations (2.1.31) and (2.1.25), it can
be shown that

od oG

= - H = 0 2.2.13)
ot "3ty T He, (
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These results are summarized in the following
statement:

2.2.1 Transversality Necessary Condition for End-

points. If a trajectory satisfies the Euler-Lagrange and
state variable differential equations, equations (1.2.10),
(1.2.11), and (1.2.3), and if the set E = [yio’yif’té’
tesu,] satisfies endpoint equations of constraint (1.2.4)
and provides a local minimum of J with respect to small
allowable variations in the endpoints, then the set E
must satisfy equations (2.2.6), (2.2.7), (2.2.12) and
(2.2.13).

These latter equations are referred to as the
endpoint necessary conditions or, classically, as the

transversalitly necessary conditions.

2.3 Derivation of Endpoint Sufficiency Conditions

In the 1ést section the function J was shown to
be a function of the endpoint variables yio’yif’to’ and
tf when evaluated along an optimal path. The function J
is constrained, however, through the p equations of con-
straint L of equation (1.2.4). Sufficiency conditions
for determining the minimum of a function whose arguments
must satisfy algebraic equations of constraint are well

known (Vincent, 1969), and, for reference, the sufficiency

conditions are derived in matrix notation in Appendix A.
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Before presenting a statement of the sufficiency
condition, a bhrief discussion and definition of notation
are in order. Since the algebraic equations of con-
straint for the Problem of Bolza define relationships
among the endpoint variables, the endpoint variables are
not all independent. Since there are p equations of con-
straint and (2n + 2) endpoint variables, there are only
(2n - p + 2) independent endpoint variables. The p
dependent variables are determined by the p equations of
constraint. Any p of the variables can be considered to
be the dependent variables. The choice 1s one of con-
venlence. ILet the p dependent variables be denoted by
the column vector w and the remaining (2n - p + 2) inde-
pendent variables be denoted by the column vectdr Z.
Let the vector | represent a vector whose elements are
the v, constraint functions. Equation (2.3.1) summa-

rizes these relations.

qfl(ﬂﬁl)l w4 Vq
1‘!2(1’[!2’.) Wo Vo
b= . W= . v o= : (2.3.1)
] 2
by, (W, ) W, Vg

qg=2n - p + 2
The identification of the elements of v and the

elements of w with the endpoints yio’yif’to’ and tp 15
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arbitrary except that the set of equations must con-

Yy
tain every element of w and, in addition, every ¢L equa-
tion must contain at least one element of w. It is con-
venient to define an additional column vector r, whose

first elements are the dependent variables and last

elements the independent variables:

1
z=|" (2.3.2)
V1
v
q
37"
With these vectors define [5?3?} as a (2n + 2) by
- *
o _3g )
(2n + 2) matrix with elements ai4 = 5};§§5. Let the
matrix & be defined by
Y = oy
? = 3w > (2.3.3)
1 oy
where Cii 1s a p by p matrix with elements aij = SWE
all;_. aqii
and -ai is a p by g matrix with elements aij =-§;3.

It is shown in Appendix A that the & matrix is the linear
transformation which transforms differential changes in

the independent variables into differential changes in
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the dependent variables. The & matrix has p rows and q
columns. Finally, define the (2n + 2) by q partitioned

matrix O as

0 = - (2.3.4)

where I represents a q by q identity matrix.
With these definitions the endpoint sufficiency
condition may now be stated:

2.3.1 Endpoint Sufficiency Condition. If E

represents a set of endpoints and multipliers [yid’yif’
to’tf’”z] which satisfy the transversality necessary
condition for endpoints, then a sufficient condition for
the set E to represent a local minimum of the function
J with respect to small allowable variations in the end-
points is that the guadratic form

*
QZTQT‘ [%%%;F] Q dv (2.3.5)

in the differentials dv must be positive definite when
evaluated at the stationary point E.
To implement this sufficiency test, it is neces-

sary to evaluate the elements of the matrix & and the

*
elements of the matrix {2%55} . EByvaluation of elements

of & represents no problem since the functional form of
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the constraints is specified in the problem statement.
However, the analytic evaluation of the second partial
derivatives of J* with respect to the endpoints is not so
simple.

The second partial derivatives of J* can be
obtained by taking the partial derivatives of the trans-
versality necessary conditions with respect to the end-

points L

* _
d dJ ) SG d )
e - A (2.3.6)
ari éyjo Briéyjo érl J b
d 37" 3G d
= + A (2.3.7)
Bri ( ayjf) Br.éyjf or Jltf)
d 37 36 >
S¥o St = + H 2.3.8
i to ) ariato aI’:'L { lto ( )
d 357 ) e 3
- - H (2.3.9)
ory ( otg ) Or;otp  ory ltf
where in the above equations 1 = 1,2,..., 2n+2. The func-

-tional form of G as a function of the endpoints is speci-
fied by the statement of the problem. However, the
functions Xj and H are not known functions of the end-
points until the state variable and Euler-lagrange differ-
ential equations have been integrated analytically.

Since analytical integration is often difficult

or impossible, it would be desirable to evaluate the
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partial derivatives of Ay and H with respect to the end-
points in terms of functional forms specified in the
statement of the problem. A complete set of relation-
ships of this type were not found. Unless future inves-
tigators establish such relationships, analytic applica-
tion of the sufficiency condition requires an analytic
solution of the state variable and Euler-lLagrange differ-
ential equations.

Some interesting relations of this type are easily

obtained however. FEach of the elements of the matrix
Cx
oJ i sed £ 4 partial
STST is composed of a sum of a second partia

derivative of G and a second term. The matrix can there-

fore be expressed as the sum of two matrices,

37" 3¢
[6?5:’5] = [W] + A (2.3.10)

where the matrix A is determined from equations (2.3.6) -
(2.3.9). Since 57 and G are of class C° by hypothesis,
both J* and G must be symmetric about their major diago-
nals. The obvious conclusion is that matrix A must also
be symmetric. By equating symmetric elements of A, the
following identities can be established:

O oA - N O\ 5
B L sAL = (2.3.11)



aHO" _ a;\".l'o'
yio Eto
aHf _ Bxid
Y10 tf
axif _ Bkjo
yjo Jif

In addition, the following relations

b5

ONLi

- (2.3.12)

£

OX . :
A (2.3.13)
.0
BHb

- S (2.3.14)
Oty

can be establisghed

by considering the functional relationships exhibited in

section 2.1.

£ o_ M , . if
Btf -9t if ot
BHf oX, £ ijf
= — + f. S
ip 9t If O¥iyp

(2.3.15)

(2.3.16)

Similar equations exist for the initial point.

Unfortunately, a sufficient number of these rela-

tionships have not been found to determine the elements

of A in terms of known functions in the problem statement.

The determination of further relationships and the ulti-

mate determination of the elements of A without resort to

analytical integration of the state variable and Euler-

Lagrange equations poses an interesting problem for future

investigations.
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Bolza (1961, pp. 102-103) gives an excellent
summary of the various classical approaches to the devel-
opment of necessary and sufficient conditions for vari-
able endpoint problems. The classical problem in the
calculus of variations is to minimize the integral of a
function F = F(x,y,y') unconstrained by differential
equations of constraint. Here x is the independent vari-
able, y is the independent variable, and y' represents
dy/dx. The first and second order variation of the
integral are written as &J and 62J, respectively, while
8§y and 6x represent variations in the dependent and inde-
pendent variables.

Because of the pertinence of Bolgza's remarks to
this presentation, his historical synopsis 1is quoted in
detail:

Three essentially different methods have been
proposed for the discussion of problems with vari-
able end-points:

1. The method of the Calculus of Varlatlons
proper: It consists in computing &J and §2J
either by means of Taylor's formula or by the
method of differentiation with respect to e,
and discussing the conditions &J = 0, §2J > 0.

The method was first used by LAGRANGE . . .[(1867,

pp- 338, 345)). He gives the general expression for
6J when the endpcints are variable, viz.:




o (2.4.1)

+ [Féx + F_,8y]
Y O

and derives the conditions arising from 86J = O.
The second variation for the case of vari-
able end-points was first developed by Erdmann

[(878, p. 364)]. He finds

e 2
62J‘:~/r R(usy' - ué6y) ax (2.4.2)
u
%o
+ [ F62X + F 62y + 2F _,8x8y + 2F_,6x8y"
yl , yl :y-l
f
dF 2 uf 2
0
where u is an integral of Jacobi's differential
equation . . . [(Bolza, 1961, p. 49 ]. By con-

sidering such special variations for which 8y =
Cu, he makes the integral vanish and thus
reduces the question to the discussion of the
sign of the remaining function of the variations
6Xi, 8¥ .5 & Xy 5¢y.. These variations are con-
nectted %y relgtions which depend upon the spe-
cial nature of the initial conditions

For the general integral

X

I=[  Fyyor sy 3y T sy, )ax
X, (2.4.3)

where yl,y seee sy, Bre connected by a number of
finite Or gifferential relations, the second
variation in the case of variable endpoints was
studied by A. Mayer . . .[(1896, p. L436)]; for
~the integral in parameter-representation

L
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e

J= F(x,y,x",y')dt (2.4.4)
t
O

by Bliss . . . [(1902, p. 132)].

2. The method of Differential Calculus:
This method is explained in a general way by
Dienger . . . [(1867)]. It decomposes the prob-
lem into two problems by first considering
variations which leave the end-points fixed, ,
and then variations which vary the end-points,
the neighboring curves considered being them-
selves extremals. The second part of the prob-
lem reduces to a problem of the theory of
ordinary maxima and minima. This method has
been used by A. Mayer in an earlier paper on
the second variation in the case of variable
end-points for the general type of integrals
mentioned above . . . [(Mayer, 1884, p. 99)]. It
is superior to the first method not only on
account of its greater simplicity and its more
elementary character, but because--by utilizing
the well-known sufficient conditions for ordi-~
nary maxima and minima~--it leads, in a certain
sense, to sufficient conditions if combined
with Weierstrass's sufficient conditions for
the case of fixed end-points . . . .

3. ZKneser's method: This method, which
has been developed by Kneser . . . [(1900)], is
based upon an extension of certain well-known
theorems on geodesics. It leads in the simplest
way to sufficient conditions, but must be sup-
plemented by one of the two preceding methods
for an exhaustive treatment of the necessary
conditions

Later investigators of variable endpoint prob-
lems, e.g., (Hbuseholdef, 1937), (Bliss, 1946), and
(Hestenes, 1966) have followed the first method quoted
from Bolza, "the method of the Calculus of Variations
proper." To the best knowledge of the author, there
have been no further developments or exposés using
"the method of Differential Calculus" since that of

Bolza (1904).



b9

The method developed in thig presentation is
essentially the second method, "the method of Differen-
tial Calculus," gqguoted above from Bolza. Paticular
attention should be paid to his remarks concerning this
method. These remarks are consistent with fundamental
propositions of the last three Sections, namely:

A comprehensive sufficiency condition for
variational problems with variable endpoints
is obtained by applying two independent tests,
Test A and Test B below, each of which is
applied separately. '

Test A. Satisfaction of the endpoint suffici~
ency condition given that the trajectory
satisfies necessary path conditions.

o

Test B. Satisfaction of the path sufficiency
conditions for the endpoint fixed.

In addition, Bolza's remarks indicate that

For a solution to be optimal, it is necessary

and sufficient that its endpoints satisfy the

endpoint sufficiency condition (Test A above)

and that its path satisfy the fourth necessary

condition with its endpoints considered fixed

(Test B above).
Although this presentation has not undertaken a rigorous
proof os this hypoﬁhesis, the examples and analysis have

‘given every indication that the hypothesis is valid.

2.5 Geodetic Example

As an example of the application of the suffi-
ciency condition for endpoints, consider the problem of
determining the minimum distance from the origin to any

‘point on a parabola of the form
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2
yvo=x" +D (2.5.1)
In control notation the problem may be formulated as
follows:
Minimize

J=[ as (2.5.2)

subject to the state variable differential constraints,

ax

G5 = CO8 g, (2.5.3)
Y _ sin (2.5.4)
ds &> o
and endpoint constraints,

Yo = 0, (2.5.5)
x, =0, (2.5.6)
5, = 0, (2.5.7)

2
Ye~%Xp b =0 (2.5.8)

The angle g is the angle between the positive x axis and
a tangent to the curve. Here x and y are the state vari-
ables, g is the controi variable, and s is the independent
variable analogous to t in the formulation of earlier

sections.

2.5.1 Necessary Path Conditions. The H and G

functions are

H =), cos g+ ky sin g - 1 (2.5.9)
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2
G = ul(yf—xf ~Db) oY Xy h oS, (2.5.10)

The adjoint-variable Euler-Lagrange equations are

Ay = O (2.5.11)

A, =0 (2.5.12)

and the control-variable Euler-Lagrange equatioh is

-\, sin g + xy cos g = O, (2.5.13)

Equations (2.5.11) and (2.5.12) imply that ) and Ay are

constants. Solving equation (2.5.13) for the control

by
tan g =-fl = constant (2.5.14)
X
which implies
A
sin g = Y (2.5.15)
2 2
'\/ Aty
M
cos g = (2.5.16)

o o
\/ - +7\y

The positive sign on the radical is a consequence of the

Legendre-Clebsh necessary condition (1.2.17).

2.5.2 Functional Relations. Integrating the

state variable equations (2.5.3) and (2.5.4) with the opti-
mal constant control g between the general initial point
(xo,yo,so) and general final point (Xf,yf,sf) results in

Xp = X = (sf - 8,) cos g (2.5.17)

3
ﬁ
H
%
o
1

(sp = 8,) sin g (2.5.18)
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Solving for the control

Yp =Yg

tan g ZM (2;5.19)

Squaring both sides of equations (2.5.17) and (2.5.18)

and adding yields the identity

+ (yf - yo)2 (2.5.20)

Solving equations (2.5.17) and (2.5.18) for the controls

gives
Xp = X
cos g = sf - 59 (2.5.21)
f 0
and
y -
sin g = ;2?2 (2.5.22)
i O

Since the control is constant, the control is not a func-
tion of the independent variable in this case. For other
problems the control may be a function of the independent
variable as well as the endpoints.

Integrating the state variaﬁle equations again
between the general initial point (xo,yo,so) and general
intermediate point (x,y,8) and substituting the optimal
control from equations (2.5.21) and (2.5.22), and

rearranging yields

Xf‘ - XO

X = XO +—S“;—-:~—§~(; (S - SO) (2.5.23)
Ve = ¥

v o=y, t o2 (s - 8) (2.5.2)

T o)
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It is seen from the above equations that the state vari-
ables are clearly functions of coordinates of the initial
and final state variables and of the initial and final
values of the dependent variable.

The first integral of the Euler-Ilagrange edqua-
tions is

Ay COS g + ky sing - 1 =0 (2.5.25)

Solving this equation with equation (2.5.13) for A, and

Xy and observing equations (2.5.21) and (2.5.22) gives

X, - X X, - X .
}‘"X = Sf — SO - f © (2.5.26)
f o)
W\/F(x -X )2 + (Y- )2
f "o Z>rf yo
Ve = ¥ Ve = Yo

A = (2.5.27)

UO —
U S 2 2
jv/ (xp-%6)" + (g ¥,)

Two forms are given above for the Lagrange multipliers

as functions of endpolnts; either is correct. If the
second set is used, the J* function will be independent

£ and Sq e In either case it is clear that the
Lagrange multipliers can be written as explicit functions

of s

of the coordinates of the initial and final states and of
the initial and final values of the dependent variables.
Equations (2.5.19), (2.5.23), (2.5.24), (2.5.26), and
(2.5.27) bear out the functional dependencies hypotbesized

for control, state, and adjoint variables in section 2.1.
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Note that in deriving these equations, only path neces-
sary conditions have been used. The transversality

necessary conditions for endpoints have not been .used.

2.5.3 Necessary Endpoint Conditions. The trans-

versality conditions, (2.2.6), (2.2.7), (2.1.12), and
(2.2.13) yield the following equations

*

0O yo

*
9 - Uy = Ay = O (2.5.29)
o ‘

a *
=y v Hy =0 (2.5.30)

?4
< O
|

éﬂ
=
i

= - 2y =0 (2.5.32)

1% T Ay

A
)
|

S5~ = = Aygp COS 8p - xyf sin ge T 1 =0 (2.5.33)

Since the initial point is fixed, the initial point trans-
versality equations give no useful information.

To find the optimal endpoints, eliminate My
between equations (2.5.31) and (2.5.32), yielding

xxf4—2xyfxf = 0 (2.5.34)

Substituting fo

(2.5.27) into equation (2.5.3L4) yields

and Ao from equations (2.5.26) and
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L +
—M/(Xffxo)g * (5’f“5fo)2 “V/ (Xf“xo)2 + (yf"yo>2

(2.5.35)
Finally, multiplying through by the radical and imposing

= 0

endpoint constraints (2.5.5) and (2.5.6) gives
x.(1 + 2 y.) =0 (2.5.36)

The necessary conditions are satisfied if either term in
the above equation is equal to zero. Solving equation
(2.5.36) and equation (2.5.8) simultaneously gives the

two solutions

PO}
i
o

Xp = + - Ve = —-% (solution A)

and (2.5.37)
X, =0 ye = b (solution B)

These endpoints and the corresponding multiple
solutions for b < - %~are shown in Figure 1.3 on page 1L,
From the symmetry of the parabola, it is expected that
either the plus or the minus sign in equation (2.5.37)
will determine a solution giving the same value of dis-
tance. For this reason a distinction has not been made
between the two. The necessary conditions used so far
have provided no means for determining under what cir-

cumstances solution A (or solution B) is the optimum.

In this case of multiple stationary solutions, the endpoint
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sufficiency condition will provide a means for deter-
mining the true optimum.

Before examining the sufficiency conditions, the
parameter Hq will be evaluated in terms of the general
endpoints for future reference. From equations (2.5.27)
and (2.5.31) it is observed that

Y o
py = = Ay = £L°o (2.5.38)

ﬁb/ (Xf—Xo>2 * (yf”yo)2

2.5.4 Sufficiency Endpoint Condition. To evalu-

ate the endpoint sufficlency conditions,'it is instruc-
tive to first determine the & and Q matrices of equations

(2.3.3) and (2.3.4). The constraints are

' Vo = O (2.5.39)
Vo, x, =0 (2.5.40)
¥3, s, = 0 (2.5.41)
Vi Ve - ng - b =0 (2.5.42)

Since there are four equations and six endpoints, there

are two degrees of freedom. For convenlency let x. and

f
Sp be the independent variables and VorXes8gs and Ve
be the dependent variables. Then in the notation of

section 2.3
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2
‘ yf-xf -b

(2.5.43)

Evaluating the matrix of partial derivatives of § with

respect to the independent variables gives

0

0

0
-2X

T

c o O O

(2.5.44)

Evaluating the matrix of partial derivatives of ¥ with

respect to the

tity matrix

Eq4

o O O =

©C O = O

O = O O

= O O O

dependent variables gives Jjust the iden-

(2.5.45)

The inverse of this matrix is obviously the identity

matrix.

matrix can be computed

From equations (2.5.44) and (2.5.45) the &
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a. 1 5 0 0

vl v o 0

% = -~ LEE} [5}2] = o 0 (2.5}46)
2Xf 0

The Q matrix is formed by adjoining to $ an identity
matrix with the dimensions equal to the number of inde-
pendent variables. In this case there are two indepen-

dent variables. The Q matrix is

(2.5.47)

H O O O O O

*
With the [E%g?J not yet evaluated, the endpoint suffi-

clency condition reduces to the condition that

2% |2 ¥
2 33 | 37
T £t
b O%7 3°7
*
3%
N 2
axf de
o %
d°T dsf
2x — o ¥
r Eggsyf o 5
32 7% aSf
98 0%

(2.5.148)

must be positive definite.
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Tf J* can be written so that it is not a function
of Spo the sufficiency condition will be reduced to a

simple inequality involving dx,. only. From the trans-

f
versality equations (2.5.31) - (2.5.33) and the func-
tional relations for Ay and xy, equations (2.5.26) and
(2.5.27), it is seen that this can be done.

Therefore, the sufficiency condition reduces to

the condition that

D % o % o %
{4X25J+&X d<g ]

2
o J_ ax.° > 0 (2.5.49)

. 2
S;nce dxf

thesis must be positive in order to satisfy the suffi-

is always positive, the expression in paren-

ciency condition:

20
hx = = + 4x +
f dy 2 f Byféxf 8xf2

2. 2 _* o %
J ) 3°I . ¢ (2.5.50)
T

This result is identical to the result that would
have been obtained if the fixed endpoint coordinates, Vo2
X and 56 had been excluded from the G function. This
‘situation is similar to the transversality necessary con-
ditions in that the initial points yileld no information.
From this example and previous experience with endpoint
conditions, the following conclusion is drawn: No useful
.information concerning either necessary or sufficient
conditions results from including in.G constraints which

merely fix a given endpoint coordinate.
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Substituting the functional forms for Xxf and

A not involving s. from equations (2.5.26) and (2.5.27)

vt f
* .
into the first partial derivatives of J with respect to

yp and X, in equations (2.5.31) and (2.5.32) gives
DT Yp = I
Sy S My T (2.5.51)
' V Grpg)? + rpevo)
f 7o Ve o
* -
dJ *r %o
-3;{1: = - Qule - (2.5'52)

“\/VZXf—XO)E * (yf{yo)2

Forming the required partial derivatives results. in

2 2
2 x (2% )% + (70-7)% - xo(x,-x)
g J2 T f "o fD o S e (2.5.53)
X
T
2% (Xpm=x ) (Vemv,)
0°J _ £ 70 £ 7o
2% (x,-%x)° b (Fo¥ )T (T )
a J - T O f O f f @] (2-5.55)
ay 2 D
f
2 _% (Vv ) (xa-x )
o°g f Yo f “o
.gi_g“y ™= - D (2'5‘56)
£7f
where

2 2-3
D = [(xpmx0)° + (7p-v0) 712 (2.5.57)

Comparing equations (2.5.54) and (2.5.56) verifies the
T2 K
symmetry of the [g;%;} matrix.
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Evaluatiné these derivatives using initial point
constraint equations (2.5.5) and (2.5.6) and uy from

equation (2.5.38) and substituting them into the endpoint

sufficilency condition, equation (2.5.50) gives

L ,
Ux o Xo¥p
2 2 2
v
+ 2 £ (2.5.58)
2 2
‘\/ Xp + Vg
2
Ve
+ > 0
2 2

For solution B (Xf =0, yp = b) this condition reduces to

%+2 > 0 (2.5.59)

From the geometry in Figure 1.3, it can be seen that

b is negative.: The condition therefore requires that

1

0O > Db > -3 (2.5.60)

"Then solution B as shown in Figure 1.3 is optimum.

. 1 1
For solution A (xf = 4 -5 -b , Vo = - ?9’

the end sufficiency condition (2.5.58) becomes

L2 1
b +2b + g
(- 3 - v)3/%

y (2.5.61)
- 0

>
V._.[l-...'b




62

Combining terms yields

4b% 4 30 + 5
(~.% - b)3/§‘ > 0. (2.5.62)
In order for the denominator to be real
b< -7 (2.5.63)

Under this condition inequality (2.5.62) is satisfied
only if
b < - = (2.5.6k)

Therefore solution A shown in Figure 1.3 is optimum for
b less than ~~%. The optimal solution is summarized below.

1
xp = 0, Y =D 0>b>-3 (2.5.65)

1 1
xfzi‘\/——%——b, Ve =-% b<-% (2.5.66)

This simple example has been analyzed in great
detall to emphasize the concepts developed in earlier
sections and to reinforce and illustrate the notation.

