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Introduction:

Optimal trajectory problems usually involve the determination of a vehicle
acceleration history that will accomplish a required change in vehicle

state with a minimum expenditure of fuel., Functional optimization problems
of this type can be reduced to boundary value problems in ordinary differen-
tial equations by application of the well-known necessary conditions of
optimality in the form of the classical Calculus of Variatiomns, or one of its

& @

more recent counterparts, dynamic programming and the maximum principle
However, except in rare instances, the principal parts of the solutions to
these boundary value problems are not available in closed form. State-of-the-
art guidance schémes(B)’(4)’(5) circumvent this difficulty by considering
approximate formulations of the original problem that allow analytic construc-
tion of major parts of the solution, so that only a simple iterative process is
required. Since these approaches avoid some of the time~consuming numerical
integration procedures that would be required to compute a general solution

to the fundamental problem, the speed needed for real-time application has
been the primary motivation for semi-explicit methods of this type. As a
result of the approximations, the accuracy and flexibility of current flight
schemes are- limited, primarily in that they are nearly optimal only for short
arcs of powered flight and for specialized mission (boundary-value) conditions
in a restricted coordinate system. This limitation can be relaxed somewhat

in practice by use of special purpose adjustments, but only at the expense of

additional preflight analysis and simulation.

(1) DREYFUS, S.E. Dynamic Programming and the Calculus of Variationms,
Academic Press, Inc., New York and London, 1965.

(2) ©PONTRIAGIN, L.S. et al. The Mathematical Theory of Optimal Processes,
Interscience Publishers, John Wiley and Sons, Inc., New York and Lon-
don, 1962.

(3) SMITH, I.E. "A Three Dimensional Ascending Iterative Guidance Mode,"
NASA-MSFC Report MTP-AERO-63-49, June, 1963.

(4) MacPHERSON, D. "An Explicit Solution to the Powered Flight Dynamics

of a Rocket Vehicle," Aerospace Corporation, Report TDR-169(3126)TN-2,
October, 1962.

(5) CHERRY, G. W. "A General Explicit Optimizing Guidance Law for Rocket-
Propelled Spaceflight," ATAA Paper 64-638, August, 1964.
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General iterative procedures for solving two-point boundary value
problems may be classified under two main headings: '"direct" methods
and "indirect" methods. Roughly speaking, direct methods search over
the space of functions satisfying the boundary value requirements for a
function satisfying the differential equations, whereas indirect methods
search over the space of functions satisfying the differential equations

for a function satisfying the boundary-value requirements.

Prior to 1965, general (flexible) numerical procedures for computing precise
optimal trajectories were far too unreliable in convergence and costly in
computation requirements to be considered for real-time guidance. However,
an indirect method for computing optimal trajectories, OPGUID, was de-
veloped in 1965(6)’(7) incorporating improved techniques to obtain a sub-
stantial gain in speed, convergence, and flexibility. ~The principal
improvements were the use of an efficient integration algorithm that was
tailored to special features of the initial-value problem, and the use of

closed form representations of the final-value transversality conditions

for general orbital injection missions of interest.

Specifically, the OPGUID algorithm developed in 1965 required less than one-
half second per iteration of the boundary-value problem (on an IBM 7094) as com-
pared to a minute or more per iteration required by other existing algorithms
that were applicable to launch vehicle trajectory problems at that time. A
simple scaling rule for the amount of the Newtonian correctiom that was per-
mitted per iteration resulted in an extremely large region of convergence that
was surprisingly insensitive.to accurate initialization (e.g. a complete 180°
reversal in the initial thrust direction could be corrected for in ten to twenty

iterations for typical Saturn and Apollo launch trajectories).

The indirect approach is particularly well suited for real-time use, where the

guidance scheme must continually adjust to perturbations in initial conditions

(6) BROWN, K.R. and JOHNSON, G.W. '"Optimal Guidance for Orbital Transfer,’
IBM Report #65-221-0003H, Huntsville, Alabama, 30 August 1965.

(7) BROWN, K.R. and JOHNSON, G.W. '"Rapid Computation of Optimal Trajectories,"
IBM Journal of Research and Development, Volume 11, Number 4, July 1967,
pp. 373-382.




which is readily accomplished by a single Newtonian iteration on the boundary-
value problem. Feasibility of the use of OPGUID as a real-time guidance
scheme for optimizing single-burn-arc (i.e. a sequence of thrusting stages
separated by relatively short, fixed, staging intervals) orbital injection

missions was demonstrated in 1966(8).

However, many orbit transfer problems require the use of several burn arcs
separated by relatively long optimal coast arcs. Several authors(g)’(lo)’(ll)
have reported on the need to use the more complex "direct" methods, quasi-
linearization or generalized Newton-Raphson, in order to obtain convergence
for this problem for the restricted case of motion im a plane and fixed
boundary conditions. However, a multi-burn-arc version of OPGUID, developed
. (12)
in 1967

could successfully converge a general formulation of this problem, with variable

, demonstrated that the attractive fundamental approach of OPGUID

boundary conditions. A sophisticated version of the milti-burn program (SWITCH)

has been developed under Contract NAS 8-21315, that has successfully converged

a variety of orbital transfer problems with an efficiency and reliability compar-
able to that of the original OPGUID. Currently a maximum of 0,25 seconds compu-

tation time is required per iteration on a CDC 6600 and normally only three to

six iterations are needed for typical problems.

As a result, the indirect method of SWITCH is not only feasible but considerably
superior to existing implementations of quasilinearization in convergence as
well as efficiency. A principal feature of SWITCH is the use of classical two-
body theory to render the computations for coast arcs explicit. Since high-
thrust multi-burn orbit transfers usually involve coast arcs many times longer

in duration than burn arcs, this results in a substantial saving in computation

(8) BROWN, K.R. and JOHNSON, G.W. '"Real-Time Optimal Guidance," IEEE Transac-
tions on Automatic Control, Vol. AC-12, No. 5, October, 1967.

(9) KENNETH, P. and McGILL, R. '"Two-Point Boundary-Value Problem Techniques,"
Advances in Control Systems, Vol. 3, C. T. Leendes (ed.), 1966.

(10) McCUE, G.A. and BENDER, D.F. "Satellite Orbit Transfer Studies,” NASA
Report #N66-36050, 1966.

(11) O'MAHONY, M.S., ESKRIDGE, C.D. and HANAFY, L.M. "The Optimal Solution of
Trajectory Problems Consisting of Several Extremal Subarcs by the Gener-
alized Newton-Raphson Algorithm" American Astronautical Society, Paper
AAS 67-348, 1967.

(12) JOHNSON, G.W. and SHULL, N.W. "Optimal Guidance with Controllable Pro-
pellant Mass Flow Rate," IBM Report CESD #009 December, 1967.
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(13)

per iteration. A universal variable formulation of the two-body problem
with closed-form expressions for the state transition matrix is used. This
formulation was adapted in a novel way to avoid the cumbersome computation
of the three dimensional tensor of second partial derivatives of final state
with respect to initial state that is required when computing the partial

derivative of final costate with respect to initial state.

Since all the necessary partial derivatives are available at each iteration,
as was the case for the original OPGUID, the SWITCH algorithm is appropriate

for computing real-time corrections to in-flight perturbations.

Unlike the OPGUID algorithm, the SWITCH algorithm does require reasonable
initialization. That is, it is not possible with SWITCH as it was with

OPGUID to misalign the thrust direction by 90 or 180 degrees and retain
convergence. However, rough estimates of impulsive solutions have proved

more than adequate as initialization in every trial case. Moreover, deforma-
tion of the desired mission characteristics by very large amounts - for ex-
ample a change in the eccentricity of the destination orbit from 0.0 to 0.5 -
has been successful even when initialization values were unchanged. This is
evidence that the SWITCH scheme would have a large safety margin in its ability
to reconverge guidance solutions in response to worst-case real-time perturba-
tions. However, it remains to be shown by vehicle flight simulation tests that
the SWITCH algorithm possesses the speed and convergence properties that are nec-
essary for real-time guidance. Such a demonstration would represent a signi-
ficant advance since present real-time guidance schemes are not capable of
revising an entire multiburn trajectory in response to in—-flight perturbations,

but can or'v modify one burn arc at a time.

(13) GOODYEAR, W.H. "Completely Genéral Closed-Form Solution for Coordinates
and Partial Derivatives of the Two-Body Problem,”" The Astronomical Journ-
al, Vol. 70, No. 3, April, 1965, pp. 189-192.
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Formulation of the Multi-burn Optimization Problem

In this section, different formulations of the fuel optimi-
zation problem for multiple burn trajectories are considered.