A more complex example of the endpoint sufficiency condi-

tion is presented in Chapter 5.
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2.6 A Numerical Algorithm

In order to apply the endpoint sufficiency condi-
tion, the matrix of second partial derivatives of J* with
respect to its arguments must be determined: From equa-
tions (2.3.6) - (2.3.9) it is seen that each of these
second partial derivatives 1is composed of two terms. The
first term, in all cases, is a second partial derivative
of the function G. This derivative can be computed
analytically from information given in the statement of
the problem. The second term of each second partial
derivative of J* can be written in one of the foilowing

forms:

=te (2.6.1)

 — (2.6.2)

£ (2.6.3)

or

where M represents any of the quantities H, Xl’ Xg, ey

xn and
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r represents any of the state variables y; or the
independent variable t.
These derivatives cannot be evaluated analytically with-
out obtaining an analytic solution to the set of state
variable and Buler-lagrange differential equations. For
most problems of pracﬁical interest in the calculus of
variations, the set of nonlinear étate variable and
Euler-ILagrange differential equations cannot be inte-
grated analytically. Therefore, the implementation of
the endpoint sufficiency condition in most cases requires
the numerical computation of partial derivatives of the
forms expressed in equations (2.6.1) - (2.6.4).
Fortunately, this is not conceptually difficult
for most problems in engineering which have separated
end constraints. End constraints are separated if none
of the endpoint constraints involves both initial values
and final values; the constraints always relate initial
values to other initial values, or final values to other
final values.
The function M evaluated at t = to will be indi-

cated by a subscript o:
Mo = Mo(yio’yif’to’tf) (2'6‘5)

The function M evaluated at t = tf wilill be indicated by

a subscript f:
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Mo = Mo (¥ o ¥ypstgste) -

Before the sufficiency condition test is applied,
the problem is first solved using the necessary condi-
. . . . . * ¥ ¥ h ¥
tions yielding nominal endpoints Vig? Yip- to’ and tf
* *
and nominal Lagrange multipliers xio and xif. For brev-
* ) x %
ity, let_go represent a vector with elements (ylo, Vog»
* * %
s Yoo to), and r, represent a vector with elements
* * * * * .
Yipr Ypps ++vs Tppo tf), and M be a function evaluated
with the nominal endpoints.

Numerically the derivative (2.6.1) can be approx-

imated as
, * * * *
oMy Mp(ry,, T, s Tyo T4 e
or. A
10
(2.6.7)

where A is a small change in the nominal initial vari-
able rio. If the state variable and Euler-lagrange equa-~
tions are then numerically integrated forward with the
nominal ILagrange multipliers, the final nominal endpoint
will not be reached. The n initial Lagrange multipliers
must be adjusted in order to obtain the final nominal
endpoint again. Since the n initial Tlagrange multi-
pliers give only n degrees of freedom, the nominal end-
point can be reached only if M is a function of n or

less than n independent final values. This will be true
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if there is at least one equation of constraint involving
the final values. With these new multipliers, the differ-

ential equations are integrated forward to the final point
%

Te- Mf is then evaluated from the resulting final Lagrange
*
multipliers and E With Mf evaluated, the desired par-

tial derivative can be evaluated using equation (2.6.7).
The derivative (2.6.2) can be approximated
numerically as

5 * . * * *
My Mo(Zgs Tps Tpps oees

arif A

(2.6.8)
In the above equation, Mo is evaluated by making a small
change in T?f’ while leaving all the other values
unchanged. A set of final Iagrange multipliers is then
determined so that a backward numerical integration in
time will yield the nominal initial values r.. The
quantity Mo is evaluated using the resulting initial
Lagrange multipliers and Ez. With MO computed in this
manner, the desired partial derivative can be evaluated
using equation (2.6.8).

The derivative (2.7.3) can be approximated numer-

ically as
3 * ¥ * * C X

r o Mp(rys Tops Tops > Typ T A ) = Mo g g
Oy b

Here, Mf is evaluated by making a small change in the
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.X_
nominal final point coordinate re while leaving all of

£
the other final coordinates and the initial point zz
unchanged. A set of initial Ilagrange multipliers is then
determined so that a forward integratioh from the nominal
initial point will yield the varied final point (rif,

*

*
Toes wevs Typ A, ...). The forward integration is then

performed to the varied final poiht, and M, is evaluated

f
using the resulting final Lagrange multipliers and the
coordinates of the varied final point.

The final derivative (2.6.4) can be approximated

numerically as

*
T cen, T
e} lo? “20° )

2 = (2.6.10)

io

* * * %
oM ~ M, (r ;

Here, MO is evaluated by making a small change in the
nominal initial point rio, while leaving all of the other
initial coordinates and the final point E; unchanged. A
set of final ILagrange multipliers is then determined so

that a backward integration in time from the nominal final

* *

‘point will yield the varied initial point (rlo’ Tpgs +oes
*

r, + A, ...). The backward integration is then performed

10

to the varied initial point, and MO is evaluated using
the resulting initial ILagrange multipliers and the coordi-
nates of the varied initial point.

Using the above techniques, the matrix of second

*
partial derivatives of J with respect to its arguments
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can be evaluated. Because of the identities (2.3.11) -
(2.3.14), there is some choice as to which of the above
derivatives is used to evaluate the sufficiency condi-
tion. It is a simple matter to numerically evaluate the
matrix  from the nominal initial and final points and
to test the matrix QT %;%; Q for positive-definitness.
The detalls of programs ;thten to perform these opera-
tions are left for discussion in Chapter 3.

Selecting the correct initial Tagrange multi-
pliers so that the desired final points aré,reached as a
result of integration 1s termed a problem with mixed end
conditions, or a two—point boundary value problem. The
numerical implementation of the sufficiency condition
depends strongly upon the existence of numerical tech-
‘niques for solving two point boundary value problems.

These techniques are explained in detail in the next

chapter.



CHAPTER 3
NUMERICAL SOLUTION OF TWO-POINT BOUNDARY VALUE PROBLEM

Whether one attacks optimal control problems from
the point of view of the classical calculus of variations
or by application of the Maximum Principle, one invariably
must solve a set of ordinary differential equations sub-
Ject to both initial and final boundary conditions. Such
problems are referred to as two-point boundary value
problems. The theory of ordinary differential equations
subject to initial conditions has been well developed,
both analytically and computationally, for some time.
However, the theory of two-point boundary value problems
has been slower to develop, especially from a computa-
tional point of view. 1In the past decade, however, signifi-
cant advances have been made in the application of large
scale digital computers to the solution of two-point
boundary value problems. The primary motivation for these
advances has come from the study of optimal control
theory (Handelsman, 1966; McGill and Kenneth, 1964).

This chapter discusses the use of a numerical

technique for solving two-point boundary value problems

69
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called the generalized Newton~Raphson method. Section
3.1 briefly describes the relationship of this method to
other numerical algorithms currently available. The
method is explained in section 3.2 and a brief discussion

of the actual computational procedure is given in section

3.3.

3.1 DNumerical Methods Available

Currently, there are many numerical algorithms
for solving two-point boundary value problems; the cur-
rent question 1is one of deciding which to implement. To
aid in this decision a brief comparison of available
computational algorithms is now made. The point of view
of Kalman (1964) is taken in the discussion which fol-
lows.

The cbmputational solution of optimal control
problems always requires that the following five condi-
tions be satisfied:

(1) state-variable differential equations (1.2.3)

(2) algebraic equations constraining state variable
endpoints (1.2.4)

(3) transversality algebraic equations (1.2.12) -
(1.2.15)

(4) optimal control conditions: max, H(yi,hisU,t)

(equation (1.2.11) or (1.6.2))
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(5) adjoint variable Euler-Ilagrange differential

equations (1.2.19)

The conditions above define a two-point boundary value
problem. Five computational algorithms which attempt to
satisfy these conditions by successive convergent approx-
imations are discussed below.

3.1.1 Flooding Technique. A great deal can be

learned about the optimal control of a system without
attempting to obtain a solution to the two-point boundary
value problem. If there are p unknown initial values,
the problem is first relaxed by not requiring p conditions
of (2), which constrain a final state coordinate, to be
satisfied. The problem then becomes an initial value
problem with one or more arbitrary initial values. If
the number of arbitrary initial values is one or at most
two, the method of flooding (Vincent and Brusch, 1966)
1s practical.

Solutions are generated satisfying conditions (1),
(3), (&), and (5) and initial conditions of (2). The
equations of conditions (3) and (4) are combined, elim-
inating the 9 parameters, to yield a cutoff function.
Arbitrary values for the unspecified initial variables
are chosen, and the resulting initial value problem is
integrated numerically until one of the zeros of the cut-

of f function is encountered, indicating the transversality
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conditions have been met. Using this method, the state
variable endpoints corresponding to the arbitrary ini-
tial values simply fall where they may. A family of
solutions is generated using the above technique by sys-
tematically varying the initial parameters throughout
their range. The family specifies the region of end-
point space throughout which solutions are possible.

In addition, a mapping is obtained between unknown ini-
tial values and final endpoints.

Since only a single integration is needed for
each solution, this method is economical for parametric
studiles when compared with more sophisticated techniques
described later. The technique economically generates
such a large number of results that solutions to all
points in endpoint space may be easily visualized and
areas of unusual interest quickly discovered. From the
resultant manifold of solutions, the solution to a par-
ticular two-point boundary value problem can be readily
approximated.

The disadvantages of this technigue are the
following:

(1) Exact solutions to particular endpoints are
not obtained. It is desirable, in the case of
multiple solutions, to compare directly two

differing solutions to the same endpoint.
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(2) Often no optimal endpoints exist for certain
ranges of initial values of the Lagrange multi-
pliers (Vincent and Brusch, 1966, pp. 27-28).
These ranges are difficult to predict and inte-
grations with initial values within these ranges

yield no useful information.

3.1.2 The Classical Indirect Method. To use

this procedure, a series of solutions satisfying condi-
tions (1), (4) and (5) are generated (see pages TO-T1).
This series converges to a solution satisfying cqnditions
(2) and (3). The usual method for satisfying conditions
(é) and (3) is to numerically generate a matrix of partial
derivatives of the final coordinates with respect to
unknown initial values. This is done by making a small
change in one of the unknown initial values and observing
the resulting changes in the final coordinates. By con-
sildering the final coordinates to be linear functions of
. the unknown initial values, a simple matrix inversion
~yields new initial values and the iteration is repeated.
The method requires good guesses for the initial
values of the adjoint variables, particularly for high
dimensional state spaces. The variations in the termi-
nal boundary conditions with variations in the unknown

initial values are often so sensitive that numerical
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solutions are impractical. For further discussion, refer

to Kopp and Moyer (1966, pp. 105-114).

3.1.3 Method of Gradients. This procedure is

initiated by making an initial estimate of the control as
a function of time; the corresponding trajectory 1is com-
puted, and the value of the performance index calculated.
The "direction" in state space for which the rate of
change of the performance index is greatest is then deter-
mined as a function of time. A small step is then taken
in the gradient direction. That is, at each point in
time, each state space coordinate is modified by a small
quantity proportional to the "projection'" of the gradient
vector on its coordinate axis. The performance index
is reevaluated and the iteration proceeds until the
value of the index is stationary. As opposed to the
indirect methods previously discussed which solve the
-first order necessary conditions on p. 70, this method
is considered a direct method, since a direct search for
the extreme value of the performance index is made.
Methods previously discussed have been indirect since
solutions have been generated using necessary conditions
of the Calculus of Variations.

In terms of the necessary conditions, listed on
p. 70, conditions (1) and (5) are satisfied by each solu-

tion of a series of solutions, and iteration proceeds
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until (2), (3) and (4) are satiéfied within some toler-
ance. Convergence of this method does not depend upon
good initial guesses for the controls. Although the
method is relatively easy to program, its efficiency is
limited, since the convergence slows in the neighborhood
of the optimal solution. For a complete discussion of
this theory, consult Kelly (1962, pp. 205-254). A
detailed discussion of a numerical algorithm with an
example is found in Hillsley and Robbins (1964, pp. 107-
134).

3.1.4 The Second Variation Method. The second

variation method (Kelly, Kopp, and Moyer, 1964) is also
termed a direct method, since a direct search is made

on the functional. Again a series of solutions satisfy-
ing conditions (1) and (5) is generated and iteration of
the solution proceeds until conditions (2), (3), and (4)
are satisfied. The main advantage of this method over
the method of gradients is that convergenée in the
neighborhood of the solution is much improved. The sec-
ond variation method determines the step size to be taken,
while the gradient method provides no indication of step
size. Again, convergence to a local minimum is independent
of the initial solution estimates. Unfortunately, the

computer time saved by this method is offset by computer
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programming which is significantly more complicated than

for the gradient method.

3.1.5 The Generalized Newton-Raphson Method.

This method, which will be discussed in detall in the
next section, is an indirect method. It differs from
classical indirect methods only in the technique used to
solve the two-point boundary value problem. Necessary
conditions (2); (3), and (4) are satisfied by each solu-
tion of a series of solutions, and an iteration is per-
formed in function space which converges to a set of
functions satisfying conditions (1) and (5). The deter-
mination of the step size is inherent in the method, and
convergence is rapid near the optimal solution. Pro-
gramming for this method is more complex than for the
gradient method, but less involved than that required for
the second variation method.

The convergence of this method depends upon the
choice of initial solution estimates. A sufficiency
theorem for convergence has been developed by McGill and
Kenneth (1963) for a general system of n second order
ordinary nonlinear differential equations. Unfortunately,
as the authors point out, problems of engineering interest
seldom satisfy the stringent conditions of the theorem.
The conditions of the theorem are sufficient, but not

necessary, and many investigators, including this author,
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have achieved convergence from elementary initial esti-
mates which do not satisfy the conditions of the theorem
(Moyer and Pinkham, 1964, pp. 91-106; Lewallen, 1967).
Sophisticated and effective algorithms have been devel-
oped by ILewallen, Tapley, and Williams (1968) for
stabilizing convergence of the iteration at some sacri-
fice in efficiency. With these techniques, convergence
envelopes have been achieved which permit initial esti-
mates, generated with some of the initial values in error
by over 100 per cent, to converge to the optimal solu-
tion. If initial estimates are in too great of érror,

the iteration diverges.

3.2 A Generalized Method of Newton—Raphsoﬁ

The Newton-Raphson method was first suggested by
Hestenes (1949) for obtaining solutions to fixed end-
point problems in the calculus of variations. The method
was expanded and developed by Bellman and Kalba (1965) to
include problems with a variety of boundary conditions.
Bellman and Kalba referred to the method as quasilinear-
ization. The method was applied to n-dimensional opti-
mization problems formulated in state variable, control
variable notation by McGill and Kenneth (1964). The
following discussion follows their work, except for the
section on variable endpoint problems with final time

free.
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3.2.1 An Iteration for Nonlinear Initial Value

Problems. Consider the following system of 2n nonlinear

differential equations:

¥ = F(y,t) (3.2.1)
subject to fixed initial point constraints

yj(O) = Yo j=1,2,...,p (3.2.2)

and final point constraints

i

yk(tf) = Vie k =1,2,...,2n-p (3.2.3)

where
F = (f

1:F0s 0 sf0)) (3.2.4)

£ P (¥sVps Vo) 1= 1,2,...,2n  (3.2.5)

vy = (ﬂflﬂl!g:---,ﬂ;gn_p_) (326)

If F is a function of t, F can be transformed into

an autonomous system by observing the change .of variable

Yons1 =t (3.2.7)

Yopt1 = % (3.2.8)

and adding the constraint

Y(en+1)o = © (3.2.9)

Thus, I may be considered as a function of only
y without any loss in generality; such a functional rela-

tionship 1s assumed in the following development.
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Consider the truncated Taylor Series expansion
of F(y) about some nominal state function y°(t) which
satisfies initial condition constraints but does not

necessarily satisfy equation (3.2.1):

=
k<
=
-+
]

”gm%ﬂ1+[§}m%w~z%w1@£¢m

F(t) = [y (8),55(t) . 5¥pp(t)] (3.2.11)

and{;gg] is recognized as the Jacobian of the vector func-
tion..ﬂHereizo(t) may be identified as an estimate to the
solution of equation (3.2.1). If, at any time t, a new
trajectory ll(t) is not equal to the estimate Z?(t),
equation (3.2.10) gives an approximate formula for esti-
mating values of the vector function F [Z;(t)]. By sub-
stituting the linear approximation for EXI}) from equa-
tion (3.2.10) into equation (3.2.1), a linearized approx-
imation of the nonlinear differential equation results:
yh(e) = [%ﬂ 7' (8) +{ FIy°(8)] - [2%} 7o (t)

(3.2.12)
OF o , '
Since [gyJ and y (t) are known functions of time, equa-
@

tion (3.2.12) is recognized as a vector linear differen-
tial equation with time varying coefficients. The quan-
tity in brackets is the driving function, a known function

of time.
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It i1s assumed that the solution of this linear-

ized differential equation will give an approximate solu-
tion to the nonlinear differential equation subject to a
given set of initial conditions. In particular, suppose
that the SOlutiOD'll(t) found by integrating equations
(3.2.12) is, in some sense, a better approximation to
the solution of equation (3.2.1) than y°(t). If this is
the case in general, an even better approximation for
the solution of the nonlinear equation could be obtalined
by discarding Z?(t) and integrating the linearized egqua-
tion again, this time regarding the new solution‘zl(t)
as the solution estimate; Evidently this process could
be repeated any number of times. Iteration (n + 1) can

be written as

. OF oF
n+l [ y} Zﬁ+l + E(ln) - [5§{] XF (3.2.13)
o n n

I

The superscripts here are iteration indices and do not
represent exponentiation.

The iteration represented in equation (3.2.13)
is termed a generalized Newton-Raphson iteration, since
it may be obtained from a direct generalization of the
Newton-Raphson operator for finding roots of a scalar
equation (McGill and Kenneth, 1964, p. 1762). The
question of convergence of this sequence has been pur-

posely avoided, since even heuristic arguments are quite
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complex. It is again noted that a sufficiency theorem
for convergence does exist for systems which satisfy cer-
tain stringent requirements on the set of differential

equations and on zé(t) (McGill and Kenneth, 1963).

3.2.2 Problems with Fixed Boundary Codrdinaﬂes.

Up until this point the boundary conditions of equation
(3.2.3) have been ignored. The above arguments have
simply shown that a series of solutions to a linear
initial value problem will, under appropriate circum-
stances, converge to the solution of a nonlinear initial
value problem. But now, with linear differential equa-
tions, the two-point boundary value problem 1s tractable.
If the known final coordinates and the final time are
fixed, the principle of superposition may be applied to
equations (3.2.13) to satisfy the boundary conditions
represented by equations (3.2.2) and (3.2.3). For con-
venilence rewrite equation (3.2.13) for the general

(n + 1) iteration as

Y = Ay + B (3.2.14)
where ,
[oF

A = {B—i}n (3.2.15)

37
B =F(y) - [B‘EL i (3.2.16)
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At this point it is convenient to consider that the ele-
ments of y (and, of course, F) have been ordered so that
the p variables having known initial conditions are the
first elements of y and the (2n - p) states having
unknown initial conditions are the last elements of y.
This is in no way necessary. It is simply noﬁationally‘

and computationally expedient.

The homogeneocus part of eguation (3.2.14) is

vy = Ay (3.2.17)

Consider integrating this equation forward (2n - p) times
with the initial vectors chosen as follows: For each
integration, each element of the initial vector is zero
except for one. For the first integration, element

p + 1 is chosgen to be 1. For the nth

integration, the
(p + n)-th element is chosen to be 1. The reason for
using these particular initial vectors to generate inde-
pendent solutions to equation (3.2.17) will become
apparent later.

Let H be a matrix of resulting homogeneous solu-
tions whose general element a, . is y,(t) generated with
initial starting vector Xok defined above. In other
words, the k-th column of H is the solution vector y(t)
corresponding to initial vector Io .' H has (2n - p)

columns and 2n rows. Since equation (3.2.14) is linear,

the principle superposition applies, and a general



83
solution to (3.2.14) can be written as the sum of a par-
ticular solution to the non-homogeneous equation and
(2n - p) linearly independent solutions of the homogene-

ous equation. In particular -
y(t) = H(t)e + x(t) (3.2.18)

where ¢ 1is a vector of arbitrary constants and where g(t)
is any particular solution of (3.2.14), which satisfies
initial constraints of equation (3.2.2). In particular let
x(t) = ln+l(t), the most recent estimate for the optimal

solution. At the final point this becomes

Lo

= H(tf)g_+-§&, (3.2.19)
Equation (3.2.19) represents 2n equations in the (2n - p)
arbitrary c's. However, p of these equations are of no
interest since they involve variables which are not con-
strained. Form the vectors Z% and 5% by deleting the p
elements corresponding to states not involved in the
final constraints. TForm H‘(tf) by deleting corresponding
rows of Hp. H' is a (2n - p) by (2n - p) matrix. Then
the pertinent equations may be written

!

ye = H'(tp)e + xp (3.2.20)

The elements of ¢ in eqguation (3.2.20) can now be selected

to satisfy the required final boundary conditions.
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e = [H‘(tf)]"l [ye - %l (3.2.21)

The corresponding initial conditions are found by evalu-
ating (3.2.18) at t, and substituting c from equation
(3.2.21). Note that the first p rows of H(to) are all
zero, while the last (2n - p) rows and columns form an
identity matrix. Thus, the vector ¢ does not affect
known initial conditions and equation (3.2.18) becomes

simply

Vio = 1 T %40 i = ptl,p+2,...,2n (3.2.22)

where the c;'s are given by equation (3.2.21). The
advantage of choosing the initial vectors as described
following equation (3.2.17) is now apparent. The Yio
values are referred to as the updated initial values, and
the s values are referred to as the updates.

If equation (3.2.14) is integrated forward, with
the updated initial values from equation (3.2.22), the
desired final endpoints will be approached. Under appro-
priate circumstances, the resulting endpoints will be
closer in a Euclidian sense to the desired final endpoint
than that of the old solution.

A complete iteration in solving the boundary value
problem has now been made, and the entire process can be

repeated again as follows:
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(1) For a given set of initial values, repeatedly

evaluate new values for yn+l

using equation
(3.2.13) until the solution of the linear dif-
ferential equation (3.2.14) is a close approxi-
mation to the solution of the nonlinear differ-
ential equation (3.2.1).

(2) Form the H matrix by integrating equation
(3.2.17) with the appropriate initial vectors.
Use the resulting final values to update the
initial unknown values using equations (3.2.21)
and (3.2.22). '

(3) Repeat until the boundary values and the solu-

tion are within specified tolerances.

Note that step (1) may require 5 to 10 integra-
tion iterations. Experience indicates that it is unneces-
sary to obtain an accurate approximation to the nonlinear
differential equations before updating the initial values.
In practice, step (2) is performed after every integra-
“tion of equations (3.2.14) and (3.2.17), except when two
consecutive particular solutions differ considerably.
Consequently, the convergence on the boundary conditions

is simultaneous with the convergence on the solution.

3.2.3 Variable Final Point Boundary. The method

for variable endpoints is essentially the same as that
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for fixed endpoints. Only a modification in obtaining
the initial value updates ¢ need be made.

Two methods have been suggested for handling such
problems with an unspecified final time. Long (1965)
suggests a change in independent variable, t = as, where
8 1is the new independent variable with a range of
O < s < 1. The variable a is appénded to the system as
a pseudo-state variable whose derivative with respect to
s is zero. The method works well. However, a relatively
complex term corresponding to the new state variable, a,
must be added to each differential equation. A second
method has been developed by Iewallen (1967) and is the
method followed below.

If the final time is free, there must be 2n + 1
boundary conditions to completely specify the solution.
If, as before, there are p initial coordinate constraints,
there must be (2n + 1 - p) constraints involving the .

final point. ILet these be represented by

i=1,2,...,2nF1-p (3.2.23)

=
e
~~
<
H:, -
p g
il

*
Vir
or
L o
i(yp) = 4%
where &% represents a constant vector of desired values

for the final constraints. If the terminal constraints

(3.2.23) are not satisfied, the difference between the
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desired value y? and the actual value ng%) is called the

terminal constraint dissatisfactions Ay:

M = % - 3 (y)) (3.2.24)

The terminal constraint dissatisfactions can be linearly
approximated by summing
(1) the change in § due to small change in its argu-
ments Az%, assuming the final time fixed and
(2) the change in § due to a change in the final

time Atf assuming the final state fixed.