It is shown that certain usual idealizing assumptions'lead to

an ill-posed optimization problem for which no solution exists,
and several ways are discussed for avoiding such difficulties by

more realistic problem statements.
An Idealized Problem Statement

The equations of space vehicle motion in a central gravitational

field may be expressed as

T =v
2.1
. _ _ MNr _ehu
v= 3 m |u
[r]

where r is position, v is velocity, the direction of the unit
vector u/|u| is control, c is the exhaust velocity of the rocket
engine and m is the rate of change of vehicle mass due to pro-
pellant expenditure, which also is part of control and can be

chosen within the limits o < m < O.

The instantaneous rate of cost, L, is to be -m; i.e. we wish to

minimize mass loss (or maximize final mass), so, letting state be

x = (r,v,m) and costate be p = aJO/Bx = (q,s,w), the Hamiltonian is

cm u

T. . T T ,—ur .
2.2 H=L+px=-m+qv+s( - — ) + wm
1 r 3 m ]u

which is minimized over thrust direction if and only if

2.3 = - S
' Tol = 7 TsT



min

2.4 u H= (-1+w+ iﬁig)ﬁ + qu - u3(sTr)
u r|

Letting S (the switching function) be (1 - w - c]sl/m), we have
that 2.4 is minimized over m if @ = o for § < 0, and @ = 0 for
S > 0. So

0 T u

2.5 | B0 = SaU(-8) + q'v - (sTr)

3
x|

where U is a unit step function, U(x) = 0 for x < 0, and

U(x) = 1 for x > 0. The costate equations are easily seen to be

q = r(-3u|rl_5rTs) + s(u|r|_3)
2.6 s = —q
V:T_

- -ls[

It immediately follows that the time derivative of the switching

function is independent of m, or

e
Il
|
I=HTe)
alm
+

|s|

2.7

We have already incorporated two idealizing assumptions that are

conventional:

(1) Apart from thrust acceleration, motion is Keplerian; hence
usually periodic.

(ii) Thrust is truly proportional to mass rate; hence, mass loss
is zero when thrust acceleration is zero.

We now add two more assumptions:

(iii) ©No terminal constraint is time-dependent.

(iv) There is no limit on (or penalty for) the number of separate

coasts or burns.




Taken together, assumptions (i) - (iv) preclude the possibility

of globally optimal solution trajectories for most missions. We

can see this by arguing from the necessary conditions of opti-
mality. First, observe that assumption (iii) implies that the

. Hamiltonian H= 0. Second, observe that if we consider the vector

' = (q,s,w-1), then altering the costate vector by multiplying

P
ﬁ' by any positive scalar k does not affect the resulting trajec-—
tory or any of the necessary conditions. Therefore, of the seven
degrees of freadom available in choosing the costate vector p,

only 5 degrees of freedom are usable-for selecting different opti-

mal trajectories. Clearly, given an initial state x,, all these

s
5 degrees of freedom plus the freedom of choice of tgrminal time,

tf, are needed in order for the problem of reaching a prescribed
position and velocity r,v to be even locally well-posed. We shall
see, however, using our assumptions (i) - (iv), that true optimality
would impose still further requirements on the costate vector p so
that fewer than 5 degrees of freedom are actually available in choice
of costate. Suppose there is a fuel optimal trajectory for transfer
from an original orbit to a given destination orbit. Let r,v,m be
any state on this optimal trajectory at which the switching function
S is negative. We suppose, by assumption (i), that r,v define an
elliptical (or circular) orbit. Let r',v' be any other position and
velocity on that elliptical orbit. Starting from r',v',m, an optimal
maneuver for reaching the given destination orbit must be simply to
coast around to r,v and then follow the original optimal maneuvers
from that point on. For, if there were a cheaper maneuver, it could
have been combined with the first part of the original optimal tra-
jectory to r,v,m plus a coast to r',v',m, thus obtaining a better solu-
tion to the original prdblem. Now this maneuver of coasting from r',
v', m to r,v,m and following the old trajectory thereafter, being
optimal, must itself satisfy the necessary conditions 2.1 - 2.6. It
can be easily verified, however, that any such trajectory agreeing
with the original trajectory during a burn and at least one switching
point (point at which S = 0), must agree exactly even in costate with
the original trajectory (apart from a positive scalar multiplication
of the vector (q,s,w-1)). This is a contradiction, because on. the

new trajectory we must have S = 0 at r,v,m whereas we supposed that S

-7~



was negative on the original trajectory at that point. The

only way out of the contradiction is to suppose either that the
original trajectory was not, in fact, optimal after all or that

S is never negative along an optimal trajectory. In the latter

case, S must either be always positive (no burns at all), or by

2.7, we must have S = 0 whenever S = 0. But this latter requirement,
again by 2.7, clearly removes at least one degree of freedom from

the available choices of costate.

A more direct way of seeing the typical nonexistence of mass optimal
trajectories under assumptions (i) - (iv) is available if we accept
two lemmas., Lemma 1l: given an optimal impulsive solution to an
orbital transfer problem, there is no finite burn maneuver with as

low a cost. Lemma 2: sufficiently small single-impulse maneuvers

are approached arbitrarily closely in cost by the best single finite
burn, single-coast maneuvers for achieving the same orbit change.

Both of these lemmas are easily verified from Robbins(14). We can
easily see, since any impulse can be broken up into -a large number of
very small impulses, that lemma 2 implies that any one-impulse transfer
between elliptical orbits can be matched arbitrarily closely in cost
by a sufficiently large number of finite burns and coasts. This, in
turn, together with lemma 1 show that the cost of an optimal impulsive

maneuver must be a greatest lower bound of the set of all achievable

finite burn costs, but not itself a member of that set.
Realistic Problem Statements
The main result of assumptions (i) - (iv) that leads to nonexistence

of optimal trajectories is that, at any point in a trajectory, one can

insert a coast of arbitrary duration without increasing the cost of that

(14) H.M. ROBBINS. "An Analytical Study of the Impulsive Approximation,"
ATAA Journal, Vol. 4, No. 8, pp. 1417-1423, August, 1966.




trajectory at all. If there were a fixed terminal time by which

the maneuver had to be completed, or a penalty for restarting the
rocket engine, or a nonzero rate of cost during coasts, then there
would be a limit to how far the expedient of inserting coasts could

be pushed. 1In practical orbital transfer missions, of course, there
are either time limits or engine restart penalties or coast duration
penalties. For example, existing rocket engines actually lose a

small amount of mass per second, even during coasts, through venting
.of vaporized propellant. Also, astronauts and even on-board equip-
ment such as flight computers and telemetry electronics, can function
in space only for limited times. There is also a penalty for restart-—
ing and stopping the rocket engine. In fact, even assumption (i) is
not precisely satisfied because perturbations due to earth oblateness,
third body effects, solar wind, and other flight perturbations cause
the motion to be not precisely periodic, although it is very nearly

so. It would, however, be extremely difficult and also unsatisfactory
to try to obtain a unique solution only on the strength of these slight

departures from periodicity.

There are three attractive alternatives for changing the problem
definition so that aunique optimum will exist: a) to impose a termi-
nal time constraint, b) to impose a limit on the number of engine
restarts, or c¢) to incorporate a non-zero (and non-negligible) rate

of cost during coasts. Any one of these alternatives would be a suffi-
cient device and may be genuinely appropriate depending on the mission
being analyzed. It is important to observe that the solutions given by
alternative a) and the solutions given by alternative c) form the same
class of trajectories. For consider a solution given by alternative a).
The necessary conditions for optimality are as before except that the
Hamiltonian H is not zero, although it is, of course, a constant along
the trajectory. It can be argued that in this case the constant H must

be negative, so let L, (a positive number) be -H. If we now consider LO

0
to be a rate of cost that is independent of thrust, and remove the time

constraint , we get the same solution but to a different problem: the



problem of optimizing over free terminal time in the presence of

an added constant rate of cost equal to L So, insofar as the

0°
mathematical nature of the solution is concerned, it makes no

difference if we use alternative a) or alternative c¢). Alternative

b), however, gives solutions that are not also solutions to problems
involving alternatives a) or c¢). In fact, we can see that solutions
given by alternative b) must satisfy all of our original necessary
conditions 2.1 - 2.6 plus the conditiem that H= 0. TFor these necessary
conditions can be deduced using only the assumption that each switch-
ing time (that is, time at which the engine is started or stopped)

is optimized relative to the rest of the trajectory and that the
trajectory thrust direction history is optimized relative to the
switching times. However, alternative b) can be made to approach
alternative c) while holding the time penalty LO fixed by increasing

thrust levels. Thus for high thrust missions, alternatives a),b), and

¢) may turn out to be practically equivalent.
Numerical Considerations

It should be recognized that even when we resolve the basic problem

of non-existence of global optima by changing the problem definition
according to alternative a), b), or c), some results of the original
ill-conditioning are still important. We know now that since every
trajectory that is fuel-optimal with respect to the choice of each of

a fixed number of switching times satisfies the necessary conditions

2.1 - 2.6, there must be an infinite progression of solutions to the
boundary value problem all satisfying 2.1 - 2.6, and each one cheaper

than the last. Let PysPgsees be a corresponding progression of normalized
initial costate vectors (p:.L = the result of dividing P; by its own magni-
tude). Since the space of normalized costate is closed and bounded, it
follows that this space contains a limit point p_. Now consider the func-
tion x(t) = g(t,p) defined as the result of propagating initial state
forward in time to time t from initial state Xy at ty using initial

normalized costate = p.

-]10-



It is clear that in the vicinity of p_ some functions of the
trajectory (e.g. its duration) become arbitrarily sensitive to
small variations in p. Such unbounded sensitivities would be

a serious hazard to any iterative scheme for obtaining numerical
solutions, whether to the problem definition given by alternative
a), b) or ¢). It is desirable to choose an approach under which
the procedure searches over a set of independent variables such
that either the dependent variables are never extremely sensitive
to the independent variables and conversely or the nature of the
search confines the independent variables to a "safe" region within
which extreme sensitivities in either direction are avoided. It is
evident, however, that no choice of the independent, and dependent,
variables for the search can avoid extreme sensitivities unless the
range of values of the variables is confined to a region which ex-

cludes trajectories for which p is near p_.

Alternative b) has the advantage that a simple and intuitively mean-
ingful constraint of limiting the number of burns to two, or, in some
cases, three, can be applied to each individual iterate in the search
so that the range of values of the independent and dependent variables
automatically excludes by a large margin the vicinity of

trajectories corresponding to p near p_. There is also a distinct
advantage for the logical structure of an implemented algorithm for
numerical solution of problem b) in that the number of switching

points is fixed, instead of varying from iterate to iterate as it
would under alternatives a) and c). Since both these advantages carry
real weight from a practical point of view, we have adopted alternative
b) as the preferred approach. However, if for any reason an implementa-
tion of alternative a) or c¢) is desired, most of the current algorithm

would be transferable without modification to the revised problem.

-11-



Thus the problem to be solved consists of finding a sequence of
burns and coasts that achieves the desired orbit with minimum
fuel subject to the constraint that the number of separate burns
is limited to k, where k is usually two, sometimes three. In some
cases, it is desired to permit an initial coast prior to the first
burn as well as one coast after each burn. In certain other cases
(such as circular to circular coplanar missions) the initial coast
is not permitted since its length would be indeterminate under the

necessary conditions .

Iterative Solution of the Boundary Value Problem

In section 2, both dynamical necessary conditions and necessary
boundary conditions were discussed for several possible multi-burn
optimization problems. 1In this section, a method is described in de-
tail for the numerical solution of one of these boundary value prob-
lems. The particular problem chosen, called alternative b) in sec-
tion 2, requires that trajectory which achieves the desired orbit (or
orbital characteristics) with minimum fuel expenditure subject to a

limit on the total number of separate burn arcs.

The dynamical necessary conditions for this problem are equations 2.1,
2.3, and 2.6. The boundary conditions are given at the left end by the
initial position, velocity, and mass of the vehicle and at the right end

by six conditions defining the desired characteristics of the destination

orbit, which are discussed in section 5 for several important mission types.

The intermediate point constraints are that the switching function S be
zero at each interior switching time. In addition we require that the
switching function be positive on coasting arcs and negative on burn
arcs, This last requirement can be used to ‘detect the desirability of

adding further burn arcs.

The sequence of burns and coasts of the desired trajectory is partially
prescribed in advance as part of the problem statement., The number of

separate burn arcs may be chosen, and the initial arc may be designated

-12_



as a burn or a coast. In a fundamental sense, a genuine orbit transfer
problem which begins at a prescribed position and velocity, requires an
initial coast arc in order to be fuel~optimal. But two important cases
exist in which the initial coast must be suppressed. TFirst, in the case

of a circular to circular coplanar mission, the length of an initial coast
would be completely arbitrary in the sense that all initial coast durations
are equally compatible with fuel optimality. Second, there are cases in
which mission geometry constraints preclude an optiﬁal initial coast because
it would result in a fall into the lower atmosphere or even beneath the

earth's surface.

For purposes of specifying precisely the independent and dependent variables
of the iterative scheme for solution of the boundary value problem, it is
necessary to treat separately the case where an initial optimal coast is
permitted and the case where the trajectory is required to begin with a
burn arc. Let tO be the initial epoch for which the initial position,
velocity, and mass are given: r(to) = Ty, v(to) = Vg m(to) = m,. Let n
be the number of separate burn arcs (usually two or three). Then, for a

trajectory beginning with a coast arc, the switching times are t = start

25—
of jth burn and t2j = end of jth burn for j = 1,...,n. Combiningjtie
constancy of H with the condition that S = 0, we have, at each switching point,
by equation 2.5, the condition that qu - usTr/lrI3 = H. Recalling that this
same condition is the principal transversality condition in the single-burn
case, we will call qu - usTr/|r|3 the transversality variable Tv and so write
the conditions as Tv(ti) =H, 1 =1,...,2n. Now this gives only about half

of the actual necessary conditions at switching times, for it is easily seen
from 2.1 and 2.6 that Tv(t) is identically constant along any coast arc, so

if TV(th) = H, it is automatically true that Tv(t ) = H also. However,

2j+1
additional necessary conditions can be deduced from the fact that the switch-
ing function S must be zero at the end of a coast as well as at the beginning;
) - s(th) =0, Since S=1-w - clsl/m and since 1 and hence w
2j+1)l - |s(t2j)l = 0. Thus we

obtain the following set of 2n - 1 necessary conditions at intermediate switch-

thus S(t2j+1

are zero during coasts, this implies that |s(t

ing points:

=13~
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-

(@ vty ) = (),

(b) Is(t Y| = 'S(th)l’ j=1,000e,n -1

23+1
The advantage of this set of conditions compared to the more straight-
forward requirement that H(tl) = 0 and S(ti) =0, i=1,...,2n - 1 is
that it becomes possible to completely drop the costate variable w from
all equations. For we can regard w, as defined by the requirement that
S(ti) = 0 and then all necessary conditions are implied by (a) and

(b).

For missions in which the trajectory is required to begin with a burn arc,
the switching conditions are altered in that the t2j and t2j+l now require
conditions appropriate to the beginning and ending of burn arcs respectively
and in that there is no necessary condition applied at the beginning of the
first burn. Thus we have 2n - 2 conditions:

j=1, ..., n-1

(a") Tv(t = Tv(t

25) 25417

(b") Is(tzj)l - |s(t2j_l)l =0, j=1,...,n-1

Observe that we have one more switching condition on an n-burn mission
beginning with a coast than on an n-burn mission beginning with a burn.
This corresponds to the fact that when an initial coast is permitted, its

duration is an added variable for optimization.
In summary, we can view the boundary value problems as follows:

For a mission beginning with a coast arc: Find values for the six com-—

l,...,tzn such that

the result of integrating 2.1 and 2.6 forward from t to tznsatisfies six

right end mission conditions at t2n’ the 2n ~ 1 intermediate switching con-

ponents of initial costate and the 2n switching times t

ditions given by (a) and (b), and the condition |uo| = 1., For a mission

-14-



beginning with a burn arc: Find values for the six components of initial

costate and the 2n - 1 switching times tl""’th—l such that the results

2n-1
end mission condition, the 2n - 2 intermediate switching point condition

of integration 2.1 and 2.6 forward from t tot satisfies six right

(a'), (b') and:the conditionluol = 1,

To solve numerically either of these problems, we apply the multi-dimen-

" sional Newton method. Let the six components of initial costate and the

2n switching times be combined into_a vector y of dimension 2n + 6, and let
the six comnstrained right end variables, the 2n - 1 intermediate switching
variables of (a) and (b), and the variable |uo| be combined into a

vector z of dimension 2n + 6. Then if z* is é vector of desired values for
the components 6f z, the boundary value problem for missions with initial
coasts becomes the problem of finding a vector zero of z* - z(y). A similar
definition applies to the problem when an initial burn is required but with z

and y having dimension 2n + 5 instead of 2n + 6.

The Newtonian iterative solution scheme is familiar; starting from an initial

guess y _, we obtain successive estimates

-1 -
= 3 z(y) _
3.1 Yigp =Y F 3y l_z* z(yii] K

i

where K is a scalar between zero and one. When K is one, the scheme is a
pure Newton's method; when K is less than one, the adjustment Yie1 ~ Yy
represents an attempt to obtain zi+1 = zi + K(z* - zi). This is often
useful when z¥% - z; would be too large a change in z to correspond approxi-

mately linearly to a change in y.