Symbolically this is

fm;f (3.2.25)

1 dy
— ) ! —
- ogp)ont

An equation has already been obtained from which Az% can

be expressed. Rewriting equation (3.2.20) gives

Mrp = xh - ox = E(bg)e (3-2.26)

P

Substituting (3.2.26) into (3.2.25) yields

oY dy
—_ ! J—
AL _[gi—fr] H' (tp)e + 5T fAtf (3.2.27)
di
The values for i can be computed directly from the
dy' f
values of Tt using the differential equality
£
ay| _ [ob 1dy’ (3.2.28)
at £ oyl | d £
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dy'
— are avallable as
dat £ v
a result of the last step taken in the numerical integra-

The values for the vector

tion of the particular solution. Substituting equation

(3.2.28) into equation (3.2.27) and simplifying yields

o dy '
— T o
dy'
In practice, the column vector HE_] is adjoined to the
bl
matrix H‘(tf) and equation (3.2.29) is written
oy ( dy'
= ! —_— 1
A.ﬁ‘_ - {6&?} {H (tf) : Jdt }E (3230)
where
€1
Co
c! =
Cq—l
Atf

The updates for the initial values, c and At can be

f)
solved for using equation (3.2.30) by a simple matrix

multiplication and matrix inversion.

3.3 An Example of the Modifiéd Newton-Raphson Method

As an example of theory developed in the previous
section, consider the solution of the two-point boundary
value problem arising from the optimal orbital mechanics

problem posed in Chapter 5. To apply the modified
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Newton-Raphson method, the set of differential equations
to be integrated must first be linearized. hIn terms of
the theoretical development, the elements of matrix A and
vector B, defined by equations (3.2.15) and (3.2.16),
must be determined. For illustration, consider the u
equation, equation (5.1.50), which is repeated below for

convenience.

'__F . ] o1 B
u =i 5 sin g = £, (3.3.1)

The elements of the vector y for this problem are

[u,g,R,ku,xg,xr]T. According to equation (3.2.15) the

partial derivatives of f., with respect to the elements

1
of y form the first row of the A matrix. These deriva-

tives are listed below.

.2
of . of A A
_ 1l 1l _F u' g ~-3/2
All '5?:[—— . T M ——-—-'—3*—~D (3.32)
u
of of
1 1 1
fo =3y, "o Tt e (33.3)
of ., of
_ 1l _ 1 2 .
A3 =3y, “OR "3 Sh e (3-3-4)

Cg_ 3/ (3.3-5)






91
B vector are exhibited in FORTRAN in subroutine DIFFL of

Appendix B.
Next, the boundary conditions mugt be linearized.
i
To do this the elements of the matrix {Big{]mUSt be

determined. For the optimal orbital mechanics problem,
T .
|
e = [uf,gf,Rf,kuf,ng,xrf] , since all of the elements
of Jp are involved in the constraints. Following the
notation used in Appendix B, this matrix is called HPAR.
The constraint equation (5.1.29) is repeated below as an

example.
=72 -1 % (3.3.11)

The elements of the first row of HPAR are given below.

oY o
1 1
PA Ny o 0 1
HPAR1p = 35,0 = 3%, = (3.3.13)

3y oy

I . . |

HPAR, 5 = Vot T W, ng (3.3.14)
HPAR,) = HPAR)g = HPAR g = O (3.3.15)

All the elements of the HPAR matrix are exhibited in
FORTRAN in subroutine BOUND of Appendix B. Once the pre-
liminary work of linearization has been performed, the
generalized subroutines exhibited in Appendix B can be

used directly.
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Subroutine QUASI controls the generation of a
solution to a two-point boundary value problem. Although
the listing of this subroutine in Appehdix B is intended
to be self-explanatory, a general description of the com-
putational procedure is in order. FEach generalized
Newton-Raphson iteration requires the generation of a
particular solution and (2n - p) homogeneous solutions to
equation (3.2.14). Since each solution has 2n independent
variables, one iteration requires the integration of
2n(2n - p + 1) first order differential equations. Each
of these solutions could be generated separately: How-
ever, 1f rapid access memory is limited, thils method is
computationally inefficient since matrix A(t) must be
evaluated (2n - p + 1) times. Instead, all (2n - p + 1)
solutions are generated simultaneously. At any given
time in the integration, matrix A need only be evaluated
once in order to integrate all solutions forward one
step. This method also saves considerable tiﬁe in com-
putational overhead.

Before solving the two-point boundary value prob-
lem, an estimate of the initial solution is stored in
matrix XOLD at discrete times differing by a constant
increment A. XOLD is defined so that XOLD(i,1) =
v;(t,) and XOLD(1,J) = v (t, + (3-1)8).

A summary of the operation of subrohtine QUAST is

given below.
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(2)

(3)

()

(5)

(6)
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Set the elements of matrix A and matrix B which
are not functions of time to their initial val-

ue

n

(call DIFFI).

Set up initial vector X of length 2n(2n - p + 1)
to be integrated. The elements of X correspond
to the initial vectors for the particular solu-
tion and (2n - p) homogeheous solutions needed.
Integrate all equations to the final time esti-~
mate. After each integration step, store the
new particular solution in XOLD. The old par-
ticular solution, which has just been used to
evaluate A and B, is of no further use and is
destroyed.

Evaluate the updates to the unknown initial
values and to the final time estimate (call
BOUND) .

Change the unknown initial conditions and final
time by a fraction of the nominal updates. The
fraction used depends upon certain convergence
and stability criterion.

Determine if the solution has converged to
within desired tolerances. If not, return to

step 3.

The actual integration in step 3 is performed by

subroutine RUNKUT which calls subroutine DLSUB to
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evaluate the right hand side of the first order differ-

ential equations being integrated. DLSUB in turn calls

subroutine DIFFL,

which evaluates matrices A and B using

the old particular solution stored in XOLD. Using A and

B, subroutine DLSUB then evaluates the right hand sides

of the particular
tions and returns
RUNKUT integrates
subroutiné QUAST,
and determines if
This procedure 1s

encountered. The

and all homogeneous differential equa-
these results té RUNKUT. Subroutine
forward one step and returns control
which stores the new solution in XOLD
the final time“has been encountered.
repeated until the final time is

details of these programs are described

in the FORTRAN listings of Appendix B.



CHAPTER L
THRUSTING HARMONIC OSCILLATOR

This chapter deals with the occurrence of mul-
tiple stationary solutions for prbblems having bounded
control and periodic solutions. Such multiple solutions
have been observed in a nonlinear orbital mechanics
problem discussed in Chapter 5. In order to gain some
insight into the latter problem, it is desirable to
investigate first a simple linear problem which exhibits

similar multiple solutions.

WSO NN

Fig. 4.1 Thrusting Harmonic Oscillator

95
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Consider a mass m which is connected vertically
to an inertial reference by a spring and dash pot as
shown in Figure 4.1. The spring constant per unit mass
i1s represented by k, and the coefficient of damping per
unit mass is represented by c. The mass is capable of
broducing a bounded thrust per unit mass of T in the
upward direction only. The mass is assumed constant.
The equations of motion for this thrusting harmonic

oscillator are

v =T - cv - kx k>0, c >0 (4.1.12)
X =v (k.1.2)
0<T<T. .. (4.1.3)

where
X is the position of the mass measured in an
upward direction from its equilibrium posi-
tion

v is the mass velocity.

The problem is to transfer the mass from rest
to a given final height h while minimizing the control

effort,

J=[ Tat (&.1.4)
t
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The boundary conditions (algebraic equations of con-

straint) for this problem are
x_ =0 v_ =0 t_ =0 (4.1.5)

X, = h v

£ is free t. is free (4.1.6)

T f

The Hamiltonian and G functions may be written as

H=2,(F-cv - kx) + 1, v - F

Il

(, - LF = A (ev + kx) + v (L.1.7)

G

il

ul(xf - h) S (4.1.8)

The initial point constraints have not been included in
the sum G above, since doing so provides no useful infor-
mation. Since H is not an explicit function of time,

the first ihtegral implies that H is equal to a constant.

The adjoint variable Fuler-Iagrange equations are

> .
il

v = A,C T A (4.1.9)

and

A, = Ak (4.1.10)

The control switching function is seen from equation

(k.1.7) to be
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Therefore, the Maximum Principle (see section 1.3.5)

yields the following control algorithm:

T =20 kv -1 <20
0<T<T . A, - 1=0 (4.1.11)
T =T . Ay T } > 0

For singular control, that is, intermediate thrust,
xv must equal 1, and all the time derivatives of xv must
be O. If this is the case, equation (4.1.9) requires
A, = c; therefore, ix is zero and equation (4.1.10)
requires k = 0. This contradicts the assumptions of the
problem and singular control is ruled out. The control
must be bang-bang.

Solving equations (%4.1.9) and (4.1.10) for i

gives

C
A, = égt(A sin bt + B cos bt), (4.1.12)
if
¢® - bk < 0
where
b =-%(4k—02)1/2 (4.1.13)

The case of ¢ - Mk_i O is not of interest since the
physical system does not exhibit periodic oscillations

under these clrcumstances.
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The possibility of null thrust

T(0T) = 0 (4.1.14)

for the initial control will not be considered since the
state would remain unchanged. Starting with maximum
thrust it is seen from equation (4.1.7) with H(O) = O

(to be shown) that
A, (0) = =1 (k.1.15)

In order to maintain T = Tmax at the next instant of
time,

A, (0) =2, & positive constant (4.1.16)

The function Ay is shown in Figure 4.2 for a
typical set of parameters. Note that the envelope of max-
imum points 1is asymptotically increasing. The correspond-
ing control is shown in Figure 4.2b. Notice that T = T ox
for xv > 1, and T = 0 for xv < 1. The control is seen to
be a series of thrusting intervals separated by coasting
or null thrust intervals. Each thrusting interval is
longer than the previous one. However, since the period

P of xv is fixed, no thrusting interval can be longer

than the P/2. The transversality conditions require that

Ayp = O (4.1.17)
Hp = 0. (4.1.18)
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The former condition is the cutoff condition and the lat-
ter condition requires that H = O throughout. If these

conditions are satisfied, equation (4.1.7) gives

by v, - F =20 (L{.l.3_9)

Since A . = O by equation (L.1.17), it can be seen from

equation (4.1.11) that

Fo =0 (4.1.20)

Since ivf is always negative (see Figure U4.2), equations
(4.1.17) and (4.1.9) determine that - # 0. Thus,

equations (4.1.19) and (4.1.20) require that

ve = O (4.1.21)

Although analytic solutions can be obtalned, the
evaluation of the boﬁndary conditions becomes tedious for
solutions with multiple thrusting intervals. The nature
of the solutions is easily observed with the aid of
numerical integration. A parametric flooding technique
(see section 3.1.1) is practical, since solution curves
are members of a one parameter family of curves with

or equivalently, x.__.. That is, all pos-

arameter
p xx VO

O}
sible solutions can be generated by continuously varying

A from O to + .
VO
With a value chosen for xvo’ differential equa-

tions (4.1.1), (4.1.2), (4.1.9) and (4.1.10) are



Switching
Value

Cutoff
Value

max

1

0

101

4

1 Thrust
Final Point

N\

Final Point

t
T
€
X
3 Thrust
Final
2 Thrust Point

\/

Fig. 4.2 The Cutoff Function, Thrust Magnitude

and Helght



102
integrated until one of the zeros of the cutoff funétion,
eqguation (4.1.17), is encountered. As described in sec-
tion 1.3.4, the zeros of the cutoff function represent
points satisfying the transversality conditions.

Since v is obviously a periodic function for
¢® - Ik < 0, equation (4.1.21) implies that the cutoff
function is satisfied during each\period of oscillation.
Since a thrusting interval occurs during each period,
solutions exist with any number of thrusting periods.

The existence of multiple stationary solutions
is easy to observe. ILimits exist on the range of ﬁosi-
tive heights that may be reached by a solution with any
spécified number of thrusting intervals. For a solution
with two thrusting intervals, the minimum specified
height which can be optimally reached may be found by
setting ivo = ¢ and numerically integrating until the
third zero of the cutoff function A, oceurs. It can be
seen from Figure 4.2 that as € approaches O, the length of
the first thrusting interval approaches 0. On the other
hand, as ivo approaches + «, the length of the initial
thrusting period approaches P/2, the maximum allowable.
In this way the range of achievable positive heights can
be computed.

Figure 4.3 shows the range of heights which can

be reached for solutions with up to seven thrusting
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intervals. Note that all heights between .13 ft. and
some maximum attainable height can be reéched in more than
one way. Heights between .41 and 1.99 ft. can be reached
by solutions with one, two, or three thrusting periods.
Each of these solutions is a stationary solution satisfy-
ing the first three necessary conditions of section 1.2.
Here is a clear case of nmultiple étationary solutions.
The number of stationary solutions to a given height
increases as the given height increases. From Figure
4.3 it can be seen that a height of 5.77 ft. can be
reached with from three to seven thrusting intervals.

Although each of these solutions satisfies neces-
sary conditions for optimality, Figure 4.4 shows that
the effort required to achieve a given height is differ-
ent for each mode of transfer. Only one global optimum
exists in each case. To reach a height of 5.77 ft.

requires an effort of 9.42 1b_.-sec. using three thrusting

f
intervals. By using the optimal four thrusting intervals,

the effort can be reduced to 8.36 lb.-sec. Five thrust-

T

ing intervals requires an effort of 8.80 1lb.-sec.

f

Although not verified analytically, it is evident
that each solution to a given height satisfies the end-
point sufficiency condition developed in Chapter 2.

That is, each solution represents a local minimum of

effort with respect to small variations in the final-
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velocity. This conclusion may be drawn from energy con-
siderations. From an energy standpoint, the oscillator
will gain the maximum amount of energy by centering each
thrusting period about the maximum positive oscillator
velocity. Therefore, if the length of each thrusting
period is fixed at the optimum value, but the time of
thrust initiation is changed slightly, the oscillator
will gain less than optimum energy from each thrust and
consequehtly aﬁtain a less than optimum height.

Without further sufficiency conditions, no cri-
teria exist for selecting the global minimum for this prob-
lem. There seems to be little hope for the development
of global sufficiency conditions from the calculus of
variations in its current formulation. The reason for
this is apparent. The necessary and sufficient conditions
that have been developed to date are effective only in
determining trajectories which are local optimums. That
is, only §g§;l_variations in the state variable trajec-
tory are considered. It is clear that the state trajec-
tory for a two thrust control program is not a small
variation from the state trajectory for a single thrust
progran.

Referring to similar multiple thrusting impulses
involved in optimal orbital transfers, D. F. Lawden (1963,

pp. 112-114) concludes the following:
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. the conditions we have found for an
optimal trajectory serve only to identify
maneuvers which are optimal relative to small
variations of the thrust program. This implies
that a number of such optimal trajectories may
be available in any particular case and we have
no criterion, other than direct comparison of
the characteristic velocities [performance 1ﬂdey]
of each, for deciding which represents the ab-
‘solute optlmal mode of transfer

. modes employing two or more 1mpulses and
satisfying all of the [necessary] conditions may
also be found and these, also, will represent
relative optima. It is clear that the theory, in
its present state, requires that we should first
choose the order in which the various thrust
phases shall succeed one another, and our [neces-
sary] conditions will then select the relative
optima from the class of all programs for which
the thrust sequence follows the chosen pattern.
No criteria is known for which the optimal pat-
tern can be ascertained beforehand.



CHAPTER 5
AN OPTIMAL ORBITAL MECHANICS PROBLEM

This chapter considers the problem of transfer-
ring a low thrust space vehicle ffom an initial circular
orbit to any coplanar elliptic orbit of given energy and
angular momentum. The problem is to determine the thrust

program so as to minimize
tf
J=[ mT(t) dat

t
o

where T(t) is the magnitude of the thrust. A typical
transfer is shown in Figure 5.1. The final argument of
periapsis Wes the final true anomoly Pps the final range

angle T and the final time t_. are all unspecified and

e i
considered free. For such transfers from an initial
circular orbit, the orientation of the final orbit is of

no concern, since once w. is known, any desired orienta-

£
tion can be optimally achieved by simply coasting in the
initial circular orbit for an appropriate period of time.
Many investigators have turned their attention
to optimal orbital transfers in the past two decades.
Bell (1968) gives an excellent survey of problems which

have been investigated, including a bibliography with

108
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160 entries. Recent investigations concerning the mini-~
mum fuel problem have followed two distinct approaches.
In the first approach, simplifying assumptions are made
which allow analytical treatment of some problems.

Lawden (1963), Robbins (1965), and others have
analytically treated minimum fuel transfers using an
impulsive approximation. McIntyré and Crocco (1966;
1967) have examined minimum fuel transfers between circu-
lar orbits under the condition that the separation of
the orbits is small and have found analytic approximations
exhibiting multiple thrusting periods. ‘

Problems concerning minimum fuel orbital tranée
fers with low thrust have usually been investigated
using a computational approach. Numerical studies of
this problem have been made by McCue (1967), Handelsman
(1966), and McCue and Bender (1965). Both analytic and
numeric investigations have contributed substantially to
the understanding of the problem of minimum fuel orbital
transfers.

In the first section of this chapter, this partic-
ular problem is set up and the optimization conditions
derived. An instance of multiple stationary solutions
not noted by previous investigators is described in sec-
tion 5.2. 1In section 5.3 the endpoint sufficiency condi-

tion for this problem is described and the computational
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procedure for implementing it is discussed. In section
5.4, several cases of multiple solutions are illustrated
with trajectories in semi-major-axis-eccentricity space.
The final section describes the general nature of the

low thrust orbital transfers which were investigated.

5.1 Analysis

Using a natural coordinate system, the differen-
tial equations governing the dynamics of a space vehicle

shown in Figure 5.1 are

. T ”M‘ .
vV == CcOS X - u2 sin g (5.1.1)
r
- _ T . GM \4
g = —I_n—x7 s1in X - '—"2— cos & +"I: cos & (5'1'2)
v
r =v sin g (5.1.3)
. T
mo= - (5.1.4)
e
: \4
£ = cos g (5.1.5)

where
v = velocity magnitude
g = flight path angle (the angle from the local
horizontal to the velocity vector)
r = radial distance from the gravitational force
center to the vehicle
m = vehicle mass

f = range angle (f(t ) = 0)
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x = thrust vector control angle (the angle from
the velocity vector to the thrust vector)
T = thrust magnitude

G = universal gravitational constant

M = mass of the gravitational force center;
constant
v, = engine exhaust velocity; constant

In deriving the above equations, only planar
motion about a homogeneous, spherically symmetric central
body has been considered. The vehicle has been assumed
to be a point mass with mass much less than that of the
gravitational force center. In addition, it is assumed

that the thrust magnitude is bounded by

It is useful to nondimensionalize equations
(5.1.1) - (5.1.6) in order to compare orbital transfers
about one central body with those about another. The
non-dimensionalization is based upon the energy of the
initial orbit Eo and variables associated with a circu-
lar orbit having the same energy.

For this purpose define the following constants

GM*mO
R. = op (5.1.7)

O




where

= initial vehicle mass
= acceleration constant

= angular momentum constant

113
(5.1.8)

(5.1.9)

(5.1.10)

(5.1.11)

(5.1.12)

With these congtants, the following nondimensional vari-

ables are

R

defined
r . . .
=F = nondimensional radius
c
= %~—= nondimensional velocity
c
t . . .
=g = nondimensional time
c
m . .
=5 = nondimensional mass
o)
= mTa' = nondimensional thrust
1

(5.1.13)

(5.1.14)

(5.1.15)

(5.1.16)

(5.1.17)
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Il

_ R
B =5
C

nondimensional energy (5.1.18)

h =-%— = nondimensional angular momentum (5.1.19)
c

Substituting equations (5.1.13) - (5.1.19) into the sys-
tem differential equations yields the following nondimen-

sional system equations:

uf =-%.cos X ~~i§ sin g (5.1.20)
gt = %ﬁisin b —-%-cos g +:% cos g »(5.1.21)
R™u
R' =using (5.1.22)
mt - - I (5.1.23)
e
! =-% cos g (5.1.24)

where the prime indicates differentiation with respect to
the nondimensional time r.
The problem to be investigated then is that of

minimizing Tr
J =j F dr (5.1.25)

subject to differential constraints (5.1.20) - (5.1.24)

and endpoint constraints
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u, - 1= 0 (5.1.206)
8o = 0 (5.1.27)
RO ~1=0 (5.1.28)
1.8 - "11?5 -0y =0 (5.1.29)
Rfuf cos gp - Ch = 0 (5.1.30)
where CE and Ch are constants.

Constraints (5.1.26) - (5.1.28) specify an initial circu-
lar orbit. Equation (5.1.29) specifies that the energy

of the final orbit is to be C, and equation (5.1.30)

E
specifies that the angular momentum of the final orbit is

to be Ch' The final energy and angular momentum specify

the shape of final orbit, but not the orientation.
To determine the necessary conditions for a mini-
mum fuel orbital transfer, the H and G functions, equa-

tions (1.2.7) and (1.2.8), are first formed:

_ F 1,
H =2, [M cos x - Eé sin g]

b . l u
g 45 sin x - Eg; cos g + % cos g] (5.1.31)

ﬁrﬁ
!
=

+ AL [u sin g] - A e
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Equation (5.1.2&) need not be included in H, since f is
an auxiliary variable not directly coupled to the other

equations. The G function is

T -
G = pq [guf R CE] + o [Rfuf cos go Ch] (5.1532)

Constraints (5.1.26) - (5.1.28) have not been included in
the G function, since doing so would yield no useful infor-
mation. Forming the adjoint varlable Euler-Ilagrange

differential equations, equations (1.2.10), yield

F . 1 1
A =2 [ sin x - —5—= cos g - = cos g] . (5.1.33)
u g Mu2 R2u2 R
- A 8in g
1 u .
A=, 2228 [5- - Y] sing (5.1.34)
g u R? g R?u R

2N )
. 1 u
A= - Y sing -2 [5— - =] cos g (5.1.35)
r RS & R3u R2
¥ I ,
Al = A, —5 COS X + A sin x (5.1.36)
m u M? g Mzu

The control variable Euler-lagrange equation,

equation (1.2.11) for control x is

A
[ -2, sin x +~ag-cos x] =0 (5.1.37)

=l
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For F # O equation (5.1.37) implies

2 /u
sin x = & - (5.1.38)
\/ﬁ_g + xug
u
and
My
cos X = (5.1.39)

Ve

Since the second control variable F is bounded
and appears linearly in H, "bang-bang" control may be
expected. The possibility of singular control déscribed
by Lawden (1963, pp. 86-94) has been determined to be
nonoptimal, in general, by Kelly, Kopp, and Moyer (1967,
PPR. 92-100). Therefore, the case of the switching func-
tion 8 = O is not considered here. By substituting
equations (5.1.38) and (5.1.39) into equation (5.1.31)
and simplifying the term multiplying F, the thrust

switching function may be written

A
1 .}_.._.111.) (5.1.40)

The thrust control may be written as

P o= FmaX S >0

F=0 S <O (5.1.41)
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The transversality equations, equations (1.2.12)

- (1.2.15), yield

Hqup + MoRe COS g + hp = O (5.1.42)
- WoRpUp sin g, + kgf = 0 (5.1.43)
H1 0 1.4
=2 + Holp COS go + Ao = (5.1.44)

T
me = 0 (5.1.45)
Hp = 0 (5.1.46)

Eliminating u, and p, from equations (5.1.42) - (5.1.44)

yields
il ufRf
Xuf .
+ (}\_rfuf - "R;——é') sin gf = 0 (5.1.47)
f

Using equations (5.1.47) and (5.1.31), it is observed

that condition (5.1.46) becomes

2
A Mo
£l, ,2
\/(ug g "M (3 "“{1“5“) =0 (5.1.48)
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Equations (5.1.45), (5.1.47) and (5.1.48) constitute a
set of necessary conditions which the endpoints must
satisfy. Comparing equation (5.1.40) to equation
(5.1.48), it is evident that points which qualify as
endpoints also qualify as switching points for the thrust
magnitude control.