In order to be able to implement 3.1, it is necessary to be able to compute
the vector z(y) and the matrix 3 z/dy as functions of y. In the present case
this means the ability to compute a trajectory and its first variations with
respect to initial costate and the switching times ti' The trajectory is

computed as a sequence of burn arcs and coast arcs, burn arcs being computed

by numerical integration of 2.1, 2.3, and 2.6, and coast arcs being computed
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explicitly by a method discussed in section 4. First variations of burn

and coast arcs are computed concurrently with the arcs themselves.

The method of integration used for the burn arcs is a fourth-order
Runge-Kutta scheme suited for equations such as 2.1 and 2.6 (and the
associated equations of first variation) which can be expressed as

second order differential equations with first derivatives absent. 1In
order to estimate and control truncation error by altering step sizes,

a Richardson extrapolation method is used with a special combination of
Runge-Kutta steps consisting of three steps of size h of integration of
2,1 and 2.6 together with one overlapping step of size 3h of integration
of 2.1, 2.6. and the associated equations of first variation. The result-
ing scheme has proved very efficient and reliable and is described in

full detail in reference 7.

A special consideration that deserves mention in connection with the
computation of 3zR y is the correct generation of those columns of the
matrix that represent partial derivatives with respect to switching times.

It is well known that if we have a vector system of differential equations
3.2 & = f(a)

the partial derivative of the solution o(t) with respect to any variable B

on which the initial value oy depends, satisfy the equations

3.3 d Boa(t) _  3f(w) 3alt)
' dt = 38 3 a %

and the initial condition, when t0 does not itself depend on B, is

9 a(t)

3.4 |
88 't=t; 0B

The problem of computing 3 zA y for purposes of the iteration 3.1 consists
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mainly of determining the partial derivatives of such a vector o
consisting of both state and costate, with respect to the components

of y, and this is accomplished by solving 3.3 explicitly on coast

arcs and numerically on burn arcs. But in the case of those compon-
ents of y that are switching times ti’ the initial condition is mot 3.4

as usual. Instead the condition is as follows:

3 a(t)
3.5 ot it=ti

. = d(ti—) - a(ti+)

To appreciate this, it is sufficient to observe that since what is.
desired is the initial value of the (continuous) solution to a differen-
tial equation (3.3), we really want

1im

a_a(_tz_ t_>t.‘.
i

| 4
o t, ' t=t +
1 1

Ja(t)

3.6 3 t.
i
which, under the assumption that & = fl(a) before ts and & = fz(u) after tss
gives the following relation between a at time t shortly after ti and o at

time T shortly before t;
3.7 a(t) = a(T) + fl(a(gl))(ti - T) + fz(u(Ez))(t - ti)

where gle(T,ti) and gzs(ti,t). Differentiation of 3.7 with respect to ts

vields

da(t)

at.
i

3.8

= £ (a(E)) - £,(alg,) + 0(t; - T) + 0(t - t,)

which in the limit as T > t.- and t > ti+ gives 3.5.

Efficient Coast Arc Computations

The computations required for burn arcs of the multi-burn SWITCH
algorithm are essentially the same as those of the OPGUID algorithm,

for single burn arc missions. The chief remaining computational
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section of the algorithm is that which updates state, costate, and their
partial derivatives along a coast arc. Considerable effort was ex-
pended in planning these computations in order to take full advantage

of the computational economies offered by the known efficient (semi-)
explicit schemes for computing state and its partial derivatives along
coast arcs. After extended analysis, it was found that costate and

its partial derivatives with respect to initial costate and state

could be computed easily using the corresponding computations for state

and its partials.

For each coast, we need values of r, v, u, and & (where u 4 ~-s) at

the end of a coast given their values at the beginning and given the
duration in time of the coast. We require in addition the partial
derivatives of the final values with respect to the initial values since
these partial derivatives form a necessary link in the chain of computa-
tions leading ultimately to the partial derivatives of all the dependent
variables of the boundary value search, described in section 3 , with
respect to the independent variables. For purposes of the coast arc
computations we can ignore m and w because their final values are simply
equal to .their initial values and neither m nor w appears in the differ-

ential equations for r,v,u and 4 which apply during coasts:

_ . ur
4.1 £ BE
4.2 i = r(3u|rl_5rTu) + u(—u|r|_3)

It turns out to be convenient in what follows to define state x as (r,t)
and (modified) costate y as (u,i), even though the costate that falls

out directly from the calculus of variations or the maximum principle

is p = (4,-u). The advantage of y over p is that it bears significantly

simpler relations to state x.

Completely general closed-form solutions are well-known for the propa-

gation of state x according to 4.1 and for the corresponding computation
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=

_4.3 9 x(E)P Y(to)

of the state transition matrix d x(t)h x(to). A good formulation is

(13)

Goodyear's which bases all computations on a given initial value
for state X and a time interval t - to. What we need beyond what
Goodyear's or other usual formulations give are these additional six
by six matrices: 3 y(t)p y(td),a'y(t)ﬁ x(to), and 3 x(t)ﬁ)y(to). Now,
since % is independent of y along a coast, we can see immediately that

the last of these matrices vanishes.

0 {
L

H
First we observe that if we write 4.2 as a differential equation for

the whole (modified) costate vector y, we obtain

0 I
d 3 3 .
4 _y(@® = Yo = FEE v
dt
Y
a’?l(t) 03
. i

Hence the differential equations for the matrices By(t)/aY(to) and

It

3 x(t)/ax(to) are the same

d 3vy(t) _ 3 x(t) 3 v(t)
dt By(to) 3 x(t) 3 Y(to)

4.5

d 3ax(t) _93&(t)dx(t)
dt Bx(to) ax(t) ax(to)

Since both state and costate transition matrices must be initially

equal to the 6 x 6 identity matrix I6, we obtain

3 y(t) _ ax(y) A
By (t)) - ax(t) o(t,t)

4.6

A useful property of the matrix ¢(t,to) is the symplectic property

which may be written:

T =
4.7 ¢(t,t0) J¢(t,to) =J
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where _ 3 3

4.8 J =

This property may be derived by observing that 4,7 holds trivially

at t_ siare ¢(to,to) = I and by writing out

d T
r ¢(t,to) T (.t )

and noticing that it vanishes. The symplectic property is principally

useful in obtaining <1>(t,t0)-_l =¢(to,t) for, by 4.7 and 4.
-1 T T
4.9 ¢(t,t0) =J d)(t,to) J

which is a simple rearrangement (with some changes of sign) of

the elements of ¢(t,to) itself.
Now since y is linear homogeneous in v, y(t) = 3 y(t)A Y(to) Y(to), i.e.
4.10 v(8) = ¢(t,t )v(c)

The remaining matrix to be computed, 3 Y(t)ﬁ)x(to) is most directly

expressable from 4.10; thus

3 v(t) 30 (t,t0) 4y
4.11 ax(t ) T Lyx, (t) Y(to)k
_ o] 15 k j o

This equation would be very cumbersome to evaluate directly because

of the 6 x 6 x 6 tensor of second partial derivatives
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__0 3 x4 (t) - d 3 x4 (t)
3 xj (to) 3 xj (to) 3 xk(to) 3 xk(to) ) xj (to)

4,12,

But, by equation 4.12, 4.11 can be rewritten thus:

. Bx(to) g9 Xk(to) d xj (to) k' o
ij
which can be interpreted as the linearized change d ¢(t,to)ij in
¢(t,t0)ij due to a change in X s dxo = y(to). This linearized change

d¢ can be computed with very slight added labor when ¢ itself is

computed.

This computation scheme has been implemented in a computer program which
is much simpler than and about one half the size of the only known earlier
program for explicit computation of state, costate, and their transition matrices

along a coast arc(ls).

Right End Conditions for Various Orbital Missions

Regardless of the kind of orbit transfer mission, the left end boundary
conditions are given by the position, velocity, and mass of the vehicle

at the initial epoch to, and the intermediate switching point conditions

are as given in section 3. These conditions leave, in each case, six degrees
of freedom remaining at the right end, which must be eliminated by necessary
conditions that define the particular kind of orbit transfer desired. When
fewer than six conditions define the desired character of the destination
orbit, supplementary transversality conditions, requiring that the uncon-
strained orbit parameters be chosen optimally, are added to make a total of

six independent conditionms.

The most basic mission is defined by desired values for a complete set of

five orbital constants; that is, five independent functions of position

(15) PRESTON, E.L. '"Computer Program for State Transition Matrices,"
Fall, 1967 Co-op Period, Mechanical Engineering Department, Purdue
University.
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and velocity that are constant in the absence of thrust. There cannot,

of course, be any set of six independent orbital constants in this sense,
for that would imply that position and velocity are themselves constant
during unpowered flight. Thus the five orbital constant mission is the
most fully defined orbit transfer mission that does not involve the time
origin of the destination orbit. Five orbital constants completely deter-
mine the locus of the orbit, but not the absolute time at which any par-

ticular position is reached.

The most basic six constraint mission is rendezvous, which can be
thought of as a mission in which five orbital constants plus the time
origin of the orbit are specified. Thus not only the complete locus of

the orbit but also the locus as a function of absolute time is prescribed.

Also of interest are several missions in which fewer than five orbital
constants are specified. While a full set of five orbital constants de-
fines completely the plane of the orbit and the size, shape, and orienta-
tion of the conic within that plane, it is possible with fewer than five
orbital constants to prescribe only part of the geometry of the orbit and

optimize over the remainder.

From the calculus of variations or the maximum principle it is known that
if the mission requirements are prescribed values for only k functions of
final state

5.1 gi(xf) =0 i=1,...,k

where the state vector x has n > k components, then optimality with

respect to the n - k remaining degrees of freedom in final state requires that
the final costate vector Ps lie the space spamned by the gradients of the
constrained functions. This means that if n - k vectors ai(x), i=k+1,...,n,
can be found such that the a; span the space orthogonal to the space spanned

9 g; (%)

by the gradients of the 8y» then Py must be orthogonal to ai(x),

3 x
i=%k+1,...,n. In equations, we have

5.2 p;la ) =0 i=k+1,...,n
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dg, (x)

3.3 S 3® =0 i =1k j=k+1,...m

In the case of the fundamental five orbital constant mission, k = 5
and n = 6, so only one vector a6(x) is needed and it must be orthogonal to
the gradient of every orbital constant. By definition, a function gi(x)

is an orbital constant just in case

3 g, (x)
__4d _ i .
5.4 0 = ac [ gi(x)] lr-eea—
where %X is computed for unpowered flight,
5.5 1‘-=v;x'z=——“r—3
x|

Therefore it is immediate that one vector a6(x) that will satisfy 5.3 when

the g, are all orbital constants is

T
5.6 a6(x) = (v, - ur3>
x|

Thus the transversality condition 5.2 for this mission can be written as

TV _ u T
de Vg S

3 Tg =0

x|
which will be recognized as the same as the switching condition which was
applied at the end of an intermediate burn during the trajectory, now applied

also to the end of the last burn. That is, 5.7 is equivalent to

5.8 Tv(tf) =0

The five constrained functions gi(x) can be expressed in various equivalent

ways, but probably the simplest formulation is this: Let h = rxv be the
hxv

. r . .
angular velocity vector and let e = —[T;T-+ o be the''eccentricity

vector'" whose magnitude is eccentricity and whose direction is the direction

of pericenter. Then define gi(x), for i =1,...,5 as follows:
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5.9 _ gl(x) = hl - hl*

= - *
g,(x) =h h

2~ M

= - *
83(X) hy = hy
= - *
g8,(%) =€) - e

g5(x) = e, — e,

where "*" means '"desired value of."

It is easy to verify that these five functions gi(x) are independent and
uniquely define the values of all orbital constants except in the isolated
case where h3(x) = 0, which may be accommodated by reordering the coordinate
axes. Accordingly, the six right end conditions for the basic five orbital

constant missions have been implemented as 5.7 and 5.1 for-gi(x) defined in

5.9.

Right end conditiohs for the rendezvous mission are easier to formulate but
slightly harder to implement. We require that at the end of the last burn,
at tf, the position and velocity of the vehicle must match the position and
velocity of a "target body." The position and velocity of the target, R(T)
and V(t), must be given as functions of absolute time t, but the target body
as such may be fictitious; as, for example, in the case of a synchronous

orbit injection mission in which no actual body yet oceupies the desired

orbit, The six right end conditions are

gi(xf,tf) = ri(tf) - Ri(tf) =0
5.10 i
= vi(tf) - Vi(tf) =0

1,2,3
8; 4+ 3(xpoty)

To implement 5.10 requires an algorithm for computing R(tf) and V(tf) for
variable tf. Since R(t), V(t) represent a free (unpowered) trajectory, this
can be carried out using parts of the computations described in section 4,

provided R(to) and V(to) are supplied for some initial epoch to.
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Useful four, three, and two-orbital constant missions are defimed and
transversality conditions answering to 5.3 derived for them on pp. 502

and 503 of reference 8.

Test Results

The convergence properties of the multi-burn orbital transfer routine
SWITCH were evaluated using basic Apollo type missions. The missions
involved transfer from low earth orbits of about 100 nautical mile alti-
tudes to orbits with altitudes ranging from 200 nautical miles to 19,300
nautical miles. Both high and low thrust vehicles were used in the evalua-

tion of the program.

The first mission consisted of transfer from a near-circular orbit with an
altitude of approximately 100 nautical miles to a circular orbit at a syn-
chronous altitude of 19,300 mautical miles. The vehicle was assumed to have
an initial mass of 1.26 x 107 kgm, an exhaust velocity of 4.15 km/sec and a
mass rate of 2.24 x 104 kgm/sec. In order to use the SWITCH program one
must estimate the independent variables of the boundary value search (i.e.
the initial costate vector and the lengths of the burm and coast arcs)

and fix the number of burn and coast arcs. The number of separate burn arcs
was set at four (coast-burn-coast-burn) and the initial costate vector and
the lengths of arcs were chosen to correspond to values used in evaluation
of an earlier program. The SWITCH algorithm converged to the solution in one

iteration.

Since the initialization for this first mission was essentially equal to the
converged solution (presented in Table 1), the final orbit was deformed into
an ellipse to test the program more fully. The deformation was accomplished
by choosing the eccentricity vector, e (the vector whose magnitude is equal to
the eccentricity and which points in the direction of the pericenter), to be
parallel to the injection vector obtained in the first case and with the
magnitude of the vector allowed to vary from .05 to .5. The initial orbit,
vehicle parameters, and initial estimates of costate and arc times were fixed.
The results are presented in Table 1 and as expected the number of iterations

for convergence increased with increase in the eccentricity of the final orbit.
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Of'special interest is the case where the eccéntricity was set at .5.
The converged lengths of the second coast and burn arcs were changed
by approximately 35 perceht and a significant change was also required
in the initial costate vector. The algorithm was able to overcome

these difficulties and converged in five iterationms.

The right end boundary constraints were changed to allow solution of
rendezvous missions and the same test cases were used to evaluate the
altered algorithm. The solutions obtained for the five constraint
missions were used to specify the radius vector, velocity vector and

time necessary to describe the target vehicle. As indicated by Table 1
the rendezvous missions generally required a larger number of iterations
to converge. The sensitivity of the algorithm to changes in the time
frame of the target vehicle was also investigated. The final orbit ec-
centricity was fixed at .05 and the target vehicle was allowed to be both
late and early in achieving the fixed position and velocity. The plus and minus
200 second change in orbital epoch time required, in each case, about the
same number of iterations for convergence as the nominal epoch case. The
direction of the time change did not seem to affect the convergence pro-

perties.

The second test mission consisted of transfer from a 100 n.m. circular

orbit to a 19,300 n.m. circular orbit which was rotated 44 degrees out of
the plane. The vehicle characteristics were chosen to be the same as used
in the first cases and the algorithm was able to converge to the solution

in five iterations. The five constraint solution was again used to define
the position of the target vehicle as a function of time and the rendezvous
form of the algorithm converged in eight -iterations. The results are pre-
sented in Table 2, and, as shown, large changes were required in the initial

costate vector.

The third mission consisted of a burn-coast-burn transfer from a 96 n.m.
circular orbit to a 196 n.m. circular orbit with a relatively low thrust
vehicle. The vehicle was assumed to have a mass of 9248 kgm, a mass rate

of 2.31 kgm/sec and an exhaust velocity of 2.16 km/sec. The initial costate

vector was chosen such that u  was in the direction of the vehicle velocity
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vector and that ﬁo was in the direction of the acceleration vector

of the coasting vehicle. The entire initial costate vector was scaled

such that the magnitude of the ug vector was one. The length of the

first burn arc was determined from the amount of velocity change required
to deform the 96 n.m. orbit into a 96 n.m. x 196 n.m. orbit. The coast

arc was chosen to be one half of the period of the elliptical orbit and

the length of the second burn arc was chosen to gain the velocity necessary
to circularize the orbit at apogee. The problem converged in two itera-
tions and required five percent changes in the lengths of the burn arcs as

well as a .7 change in magnitude of the final u vector.