Imposing condition (5.1.45) on equation (5.1.48)

yields a cutoff function.

YRE
¢ = \fﬁf_i) 25, - M, (5.1.49)

The zeros of this function determine points at which

numerical integration may be terminated. Substituting
the optimal thrust direction control from equations
(5.1.38) and (5.1.39) into the nondimensionalized state
varisble differential equations, (5.1.20) - (5.1.23) and
adjoint variable differential equations, (5.1.33) -
(5.1.36) gives

A

1 .
u' = ﬂ£§7§»—-£é sin g (5.1.50)
oy .
1
g! = _}_[E‘. - W} cos g (5.1.51)
MuQD1 2 R R2u
R' =u sin g (5.1.52)
_F
M! o= (5.1.53)



120

’Fxg'” o 1} (51,50
Al o= - + =lcos g - X, sin g 5.1.54
g wm3p/2  Lreu® R t
A, COS g i 1
g S —— - E] sin g - A, ucos g (5.1.55)
g R2 g _Rgu R T
2N
AL = —" sin g - ) [-—-«% - %] cos g (5.1.56)
R €Llr°u R
A= L p/2 (5.1.57)
M
where
A \2
~ -8 e
D (u + Ku

The integration of this set of equations subject
to equations (5.1.26) - (5.1.30) and (5.1.42) - (5.1.46)

yields the desired optimal trajectories.

5.2 Existence of Multipie'Stationarjﬂsdlﬁtioﬁé

The problem posed in the previous section per-
mits the existence of multiple thrust solutions. Mason
(1967, pp. 49-70) has shown the existence of two solu-
tions to a problem as posed in section 5.1: one solu-
tion is characterized by a single continuous thrust to
the desired endpoint; a second solution, composed of two
thrusting periods separated by a null-thrust coasting

arc, reachesgs the same endpoint with a different
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performance index. Both solutions satisfy the necessary
conditions of the calculus of variations. This type of
multiple stationary solution is similar to the type of
nmultiple stationary solutions exhibited by the thrusting
harmonic oscillator in Chapter 4. Because of this simi-
larity, it is probable that both the single thrust and
the thrust-coast-thrust transfers‘satisfy the endpoint
sufficlency condition described in Chapter 2. Verifica-
tion of this hypothesis is left to future investigations.
Several other investigators have also observed optimal
orbital transfers with multiple thrusting periods
(McCue, 1967; Handelsman, 1966; McIntyre and Crocco,
1967).

The investigation pursued in this chapter will
instead be limited to orbital transfers with a single
thrusting period. That is, thrust magnitude F is not
considered to be a control, but will be of fixed magni-

tude for the entire duration of the transfer, i.e.,

F=F_. t, <t <ty (5.2.1)

If F is not a control, the M equation, equation (5.1.53)
is no longer coupled to the system of differential equa-
tions represented by equations (5.1.50) - (5.1.57).
Instead, M is a known function of time independent of

U, &, R; and x.
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F
max

IBX (- g) (5.2.2)

M =

Therefore the M equation need not be adjoined to the sys-
tem through the Lagrange multiplier Ay All equations

in the previous section are explicitly independent of
time and will remain valid if Ay is set to zero and M is
evaluated using equation (5.2.2).

Optimal trajectories satisfying equation (5.2.1)
are determined‘by the six differential equations (5.1.50) -
(5.1.52), and (5.1.54) - (5.1.56) subject to the seven
boundéry conditions represented by equations (5.1.26) -
(5.1.30), (5.1.47) and (5.1.48).

Throughout thig chapter, orbits will be displayed
as points in a plane having coordinates of nondimensional
semimajor axis A and eccentricity e. Except for the
sense of the angular momentum vector, there is a unique
mapping between the variables E and h, whose final val-
ues have been specified and the variables A and e. The

relationships are given below

A = _.%E (5.2.6)

2 2

e =1 - 2Eh (5.2.7)

Here A is the nondimensional semimajor axis. The non-

dimensional variables E and h are defined by equations

(5.1.18) and (5.1.19).
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Before a solution to the boundary value problem
was attempted, the method of flooding described in sec-
tion 3.1 was used to generate a locus of optimal end-
points in A-e space. To give physical significance to
the required initlial guesses, the following equations
were derived for a fixed mass vehicle which relate the
initial unknown ILagrange multipliers to the initial value

of the control angle X and its derivative:

_ 2.
Ao = COS X, (5.2.3)
kgo = u, sin x (?.2.4)

A = 1 -~ F sin x_ - u_ x! (5.2.5)

ro — uj cos (g, + X_) max o o "o e
ui cos g
+-§g sin x_ sin (go + x,) 4*—E;7?——
)

The first two of these relations result from the control
Euler-Tagrange equation (5.1.37), the initial conditions
and the fact that HO = 0. The 1ast equation results
from the implicit differentiation of the control variable
Iuler-Lagrange equation and subsequent elimination of the
resulting time derivatives using the state aﬁd adjoint
differential equations.

Figure 5.2 displays the locus of optimal end-

points reached by initiating integration with x_ = 1o
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and varying values of xé. The coordinates used in'the
figure are semimajor axis and eccentricity. Fach point
on the locus was determined by terminating integration
when the first zero of the cutoff function (5.1.49) was
encountered. As xé was increased from a glven initial
value, the final point of the trajectory moved continu-
ously forming the locus curve OABC. With a further
increase in xé the locus was generated from C to D pass-
ing a second time through point A. A still further
increase xé resulted in a Jjump from D to E and then a
continuous return to O along curve EO. The fact that
the locus of optimal endpoints intersects itself at A
indicates that two solutions exist to point A.

The multiplicity of solutions is compounded if a
second locus of optimal endpoint for Xy = 16° is super-
imposed on the one for x_ = 4° as shown in Figure 5.3.
The movement of the optimal final point along the X, =
16° locus for increasing xé is similar to that described
for the x_ = 49 case. The 16° locus not only intersects
itself, as did the 4° locus, but also intersects the 4°
‘locus in three places. Since similar loci exist for all

intermediate angles, U4° < x 5’160, it is evident that

¢

a complete region of endpoint space exists which can be

reached by two distinct "optimal" trajectories.
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5.3 Computational Pfdcedﬁres

The endpoint sufficiency test developed in Chap;
ter 2 was applied to the case of rultiple stationary
solutions described in the previous section. Since the
nonlinear differential equations describing the orbital
transfer problem can not be integrated analytically,
resort must be made to the numerical algorithm prescribed
for such cases by section 2.6. This numerical algorithm
assumes the user has the capability of solving two-point
boundary value problems. Chapter 3 has set forth a
method for solving such problems, complete with detailled
references to allied computer programs listed in Appen-
dizx B. It remains for this section to describe in detaill
programs designed to implement the numerical algorithm
proposed in section 2.6. In addition, the overall
computational scheme for determining minimum fuel orbi-
tal transfers will be outlined, thus completing the

description of programs contained in Appendix B.

5.3.1 The Endpoint Sufficiency Condition. The

endpoint sufficiency condition is given by equation
(2.3.5). In this case the general endpoint is repre-
sented by the eight variables (uo,go,RO,TO,uf,gf,Rf,Tf).
The endpoint constraints are represented by equations
(5.1.26) - (5.1.30), and the following constraint on

the initial time:
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T =0 (5.3.1)

O

Since there are six equations ihvolving the eight end-
point variables, there are two degrees of freedom. That
is, two endpoint variables involved in constraints which
relate two or more endpoint variables (nontrivial con-
straints) may be independently specified, and the other
six variables will then be given by the eqguations of
constraint. Constraints which fix an endpoint coordinate
simply result in a row of zeros in the O matrix of equa-
tion (2.3.5). Therefore, only the two nontrivial con-
straints, equations (5.1.29) and (5.1.30), and the non-

r. and 7. will be considered

- ] .
fixed coordinates u r £

£ Bps
in the following analysis.

Any two of these variables can be selected as
the independent variables. For convenience, Ta and Te
are chosen as the independent variables.

In terms of the notation of section 2.3, the

pertinent relations are

Ugp
- Tr = Rp
Tr
>(5.3.2)
1.2 1
v =2 "R "%
Rfuf cos ga - Ch )
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However, as was the case in the example of section 2.5,
J¥* need not be consi@ered to be a function of T since
actual integration of the Euler-Lagrange equations pro-
vides a relationship between Te and the other final point

variables. Hence v and r can be written more simply as

Up
v = R r= e (5.3.3)
. R,

L
2 ,
3y Re (5.3.4)
v
a4 U, cos g,
13 Yr ©
3w Ry cOs g, - Rpup sin g (5.3.5)
and finally
1
2
UpRp
2
O = cOoSs gf(l uf Rf> (5'3 6)
u e R, sin
R
1
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Following the form of equation (2.3.10) the matrix

2
d=g% |
{E?g?J can be written as the sum of the following two

matrices
N 2 3 A
o J* 907G i
[5352} - [Bﬁz} ”L[ 5% } (5:3-7)
where A

p = Ogps Agps App)

The above form will always result for problems
with fixed initial coordinates which can be written so
that J* is not a function of tf. The first term in equa-~
tion (5.3.7) can be determined from equation (5.1.32)

yielding,
My - “2Rf sin gf b, COS gf
BZG = - R. si - R.u ; - u sin
3 Hohp B40 Bp Hofipty COS &p Mo &
2“1
Mo COS go - HWou sin g. —-Eg-
(5.3.8)

The variables My and Mo in the above expression are deter-

mined from equations (5.1.42) and (5.1.43) giving

A
= - gp°| &
My = - Rp [Rf tan g, + er] (5.3.9)
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A
- gf
o = = (5.3.10)
2 Rfuf sin gf

The second term of equation (5.3.7) is determined by com-

putational procedure explained in connection with equa-

tion (2.6.9). In this case M, represents one of the

elements of A

(1)

(2)

(3)

()

T

£

The computational procedure is as follows:

The endpoint sufficiency test is initiated by
a call for subroutine FOCAL. At this time
matrix XOLD contains the time history of a
trajectory to the endpoint which is to be
tested.

Subroutine FOCAL immediately calls subroutine
CONSTRT. This subroutine used the nominal

final point values rz from XOLD to evaluate

-G
Q from equation (5.3.6) and [5?5?} from equa-

tions (5.3.8), (5.3.9) and (5.3.10). These
values are returned to subroutine FOCAL.

Subroutine FOCAL then evaluates the matrix
B;Af

oL

in accordance with equation (2.6.9).

2.
S J*
Subroutine FOCAL then computes {3}%?} using

equation (5.3.7) and determines if it is

positive definite. If the matrix is positive
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definite, the endpoint being tested represents

a local minimum.

To evaluate ,gfé in step 3 requires the solution of

three two-point boundary value problems. For example,

oA
to determine '3ﬁ~£ , a new final point is determined by
f \
making a small change A in uX. An optimal path to this

T
new endpoint having fixed final state coordinates must

now be determined. The original boundary value problem
invelved the variable boundaries of equations (5.1.29)
and (5.1.30) and the resulting transversality equations
(5.1.47) and (5.1.48). For the new problem the final

point constraints are

up = ¢y (5.3.11)
gp = Cop (5.3.12)
Rf = 03 (5.3.13)

With these constraints the only useful relation given by

the transversality conditions is

He =0 (5.3.14)

Both the original two-point boundary value prob-
lem and the new problem can be solved using the same

subroutine QUASI. This is due to the fact that QUASI
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does not directly determine the initial value updates
from the boundary conditions. Instead, QUASI calls a
separate subroutine to handle this job. Since this sep-
arate subroutine is an argument of subroutine QUAST,
subroutine QUASI can be executed using any one of several
different subroutines to handle differing sets of bound-
ary conditions. The subroutine which handles the orig-
inal variable final point problem is named BOUND. The
subroutine which handles the fixed boundary values of
equations (5.3.11) - (5.3.14) is named FIXED.

In the example, an optimal path to the new end-
point is determined by calling QUAST with subroutine
FIXED as an argument and with cq = ux 4+ A, Cp = g? and

£

3 = R%. QUASTI returns the new solution to FOCAL as a

time history contained in matrix XOLD. Using the final

C

values of the lLagrange multipliers from XOLD, the par-

A

\ . . = f , . _ .

tial derivatives {Sﬁ;—} can be computed dlgjétly using
. —f

equation (2.6.9). The other two rows of [525~} are com-

puted in similar fashion. Subroultines FOCAL, CONSTRT,

FIXED and BOUND are listed in Appendix B.

5.3.2 The Overall Computational Scheme. The

solutions to specific two-point voundary value problems
exhibited in the next two sections were found following

the general computational outline given below.
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(1) Generate an initial solution estimate by inte-
grating forward the nonlinear equations using
the known initial values and estimates for
unknown initial values. The purpose of this
integration is to determine an estimate of the
final time.

(2) wWith the final time known, it is possible to
regenerate the initial solution by integration
with fixed step length. The solution is simul-
taneously stored in the matrix XOLD at fixed
equal increments in time, as required by sub-
routine QUAST.

(3) Solve the two-point boundary value problem
using subroutine QUAST.

(4) 1If it is desired, determine if the resulting
solution satisfies the endpoint sufficiency-
condition using subroutine FOCAL.

(5) Verify the solution determined by QUASI by inte-
grating the nonlinear equations with the initial
values found by subroutine QUAST.

(6) If other solutions are to be found to end-
points near the solution just determined, use
the solution just determined as the initial
solution estimate and return to step 3. If

not, return to step 1 to solve a new problem.
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Program SPACE, the first program in Appendix B, follows

the above outline.

5.4 Examples of Multiple Stationary Solutions

In the course of the following discussions, ref-

erence will often be made to actual orbital transfers

such as the one shown in Figure 5.4. The interpretation

of these figures will be aided by the following conven-

tions:

(1)

(2)

(3)

(%)

The initial orbit is a cilircular orbit; initial
motion in this orbit is counter-clockwise.

Short lines eminating from the transfer trajec-
tory at selected points as shown in Figure 5.4
indicate the true direction of the thrust vec-
tor. The tail of the thrust vector is always
shown in contact with the transfer trajectory.
The first thrust vector (proceeding in a counter-
clockwise direction) on the initial orbit indi-
cates the point of thrust initiation. The final
thrust vector indicates the point of thrust
termination.

Although the thrust vector is displayed at a
finite number of points along the transfer tra-
jectory, the vehicle is thrusting continuously

from the point of thrust initiation to the point
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Final Orbit Transfer
Trajectory
/ . Thrust
Vectors
+

Initial Orbit

Fig. 5.4 Optimal Orbital Transfer to A = 1.58
and e = .11 (XO = 160)
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of thrust termination. Likewlse the thrust vec-
tor rotates in a continuous manner. The highly
nonlinear nature of this rotation causes the
orientation of the thrust vector to change sud-
denly at times as shown in Figure 5.4.

(5) Motion in the terminal orbit is in a counter-
clockwise direction, excépt where noted other-

wige.

The computational procedure for implementing the
endpoint sufficiency test, as described in the previous
section, can be appiied to the multiple stationary solu-
tions discussed in section 5.2. From Figure 5.3 1t can
be seen that two solutions exist to point B. This point
can be reached by starting integration with an initial
control angle of either 4° or 16°.

Using the modified Newton-Raphson method for
solving two-point boundary value problems (see Chapter 3),
two solutions which terminated at a point near point B
~were found. Both solutions result in a final nondimen-
sional semimajor axis A of 1.58 and a final eccentricity
e of .110. The first trajectory begins with an initial
angle of approximately 16° (15.50). This orbital trans-
fer is pictured in Figure 5.4. The thrust vector con-
trol angle increases from 16° to over 50O and then sud-

denly decreases rapldly to —760. The control angle then
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slowly increases to ~36O. In this case the state space.

endpoint is given by u. = .826, g. = 5.92°, and R, = 1.52.

£ £
It is readily verified that these states correspond to
Ay = 1.58 and e, = .110. Using the computational proce-
dure discussed in section 5.3, the above endpoints were
found to satisfy the endpoint sufficiency test.

The second trajectory initiated transfer with
x = 4° (4.4°). This orbital transfer is shown in Figure
5.5. In this case the thrust-vector control angle
increases slowly to approximately 80° and then suddenly
swings past 180° to approximately -100°. The control
angle then increases at a slower rate until Xp = —310.
Note that the thrust vector has actually been in a
"retro-fire" position for a short period of time during
this maneuver. The trajectory terminates with the fol-
lowing final status: U, = 773, gp = 6.10°, and ﬁf =
1.62. These states, as before, correspond to Ay = 1.58
and ep = .110. Numerical results show that this trajec-
tory and its resultant endpoints do not satisfy the endpoint
sufficiency conditions. The corresponding trajectory is
therefore nonoptimal. In fact, the above nominal end-

points represent a local maximum value for the func-

tional J*.
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Fig. 5.5 Nonoptimal Orbital Transfer to A = 1.58

— — 10
and e = .11 (x, = 4°)



140
This fact was substantiated by computing neigh-
boring stationary trajectories to fixed final points in

the vicinity of the nominal final points. These final

points were chosen beforehand to correspond to Af = 1.58
and ep = .110. In all cases these neighboring trajec-

tories had performance indices less than those of the
nominal trajectory.

Since T =T from + = O until = the

= T
max i

terminal time is proportional to the magnitude of the
‘performance index J of equation (5.1.25). The value of
Te is therefore a convenient measure of the perférmance
of a given maneuver. For the nonoptimal transfer
initiated with X, = 40, the value of T Was found to be
5.89. TFor the optimal transfer initiated with x_ = 16°,
the value of t. was 4.38. The optimal trajectory there-
fore yields a performance index which is 25% less than
that for the nonoptimal trajectory.

Figure 5.6 shows the trajectories in A-e space
corresponding to the optimal and nonoptimal orbital
transfers shown in Figures 5.4 and 5.5, respectively.

A trajectory in A-e space should not be confused with
the locus of optimal endpoints previously discussed. A

trajectory in A-e space depicts the values of A and e

which were attained during the progress of the transfer.
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The 100p‘in the nonoptimal trajectory corre-
sponde to the sudden rotation of thrust vector to the
retro—fire position as depicted in Figure 5,5[

If the thrust magnitude were an allowable con-
trol, this transfer would obviously be nonoptimal since
the thrust could then be turned off at point B in Figure
5.5 and reignited at a later time; Doing so would save
all the effort needlessly expended traversing the loop.
It is interesting to note that the argument of periapsis
for the nonoptimal final orbit (3370) is almost diamet-
rically opposite to that of optimal final orbit (119°),
where periapsis is measufed in a counter-clockwise
direction from the point of thrust initiation.

In terms of the locus of "optimal" endpoints
shown in Figure 5.2, one endpoint on branch CD has been
determined to be nonoptimal. The application of the
endpoint sufficiency test to other endpoints on branch
CD has shown these endpoints to be nonoptimal, whereas,
other endpoints on endpoint locus OABC have consistently
passed the endpoint sufficiency test. The test is inde-
terminate at point C, since this point represents a
final circular orbit and sin gp = 1 - u?Rf'= 0O in equa-
tion (5.3.6).

Since similar results have been observed for

loci generated with initial control angles other than 40,
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vthe above conclusicons can be generalized to eliminate
from consideration branches corresponding to branch CD.
This generalization applies only if the locus of optimal
endpoints exhibits the same qualitative characteristics
as those shown in PFigure 5.2. With such branches elim-
inated from consideration, the multiplicity of solutions
shown in Figure 5.3 disappears.

A second example of multiple stationary solu-
tions is illustrated in Figures 5.7 - 5.9. In this case
the optimal trajectory shown in Figure 5.7 starts with
Xy = 3.530 and has a thrusting period of 6.10 nondimen-
sional time units. The nonoptimal trajectory shown in
Figure 5.8 initiates thrusting with x = - 4.26° and has
a thrusting period of 7.50 nondimensional time units.
The latter trajectory was numerically determined to be
nonoptimal through the use of the endpoint sufficiency
condition. In this case the optimal trajectory has a
performance index which is more than 20% less than that
for nonoptimal transfer. The qualitative remarks per-
taining to the first example also apply in this case.
The main difference between these two examples is a com-
putational one. Both trajectories in the first exampie
were terminated when the first zero of the cutoff func-

tion was encountered. However, the nonoptimal trajectory
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gris "M&‘

Rt -
e,

Fig. 5.7 Optimal Orbital Transfer to A = 2.00
and e = .10 (XO = 3.530)
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Fig. 5.8 DNonoptimal Orbital Transfer to
A =2.00 and e = .10 (xo = -4.,26)
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of the second example shown in Figure 5.8 was terminated
when the second zero of the cutoff function was encoun-
tered.

The endpoint sufficiency test is an effective
computational tool because it allows the rejection of
certain nonoptimal solﬁtions. When multiple solutions
are encountered,the true optimal is easily distinguished
via a direct comparison of the performance indices of
the two solutions. Using the endpoint sufficilency test,
a complete class of nonoptimal solutions can be discarded
immediately upon encounter. Without the aid of the end-
point sufficiency test aﬁ investigator has no indication
that solutions he is generating are nonoptimalAuntil he
encounters multiple’solutions. Hence, an overall sav-
ings in computation time is realized by using the end-
point sufficiency test since the amount of time wasted
generating nonoptimal solutions is greatly reduced.

As shown in section 1.3, multiple solutions can
also arise if path sufficiency conditions are not met.
As an example, Figures 5.10 - 5.12 summarize a case in
which two orbital transfers exist to A = .835 and
e = .270, both of which satisfy the endpoint sufficiency
condition. The optimal transfer initiates thrusting
with x = 47°, but eventually finishes the transfer with

a period'in which the thrust vector is in a retro-firing
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TS,
g N i dainad
. i) e it

Fig. 5.10 An Optimal Orbital Transfer to A = .835
and e = .270



Fig. 5.11 A Nonoptimal Orbital Transfer to
A = .835 and e = .270 which Satisfies
Endpoint Sufficiency Condition
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position., The nonoptimal transfer is initiated with a
retro-firing period followed by a period with a compon-
ent of the thrust in the forward direction. The anti-
symmetry of these two transfers is apparent from Figure
5.12. In this case the optimdl trajectory has been dis-
tinguished from the nonoptimal trajectory by a direct
comparison of performance indices; The optimal transfer
is achieved with a thrust duration of 2.71 nondimensional
"time units, while the nonoptimal transfer requires 2.75
time units. PFuture investigations can explore the possi-
bility of eliminating multiple solutions of this‘type in

a direct manner by implementing a path sufficiency test.

5.5 Optimal Orbital Transfer Results

This section presents further results concerning
the minimum fuel orbital transfer problem described in
section 5.1. The investigation was again restricted to
problems in which the thrust magnitude was constant. In
addition only a single set of space vehicle parameters
were investigated. A nondimensional thrust F = .06666667
and an exhaust velocity u, = 1O+5O were uéed. The thrust
was chosen to coincide with that used by Mason (1967).
Rather than choose a single arbitrary value for the
exhaust velocity, it was set equél to the limiting value
of infinity. Using the modified Newton-Raphson method

to solve the two-point boundafy value problem (see Chapter
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3) and the endpoint sufficiency test to aid in the deter-
mination of the true optimality of solutions, optimal
trajectories were computed to orbits having a wide range
of final semi-major axis and eccentricities.

Figure 5.13 shows the loci of optimal endpoints
determined for various initial thrust-vector control
angles Xy There are no intersecfions among these loci.
As mentioned earlier, various regions of this endpoint
space are attained by terminating the thrust at various
zeros of the cutoff function. Figure 5.14 depicts
regions in which the first, second, third, and fburth
zero have been used. Crosshatched areas indicate regions
of uncertainty. Final orbits represented by points in
the region labeled "1" are attained by terminating thrust
when the first zero of the cutoff function is encoun-
tered. Final orbits represented by points in regions
labeled "2" are attained by terminating thrusting after
the second zero of the cutoff function has been encoun-
tered. Similar statements can be made concerning the
regions labeled "3" ang "4."