The last mission tested required a transfer from 81 n.m. x 120 n.m. orbit

to a coplanar 210 n.m., circular orbit. The vehicle characteristics con-
sisted of an initial vehicle mass of 14,486 kgm, mass rate of 29.36 kgm/sec,
and exhaust velocity of 3.07 km/sec. The mission was chosen to consist of
four spearate arcs and the initialization of the costate vector and the
switching times was accomplished by a rough pencil and paper estimation of
the impulsive solution similar to that for the third mission. In this case
the length of the initial coast arc was required and it was chosen to insure
that the initial burn arc was centered around perigee. The converged solu-
tion was within ten percent of the estimated arc lengths and required a .07
change in the magnitude of the final u vector. This test mission required

four iterations for convergence.

All cases in which even a crude impulsive solution was used for initialization
resulted in essentially immediate convergence. Only when an initialization
appropriate to one mission was carried over unchanged to a significantly altered

mission did the program require an appreciable number of iteratioms.
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Destination Orbit

Duration of Burn and Coast Arcs

Magnitude of

Number of

Specifications Changes in u Iterations
Type Eccentricity Minimum 1st Coast 1st Burn 2nd Coast 2nd Burn to
of Altitude Arc Arc Arc Arc lAuol lAuFl Converge
Mission (n.m.) {sec) (sec) (sec) (sec)
Five 0. 19,300 399.83 255.82 18,729.54 129,11 ,24E-3 ,29E-3 1
Orbital .05 18,300 401.16 253, 47 17,572.73 134.87 .80E-2 .26E-2 3
Constant .1 17,200 402. 47 251.14 16,541.93 140.57 .16E-1 ,55E-2 3

.5 11,700 412,63 232,95 11,155, 42 184.04 ,78E-1 ,27E-1 5
R N
E o 0. 19,300 399.83 255, 82 18, 729,51 129.11 ,24E-3 ,29E-3 1

M
N I .05 18,300 401,15 253, 47 17,572, 72 134.87 .8lE-2 ,26E-2 3
D
E N .1 17,200 402. 48 251.14 16,541,81 140.57 .l6E-1 ,55E-2 5
A
Z L .5 11,700 412.61 232,95 11,155.54 184.04 ,78E-1 ,27E-1 28
J Target 200 05 18, 300 79.53 253.8 827.6 4.62 E-0 .29E
O sec LATE . , 379. .80 17, .69 134, L17E-0 .29E-1 3
U Target 200 .05 18,300 423,07 253,80 17,316,21 134,63 .16E-0 ,19E-1 4
5 sec EARLY .
FIRST ITERATION SPECIFICATIONS 400. 255, 82 18,727. 46 129.11 - - -
Table 1

Low Altitude to Coplanar Synchronous Missions



Duration of Burn and Coast Arcs

Magnitude of
Changes in u

Number of

Iterations
Type 1st Coast 1st Burn 2nd Coast 2nd Burn to
of Arc Arc Arc Arc | Au | lAUFI Converge
Mission ! (sec) (sec) {sec) (sec) °
Five 1
Orbital 1211.55 255,41 18,728, 65 124,99 .58E-1 . 78E-0 5
Constant
RENDEZVOUS 1211,56 255,41 18,728.56 124, 99 .59E-1 . 718E-0 8
FIRST
& ITERATION 1113,69 255,18 18,729.19 118,80 - - -
v SPECIFICATIONS
Table 2

Low Altitude to Synchronous with 44°

Plane Change



Conclusions

The development- of the OPGUID algorithm in 1965 provided an
efficient and reliable means for optimizing single-burn-arc
transfer missions. The basic approach of the OPGUID scheme

was to use an ordinary shooting method but with carefully

chosen coordinate systems and numerical methods aimed at

speed and range of convergence. The simulated use of OPGUID

as a real-time guidance scheme demonstrated superior perform-

ance to the existing IGM semi-explicit scheme, especially in those
cases involving large perturbations from the planned normal mis-
sion characteristics. The ability to recover smoothly in real-
time from large perturbations is due to the well-behaved nature

of the OPGUID formulation and its avoidance of artificial approxi-
mations that limit the flexibility and accuracy of current guid-

ance schemes.

The OPGUID scheme handled single-burn missions well, including
relatively short coast arcs of fixed duration- as in the case

of a multiple stage boost flight. General multiple burn prob-
lems, however, require long coast arcs (often about one half of
an orbital period) and permit optimal choice of the lengths of
both burns and coasts. A different algorithm was needed to deal
efficiently with the very long coast arcs and to choose optimally

the associated switching times.

A sophisticated multi-burn optimization program, SWITCH, has been
developed under Contract NAS 8-21315, and has converged a variety
of orbit transfer problems with an efficiency and reliability ap-
proaching that of OPGUID. Computing time per iteration is under
one quarter second on a CDC 6600, and most missions require fewer
than half a dozen iterations. However, it remains to be shown
that the SWITCH algorithm possesses the speed and convergence pro-

perties required for real-time guidance. Such a demonstration would
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be a significant advance in the art since present guidance schemes
cannot revise an entire multiburn trajectory in response to in-
flight perturbations, but can only modify each single-burn arc
separately. In addition to adapting the multiburn optimization
program for real-time use, it is desirable to extend the boundary
value formulations beyond that of the five constraint orbital con—

stant and rendezvous missions that have already been solved.
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Appendix: SWITCH Program

I. Users Guide

The MAIN routine reads the data necessary to specify the mission.

The data is read as follows:

Card No. Variable Names FORMAT
1 NCASE 12

2 UK, AMASS, BMAX, CEXV, HMAX 5F10.9

3 XOE 6F10.9

4 QOE 6F10.9

5 C 7F10.9

6 LEGMAX, IMAX 212

7 ATP(1,1), ATP(1,2) 2F10.9

8 ATP(2,1), ATP(2,2) 2F10.9

8+LEGMAX ATP(LEGMAX+1,1) ATP(LEGMAX+1, 2) 2F10.9

NCASE appearing on card 1 tells the program how many separate
data cases are to follow. Cards 2 —8+LEGMAX completely define a
case and must be repeated for each separate mission. Card 2 contains
a description of the vehicle and the gravitation attraction of the earth.
The variables are defined as follows: UK — gravitational constant
(km3/secz), AMASS — initial vehicle mass (kgm), BMAX — mass flow
rate (kgm/sec), CEXV — exhaust velocity of the engines (km/sec) and
HMAX — maximum allowable integration step size (sec). XOE is a six
vector containing the initial position of the vehicle in its first three
components and the initial velocity in its last three components, These

vectors are specified in km and km/sec in an inertial geocentric



cartesian coordinate system. QOE is a six vector containing the initial
costate vector (uo, ilo)T with the magnitude of u assumed to be unity,

The C vector for the basic five orbital constant mission contains the de-
sired angular velocity vector h = r x v of the final orbit in its first three

components and e (first two components of the eccentricity vector of

e
the final orbit e =1- lf—l—r;-l+ h;;v ] as its last two components, LEGMAX
is an integer specifying the number of burn and coast arcs and IMAX is the
maximum allowable number of iterations for one mission. The ATP array
defines the duration of the coast and burn arcs. ATP(l,1) contains the
starting time of the mission and ATP(1, 2) is positive if the first arc is a
coast and negative if the first arc is a burn. ATP(2, 1) defines the time
at which the first arc is completed and the second arc started. The last
arc is always assumed to be a burn and therefore ATP(LEGMAX, 2) should
always be negative.

In order for the program to perform properly, the mass, mass rate
and exhaust velocity should be such that the vehicle is able to carry out
the required mission. If the mass is very large in comparison to the
thrusting ability of the vehicle it will take very long duration burns to
move the vehicle from its present orbit. If the mass rate is large and the
usable mass small, the amount of possible burn time would be very small,
A reasonableness check should be made before submitting any test case
to the computer, for experience has shown that a very large percentage of
unsatisfactory computer runs are due to gross errors in the input data

which tender the missions essentially impossible,

II. Program Organization

The multi-burn optimal guidance package consists of nine subroutines
SWITCH, COAST, AMULT, RKGO31, RKSTEP, YDDRHS, BVEVAL,
ADJUST, and SOLVE, The entire package was written in FORTRAN IV

and was tested on a CDC 6600 data processing system. The algorithm,




not including the two routines MAIN and OUT used for inputting and
outputting data, required approximately 730.0 core locations and required
at most .25 seconds for each iteration.

The SWITCH subroutine is the executive routine for the program.