Some of these boundaries seem to have little
physical significance. For example, a comparison between
trajectories in the regions labeled A and those in the
region labeled B shows there to be no sudden discontin-

uity of any kind across the boundary. The same is true
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for the boundary between regions C and D. This is not
true, however, for the boundary between regions B and C.
This fact is apparent from Figure 5.13. In this figure
the boundary between regions B and C lies Jjust above the
line with positive slope labeled -26°. From Figure 5.13
it is seen that there is a jumpfin initial angle X, across
this boundary, viz., -32° to -26°.

An explanation for this Jjump is shown in Figure
5.15. Curve A shows the cutoff function for a tfajec-
tory initiated with x = -32° ang X, = A6, Thrusting
is terminated at the second zero of this functioh. This
corresponds to an initial orbital transfer to a point at
the end of the curve labeled -32 in Figure 5.13. Curve
B in Figure 5.15 shows the cutoff function for a frajec—
tory initiated with x_ = -32° and x_ = .U4. Although
only a slight change has been made in the cutoff func-
tion, the second cutoff does not occur, and the corre-
sponding orbital transfer is to a hyperbolic orbit.
This accounts for the physical discontinuity of orbital
transfers to points just on either side of the boundary.

Figure 5.16 depicts the transfer time needed to
attain an entire range of various final orbits. The
transfer time is proportional to the performance index
of equation (5.1.25). To attain a given final semi-

major axis, this figure shows it is easier to reach an
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orbit with an intermediate eccentricity than it is to
reach a circular orbit or an orbit with high eccen~
tricity. The dashed line in Figure 5.16 represents the
locus of final eccentricities associated with minimum
effort transfers to any given semi-major axis provided
no constraint is placed on eccentricity.

Two fundamental principles of astrodynamics can
be verified by observing Figure 5.17. This figure pic-
tures an orbitél transfer to a final orbit with a semi-
major axis of 1.5 and an eccentricity of .60. This is a
typical orbital transfer requiring a substantial‘change
in both energy and angular momentum. From the figure
it can be seen that the thrust vector is essentially
aligned with the velocity vector during the portion of
transfer nearest the center of attraction. It is well
known that a small change in the vehicle's kinetic energy
is given by

AE = mv-Av (5.5.1)

ATherefore, the energy of the vehicle is increased in the
most economic fashion by thrusting in the direction of
the vehicle velocity when the vehicle velocity 1s a maxi-
mum. For low thrust orbits this generally occurs at
points on thé transfer trajectory nearest to the center

attraction. In Figure 5.17 the space vehicle is using
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Fig. 5.17 A Typical Optimal Orbital
Transfer and Fundamental
Principles of Astrodynamics
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its thrusting capability to best advantage by increasing
its energy during the initial portion of the orbit.

Cn the other hand a change in angular momentum
is most economically accomplished by thrust perpendicu-
lar to the radius vector at the local apogee of the
transfer. This is easily seen from the following equa-
tion

Ah = mr X Av

The product r X Av is maximized by thrusting in a direc-
tion perpendicular to the radius vector at points along
the transfer trajectory at which r is a maximum.\

It will be seen later that an optimal maneuver
for making large changes in eccentricity, but not in
energy, requires that the vehicle first make a large
gain in energy. Then at large radii the eccentricity is
economically changed. Figure 5.18 shows an orbital
transfer ylelding an extreme change in angular momentum.
In fact, the sense of the angular momentum vector
reverses during the transfer and orbital motion changes
from counter-clockwise to clockwise.

Figures 5.19 - 5.21 illustrate several optimal
orbital transfers to final circular orbits. The trans-
fer shown in Figure 5.19 is typical of optimal transfers
to final circular orbits with 1.0 > R > 1.98. These

transfers are characterized by a sudden rotation of the
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Fig. 5.18 An Optimal Orbital Transfer
which Changes the Sense of
the Angular Momentum Vector
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Fig. 5.19 An Optimal Orbital Transfer
to a Circular Orbit of
Radius 1.25



2

Fig. 5.20 An Optimal Orbital Transfer
to a Circular Orbit of
Radius 3.00

163
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thrust vector through a retro-fire position. This often
generates loops in the A-e space trajectories (see
Figure 5.21) which have previously been associated with
nonoptimal transfers. As previously mentioned, the end-
point sufficiency condition is indeterminate for trans-
fers to circular orbits. Loops in A-e trajectories may
be a result of requiring the thrusf magnitude to be con-
stant. For near orbit transfers a Homan impulsive trans-
fer (Lawden, 1963, pp. 106-110) proves to be more optimal
and one may conclude that thrusting at intermediate radii
is to be avoided under certain circumstances. In a sense
the loop represents a period in which the thrust should
be off.

The transfer shown in Figure 5.20 is typical of
optimal transfers to circular orbits with R > 2.00. 1In
these cases the thrust vector exhibits a highly nonlinear
oscillation about x = 0, but never passes through the
retro-fire position. In Figure 5.21 notice that trajec-
tories to circular orbits first piék up a substantial
portion of the final energy required by proceeding along
the path of minimum effort. The eccentricity is then
adjusted to zero by proceeding almost perpendicular to
lines of constant effort.

Figures 5.20, 5.22 and 5.23 summarize transfers

to final orbits with a semi-major axis of 3.0. The
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Fig. 5.22 An Optimal Orbital Transfer to
A =30 and e = .90
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fundamental principles of astrodynamics are especially
‘evident in Figure 5.22. FEnergy is first increased near.
the center of attraction by aligning the thrust vector
near the velocity Qector. Fecentricity is then increased
by thrusting nearly perpendicular to the radius vector
at large values of the radius.

Figure 5.24 shows several optimal orbital trajec-
tories to a final eccentricity of .90. All of these
7 transfers are initiated by a large gain in energy attained
by proceeding along the minimum effort path. The space
vehicle then increases its eccentricity at points far
from the center of attraction. These trajectories agailn
represent excellent examples of the fundamental prin-
ciples of astrodynamics.

Figures 5.25 - 5.28 illustrate optimal orbital
transfers to final orbits with a semi-major axis of one.
In all cases only a change in final angular momentum is
required. However, in accordance with the second funda-
mental principle, such a change is most economically
‘performed at large radii. Consequently each of these
transfers is initiated with an effort to increase the
energy of the orbit. From Figure 5.28 it can be seen
that this is done by proceeding along the path of minimum
effort. When large radil are achieved, the thrust vector

is pointed nearly perpendicular to the radius vector in
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Fig. 5.25 An Optimal Orbital Transfer
to A= 1.0 and e = .20
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Fig. 5.26 An Optimal Orbital Transfer
to A = 1.0 and e = .50
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Fig. 5.27 An Optimal Orbital Transfer to A = 1.0
and e = .90
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an effort to achieve the final angular momentum desired.
At the same time a component of the thrust vector exists
in the retro-fire position and the semi-major axis is
decreased back to one.

Figures 5.29 - 5.32 illustrate orbital transfers
to final orbits with semi-major axes of 0.75. A com-
pletely different region of transfers is encountered.

To attain final orbits below the minimum effort curve
(see Figure 5.32), the thrust vector is initially posi-
tioned in a retro-fire position and oscillates about

x = 180°. Two representative optimal transfers are shown
in Figures 5.29 and 5.30.

In transferring to inner orbits with high eccen-
tricity, it is difficult to lose the angular momentum
required to achieve highly eccentric orbits, since the
final semi-major axis must be small. In other words,
the fundamental principle for losing energy is at odds
with the principle for decreasing angular momentum. To
achieve orbits with high eccentricity, the change of
angular momentum required is the dominant factor. Con-
‘sequently, to attain final orbits with eccentricities
above the minimum effort path, the thrust vector is
initially positioned with a component of thrust in the
forward direction. The vehicle energy is first increased

and as large radii are encountered, the energy and



Fig. 5.29 An Optimal Orbital Transfer
to A = .75 and e = .10

I
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Fig. 5.30 An Optimal Orbital Transfer
to A = .75 and e = .24
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Fig. 5.31 An Optimal Orbital Transfer
to A= .75 and e = .70
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angular momentum are simultaneously decreased. Such a
transfer is shown in Figure 5.31. In this case, thrust
expended near the perigee of transfef is largely 1qst.
If thrust magnitude were a control, the thrust would
certainly have been turned off during this portion of

transfer.



CHAPTER 6
CONCLUSIONS

Multiple stationary solutions are frequently
obtained with optimization problems using the calculus
of variations. The existence of multiple stationary solu-~
tions can be attributed to one of several distinct rea-
sons. A reason that multiple solutions are frequently
obtained is that the complete set of necessary and suffi-
cilent conditions for a sblution have not been imposed.

It has been shown here that a sufficiency test
for the Problem of Bolza can be broken down into‘two inde-
pendent tests:

(1) a path sufficiency test, and

(2) endpoint sufficiency test.
An endpoint sufficiency test is developed here for prob-
lems with variable endpoints. If a solution candidate
satisfies both test as well as the first three necessary
conditions, it simply satisfies a sufficiency condition.
That this sufficiency condition is also necessary has not
been proven.

Multiple solutions can also occur in problems with

singular control. To date the complete set of necessary

180
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and sufficient conditions needed to distinguish the true
optimum have not been formulated.

Problems also exist for which the calculus of
variations provides no criteria for selecting the global
minimum. The theory of the calculus of variations 1is
effective only in determining trajectories which are‘iég@i
optimums. Only small variation in the state space trajec-
tory are considered. Problems with bounded control and
periodic solution often have several local optima.

It has been shown that once the first necessary
path conditions have been applied, a calculus of varia-
tions problem with variable endpoints is reduced to a
problem of the minimization of a function of several
variables. Analytical application of the endpoinﬁ suf -~
ficiency condition requires the analytical integration
of the set of state variable and Euler-lagrange differen-
tial equations. Since in most cases this is difficult
or impossible, an algorithm has been developed for the
numerical implementation of the endpoint sufficilency
test.

The endpoint sufficiency condition has been
shown to be an effective computational tool in complex
applications. For example, through the use of the end-
point sufficiency test, a complete class of nonoptimal

solutions can be discarded immediately upon encounter.
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Without the aid of the endpoint sufficiency test an
investigator would have no indication that solutions he
is generating are nonoptimal until he encounters multiple
solutions. This results in a great savings in computa-
tion time.

The alternative of determining the set of all
multiple stationary solutions to é problem, so that the
true optimal may be distinguished via a direct compari-
son of the performance indices, is often a formidable
task. No criteria exist for determining the number of
multiple solutions that exist and an investigator could
never be sure he had found all of the multiple solu-
tions.

The difficulty of solving a two-point boundary
value problem needed to implement the endpoint sufficiency
condition was eliminated by using the generalized Newton-
Raphson algorithm. It has proved to be a powerful com-
putational tool. |

The comprehensive optimal orbital transfer
example gave some interesting insights into the general
problem of low thrust minimum fuel transfers. Qualita-
tive aspects of all orbital transfers were found to be
consistent with fundamental principles postulated for

changing energy and angular momentum.



APPENDIX A
MINIMIZATION OF A FUNCTION OF SEVERAL VARIABLES

This appendix presents a rigorous proof of the
necessary and sufficient conditions for a function of
several variables to be a minimum when subject to alge-
braic equations of constraint. These proofs could be
established easily, but with less rigor, through the use
of ILagrange multipliers as was done in section 1.2. The
validity of using such multipliers in establishing neces-
sary conditions has been rigorously verified. However,
the validity of using Lagrange multipliers to establish
sufficiency conditions in control notation has not been
established with rigor until recently (Vincent, 1969).

In the proof that follows, free use will be made
of the notation and conventions established atithe begin-
ning of section 2.3.. Following the methods of Vincenf
(1969), consider the problem of minimizing a function of

several variables

J = J(w,v) (A.1)

b (w,v) =0 (A.2)
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where both J and.i.are functions of class 02 and the con-

straints are such that the determinent of the Jacobian

%] (2.3)

is nonsingular. The dimension of y and w is assumed to

be p and the dimension of v is aséumed‘to be g.

A.1 Method of Implicit Functions

Since § is of ¢® and condition (A.3) has been
postulated, the implicit function theorem (Buck, 1965,
pp. 283-286) states that equation (A.2) implicitly
assures the existence of the vector function W explic-
itly relating the dependent variables w to the independent

variables v

Wy (v)

W?(y“> (A1)

W; (v)

By substituting (A.4) into (A.1), J becomes a function

of v only
3 = 3(W(v),v) (A.5)

Define the general value of independent variables

v in a small neighborhood of an optional point y?
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v=v +tegc (A.6)

where ¢ is a vector of arbitrarily chosen small, but non-
zero, constants and € is a scaler multiplier. Then, from

(A.1) and (A.2)
J=7J M +eg) v +ec] (8.7)
V(v +ec), v +ecl=0  (4.8)

Now J is a function of ¢ only, and the necessary

condition for an ordinary local extremum is

a7 T

£ =0 (4.9)
de

h

1l
=

+
2

oW,
. . . _ i
where h is the vector with elements h;, = 5z=. The

vector h represents changes in the dependent variables
w corresponding to the changes ¢ in the independent vari-

ables. Differentiating equation (A.8) with respect to €

yields
3. A
Solving for h yields
dy7-1 3y
SRR

Substituting (A.11) into (A.9) and rearranging gives
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oV

c=0 (A.12)

a7 |33T 3yT[RL]IrRw
€ =5 "5 | ]

Since ¢ is an arbitrary nonzero vector, each of the ele-

ments of the vector in parenthesis must be equal to_g at
the optimal point.

20T pgTroLYAroL] _ (A.13)
5 “ow |sm| || T2

If equation (A.13) is satisfied, then a sufficient
condition for a 1ocal:minimum is that

(A.14)
de”

must be positive definite for arbitrary values of h and
¢ satisfying equation (A.11).

Before evaluating this expression, an identity

for taking the partial derivative of the inverse of a

matrix must be developed. Let Ai

3y -1
element of the [Eﬁ} matrix:

- 3¢1-1
s <[ s
ij W5y

i represent a general

Then in indicial notation the definition of
inverse may be expressed as

s  (A.16)
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where 6qj is the Kroniker delta. Premultiplying by Aiq
gives

oy
Aig = Big T B (8.17)

m

Taking the partial derivative of both sides ylelds

3
o _ 0 .9 q
sr Ay = oo (Byg) 8y + Ayg or (svr B
n n n m
+o. <o (L) (A.18)
im Or mJj ’

Since 6ij represents a constant, equation (A.18) reduces

to
S (ay)) = oo (A) + Ay 5o af’f&)A + 2 ()
5?; 13 §?£ iy iq Or me' mj * dr, * i
(A.19)
which gives the desired identity:
o _ o q
3?; (Aij) = - Aiq’Ef; 'Sﬁ;) Amj (A.20)

From this point on results must be expressed in

oY

indiecial notation since 5%?—(?ﬁf1 is a tensor. In
n m

indicial notation equation (A.12) becomes

v - oy .
ag _ 235  ag \E
"d—G‘ = [’S‘T,K - rwi Aij 5’\—7“};:! Ck (A. 21)
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Using equations (A.20) and (A.21) the sufficiency con-
dition (A.14) yields

2. 2 2
d J _ _90°J d°J
de aw 6v ¢ h T oy SV °k®n
] _BQJ . aﬂfi C h i BQJ N aq; .
Bwhéwi 13 Bm. Evhgwi 1J.5~
)
+'§W; Aiq Sw_ow | Amj 3?; Ciln (A.22)
25, g awa

33 BLVJ
5%; i SW Sv
37 2 V5

T dw Wy Alg ov SV

must be positive definite for arbitrary values of
¢ and h satisfying equation (A.11). Recognizing the

indicial notation representation of equation (A.11)

= - Ay 5 (A.23)

in four terms of equation (A.22) and regrouping terms,

condition (A.23) can be written
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. P . 2
a“J 27 33 N 075 . o
2 anévk Bwi ij ov 5 k'n

327 aJ W

+ - \ c h
awiavk awp pg 5 5

22

BWJOW Bw qu

, 2
2 ey
0°J 5J ¥
+ dv S, B awp pq ov 5w ) (8.2H)

must be positive definite for arbitrary values of c
and h satisfying equation (A.11).
Equation (A.24) and equation (A.13) provide a
set of necessary and sufficient conditions for J(w,v) to
be minimum when the equations of constraint {(w,v)

must be satisfied.

A.2 Method of Jlagrange Multipliers

The necessary and sufficient conditions can be
put in a form which is more convenlent to use by defining

the augmented function
IJ*(u,v,p) = J(w,v) + py §(w,v) (A.25)

where y is a vector of constant multipliers called
Lagrange multipliers.

If the lagrange multipliers are given the 1ldentity

HJ = - W Aij (A.26>
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or in matrix notation,

: " — i
BJ'T[aii] (8.27)

=3y | 3w

several observations can be made. Thus necessary condi-

tions for J to be a minimum (A.13) become

9 =9 (A.28)

The sufficiency conditions (A.24) may be written as

2. aQw. o a?w.
S Ty S | Skl | Saev t My S| P
nVk T d V9V = Wik o OOV

A.29
. 5 ( )

<2 3¢ . o 37y
+ 0o 4 J h.c_ + 9 J + u 21\ n.n,
dv oWy H 3 ov.ow, [ i™n 'ghjéhi q Bwiéwj i3

must be positive definite
for arbitrary c¢ and h satisfying equation (A.11). Define

the vectors r and d as

Wy hy
W2 h2
r= | a= | (A.30)
vy €1
V2 C2
v c
q aq
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The sufficiency condition (A.29) may now be put
in compact matrix notation by using equation (A.25) and

definitions (A.30):

2
a’ [%ﬁg a (n.31)
must be positive definite
for arbitrary c and h satisfying equation (A.11). To
guarantee that ¢ and h in vector d satisfy equation
(A.11), elements of d may be expressed as functions of
the independent constants ¢ only. In matrix notation

this may be expressed as

a = [~?—J c=0c (A.32)

e

where

and T is a ¢q by g identity matrix. The sufficiency con-

dition (A.32) may then be written as

2
Tl {g?g—;] Qc (A.34)
must be positive definite
for arbitrary values of the elements of c.

The advantage of the Lagrange multiplier tech-
nique is that the necessary and sufficient comditions can

be expressed in compact and easy-to-remember matrix nota-

tion.
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APPENDIX 8
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* ORBITAL TRAJECTGRIES *
Fee AR AR A A AR A R R %

MAINLINE PRCGRAM

PROGRAM SPACE CONTROLS THE GENERATION OF SOLUTIONS TO AN OPTIMAL
PROBLEM IN CELESTIAL NAVIGATION. THE PROBLEM IS TO TRANSFER A LOW
THRUST SPACE VEHICLE FROM AN INITIAL CIRCULAR DRBIT TO ANY COPLANAR
ELLIPYIC ORBIT OF GIVEN ENERGY AND ANGULAR MOMENTUM. THE THRUST
PROGRAM IS TO BE DETERMINED SO AS TO MINIMIZE THE INTEGRAL OF THE
PRODUCT OF THRUST MAGNITUDE AND TIME. THE FINAL ARG. OF PERIAPSIS
THE FINAL TRUE ANCMOLY, THE FINAL RANGE ANGLE: AND THE FINAL TIME
ALL ARE UNSPECIFIED AND CONSIDERED FREE.

THIS PROGRAM AND ASSOCIATED SUBROUTINES ARE EXPLAINED IN DETAIL IN
CHAPTERS 5 AND 3 AND IN SECTIGN 2.7 OF THIS DISSERTATION.

INPUT

Aol e Aok

EACH SET OF INPUT DATA- REQUIRES TWO CARDS,

CARD 1

X1 = ESTIMATE OF INITIAL THRUST CONTROL ANGLE.

XDOTI = ESTIMATE OF INITIAL NONDIMENSIONAL THRUST CONTROL
ANGLE RATE.

LRI = ESTIMATE OF INITIAL RADIUS LAGRANGE MULTIPLIER.

NEECED ONLY FOR PROBLEMS WITH MULTIPLE TYHRUSTING ARCS.
AF = FINAL NONDIMENSIONAL SEMIMAJOR AXIS DESIRED.
NEEDED FOR FOR BOUNDARY VALUE PROBLEMS ONLY
0 If THE FLOODING TECHNIQUE IS BEING USED AND NO
BOUNDARY VALUE PROBLEM IS TO BE SOLVED. (SECTION 3.1.1)}

ECCF = FINAL ECCERTRICITY DESIRED (FOR BOUNDARY VALUE PROBLEM)
TOL = MAXTMUM INTEGRATION ERRQOR/ UNIT STEP. (APPROXIMATE ONLY)
CT0 = A CONVERGENCE TOLERANCE FOR TERMINATING ITERATIONM IN
SUBROUTINE QUASI DURING SOLUTION OF A BOUNDARY VALUE PR,
PARDEL = PERCENTAGE CHANGE IN FINAL ENDPOINTS WHEN NUMERICALLY
COMPUT ING FPARTIAL DERIVATIVES FOR ENDPOINT SUFFICIENCY
TEST. (SEE SECTIONS 2.7 AND 3.3)
CARD2
NS = RADIAL VELOCITY DIRECTION FOR ELLIPTICAL INITIAL ORBITS.
= -1 IF APROACHING PERIAPSIS
KFREQ = MAXIMUM NUMBER OF INTEGRATION STEPS BETWEEN PRINTED
TRAJECTORY QUTPUTS.
NV = NUMBER OF THE VARTABLE WHICH IS TO BE CHANGED BEFORE
AUTOMATICALLY REPEATING A SOLUTION.
= 0 IF A NEW SEY OF DATA CARDS IS TO BE READ IMMEDIATELY
FOLLOWING THE SOLUTION GENERATED BY THIS CARD.
= 1 AND AF= 0, CHANGE XI 8Y DV.
= 2 AND AF= 0, CHANGE XDOTI B8Y DV.
= 3 AND AF= O, CHANGE LRI B8Y DV.
= 4 AND AF= 0O, CHANGE FI BY DV.
= 1 AND AF NOT EQUAL TO O, CHANGE AF BY DV.
= 2 AND AF NOT EQUAL 7O O, CHANGE ECCF BY DV,
= 3 AND AF NOT EQUAL T0 0, CHANGE F] BY DV.
= 4 AND AF NOT EQUAL TO O, CHANGE UE 8Y DV.
NCH = NUMBER OF CHANGES, DV, TO BE MADE IN VARIABLE NV ABOVE.
NYYP = 1 IF AN INITIAL CIRCULAR ORBIT AND A SINGLE THRUSTING

PERIOD ARE DESIRED.

IF AN INITIAL CIRCULAR ORBIT AND MULTIPLE THRUSTING
PERIODS ARE DESIRED. NOT FuULLY OEBUGGED-

= 3 IF AN INITIAL ELLIPTIC ORBIT WITH MULTIPLE THRUSTING

1]
~n
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PERIODS IS DESIRED. THIS OPTICON IS NOT FULLY DEBUGGED.

IF = 1 IfF AN ENDPOINT SUFFICIENCY CONDITION TEST IS 70 BE
PERFORMED.

NB = NUMBER CF CUTOFFS. THE SOLUTION 1S TERMINATED WHEN THE
NB-TH ZERO OF THE CUTOFF FUNCTION IS ENCOUNTERED.

ID = DUMMY FOR FUTURE EXPANSION.

NIT = MAXIMUM NUMBER OF GENERALIZED NEWTON-RAPHSON ITERATIONS
ALLOWED FOR CONVERGENCE OF A SOLUTION TO THE BOUNDRY
VALUE PROBLEM.

DV = VALUE OF THE CHANGE TO BE MADE IN VARIABLE -NV- ABOVE.

PCT = A MAXIMUM PERCENTAGE CHANGE ALLOWED IN INITIAL VALUES
DURING THE SOLUTION OF A BOUNDARY VALUE PROBLEM.
THIS PARAMETER IS USED TO CONTROL THE STABILITY OF YHE
CCNVERGENCE OF THE SOLUTION. (SEE SUBROUTINE QUASI)

FI = MAXIMUM NONDIMENSICNAL THRUST MAGNITUDE.

UE = NONDIMENSIONAL EXHAUSY VELOCITY.

PROGRAM SPACE(INPUTOUTPUT,PUNCH, TAPEZ2=INPUT: TAPE3=0UTPUT,»TAPE4=PU
1NCH)

REAL Y{100}),P{20),;CONST{10),X0LD{6,1000)},YINIT(10O)}

REAL M,plU,LG,LRyLM;LR]

COMMON /MAIN/ EsHiSMAGECC,CUT S+ APO,PERXsWIERDPRyHAM

COMMON /INTVAR/ TIME,YP,NE,TOL, DX, MODE

COMMON /1I0LD/ XOLD

EQUIVALENCE (Y{1),U)y (YL2),G)y (Y{3).R}y (Y{4},M), {Y(5),LU}, (Y{
16)2LGYy (YIT)sLRY, (Y{B) LM}y (YI{9),AN) s {Y(10},TE)

EXTERNAL DIFFI,BOUND,NONLIN

EXTERNAL FIXED,CCONSTRY

EXTERNAL SWITCH,CUTOFF

DATA DPR/57.2957795131/

DATA PI/3.141592653589793/

READ FIRST INPUT CARD. SEE COMMENTS ABOVE.
READ (2:2) XI1¢XDOTIsLRI,AF,ECCF,TOL,CTO,PARDEL
FORMAT (8E10.4)

READ SECOND INPUY CARD. SEE COMMENTS ABOVE.
READ (243) NSsNCyKFREQy NV NCH NTYPp IFsNB;IDeIDeNITyIDsDVPCTFI,UE
FORMAT (515,511921542F5.0:,2F10.0)
IF (FI.LE.D0.0) STCP 1111
NCS=NC
NBS=NB
D=2

SET INITIAL DATA ASSUMING A CIRCULAR ORBIT WITH A SINGLE
THRUSTING PERIOD SPECIFIED.

XN=-AD>DMME=ZTO0OC

XDOT=XDATI
LR=LRI

F=F1

X=X/DPR
Y{11)=0.0
Y(12)=0.0
KSH=0
UEST=1.0E450

o S B N R - - RS- - 3 - B S B R R - g g R R



FACTOR==F2SIN(X) /M-UsXDOT+U#U%ASINIX)RXSIN{G+X) /R+COS{G )}/ (RX*R)
IF {NTYP.GT.3) STQP
GO TO (54637} NTYP

CIRCULAR INITIAL ORBIT WITH NO MASS RATE AND A SINGLE THRUST.
X AND XDOT DETERMINE LU, LG, AND LRe. LM IS NOT NEEDED.
LU=M*COS (X}
LG=UxLU*SIN{ X} /COSIX)
LR=LG*FACTOR/ {URULSINI XY #COSIG+X))
GO 10 8

VOO0

CIRCULAR INITIAL ORBIT WITH FINITE MASS RATE.

Xy XDOT AND LR DETERMINE LU, LG, AND M.
LG=LRFUFULSTNIX) 2COS{G+X )1 /FACTOR
LU=LG*COS(X) /{U%XSIN(X]))
LM={LU* (FRCCS{X) /MY +LGH(FXSINIX}/{MxU}~1.0/ (R&R*U} +U/RI~-F)*UE/F
GO T0 8

OO0

ELLIPTIC INITIAL ORBIT - START INTEGRATION AT PERIAPSIS.
H DETERMINES ORBIT SHAPE SINCE SMA IS NORMALTZED TO 1.

ECC=SQRT (1. 0~H*H/SMA)

R=SMA*[1.0-ECC)

U=H/R

GO 10 6

8 P{1}=F

P{2)=UE

S=SHWITCHITIME,Y:P)

IF (S+0.00001.LY.0.0} P(1}=0.0

CUT=CUTOFF(TIME,Y,P)

H=R*U*L0S(G)

~OOOM

SAVE IKITIAL VALUES FOR USE IN B.V. PROBLEM,.
DO 9 I=1,10
YINIT{I}=Y(])

OO0 OO

PRINT GUY PRCBLEM PARAMETERS.
XD=X*DPR
WRITE {3,:10) XD, XDOTLRyFyH,UE: TOLyNSsNC:NTYP;NB
10 FORMAT (1HL ;40X 21H%%%NEW TRAJECTORY**%x //15H X, XDOT, LR = F13.8,
12F13.8,;30H THRUST s MOM, EXH VEL, TOL =4F9.4,2X,412}
WRITE (3,11}
11 FORMAT (//52H X/ ANGLE ENERGY/A MOM/ECC VEL/LU G/LG 5
L1OHRAD/LRMASS/LMSHCH/ CUTH/WIERAPD/PER/ /)
CALL OUTPUT
IF {(AF.NE.O) GO 70O 12
PUNCH 36, FyUE+CNOy Xy XDOT UsGsR4LULG,LR,LM
CNO=NC

c INITIALIZE BOOKEEPING PARAMETERS FOR INTEGRATION.
12 KERR=0

05=0.0

0CUT=0.0

KF=KFREQ

NB=NBS

NC=NCS

TIME=0.0

NE=12

MODE=0

XNB=NB

NLOOP=10.*XNB/TOL
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OO0

13

14

OO0

16

=00

18

19

INTEGRATION LOOP WITH TESTS FOR END OF TRAJECTORY, THRUST

CONTROL s PHYSICALLY IMPOSSIBLE SODLUTIONS, AND OUTPUT CONTROL.
Ff e R AR R R R R R ARE START INTEGRATION LOOP s s doikdoton s e de doe e ok

DO 23 MQ=1,KNLCOP
CALL RUNKUT (TIME,Y, P NONLIN,NE, TOL,DX,HODE)

-CHECK FOR SIGN CHANGE IN CUTOFF. IF A CHANGE HAS OCCURRED;
CONVERGE STATE VARIABLES TO EXACY CUT OFF VALUE.
CUT=CUTOFF{TIME,Y P)
IF (OCUT.EQe0-0.0R.CUT*0CUTG6To0.0.0R.MQ.LEL3) GO TO 15
CALL CONVERG (CUTOFF,0CUT CUTyDXs1.0E~08sNONLIN)}
MODE=0
IF {CUT.EQ.0.0) 13,16

DETERMINE IF TRAJECTDRY IS TO BE ENDED AT THIS ENDPOINT.
NB=NB~1
WRITE {3,11)
CALL DOUTPUT
WRITE (3,24)
IF (KSH.EQel .AND.ABS(U-UEST}.LT.0.02) GO TO 14
IF [KSW.EQo.1l) NB=NB+1
IF (KSWoEQoOAND.NBL.LE.O) 14515
KERR=1
GO TO 25

CHECK FCR SIGN CHANGE IN SWITCH. IF A CHANGE HAS OCCURRED,
CONVERGE STATE VARIABLES TO EXACY SWITCHING VALUE.
IF {(NC.LT.0} GO TC 20
S=SHITCHITINME,YP)
IF (0S.EQe0:.0,0ReS*05.6GT:.0.0.0RMQLE-3) GO TO 20
SNEW=S
CALL CCNVERG (SWITCH;0S9S+0DX,1.0E-08NONLIN}
MODE=0
IF {S.EQ.0.0) 17416
KERR=2
GO TO 25

TURN THRUST ON OR OFf DEPENDING ON SWITCH GOING + OR -.
NC=NC~-1
IF (NC.LT.0} GO TC 14
IF (SNEW.GT.0.0) 19,18
P{1}=0.0
WRITE {3,11)
CAtL OUTPUT
GO TO 20
P{l1)=F
WRITE (3,11)
CALL QUTPUT

OTHER HALTS BECAUSE OF PHYSICALLY IMPOSSIBLE SOLUTION.
IF (M*E.LT.0.0} GO 7O 21
KERR=4
GO T0 25

PRINT QUT AFTER EVERY #KF# INCREMENTS OR AFTER EVERY TEN
"DEGREES CHANGE IN X, WHICHEVER COMES FIRST.

X=ATAN(LG/(U%LU))

KF=KF~1 ‘

IF (ABS(X-XP).LT..174533.AND.KF.GT.0} GO TO 22

KF=KFREQ

XP=X

CALL OUTPUT

OCUT=CUT
gs=§
CONTINUE
KERR=10

EEEERFREEERE ph P LR REERARELR END INTECRATION LOOP Hehdsdsssssdstsdns
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28
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FINAL SUMMARY OUTPUT AFTER EACH SOLUTION.
FORMAT (1 )
FTA=ACOS{(SMA%{1.0-ECC*%2)/R-1.0)}/ECC)
IF (GalT.0.0) FTA=-FTA
AP={AN-FTA)*CPR
FTA=FTA%*DPR
ESTERR=TOL*T [ME
WRITE (3:26) FTALAP,TEKERRMQ,TIME, ESTERR
FORMAT (/16H TRUE ANOMALY = F7.2,2X;20HARG. OF PERIAPSIS = F10.2+5
1Xo15HTOTAL EFFORY = F15.12//716H EXIT STATUS = 14,5X,15HN0O. OF STE
2PS = 14410H TIME = +F15.10,14H EST. ERR = ;F8.6]}
IF THE INTEGRAYION JUST PERFORMED WAS A SOLUTION REGENERATION
THEN  JUMP. '
IF {KSW.EQ.1) GO TO 38
1f A BOUNDARY VALUE PROBLEM IS TO BE SOLVED USING THE FINAL
TIME JUST COMPUTED, THEN JUMP,
IF (AF.NE.O.0)} GO TO 27
DD=NBS
PUNCH 36¢ ECCI,TAI E¢HySMA,ECC, AN FTA, AP, TIME,;TE,DD

AUTOMATIC INCREMENTATION OF INITIAL VARIABLES FOR ANDTHER
INTEGRATION.

NCH=NCH-1

IF (NCH.LT.0) GC YO 1

IF (NV.EQal) XI=XI+DV

IF (NV.EQ.2) XDOTI=XDOTI+DV

IF (NV.EQ.3) LRI=LRI+DV

IF (NV.EQe4) FI=FI+DV

GO TO 4

WITH YIME ESTIMATE KNOWN, REGENERATE SOLUTION WITH FIXED
STEP SIZE AND STORE IN XOLD AS ESTIMATE OF SOLUTION TO
THE BOUNDARY VALUE PROBLEM.

MQ=MQ%2

IF (KERR.NE.1} GO 7O 1

IF (MQ.GY.1000) MC=1000

ESTIM=TIME

 DELT=ESTIM/MQ

DO 28 I=1410
YII)=YINIT{I}
XOLD(ls1}=YINIT(Y)
XOLD(2,1)=YINIT(2)
XOLD(3,L)=YINIT(3)
XOLO(4,1)=YINIT{5)
XOLD({5,1)=YINIT(6)
XOLD(641)=YINIT(T)
TIME=0.0

MODE=5

DO 29 I=2.,MQ .
CALL RUNKUY (TIME,Y,P,NONLINyNE+0.0,DELT,MODE)
XOLD(1l.1)=U
XOLD(2,1)=C
XOLD(3,1)=R
XOLD (4, 1)=LU
XOLD{5,1)=LG
XOLD{6,1}=LR

SET UP FOR QUASILINEARIZATION SOLUTION OF B. V. PROBLEM.
P{1)=MQ
Pl2}=6
P(3)=3
P{4})=0
P(5)=1
Pi6)=1

"P{19)=UE

PL{20}=F -
SET UP FOR INTEGRATION OF MASS AS AN UNCOUPLED EQUATION.

>D?>>DI>X>>Z>I"D>>>>>>>>>>>>J>>J>>>>>>>>>>>>>>>D>DI>D>>>>>>>>>>>b>>>>b>>>b>>
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37

P{10}=1
P{11)=1.0

THE CONSTRAINTS ARE ENERGYs; ANGULAR MOMENTUM, LAMBDA TRANS.,
AND HAMILTCNIAN = O DUE TO FREE TIME.

CONST(1)=-1.0/(2.0%AF)

CONST(2)=SQRT(AF*{1.0-ECCF%%2}}

CONST(3)=0.0

CCNST(4)=0.0

CALL QUAST (PyNIT,PCT,.CYO,ESTIM,CONST,DIFFI,BOUND)

IF (ESTIM.LT.0) 31,32

GO Y0 1

SAVE THE INITIAL VALUES FOUND BY QUASI FOR THE REGENERATION
OF THE SOLUTION USING THE NONLINEAR EQUATIONS.
MSAVE=MQ i
U=X0LD (1,1}
G=X0LD{2s1)
R=X0LD{3,1)}
M=1.0
LU=X0LD 4,1}
LG=X0LD(5+1)
LR=X0OLD(6,1)
LM=0.0
UEST=XOLD[1,MQ)
END POINT SUFFICIENCY CONDITION TEST.
IF (IF.NE.1) GO TO 35
P{1)=MQ
NIB=NIT
CALL FOCAL (P,NIB,PCT,CTO,ESTIM,CONST+DIFFI,FIXED;CONSTRT.ID,PARDE
10
IF (IDsEQe2) WRITE (3,33)
IF (ID«NE.2) WRIYE (3,34) ID
FORMAT(//20X, *END POINT SUFFICIENCY CONDITION SATISFIED.*/)
FORMAT(//20X,: *END POINT SUFFICIENCY CONDITION NOT SATISFIED*, [3/
2 20X ¢ &5 H% M e de e e e ok A ROk £ R ol S Ao ek e R e ok ool fedoledde ik f /)

REGENERATE THE SOLUTION USING THE INITAL VALUES FDUND BY
QUAST AND THE NONLINEAR DIFFERENTIAL EQUATIONS. THE PURPOSE
IS TO VERIFY THE NEWTON-RAPHSON RESULTS AND GENERATE A
COMPLETE LISTING OF THE TRAJECTORY.

X=ATAN{LG/{LU*U)}

IF (LUoLTa0.0) X=X+PI

Pll)=F

P(2)=UE

E=-,5

AN=0.0

TE=0.0

NB=1

NC=NCS

XDOT=~F*SIN{X)/ (M5U)-LREUAXSIN{X)*COS(G+X) /LGHUXSINIX) *SIN(G+X)/R+C

10S{G}/ (U*R*%2})

DD=0.0

TAI=0.0

H=R#*U*COS{G}

ECCI=SQRT{1.0-H*H)

CNO=NC

PUNCH OUTPUT - INITIAL CONDITIONS
IF (ID.NE.2) GO YO 37
PUNCH 36,y F+UE CNOy X XDOTsUsGyR, LU, LGy LRy LH
FORMAT {(6EL13.6)
GO TO REGENERATE THE SOLUTION.
KSH=1
GO 70 8
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PUNCH QUTPUT = FINAL CONDIYIONS
IF (ID.NE.2}) GO TO 39
DD=NB
PUNCH 365 ECCITYAI;EsHsSMA,ECCoANGFTA, AP, TIME, TE,DD

AUTOMATIC INCREMENTATION OF INITIAL VARIABLES TO SOLVE A
BOUNDARY VALUE PROBLEM NEAR THE ONE JUST GENERATED.

MQ=MSAVE

NCH=NCH~1

IF (NCH.LT.0) GO TO 1

IF (NV.EQ.1) AF=AF+DY

IF (NV.EQ.2) ECCF=ECCF+DV

IF (NV.EQ.3) F=F+DV

IF (NV.EQ.4) UE=UE+DV

GO TO 30

END i
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* COMPUTE PARAMETERS AND OUTPUT *
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SUBROUTINE QUTPUT

COMMON /MAIN/ EyH;SMAECC,CUT+S+APD,PER, X, HIER:DPR,HAM
COMMON /INTVAR/ TIME,Y,Pe¢NE,TOL,DX,MODE

REAL Y{100),P(20)

REAL MyLUsLGyLRoLM

EQUIVALENCE (Y{1),4U)y (Y(2):GYs (Y(3).:R)y LY(4), M)y (Y{5),LU)y (Y{
16)4LGYy {Y{T):LR)y (Y(B}sLM)y (Y(9)yAN}, (Y{10},TE)}
EQUIVALENCE (P{1),F)y (P(2),;UE}

DATA P1/3.141592653589793/

E=.5#UkU~1.0/R

H=R*¥U*COS (G}

SMA=1.0/(2.0/R-U%U}

ECC=SQRT{1.0~H¥H/SMA)

PER=SMA*{1.0-ECC)

APO=SMA%* (1. 0+ECC)

X=ATAN{LG/ (U*LU))

IF {LU.LT.0.0} X=X+PI

HAM=LU® {F¥COS{X}/M~SIN{G)/{R*R} ) +LG*{ FASIN(X)/ (M*UI-COSIG)*(1.0/(R
1#R*UY-U/R} I+ LR¥URSINIGI-F*{1.0+LM/UE)
WIER=-F %LU/ (M*COS (X))

XD=X%+DPR

GD=G*DPR

AND=AN#*DPR

IF (XDolLT.180.} GO 70 2

XD=XD-360.

GO 710 1

If (XD«GT.~180.) GO TQ 3

XD=X%D+360.

GO 10 2

IF (AND.LY.180.) GO TO 4

AND=AND~360,

GO 10 3

IF (AND.GT.~180.} GO TO 5

AND=AND+360.

GO 10 4

WRITE {346) XDsEsH U;GDRyMeSoHAM; APO, ANDSMALECC, LUy LG« LR LM, CUT,
1RIER,PER

FORMAT {1H §3B8F10.5,F10.7,F10.5/1H +8F10.5,F10.7,F10.5/)
RETURN

END

199
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* NORMAL-TANGENTIAL EGQUATIONS OF MOTION*®
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Z = TIMEy DX = STEP LENGTH, P VECTOR 0OF PARAMETERS,

Y = DEP. VAR.,s DER VECTOR OF DERIVATIVES DF Y-S

SUBROUTINE NOMLIN (Z:DX,P)
REAL P{20),Y(100),DERL100)}
REAL MyLUsLG+LR, LM
COMMON /KUTTA/ DER,Y
EQUIVALENCE (Y{1),Ule (Y{2):GYe {Y(3)sR)y (Y{4&)eM)}y (Y{5),LU), (Y[
161oLGY sy (Y{T}sLR)p (Y(BI,LM)y (Y(9)eAN), (Y{10},TE}

it u

COMPUTE USEFUL COMBINATIONS.
F=p{1)

UE=P {2}

oPP=LG/U
HYPOT=1.0/SQRT(OPP#%2+LU%%*2}
XCOS=L LxHYPOT

XSIN=0PPAHYPOT

GCOS=COSI{G}

GSIN=STNI(G)

FT=F%XCOS/M

FN=F%XSIN/ (M%)

RR=1.0/R

DTA=U*GCAS*RR

RR2=RR*RR

RUR2=RR2/U

COMPUTE VELOCITY, FLIGHT PATH ANGLE, RADIUS AND MASS DERIVATIVES.
DER{1)1=FT-RR2%GSIN

DER{2)=FN-RUR2*GCOS+DTA

DER (3}=U*GSIN

DER{4}=-F/UE

COMPUTE DERIVATIVES OF LAMBDA-S ASSOCIATED WITH ABOVE VARIABLES.
DER({S)=LG*{FN-RUR2*GCOS-DTA)/U~LR*GSIN

DER{6)=LU*RR2*GCOS-LG* (RUR2~U*RR}*GSIN-LR*U*GLOS
DER{7)=-2,0%LUARR2#RRXGS IN-LG*{ 2., 0%RURZ2*GLOS~-DTA}%RR
DER(8)=(LUXFT+LGXFN)/H

COMPUTE DERIVATIVES OF TRUE ANOMOLY, TOTAL EFFORT AND THRUST ANGLE
DER({9)=DTA

DER{10)=F

DER(11)=0.0

DER(12)=0.0

RETURN

END

ok kAR oAt R A e e A kR ol e e R e ke Rk ke e

DRIVE A FUNCTION OF AN INTEGRAL TO ZERO

LR L R a2 e L T g

CONFUN = FUNCTICN SUBR. WHICH COMPUTES THE VALUE OF THE FUNCTION
TO BE DRIVEN TO ZERQ.

oLD = 0OLD VALUE OF THE FUNCTION BEFORE SIGN CHANGE.

NEW = NEW VALUE OF THE FUNCTION AFTER SIGN CHANGE.

DXO = INTEGRATION STEP LENGTH THAT CAUSED FUNCTION VALUE 1O
CHANGE FROM OLD TO NEW.

ZT0L = DESIRED MAXIMUM DEVIATION OF FUNCTION FROM ZERD.

DIFEQ = SUBROUTINE WHICH COMPUTES DERIVATIVES OF STATES DESCRIB-

ING THE SYSTEM. SEE INTEGRATION SUBROUTINE #*RUNKUT*,.

SUBROUTINE CONVERG {CONFUN,OLDsNEW,DX0,2T0OL.DIFEQ)
Fdp R R e e ok deof dod Rk Kok

COMMON /INTVAR/ TIME,Y,P;NE,TOL,DUMMY,DUM

REAL Y{100),P{20),NEW

MODE=5

DX=DX0

DO 1 I=1,410

DX=NEW¥DX/ {CLD~-NEH)

OLD=NEW

200
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CALL RUNKUTY

(TIME,Y,PsDIFEQ; NEsTOL,DX+MODE)

NEW=CONFUNI{TIME Y P}
IF (ABS{NEW}.LT.ZTOL) 2¢1

CONTINUE

RETURN

OLD=0.
NEW=0.
RETURN
END

0
0

FUNCTION SWITCH (TIME,Y.P)

REAL Y{100}.P(20)
SWITCH=SQRT{(Y(6)/Y (1)) x#23Y{5)4%2)=-Y{41%{1.0+Y(8)/P(2)}
RETURN

END

FUNCTION CUTOFF (TIME,Y,P)
REAL Y{100),P{20)
CUTOFF=SQRY (LY {6)/Y L L)) %%2+Y(5)%%2)~Y (&)

RETURN
END
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QUASTLINEARIZATICON CONTROL SUBROUTINE *
e e A A A 2 RO R R R R R kR

BY R.

Ge

BRUSCH 11725768

THIS SUBROUTINE CONTROLS THE GENERATION OF A SOLUTION TO A SET OF
N NONLINEAR ORDINARY FIRST ORDER DIFFERENTIAL EQUATIONS WITH
BOUNDARY CONDITIONS DESCRIBED AT THE FINAL AS WELL AS THE INITIAL
THE SOLUTION TO THE NONLINEAR PROBLEM IS GENERAYED AS THE
LIMIT OF A SERIES OF SOLUTIONS TO A CONNECTED LINEAR PROBLEM.

POINT,

THE METHOD USED IS QUASILINEARIZATION.

REFERENCE,

*A MODIFIED QUASILINEARIZATION METHOD FOR SOLVING
TRAJECTORY OPTIMIZATION PRUBLEMS%; JAY M. LEWALLEN,
ATAA JOURNAL,s VOL. 59 NO. 55 (MAY, 19671, PP 962-965.

*QUASTLINEARIZATION ANDC NONLINEAR BOUNDARY VALUE
PROBLEMS*,; R, BELLMAN AND R. KALABA, 1965,

*SOLUTION CF VARIATIONAL PROBLEMS WITH BOUNDED CONTROL
VARTABLES BY MEANS OF THE GENERALIZED NEWYON-RAPHSON
METHOD*®*, BY P. KENNETH AND G. E. TAYLORy IN *RECENT
ADVANCES IN OPTIMIZATION TECHNIQUES*, EDITED BY LAVI
AND VOGL.