It accepts the input_ data from MAIN and performs the necessary initiali-
zations. SWITCH computes an entire trial trajectory for each iteration
including' computation of the necessary partial derivatives by means of
one call on COAST or RKGO31 for each coasting lor burning arc of the
trajectory. At the end of each arc control is returned to SWITCH which
then calculates the additional partial derivatives associated with the end
of the arc as well as the difference between the desired condition at the
end of the arc and the actual condition. When all arcs have been com-
pleted it calls the BVEVAL and ADJUST subroutines which calculate the
allowable changes in the independent variables, At the end of the iteration
SWITCH checks to see if a solution has been reached or if the total num-
ber of iterations equals the maximum that is allowable. If either of these
conditions is met SWITCH returns control to MAIN and the mission is
assumed completed.

The COAST routine propagates the trajectory along coast arcs, It
accepts as inputs the present state and costate of the vehicle as well as
the length of the proposed coasting arc. It calls AMULT to do the neces-
sary matrix multiplications and outputs the state and costate at the end of
the coasting arc as well as the partials of final state and costate with
respect to initial state.

The burn subarcs are propagated by subroutines RKGO31, RKSTEP
and YDDRHS. RKGO31 acts as the executive routine for burn subarcs.

It initializes the arrays needed for the other routines, controls the integra-
tion step size and determines when the burn arc has been completed, When
the final burn arc has been completed, the routine also determines the

partials of state and costate with respect to the final time, T

F



The RKSTEP routine performs a single Runge-Kutta fourth-order
numerical integration step on the system of second-order matrix differ-
ential equations which describe the motion of the thrusting vehicle. The
integration scheme requires three separation evéluations of the right hand
side of the differential equation and these are performed by the YDDRHS
routine.

When the entire trial trajectory has been calculated, the BVEVAL
routine is called. This subroutine computes the difference DC between
the desired end conditions C and their actual value as determined by XF
and QF. It also computes the matrix G of partial derivatives of C with
respect to XF and QF and the matrix E of partial derivatives of C with
respect to QO and the switching times. The DC vector is then addéd as
an additional column of the E matrix and the ADJUST routine is called,
This routine immediately calls the SOLVE routine which performs a
Gauss-Jordan reduction of the E matrix and determines the adjustment
necessary, on a linearized basis, to null out the DC vector. In order to
insure that the assumption of linearity is not violated, a quantity CK is
calculated which limits the adjustments to be performed on the indepen-
dent variables of the boundary value search. The ADJUST routine then

calculates the new QO and switching times and returns control to SWITCH

I11. Variable Definitions

Mathematical
Program Name Symbol Dzscription
XOE(I) x Initial state vector
QOE(I) d Estimated initial costate vector
C(I) C Vector of desired end conditions
ATP(I, 1) - Switching times
ATP(L, 2) - Type of ARC (+ Coast, -Burn)




Mathematical

Program Name Symbol
AM M
AMASS M
BMAX M
CEXV VEX
HMAX h
LEGMAX -
IMAX -
QO1(I) a,
UK u
QO(I) °
QF(I) e
XO(I) X
XF(I) X

E(L, J)

DC(I)
(Also last column
of E matrix)

Z(1,7J)

PHI(I, J)

Description

Mass at end of each leg

Initial mass

Mass flow rafe

Exhaust velocity of the engines

Maximum allowable integration
step size,

Number of burn and coast arcs

Maximum number of iterations
allowable

Initial costate vector, updated
each iteration

Gravitation constant

Costate at start of arc

Costate at end of arc

State at start of arc

State at end of arc

Partials of end conditions with

respect to the independent
variables

Vector difference between
desired end conditions and
attained end conditions,

Partial of present state and
costate with respect to the
independent variables

Partial of state at end of
coast with respect to state
at start of coast



Program Name

Mathermmsa tical
Symbol

DPHI(I, J)

DXF(I)

DRF

DVFE

CK

ddy
o %,

Description

Partial of costate at end of
coast with respect to state
at start of coast

Projected change in final state

Magnitude of projected change
in position

Magnitude of projected change
in velocity

Fraction of the current Newton-
Raphson adjustment accepted

(0 < CK < 1)
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IV - PROGRAM LISTING "AND SAMPLE OUTPUT

PROGRAM MAIN(INPUTsOUTPUTsTAPES=INPUTsTAPES=0UTPUT)
COMMON/CCPINJ/UKsLEGsATP(T792) 9 AMsBMAX 3 CEXV
DIMENSION C(12)sQ0E(6)sX0E(6)" ’
FORMAT(7F10.9)

READ(543) NCASE

NC=0

NC=NC+1
WRTITE(6+6) NC

FORMAT(1H1s13H CASE NUMBER 12,//)

READ (591 )UK s AMASS y BMAXsCEXVeHMAX
READ(54s1)X0E

READ(5s1)Q0E

READ(5s1)(C(I)sI=1s7)

READ({543) LEGMAXsIMAX

FORMAT(212)

FORMAT(2F104.9)

L1=LEGMAX+1

READ(S5s4) (ATP(T41)9sATP(T92)YsT=1sL1)

CALL SWITCH(AMASSsLEGMAX s IMAXCsQOF s XNOFEyHMAX)
IF(NCASE+GTNC) GO TO 5

STOP

END

SUBROUTINE OUT(XsQeXFsQF s LEGMAXsNPATH)
COMMON /CCPINJ/UKILEGIATP(792) 9 AMsBMAX9CEXV
COMMON/WADJ/A(8) sDXF(6)

COMMON/WCOAST/PSY sALPHASFT

COMMON/WSWIT/E(12913)sDC(12) oDRFsDVF9sCKsEVTsKCOUNT sBURNT
DIMENSTION X(6)sH(3)sF1(3)sTIME(50,7)sNC1(50s12)sDRF1(50)sDVF1(50)
DTMENSION KC1(50)sQ(6)sXF(6)9sQF(6)sCK1(50)

TEF(NPATH) 14243

LFG1=LEG-1

IF(LEGeLTe3) WRITE(65s40)KCOUNT

FORMAT(1HOs17HITERATION NUMBER 413,/1

IF(LEGsEQs1) GO TO 2

WRITE(6510)LEG1sXsQ

FORMATI(20Xs9HCOAST ARC»/25Xs4HLEG=>

112+1X12HSTATE AT END9s1Xs6E1446s/30Xs14HCOSTATE AT END91Xs6E1446)

WRITE(6922)PSYsALPHALFT
FORMAT{20X 94HPSY=9E144695Xs6HALPHA=9E144695X922HCALCULATED COAST T

1IMF=4F1446)

H{1)=X(2)%X(&)=X(3)%¥X(5)

H{2)=X(3)%¥X(4)=X(1)*¥X(6)

H{3)=X(1)}%*X(5)=X(2)*X(4)
HM=SQRT(H(1 1 *¥%2+H(2)%x%2+H(3)**2)
RM=SQRT(X(1)*¥%¥2+X(2)%#%¥24+X(3)%3x2)
E1(1Y=—(X{1)/RM+{(H(2)%¥X(6)=H{3)#X(5))/UK)
E1(2)==(X(2)/RM+(H(3)¥X(4)=H(1)%X(6))/UK)
E1(3)==(X(3)/RM+(H(1)*X(5)-H{2)1%X(4))/UK)
EM=SQRT(E1(1)*#%2+FE1(2)*%2+F1(3)%%2)
ENERGY=—UK/RM+ ¢ 5% (X (4)%%2+X(5) #%2+X(6) *%2)
AAXTIS==UK/(2+0%ENFERGY),

PMIN=AAXIS*(1e0~FEM)

RMAX=AAXIS*(1s0+EM)
DFRINN=(642831853)*SQART(ABS(AAXIS%%3/UK))
WRITE(G6s11)AAXISsRMINIRMAX9ENFERGY 4PERIODyHMeHsEM4FE1 9yRM
FORMAT (25X s 15HSEMIMAJUOR AXIS=9F14e691X5HRMIN=9E146691X5HRMAX=yE14

1663 1X7THENERGY=9FE14469/25Xs THPERIOD=,E144691X5HHMAG=3E1446s1X8HH VE
2CTORs3E144e65/25XSHEMAG=9E144691X8HE VECTOR$3E144691X5HRMAG=9E1446)

A-7
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IF{NPATH) 5,646

WRITE(6412)LEGsXF+sQF sAM

FORMATI(20Xs8HBURN ARCs/25Xs4HLEG=912s1X12HSTATE AT END;IX6E14 &/
130X 14HCOSTATE AT ENDs1X6E14e6s/30X9s19HMASS AT END OF LEG=9El1446)

TF(LEGeLToLLEGMAX) RETURN

KC=MOD (KCOUNT~1,50)

KC=KC+1

DO 7 I=1,LFG

TIME(KC,I)=ATP(I+141)-ATP(1s1)

RETURN

L6=6+LEG

DETE=1.0

DO 4 I=1,4L6

DETE=DETE®E(Is1)

TIME(KCsT7)=BURNT

WRITE(E313)TIME(KCoT7) o {TIME(KC,T)4I=14LEG)