DISCRIPTION GF VARIABLES
%o et e SOk R e R ok R R Rk

PAR

NIT
PC

E N U I L T 1 I 1} ]

1 ou

A VECTOR CF PARAMETERS USED IN INTEGRATION. 1-6& RESERVED.
THE FIRST & VALUES MUST CONTAIN THE FOLLOWING, INDEX =

NO« 1
NUMBER OF FIRST ORDER D.E. (1ST M HAVE KNOHWN 1.C.) 2

OF STEPS IN TIME CURRENTLY BEING USED.

NUMBER OF STATE VARIABLES
NUMBER OF KNOWN STATE VARIABLE INITIAL CONDITIONS.

0,

IF FINAL TIME IS FIXED. = 1 IF FINAL TIME IS FREE.

3
NUMBER OF *BANG-BANG* CONTROLS TIMES 3 4
S
5

MAX. NO. CF TIME STEPS FOR WHICH STATES CAN BE STORED.

MAXTMUM NUMBER OF COMPLETE ITERATIONS ALLOWED FOR CONVERG.
THE MAX. PERCENT CHANGE IN INITIAL VALUES TO BE ALLOWED.
THE PERCENTAGE IS BASED ON THE MAX. ABS. VALUE OF THE
VARTABLE OVER ITS RAMGE. HIGH PCT YIELDS RAPID CONVERG.

LOHW

PCT. LESSENS PROBAB. OF UNCONTROLABLE DIVERGENCE.

n
O
]

OGO OOOMTITITITIMMMMMOOODO0O0O0O

24
25
26
27
28
29
30
31
32
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TOL = MAX VALUE OF THE SUM OF (MAX. DEVIATIONS OF THE STATES
FROM THE STATES ON THE PREVIOUS ITERATION)
USED TO TEST FOR CONVERGENCE COMPLETION.
ESTIM = ESTIMATE OF FINAL TIME (ASSUMMED FREE)
CONST = A VECTOR CF CONSTANTS WHICH END POINT CONSTRAINTS MUST =,
DIFFL =
DIFFL = USER HRITTEN SUBROUTINES DEFINING LINEARIZED EQUATIONS
BOUND = AND CONSTRAINT PROPERTIES.
X = A VECTOR OF CURRENY STATE AND ALGEBRAIC VARIABLES
(N STATE VARIABLES FOLLOWED BY IA ALGEBRAIC VARIABLES).
AS SOLUTION IS DEVELOPED, SUCESSIVE VALUES (WRY. TIME) ARE
STORED IN XOLD MATRIX.
XOLD = A MATRIX CF STATE AND ALGEBRAIC VARIABLES EVALUATED AT NS
TIME INTERVALS WHICH PROVIDES THE SUBROUTINE WITH AN
INITIAL SOLUTION WITH WHICH TO WORK,.
USE
&

THE USER DESCRIBES HIS PARTICULAR PROBLEM BY SUPPLYING SUBR. DIFFI
AND DIFFL, BY MODIFYING SUBR. BOUND, AND BY GENERATING A
REASONABLE APPROXIMATION TO THE SOLUTION (XOLD) AND BY CALLING
QUAST WITH THE PERTINENT SET OF PARAMETERS.

SUBROUTINE QUAST {PARNIT,PCyTOL,ESTIM;CONSTDIFFIBOUND}
e e e g e e e de e e A e e dle ok

REAL X{100),CONST(10),UPDAT(10),DER{100},VARMAX(10)

REAL XOLD{6,1000)PAR{20),ERR{10},DUMMY{100)NERER
COMMON /IOLD/ XOLD

COMMON /KUTTA/ DER,DUMMY

EXTERNAL DLSUB

SET UP CONSTANTS FOR THIS CALL.
NS=PAR{1)
N=PAR(2)
M=PAR(3}
IA=PAR{4)
ITF=PAR(5)
NA=PAR{10)
NVECT=N-M
NVAR={NVECT+1)*N+NA
NUP=N-M+ITF
NST=N+1A
DO 1 I=1,NUP
UPDAT(1)=0.0
UPDAT (N-M+11=0.0
RHO=1.0E+50
RHOLD=1.0E+50
CMAX=1.0
FRACT=0.0
IDIv=0

TEST FOR AN IMPROPER CALL. IF YES, STOP.
IF (N.LT.2) STOP 701
IF (M.LT.1) STOP 702
IF {NS.LY.1} STOP 703
IF {(M.GE.N) STOP 705
IF (NIT.LT.1} STQP T06
IF (PC.LE.0.0) STOP 707
IF {TOL.LT.0.0} STOP 710
IF (ESTIM.EQ.0.0) STOP 711

SET LOOP TOD ITERATE NO MORE THAN *NIT# COMPLETE TIMES.
KLZ=0
DO 28 KRAP=KLZ,NIT
IF {KRAP.EQ.0) GO 70 21

202
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INITIALIZE AL AND BL MATRICES FOR CONSTANT ELEMENTS.
CALL DIFFI (PAR)}

SET UP INITIAL STATE VECTOR FOR GENERATING SIMULTANEOUSLY
A PARTICULAR SOLUTION TO THE INHOMCGENEOUS LINEARIZED
EQUATIONS (USING XOLD(I,1) VECTOR AS THE INITIAL CONDITION)
AND N~#¥ SETS OF SOLUTION 70 THE HOMOGENEOQUS LINEARIZED
EQUATIONS {(THE INITIAL CONDITIONS FOR EACH SET OFf HOMO. EQ.
BEING ALL ZEROS EXCEPT A ONE IN PLACE OF THE INITIAL STATE
WHICH IS FREE TO VARY.) -

D0 2 I=1,NVAR

IF {I.LE-N) XUI}=XOLD{I,1)
IF (I.GT.N) X{I)=0.0
CONTINUE

DO 3 I=1,NVECT

J=TEN+M+ ]

X{J)=1.0

IF {(NA.EQ.0) GO TO 5

DO 4 I=1,NA

X{INVAR-NA+] }=PAR(1+10}

INITIALIZE ERROR ESTIMATING VECTOR AND VECTOR USED TO SAVE
THE MAXIMUM VALUE OF THE VARIABLES REQUIRING INIT. GUESSES.

DO 6 I=1.N

ERR{I1¥=0.0

DO 7 I=1,NVECY

VARMAX{[1=0.0

TIME=0.0

XNS=NS

DELT=ESTIM/XNS

INTEGRATE ALL EQUATIONS FORWARD TO THE TIME ESTIMATE, ESTIM.
DO 10 K=2,NS
PAR(1l}=K~1

INTEGRATE EQUATIONS ONE STEP.

CALL RUNKUT (TIME,X,PAR,DLSUB,NVAR:0.04DELT,:5)

SAVE MAXIMUM ERROR IN EACH DEPENDENT VARIABLE FROM PARTICULAR
SOLUTION AND STORE NEW PARTICULAR SOLUTION FOR USE ON NEXT ITER.
DO 8 I=1,N

NEWER=ABS (X{I)-XOLD{I,K}}

IF (NEWER.GT.ERR{1)) ERR{I)=NEWER

XOLDUE,K)=X{T1)

SAVE MAX. ABSOLUTE VALUE OF VARIABLES INITIALLY GUESSED
DO 9 I=1,N
IF (ABS({X({1)).GT.VARMAX{I}) VARMAX{I)}=ABS(X(1)}
CONTINUE ’
CONTINUE

COMPUTE ERRDR METRIC
RHO=0.0
DO 11 I=14N
RHO=RHO+ERR{ 1)}

CHECK FOR HIGH DEVIATICN OF INITIAL GUESS FROM EXACT NON-

LINEAR SOLUTION WITH SAME I.C. [IF TRUEs; DO NOT CHANGE

INITIAL VALUES. INTEGRATE ONCE TOWARDS NONLINEAR SOLUTION.
IF {(KRAP.LE.1.AND.RHO.GT.10.*%TOL)} GO TO 21

CHECK FCR A DIVERGING SOLUTION. ALLOW ONLY i5 CONSECUTIVE
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DIVERGENCES.,

IF (RHOLD.EQ.0.0) GO TO 13

ERATE=(RHOLD-RHO)/RHOLD

IF {ERATE.GT 0.0} IDIV=D

IF (ERATE.GT.0.0) GO 7O 13

IDIV=IDIV+1

IF (IDIV.GE.15) WRITE (3,12}

FORMAT(////7 10X, #*QUASILINEARIZATION CONTROL SUBR. —-— UNCONTROLAB
2LE SYSTEM DIVERGENCE.*////})

IF (IDIV.GE.15} GO TO 30

COMPUTE CHANGES IN INITIAL CONDITIONS WHICH WOULD SATISFY
. B. €Co IF THE SAME XOLD ESTIMATE WERE USED AGAIN,.
CALL BOUND (X;DERsCONST;PAR,UPDAT}

HOWEVER, ONLY USE A FRACTION OF THESE INITIAL VALUE UPDATES.
THIS WILL PRESERVE CONVERGENCE EVEN WITH BAD INIT. GUESSES.

IF SOLUTION 1S CONVERGING MAKE ADJUSTMENTS TO INITIAL STATES
AND TIME ESTIMATE PROPORTIONAL TO FRACT,.
FRACT IS CHOOSEN SO THAT NO CORRECTION WILL EXCEED A PER
CENT OF THE MAX. ABSOLUTE VALUE OF THAT VARIABLE OVER RANGE.
CMAX=1.0E~50
DO 14 I=1,NVECT
J=I+M
IF (ABS{UPDATI{I)/VARMAX{J)I)aGTLCMAX) CMAX=ABS({UPDATI(I}/VARMAX({J]})
CONTINUE
IF (ITF.EQ.1) 15,16
CMAX=AMAX1{CHMAX , ABS(UPDAT(NVECT+1)}/ESTIM))}

IF PERCENT ERROR IN LAST ITERATION .GT. PCT, REDUCE FRACT.
DO 17 I=1,N
IF (ABS{ERR{IN/VARMAX{I)).GT.CMAX) CMAX=ABS{ERR(1)/VARMAXI{I}))
CONTINUE
PCT=PC#*0,.01
IF (CMAX.GY.PCT) FRACT=PCT/CMAX
IF (CMAX LY. PCT) FRACT=1.0
IF (KRAP.GTNIT-10.AND.FRACT.EQ.1.0) FRACT=0.8

UPDATE INITIAL VARIABLES.
RHOLD=RHO
IF (ITF.EQ.1) 18,19
ESTIM=ESTIM+UPDAT (NUPI*FRACT
DO 20 I=1,NVELT
K=M+]
XOLD{Ks1)=XOLD{K,; L) +UPDAT{I)*FRACT

TEST OUTPUT.

ND=NS/9+1

K=N+1A

IF (KRAP.EQ.O} WRITE (3,22)

FORMAY (1HL)

WRITE (3,23} KRAP,RHO,FRACT,ESTIM,UPDAT{N-M+1)

FORMAT (/% ITERATION ¥y 15y % RHO = %, E12.3; * FRACTION = %,
2 Fbeby * TIME EST. ¥, E16.8,% TIME UPDATE = %,E12.4)
DO 27 I=1:K

If (I.LE.M.OR.1. GT N) 26524

WRITE (3425) (XOLDUI+J)sJ=1sNSsNDJ)¢4XOLD{I,NS),UPDAT{I-M)
FORMAT (4X,1E16.8,8E10.2+1£16.851E10,2)

GO TO 27

WRITE (3,25) (XOLD{1,J)9J=1yNS,ND},XOLD(I4NS}

CONTINUE

# 8

CHECK FOR METRIC MWITHIN TOLERANCE. IF NOT REPEAT.
IF (RHOWLT.TOLANDCMAX LT TOL .AND.KRAP.GT.2) GO TO 31
CONTINUE .

WRITE 1{3,29)

FORMAT(///7/10Xy *QUASILINEARIZATION CONTROL SUBR. ——= THE SYSTEM W
20ULD NOT CONVERGE IN THE ALLOTTED NUMBER OF ITERATIONS.*////7)
ESTIM=~-1.0

PARI1}=NS

RETURN

END
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* FOURTH DEGREE RUNGE KUTTA INTEGRATION *
e e AR oA o e e e oo S o A o ok ok e ok s AR KR R R

BY R. G. BRUSCH 2/13/68

MINIMUM TRUNCATION ERROR AS PER,

Fo CESCHINO; NUMERICAL SOLUTION OF INITIAL VALUED PROBLEMS,
PAGES 44, 45, AND 67.

MODE = 5 FOR A FIXED STEP LENGTH = DX

0 TO START INTEGRATION WITH STEP LENGTH SELECTED EVERY
4TH INTEGRATION SO ERR/UNIT TIME IS LESS THAN THE TOL.

NOTE THAY THIS DDES NOT NECESARILY GUARANTEE MINIMUM TOTAL ERROR
FOR THE NUMBER OF STEPS USED, SINCE ERROR PROPAGATION IS NOT
TAKEN INTO CONSIDERATICN. ‘

MODE SHOULD NOT BE ADJUSTED BY THE MAIN LINE PROGRAM IN

THE VARIABLE STEP LENGTH MODE.

o

SUBRDUTINE RUNKUT (X¢Y,P;DIF,NDE,TOL,DX,MODE)

REAL Xo¥Y{100),P(20):Y1(100),;DER{100)XK{4+100)TOLsAl4s4}:YOLD(341
1001 ,DEROLD(3;100}¢XS (%)

CORMON /KUTTA/ DER,Y1

DATA A{l¢1)sA{2+112A(2,2)/0c40+4-¢14999999999999,0.750/,A(3:11+A{3,
12)+A(3431/.431818181818181,5-.340909090909090,:;0.909090909090910/sA(
241V 0ALG2) s Al 3 )2 Al44) /70 102TTTTTTTTTIT 1T, e347222222222221403472
3222222222215 4152777773777/

CHECK MODE. IF INITIALLY Z2ERO, VTAKE SMALL STEPS 4 TIMES TO SET
STEP LENGTH COMPATIBLE WITH SINGLE STEP ERROR TDLERANCE.
IF INITIALLY 5, A FIXED STEP LENGTH = DX IS USED.

MQ=0

IF (MODE.GT.O0) GO 1O 2

DX=.0001

=.0001
HN=1.0E+50

MODE=MODE-1

GO TO 3

IF (MODE.EQ.5) H=DX

IFf (MODE.GT.5) STCP

SET THE INDEPENDENT VARIABLES
XS{li=X

XS{2)=X+H*0. 4

XS{3)=X4+H*.6

XS{4)=X+H

L=1ABS{MODE)

INTEGRATE - DIF IS A SUBROUTINE WHICH COMPUTES THE D/DX-S USING
Y1-S. Xy, H, AND PARAMETERS P

DO 4 J=1,NDE

Yi{Ji=YLlJ)

DO 8 I=1,4

CALL DIF (XS{I)sHyP)

DO 8 J=1,NDE

XK{I4J)=DER(J)

DER{J)=0.0

DO 5 K=1,l1

205
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DER(JI=DER(IJIFALT K)*XK(K,J]

IF {ToLT.4} YLUJI=Y{J)+H*DER(J)
IF (I.LT.4) GO TO 8
Y{J)=Y{J)+HEDER[{J)

SAVE Y~S AND THCIR DERIVATIVES FOR ERROK EVALUATION AND H ADJUST.
IF (L.EQ.5) GO TO 8

IF (L.EQ.4) GO YO 6

YOLD(L o dd=Y (J)

DEROLD{LsJ)=DER{J}

GO 710 8

COMPUTE NEW H TO MAKE MAXIMUM ERROR LESS THAN THE TOLERANCE.

FOR 4TH ORDER RUNGE KUTTAs UNIT ERROR IS PROPORTIONAL TO H¥%*4.
STEPER=+1{,18333333333333%(Y{(J)~YOLD{1sJd)}+45%(YOLD(3,J)-YOLD(2,J)
11} ={.05%{DER{J)+DEROLD(L+J) )+ 45%{DEROLD(3,+J)+DEROLD({2,J)) ) %H

IF (STEPER.EQ.0.,0) GO TO 7

UNITER=STEPER/H

HNEW=H*{SQRT (ABS{TOL/UNITER}))

IF {(ABS({HNEW)LToHN) HN=ABS{HNEW)

IF (ABS({HNEW).LT.HN) MQ=J

IF {ABS({HNEW).LT.HN} UN=UNITER

If (JoLT.NDE) GO TO 8

X=X+H-HN

H=HN

DX=H

HN=1.0E+50

MODE=0

CONTINUE

X=X+H

I (MODE.LT.0} GO TO 1

IF (MODE.LT.4) MUODE=MODE+1

RETURN

END
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COMPUTE DERIVATIVES FOR PARTICULAR SOLUTION AND N-M HOMO. SCLUTION
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THE *N#* LINEARIZED DIFFERENTIAL EQUATIONS ARE OF THE FORM,

DIX{JII/DT = ALUJD)=X{1) + BL(I) {1}
WHERE REPEATED SUBSCRIPTS IMPLIES SUMMATION.
X(1) = THE NEW ESTIMATE OF THE DEPENDENT VARIABLES.

AL{J,1) = A MATRIX OF COEFFICIENTS WHICH ARE EVALUATED USING ONLY
THE OLD STORED VALUES OF THE DEPENDENY VARIABLES.
THEY REPRESENT THE THE FIRST PARTIAL DERIVATIVES OF THE
RIGHT HAND SIDES OF THE NON-LINEAR D. E. WRT. THE STATE
BL{J) = A VECTOR OF CONSTANT CCEF WHICH ARE EVALUATED USING ONLY
THE OLD STCRED VALUES OF THE DEPENDENT VARIABLES.

THE MATRIX AL AND VECTOR BL ARE FOUND FROM THE NON-LINE
EQUATIONS BY A TAYLOR SERIES EXPANSION OF THE RIGHT HAND SIDE OF T
1-ST ORDER NONLINEAR DIFFERENTIAL EQUATIONS ABOUY THE DOLD STORED
SOLUTION AND RETAINS ONLY LINEAR TERMS OF THAT EXPANSION.

SINCE THE RESULTING EQUATIONS ARE LINEAR IN THE DEPENDENT VARIABLE
THE BOUNDARY CONDITIONS CAN BE SATISFIED IDENTICALLY AT EACH STEP
BY THE PRINCIPLE OF SUPERPOSITION.

THIS SUBROUTINE GETS THE VALUES FOR AL AND BL ONCE AND
USES THEM TC GENERATE THE DERIVATIVES OF THE INHIMOGENEQOUS SOLUTIO
VECTOR AS WELL AS N-M HOMOGENEOUS SOLUTION VECTORS WHICH WILL BE
NEED FOR THE SUPERPOSITION. THUS THE A AND B MATRICES ONLY

HAYE TO BE EVALUATED ONCE INSTEAD OF N-M+#1 TIMES IF ALL OF THE
SCLUTIONS WERE NOT BEING GENERATED SIMULTANEOUSLY.

SUBROUTINE DLSUB (T,DELT,PAR) )
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REAL T,X(100),DER(100),PAR(20},AL(656)},BL(6)
COMMON JINTEG/ AL,BL

COMMON /KUTTA/ DERsX

IS=PAR(1)

N=PAR(2}

M=PAR(3)

NVECT=N-M

GET CURRENT VALUE FOR AL, BL MATRICES.
CALL DIFFL (1S,PAR)

GET DERIVATIVES OF INHOMOGENEQUS EQUATIONS
D0 2 I=1+N
SUM=0,0
DO 1 J=1,N
SUM=SUM+AL{ 1) %X(J)
DER{II=SUM+BLI(I)

GET DERIVATIVES OF *NVECT* SETS OF HOMOGENEOUS EQUATIONS.
DO 5 K=1,NVECY
KY=K#*N
DO & I=1,N
SUM=0,0
DO 3 J=1.N
SUM=SUM+AL{T ,J1*X{J+KV)
DER{I+KV)=SUM
CONTINUE

USER INSERTS DERIVATIVES DF *PAR{10}* ND. DF AUXILLARY
VARTIABLES WHICH ARE UNCOUPLED FROM THOSE INVOLVED IN THE
QUASILINEARIZATION. THE FIRST IS CALLED X{IN-M+1)xN+1l}

DERI{25)=~PAR(20)}/PAR{19)

RETURN

END

B e o T e o A et e ot A R A e R R e R R R

THE LINEARIZED DIFFERENTIAL EQUATIONS *
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USER WRITTEN ROUTINE TO EVALUATE AL AND BL MATRIX USING THE OLD
STORED VALUES.

PAR = A VECTOR OF CONSTANT PARAMETERS NEEDED FOR DERIVITIVE.
XOLD(I+J) = THE VALUE OF THE I-TH STATE AFTER J INTEGRATION
STEPS ( FRUOM LAST ESTIMATE OF THE SOLUTION)

SUBROUTINE OIFFL (IS,PAR}
COMMON /INTEG/ AL.BL
COMMON /I0LD/ XOLD
COMMON /KUTTA/ DER,Y

REAL AL{6,6) +BL{6),PAR(20),X0LD{6,1000),DER(100},Y{100)
REAL M3LUsLR,LG

M=Y(25)

UE=PARI{19)

F=PAR{20)

U=XOLDI{1,1IS)

G=X0LD{2,15)

R=XDLD{3,15)
LU=XOLD{4,15)
LG=X0LD{5,41%)
LR=XO'"D(6,1S}

COSG=C0S(G)

COMPUTE FREQUENTLY APPEARING FACTORS.
SING=SIN{G)
FOM=F/M
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D=(LG*LG) /{U*U)+LU*LU
SQRTD=SQRT (D)
D32=SQRTD*D

UDOT EQUATION.
AL(1o1)=FOMRLURLGH%2/{D32%U%%3)
AL(1,2)=-COSG/(R*%2)
AL{1:3)=2.0%SING/R*%3
AL (1,4 )=FOMR{LG/U}%%2/D32
AL(Ly5)=~FOMRLU*LG/ (D32#U%%2)

G DOT EQUATICN.
AL(2,1)=—FOMARLG* (LG*¥2+2 . 0% (LU*U) %%2) /{D32%U%x5)+(COSG/ { (R¥Y}¥%2} ¢
1COSG/R)
AL12,2)=SING/U%R%%2)~U*SING/R
AL(243)=(2.0/(U%R%%3)~U/R%%2)%C0OSG
AL{244)=—FONMELGHLU/ (D32%U%%2)
ALE2,5)=FOM* (LU/U)*%2/D32

RDOT EQUATION.
AL(3,11=SING
AL (3,2 )=U*COSG

LU DOT EQUATION.
AL {431 ) =-FOMB(LGH*2 )% {2 0% (LG/U) ¥%2+3,0%LU¥* 2} /(D3245U%¥4)+2. 0¥LG*C
10SG/ {UR{U*R) ¥%2)
AL{442)=LG* {1/ (R*U}*%2+1.0/R) *SING-LR*C0OSG
AL{G3)=L0%{ 2./ (R*{R¥UIE%2)}+]1 . 0/R*%2)%CD56
ALLGy4)=—FOMXLG*%2%LU/ (D324U%%3)
AL{4,5)=FOMRLGH({LG/U)%%242. 0%LU%42) /(D324 Ux*3}-({1.0/ (R¥U})*x%2%1,0/
LRI *COSG
AL{4s6)=-SING

LG DOT EQUATION.
ALLS,1)=L0% {10/ L(R¥UI %2} +1./RIFSING-LR*COSG
AL{S2) = (LR¥U~LU/R¥H2}%SING-LG*¥{ 1.0/ (R*R*U)~-U/R}*COSG
AL{543)=-2.0%LU*COSG/R%%3+LG* (2. 0/ (UXR% %3 }-U/R%%2 J%5ING
AL{544)=COSG/R¥%2
ALI5,5)=~{1.0/(U=R*¥2)-U/R}*SING
AL1546)}=-U*C0SG

LR DOY EQUATION.
AL{6,1)=L0%(2.0/ (RE{REUI %22} 41 ,O0/R:%2}%CDSE
AL{6+2)=AL15,3)
AL{643)=6.0%LUXSING/ RE%4+LG* {60/ (UkR¥%4) -2, %Y /RE%3}*L0S6
AL{6,4)=-2.0%SING/R*%3
AL1645)=~{2.0/ (U*R%%3}~U/R*%2) %*C0OSG

NON-LINEAR TERMS.

BL{L)=FOMELU%%*3/D32-3.0%SING/R**%2+G*COSG/R¥*2

BLIZ2)=FOMFLO*(2. % {LG/U) % %243, 0%LU*%2}/(D32%U*%2 )+ (-4, 0/ (UkR%*¥2) +U/
IR)Y*¥COSG-G*AL (24 2)

BL(3)=-U%G*CCSG .

BLUAI=FOMRLG#¥2% {2, 0% (LG/U)%%243 ., 0%LUx%2}/(D32%U**3 )+ G (~4.0/(R*U
11 %%2-1,0/R)*COSG-G*AL(4,2)
BL{S5)=—3.0%LG¥SING/ (UsR%#2} 4+ (2. 0%¥LU/R**2+LR%UI*COSG-G*AL(5:2])
BL{6)=~LG*(8./(UXR&*¥3)-U/R*¥¥2}#COSG~ 6 ¥LU*SING/R%*3-G%AL(6,2)
RETURN

END
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SUBROUTINE DIFFI (PAR}

COMMON /I0LD/ XOLD

COMMON /INTEG/ AL,.BL

REAL AL{6,6)+BLI6Y,PAR(20),X0LD(6,1000}
N=PAR(2)

M=PAR(3)

DO 1 I=1¢N
BL{I1=0.0

DO 1 3=1.N
AL{I+J)=0.0

RETURN

END .

Aok e ok Bofe e A e Ao o ol A e e e o o o e ok o ol A kol R A
END POINT SUFFICIENCY CONDITION TEST *
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SUBROUTINE FOCAL (PARSNIT,PCT,TOL,ESTIM CONST,DIFFI,FIXED,CONSTRT,
110,0)

REAL XOLD{6,1000}),PAR{20}:CONST(10),5AV(10)
REAL PARTWO{1045101+PHI{10:,10),A010,10),X5(10)
INTEGER ICONST(10}

COMMON /IOLD/ XOLD

NS=PAR{1]}

N=PAR(2)

M=PAR(3)

ITF=PAR(5)

NTC=N-M+ITF

GET NO. OF VARIABLES INVOLVED IN CONSTRAINTS, NO. OF

INDEPENDENT VARIABLES INVOLVED IN CONSTRAINYS, LOCATIONS OF

EACH, 2ND PARTIAL DERIVATIVES OF G:. AND PHI CONSTRAINT MATRIX
CALL CONSTRT {L,PAR,NVyNL, ICONSY,PARTHO,PHI)

GENERATE PARTIAL DERIVATIVES OF LAMBDA FINALS WRT. DEPENDENT
AND INDEPENDENT VARIABLES INVOLVED IN CONSTRAINTS.

WRITE (3,10 ((PARTHWO(J,1)s1=1,NV)ad=leNV)

FORMAT {3E16.8)

WRITE (3,2) ((PHILI,J)sJ=1,NI},I=1,NV)

FORMAT (/{E16.8))

DO 3 I=1,N

SAVII)=XOLD(,NS)

TIMSAV=ESTIM

DO 4 I=1:N

XS(1)=XO0LD(1,1)

IF (NV.GT.NTC) STOP 40

DO 10 I=1,NV

DO 7 J=l,NV

CONST(J)=SAV (J)

IF (1.EQ.J) 5,7

CONST(J)=SAVIJ) #(1.0+4D)

DENOM=SAV (J) #D

TEST FOR ENDPOINTS NEAR ZERD.
IF (ABS{CONSTIJ)}).LT..001) 6,7
CONST(J4)=SAaV(J}+.01
DENOM=.01
CONTINUE
CALL QUAST (PAR NIT,PCY,TOL,ESTIM:CONST,DIFFIFIXED)
IF (ESTIM.LT.0.0) 1D=0
IF (ESTIMeLT.0.0) RETURN
NH=N/2
K=0
DO 9 L=1,NH
IF (ICONST{L).NE.O) 8,9
K=K+l
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PARTHO(K 1) =PARTHCIK s 1)+ {XOLO(LANHyNS)~SAV(L+NH} )} /DENOM
CONTINUE

IF (K.GT.NV) STOP 42

ESTIM=TIMSAV

DO 10 K=1,N

XOLD (X, 1)=XS (K)

WRITE (3:1) ({PARTHO(Js1)oI=1sNV}sJ=1,NV)

POST—~ AND PRE-MULTIPLY BY PHI
DO 12 I=1+NV
DO 12 J=1,NI
SUM=0.0
DO 11 K=1,NV
SUM=SUM+PARTHO(T s K)%PHI(K, J}
All40)=5UHM
DO 14 I=1,NI
DO 14 J=1,NI
SUM=0.0
DO 13 K=1,NV
SUM=SUM+PHI (K, 1) ¥A(Ked}
PARTHO(I o J)=5UM
WRITE (3,2) ((PARTWO[J,I)»I=1sNI)sd=1sNI}

CHECK DEFINITENESS.
CALL DEFINIT (PARTWO,NI,ID)
RETURN
END
e s Al ok e e e A o dode e ool o oo oo o o e ook Aol kol ke
COMPUTATICN OF REAL VARIABLE CONSTRAINTS %
e Ak AR e A Al R TR B ok Al A TR A ok Al AR e Sk ok

KS = 1 FOR A NCRMAL CALL FROM FOCAL

PAR = A VECTOR OF PARAMETERS AS DESCRIBED IN QUASI.

NVAR = THE NUMBER OF VARIABLES INVOLVED IN THE CONSYRAINTS.

NI = THE NUMBER OF INDEPENDENT VARIABLES INVOLVED IN CONSTRAINTS
NC = NQO. OF CONSTRAINED VARIABLES = NO. OF CONMSTRAINTS.

ICONST 1 IF X({J} IS A DEPENDENT VARIABLE IN A CONSTRAINT.

2 IF X{J) IS AN UNCONSTRAINED VARIABLE IN CONSTRT.

0 OTHERWISE

VALUE OF SECOND PARTIAL DERIVATIVE OF G WITH RESPECT
TO THE I-TH AND J-TH VARIABLE INVOLVED IN THE
CONSTRAINTS. THE MATRIX IS ORDERED SO THAT ALL
DERIVATIVES WRT THE DEPENDENT VARIABLES APPEAR IN
THE UPPER-LEFT. (WITH I AND J oLT. NC}

PHI(1,J) = A MATRIX RELATING CONSTRAINED VARIABLES TO THE
UNCONSTRAINED VARIABLES. CON{I)} = PHI(I,J)*UNCON(J)

noonou

PARTHO(1,J)

SUBROUTINE CONSTRT (KS,PAR,NVAR¢NI, [CONST,PARTHO,PHI}
A e e Ao e ool de e e e Ao fe e Ao

REAL PAR(20),PARTHO(10,10),PHI(10,10),X0OLD{6,1000}+PARCD(10,10)
REAL PARCI(10,10),PARCDI(10,10},X(10)

INTEGER ICONST(10)

CUMMON /IOLD/ XOLD

REAL MUL,MU2

REAL LG,LR

NS=PAR(1)

N=PAR(2)

USER LOADS ICONST, PARTWO, PARCD, AND PARCI HERE.

Ao e e e e e e e e o ol e Aol ok kR e e ke ok e e e A dr fede oo ok ek ok ok

CHOGSE U AND G TO BE INDEPENDENT
U=XOLD(1,NS} .
G=XOLD{24+NS}

R=XOLD{3,NS)

LG=XOLD{(5,;NS}

LR=XOLD(6,NS)
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MUL=~R&R*(LG/{R*TAN(G} ) +LR]

MU2=LG/ (R¥UAXSINI(G))

PARTWO{1,1}=MUL
PARTHO{2+2)=-MU2*U*R*COS (G}
PARTHO{3:3)=-2.0%MUL/R%%3
PARTWHO({1,2)=PARTHO{2,1)=-HU2¥RESIN(G)
PARTHO(143)=PARTHOI3,1)=MU2%C0OS{G)
PARTHO(2,3)=PARTHO(3,42)=-MU2*UXSIN(G)
ICONST(1)=1

ICONST{2)=1

ICONST(3)=2

ICONST(4})=0

ICONST(5)=0

ICONST(6)=0

COMPUTE PARTIAL DERIVATIVES OF CONSTRAINTS WRT. DEPENDENT VAR

PARCD{1,1)=U
PARCD(1,21=0.0
PARCD(2,41}=R*COS{G)
PARCDI2+2)=—-R¥U*SINIG)

COMPUTE PARTIALS OF CONSTRAINTS WRT,
PARCI{ls1)=1.0/R%%2
PARCTI(2:1)=U%C0OS(G)

Jee e e e d e de e o s Fe e ek e ook ool e ok kool B o ok e Ao gk e Ak Xk ko e

SET NCy NVARy; AND NI.
NC=0
NVAR=0
NI=0
DO 1 I=1¢N
IF (ICCHNST(IV1.NE.O) NVAR=NVAR+1
IF (ICONSTII)eEQ.1) NC=NC+1
IF (ICONST(I}.EQ.2) NI=NI+}
CONTINUE

COMPUTE PHI = —PARCDUINVERSEI*PARCI

KC=NC

CALL SIMEQ (PARCD;X+KCPARCDI X}
IF (KC.NE.NC) STOP 31

DO 3 I=1.NC

D0 3 J=1.NI

SUM=0,.0

DO 2 K=1,NC
SUM=SUM-PARCDI{I,K)*PARCI(X,J)
PHI{l,+J})=5SU¥ i

FILL OUY LAST ROWS OF PHI{1,J) WITH IDENTITY

DO 4 I=1,NI

DO 4 J=1,N1

PHIINC+I431=0.0

IF (1.EQed) PHIINC+I,J)=1.0
CONTINUE

RETURN

END

INDEPENDENT VARIABLES.

211

ZEETTEIXTEZXX

=

TTXIITIIIIZTIETZTXTERIDNIZTZIITIZTITITIRIRIZIZIZIRIIZIIZIZEZZI®



OO0 OO0 O0NO0O00

OO0~

T F e Ao e of Ao Aol A e e Btk e e et sk defe e el e o e e Ao ek ok ol e

ESTIMATE CHANGES IN INITIAL VALUE GUESSES *
gl AR R g AR R A e R R R AR RO e AR A AR R ok e

DELHIJ) = HPAR{JKIXHFIN{K,L}*UPDAT(L)

WHERE HPAR A MATRIX OF PARTIAL DERIVATIVES OF THE TERMINAL
CONSTRAINTS H{J)ly WRT. THE STATES CONSTR.(N-M+l X KS)

KS = NUMBER OF VARIABLES INVOLVED IN THE CONSTRAINTS.

]

HFIN

8

A MATRIX WHOSE FIRST N-M COLUMNS CONYAIN THE KS

FINAL VALUES OF THE CONSTRAINED VARIABLES RESULTING

FROM EACH OF THE HOMOGENEQUS SOLUTIONS.

THE LAST COLUMN CONTAINS THE DERIVATIVES OF THESE

VARIABLES EVALUATED AT THE END POINT. (KS X N-Mtl)

UPDAT= A VECTOR OF CHANGES TO BE MACE IN THE INITIAL GUESSES
DELTA-T FINAL IS THE LAST ELEMENT. {(N-M+1)

DELH = TERMINAL BOUNDARY CONDITION DISSATISFACTIONS. (N~M#+1}

IFINAL= DESCRIBES POSITION OF FINAL CONSTRAINED STATES IN X-VECTOR

SUBROUTINE BOUND (X¢DER,CONST,PAR,UPDAT}
REAL X{100)DER{100)sCONST(10)4HPAR(10510),HFIN{10+10)sH{10,10):PA
1R{20)

REAL DELH{10),UPDAT{10}

INTEGER IFINAL(10}

REAL LULGyLRyM

N=PAR{2)

M=PAR(3)

ITF=PARIS)

NTC=N-M+ITF

DO 1 I=1.10

DO 1 J=1,10

HPAR{T14+41=0.0

THE USER MUST PROVIDE SECTIONS TO EVALUATE DELH.HPARGIFINAL.
THESE MUST BE EVALUATED USING FINAL CONDITIONS.
FORM TERMINAL CONSTRAINT DJISSATISFACTIONS.
VARTIABLES INVOLVED IN CONSTRAINTS HAVE A 1 IN THE CORRESPOND-
ING POSITION OF TFINAL

M=X1{25)

U=x11)

G=X(2}

R=X{3)

LU=X(4)

LG=X{(5)

LR=X16)

DELH{1)=CCNST{1)-{U%%2/2.0-1.0/R)

DELH{2)=CONST(2)~(R*U*COS(G))

DELH(31=CONST(3)~{{U/R-1.0/{U¥R*%2} ) %L G*COS{G}+{LR*¥U-LU/R**2)*SIN{

161}

DELH{4)=CONSTI(&)~{LU¥*2+ (L G/U)*%2-M%k%2)

FORM HPAR{UJ,1)
HPAR{1,1)=U
HPAR({1,3)=1.0/R%*2
HPAR({2,51)=R%C0OS(G]
HPAR(2,2)=-R*USIN(G)
HPAR(243)=U*C0S(G)
HPAR(3,1)1={1.0/R+1.0/{ (U*R) %2} ) *LGXCOS'G}+LR*SIN(G)
HPAR(3,52)=~(U/R-1.0/{UR%%2) ) *L GXSIN(G)+ {LR¥U~-LU/R*X2}%COS(G)
THPAR(3,33)=(~U/R¥*242./ (U%R*43) JxLG*COS(G)+2. *LU*SIN(G)/R*%3
HPAR(344)=-SIN{G}/R*%2
HPAR(3,45)=(U/R~1.0/(U*R*¥%2))*C0OS(G)
HPAR{3,6)=U*SIN(G)
HPAR[4451)==2,0%LG®%2/U%%3
HPAR{454)=2.0%LU
HPAR( %451 =24 0%LG/URK2

FORM THE DESCRIPTION OF POSITION OF CONMSTRAINT VARIABLES.
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IFINALLLY
IFINAL(2)
IFINALL3)
IFINAL(4)=1
IFINALES)=1
IFINAL(6)=1

=1
=1
=1

EVALUATE THE FINAL MATRIX.

LL=N-M

DO 2 I=l,LL
L=0

DO 2 K=1,N

IF (IFINAL{K}
L=L+1

HFIN{L, [)=X(1]
CONTINUE

IF {(ITF.EQ.0)
L=0

DO 3 K=1,N

IF {IFINAL{K)
L=L+1

<EQ.0} GO YO 2

H#N+K )

GO T0 4

+EQ.0) GO TO 3

HFEIN(LNTC)=DER (K}

CONTINUE

FORM PRODUCT

DO 6 J=1,NTC
DO 6 K=14NTC
SUM=0.0

D0 5 I=1,L
SUM=SUM+HPAR(
H{JsK)=SUM

SOLVE L1
UPDAT =

Je IVXHFIN{IK)

NEAR EQUATIONS FOR UPDATES OF INITIAL CONDITIONS.
HITNVERSE)*DELH. (HPAR = DUMMY TO TAKE INVERSE.)

CALL SIMEQ (H,DELHyNTC+HPARZUPDAT)

RETURN
END

e % e o deofe s e e ool sk ot e ok o o ook e ol o o o R e ook e e de s e ok ol ol ek
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DELH{J) = HPAR(JK)AHFIN(K,L}*UPDAT(L)

WHERE HPAR =
KS =

HFIN =

UPDAT=
DELH =
IFINAL= DESCR

SUBROUTINE F1
REAL X{100),D
1R{20)

REAL DELHI(10}
INTEGER IFINA
REAL LR,yLUYLG
N=PAR{2)
M=PAR{(3)
ITF=PARI(5)
NTC=N-M+1TF
DO 1 1I=1,10
DO 1 J=1,10
HPAR(14J1=0.0

A MATRIX OF PARTIAL DERIVATIVES OF THE TERMINAL
CONSTRAINTS H{J)y WRT. THE STATES CONSTR.(N~M+l X KS})
NUMBER OF VARIABLES INVOLVED IN THE CONSTRAINTS.

/

A MATRIX WHOSE FIRST N-M COLUMNS CCONTAIN THE KS§
FINAL VALUES OF THE CONSTRAINED VARIABLES RESULTING
FRCM EACH OF THE HOMOUGENEQUS SOLUTIONS.

THE LAST COLUMN CONTAINS THE DERIVATIVES OF THESE
VARIABLES EVALUATED AT THE END POINT. (KS X N-M+1)
A VECTDOR OF CHANGES TO BE MADE IN THE INITIAL GUESSES
DELTA-T FINAL IS THE LAST ELEMENT. {(N~M+1)

TERMINAL BOUNDARY CONDITION DISSATISFACTIONS. (N-M+1)

IBES POSITION OF FINAL CONSTRAINED STATES IN X-VECTOR

XED (X,DER,CONST,PAR,UPDAYT)
ER{100),CONST(1014HPAR{10410) HFIN(10,10)+H{10:10),PA

»UPDAT(10)
Lo}
oM
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THE USER MUST PROVIDE SECTIONS TO EVALUATE DELH,HPAR,IFINAL.
THESE MUST BE EVALUATEC USING FINAL CCNDITIONS.
FORM TERMINAL CONSTRAINT DISSATISFACTIONS.
VARIABLES INVOLVED IN CONSTRAINTS HAVE A 1 IN THE CDRRESPOND-
ING POSITION DF IFIRAL :

U=xt1}

G=x1(2)

R=X{3)

LU=X(4}

LG=X(5}

LR=X1{6)

M=X125)

F=PAR(20)

SQRTD=SQRT[(LG/U) #%2+LU*%2)

DELH{1}=CCNST{1)-U

DELHI(2)=CONST(2)~G

DELH(3)=CONST(3}-R .

DELH(4)=CONST(4 )= (F%#SCRID/M#{U/R~1.0/{U%R%%2) }%LG%COS(G)+{LR*U~LU/

IR%%2}%SIN(G)~F)

FORM HPAR(J,1)
HPAR(1,1})=1.0
HPAR(2,2)=1.0
HPAR(3,3)=1.0
HPAR(4 41 )=—F*LG%%2/ {SQRTID*M*U*%*3)+{1.0/R+1.0/ ({U*R)*%2) ) &LG*COS(G)
1+LR%SINI(G)
HPAR{442)=~(U/R-1,0/{U*R*22} V%LGHSIN(G) +{LR*U~LU/R*%2)%C0S(G}
HPAR(4 43 )=~ {U/R*¥%2-2.0/(U*R*%3) 1%L G*COS{GI+2. O%LUXSIN{G) /R**3
HPAR(4 44)=F%LU/ (M2SQRTD)~SINI(G)/R*%2
HPARL4 5 )1=F*LG/ [M*SQRTD*U*%2)~COS{GI*{1.0/ (UsR%%2}-U/R}
HPAR(4:61=U%SIN{G) '

FORM THE DESCRIPTICN OF POSITION GF CONSTRAINT VARIABLES.
IFINALLLY =1
IFINAL(2)=1
TFINAL(3)=1
IFINAL{4)=]
IFINAL(S)=)
IFINAL(6)=1

EVALUATE THE FINAL MATRIX.
Li=N-M
DO 2 I=1,LL
L=0
DO 2 K=14N
IF (IFINAL(K}.EQ.OQ) GO TO 2
L=L+1
HEIN(L, I)=X(T#N+K)
CONTINUE

IF {ITF.EQ.0) GG TO 4

L=0

DO 3 K=1,N

IF (IFINAL{K}.EQ.O0) GO TO 3
L=1+1

HFIN{LNTC)=DER(K)

CONTINUE

FORM PRODUCT
DO 6 J=1.NTC
DO &6 K=1,NTC
SUM=0.0
DO S5 1=1,L
SUM=SUM+HPAR{Jy I} #HFIN(I,K)
H{J;K}=5UM .

SOLVE LINEAR EQUATICNS FOR UPDATES OF INITIAL CONDITIONS.
UPDAT = H({INVERSE)}*DELH. (HPAR = DUMMY TQ TAKE INVERSE.)
CALL SIMEQ (H;DELH;NTC,HPAR,UPDAT]}
RETURN
END
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SOLUTION OF SIMULTANEOUS LINEAR EQUATIONS *
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XDOTAI) = ALIJ)*X1J)

XDOT({I}) = A VECTOR OF KC CONSTANTS.
KC = THE NUMBER OF LINEAR EQUATIONS.
All,Jd) = A KC BY KC MATRIX OF CONSTANTS.

SIMEQ SOLVES FOR AND RETURNS THROUGH THE CALLING LIST,
AINV A KC BY KC MATRIX = A[INVERSE}
X{J1} A SOLUTION VECTOR.

ftou

SUBROUTINE SIMEQ {A,;Y,KC¢AINV,X)
DIMENSION A(10,10)s B{10,10), AINV(10,10}, Y{10}, X{10)

SET INVERSE TO IDENTITY. SAVE A AND Y (THESE ARNT DESTROYED)
DD 1 I=1,KC
X{Iy=y({I)
DO 1 J=1.+KC
BlIyJ)=A(IsJ)"
AINV(I4J)=0.0
IF (1.EQ.JY AINV(IsJ)=1.0
CONTINUE

GENERATE INVERSE AND SOLUTION SIMULTANEOUSLY BY TRANSFORMING
A INTD IDENTITY AND PERFORMING THE SAME OPERATIONS ON IDENT.
DO 11 I=1,KC

FIND THE LARGEST ELEMENT IN I-TH COLUMN
COMP=0.0
DO 3 K=[,KC
TEMP=BI{K,1}
IF (ABS{TEMP).GT.ABS{COMP)) 2,3
COMP=TEMP
N=K
CONTINUE

1F LARGEST ELEMENT IS ZERC, THEN MATRIX IS SINGULAR.
IF (COMP.EQ.0.0) 4,6
WRITE {3,5) KC,KC

5 FORMAT(//// 20X, *LINEAR SIMULTANEOUS EQUATIONS SUBR., ——- SINGULAR
2 %y 12y * BY *, 12y * MATRIX.%*//)

KC=-KC

RETURN

CHECKX FDR THE LARGEST ELEMENY ON THE DIAGONAL
IF NOT ON DIAGONAL, INTERCHANGE COLUMNS I AND N.

IF (N.EQ.I) GO YO 8

TEMP=X{T)

X{T)}=X{N)

X{NY=TEMP

DO 7 M=1,KC

TEMP=B{I,M)

B{I+MI=B(N:M)

BIN,M)=TEMP

TEMP=AINV{I,¥)

AINVIToMI=ATNVIN.M}

AINVINM M)=TEMP

215

LR I R R e R - B VB - B T T - T - e - B T+ i B o B o B - T~ M v B i w e v iy v B o B i ~ i v Bl i = B < e = i =i = i« i i~ B~ i~ B i« e« s« s s B B = i~ B v B A A B * B~ A

OO~ WD W NS



[--Nelel

[g K glR\e]

10
11

LARGESYT ELEMENT IS NOW ON THE DIAGONAL.
DIVID THROUGH COLUMN BY THE DIAGONAL ELEMENT.
TEMP=1,0/8{1+1)
X{T)Y=X(I}%TEHMP
D0 9 M=1,KC
BIL MI=BlI,M)}XTEMP
AINVII MI=AINVII, M)XTENMP

DIAGGCNALIZE B THUS GENERATING AINV AND X.
DO 11 J=1,KC
TEMP=B{J,1)
IF {1.EQeJoOR.TEMP.EQ.0.0) GO TO 11
XLV =X(J)-TEMPRX(])
DO 10 N=1,KC
B(JoN)=B(JyN)-TEMPXB{I,N)}
ATNVJoNI=AINV{J NI-TEMPXAINV{IsN)
CONTINUE
RETURN
END
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