FORMAT(20Xs16HTOTAL BURN TIME=4F14,69s1X9HARC TIMES,1X4FE14464/61X
12F1446)

WRITF(6s14)DCIDETEs(F(TsI)al=14L6)

FORMAT (25X s 2HDC s 1X6E1406s/28X96F14469/25Xs 1 THDETERMINANT OF E=»
1E14665s1X13HDTIAGONAL OF Fe4F14,465/25X98E14e6)

L1=LEG+1

L2=0L2+1

WRITE(6515)DXF sDRFeDVFsCKsEVT o {A(T)sI=19L2)

FORMAT (25X s 4HDXF 36F14469/25Xs4HDRF=9E144695H DVF=9E14e694H CK=,
1ET4e645H EVT=9E14464/25Xs10HCK=MIN OF 47E1345)

L7=LFG+7

WRITE(6430)(E(T4LT7)sI=140L6)

FORMAT(/25X66HCHANGE REQUISTED IN INITIAL COSTATESSWITCHING TIMES
1AND FINAL TIMFE /25X 46F14e69/35X36FE1446)
WRITE(6916)KCOUNTsQF s (ATP (T2 s1=23L1)

FORMAT(1X s 24HEND OF ITERATION NUMBER 4134/15Xs7HNEW QO s6E14ebs/
115Xs 16HNEW SWITCH TIMESs1X6El4e64//)

DO 8 I=1s12

DC1(KC,I)=DC(])

CK1{KC)=CK

DRF1(KC)=DRF

DVF1(KC)=DVF

KC1(KC)=KCOUNT

RFTURN

IF{KCOUNT «GT«50) KCOUNT=50

WRITF(64,17)

FORMAT({1H1s50Xs14HSUMMARY TARLESs//s1XOHITEFRATION,1X15HTOTAL BURN
1 TIMES21Xs29HLENGTH OF RURN AND COAST ARCSs/2X6HNUMBER s/ /)

DO 9 I=1,KCOUNT

WRITE(6518) KCI{I)sTIME(Is7)s(TIME({TIsJ)sJ=14LEG)
FORMAT(3XsT345Xs7E1547)

WRITE(6419)

FORMAT(1HOs//1XOHITERATION 39X s 36HERROR IN BOUNDARY CONDITIONS-DC!{
11-8) 3 /2Xs6HNUMBER, //)
WRITE(6920)(KCLI(I)s(DCI(T4J)9J=148)sI=1,KCOUNT)

FORMAT(23XI335Xs8F1446)

WRITE(6421)
FORMAT(1IHO//1X9HITFRATION 26X s BHDC (9=12) 332X s3HNRF 412X s3HDVF,412X2
1HCK 3 /2X6HNUMBER 3/ /)
WRITE(6918)(KCI(I)s{DCI{T9J)sJ=9312)9DRFI{IIsDVFLILI)ICKI(T)sI=1y
1KCOUNT)

RETURN

END
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SUBROUTINE SWITCH{AMASS,LEGMAX s TMAXsCyQOEsXOEsHMAX)
COMMON /CCPINJ/UKsLEGs ATP (792} s AMyBMAX s CEXV
COMMON/WSWIT/E(12+13)sDC(12)sDRFaNDVFsCKosEVTsKCOUNT9BURNT
DIMENSION C(12)9sX0(6)sQ0(6)sXF(6)IQF(6)+Z(12912)sX0E(6)1Q012(6)
DIMENSION QOE{6)sDUMMY(13) sPHI(6+6) sDPHI(646)9DZ2(12412)
KCHUNT=0

NO=0

L7=7+LEGMAX

L6=6+LEGMAX

EVT=1.,E-8

KMAX=TMAX

L1=LFGMAX+1

DO 2 1=146

N01(1)=Q0E(T)

WRITE(6s100)UKIAMASS yBMAXsCEXV sHMAX
FORMAT(1HOs1X93HUK=9F104291Xs13HINITIAL MASS=4E1648s1Xs10HMASS RAT

1E=9E164831X917HEXHAUST VELOCITY=9E16e8s6H HMAX=F1043s//)

WRITE(65121) IMAXsSLEGMAX

FORMAT (6HOTIMAX=43T73,5Xy THLEGMAX=4513,/)
WRITE(6s101) (ATP(T 1) sATP(I42)s1=1,4L1)
FORMAT({1HOs20Xs4HTIMEs20Xs27HTYPE OF ARC{+ COASTs— BURN)/ (20X,

1E168,515X9E1648))

WRITE(69102)X0EsQO1s{C(I)sI=1s7)
FORMAT(17HOINITIAL STATE X0s6F17e47/16H ESTIMATED QOs6F1767/

116HODESIRED FINAL Cy7E1648/)

LEG=1

AM=AMASS

KCOUNT=KCOUNT+1

BHRNT=0,0

DO 3 I=1,6

NO(TY=Q01(1)

XO(I)=X0F(1)

DO 4 I=1412

E(I413)=0.0

DO 4 J=1,12

F(lsJ)=060

7(14J)1=0e0

DO 5 I=146

Z(I+6,1)=140

IF(ATP(142))6977

CALL COASTIXDsOOsXF sOF s PHI sDPHI 4 UK sLEG,ATP sNO)
LFG6=6+LEG

LEG5=LEG+5

DO 30 I=1,6

DO 30 J=1,LEGS

DZ(I,J)=0.0

DZ(1+6+J)=0.0

DO 30 K=1,6
DZ(T1'9J)=DZ(1 s J)+PHI( 1K) *¥2(KsJ)
DZCT+6sJ1=DZ(T+6sJ)+PHI( I sKI%#Z2 (K465 J)+DPHI(1sK) #2(KsJ)
DO 31 I=1412

DO 31 J=14LEG5

201 4JY=D7 (1. 0)
UM=SQRT(QF (1) %#X2+QF (2 ) *%¥2+QF (3) %2
CRMU= (CEXV®#BMAX) / { AM#UM)

DO 8 I=143
2{1+346+LEG)=—CBMU*QF (1)
IFILEGsLFel) GO TO 12

E(6+LFEGs 7T+LEGMAX ) =UMP-UM
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DO 9 J=1,LEGS6
E(LEG6+sJ)=—E(LEG6,J}
DO 9 K=1,3

E(LFEG6EsJ)Y=E(LFEGEsJ)+(QF(K) /UMY *Z (K+69J)

DO 11 I=146
QAN(IN=QF (1)
XO(I)=XF(I)
LEG=LEG+1

CALL RKGO31(X0sQOeXFsQF sZsEVTsHMAX s LEGMAX s NO)

BURNT=BURNT+ATP(LEG+1+1)-~ATP(LEGs1)
CALL OUT(X0sQ0 s XFsQF 9LEGMAXs~=1)
LEG6=6+LEG

IF(LEGeGE4LEGMAX)Y GO TO 18
UM=SQRT(QF (1) ¥¥2+QF (2)%%2+QF (3 ) *%2)
UMP=UM

CBMU=({CEXV%¥BMAX) / ( AM®XUM)

DO 14 1I=1,7

Z(T+3,6+LEG)=CBMU*QF(T)

DO 15 JU=1,4LEGS6

DO 15 K=1,42
E{74+LEGsJ)=E(T+LEGs NN+ (QF(K)Y /UMY %7 (K+63J)
R2=XF(L)Y%*XF(1)+XF(2)I#XF{2)+XF (3)#XF(3)
RS=XF(1)*¥QF (1) +XF({2)*¥QF (2)+XF (3)*QF (3)
C3==UK/{R2¥SARTI(R2))

Ch==2,0%C3%RS/R2
E(6+LFGe7+LEGMAX)=XF (4)%2QF (4)+XF(5)*QF (5)+XF(6) *QF (6)~C3*#RS
DO 16 1=147

NUMMY (T)=~C3%QF (T)Y=C4x%xXF (1)

DUMMY (14+3)=QF (1+3)

DUMMY (I+4+6)==C3%¥XF (1)

DUMMY (1+9)=XF(I1+3)

DO 17 J=1,,LEGS

DO 17 K=1,12
E(6+LEGsJ)=—DUMMY (K)¥Z (K s J)+E(6+LEGJ)
DO 19 I=1,¢6

NNEIY=QF (1)

XO0(I)y=XF(I)

LEG=LFG+1

IF(ATP(LEGs2)eGTe0O) GO TO 7
FI797)=0e0

O TO 6

CALL RVEVAL(IXF 4sQF 3Z sCsF4DC)

DO 20 1=1,6

16=1+6

E(I+7+LEGMAX)I=DCI(T)
DCULIGY=E(16+sLEGMAX+T)
E(6+LEGMAXs1)=Q01¢(1)

CALL ADJUST(QO01 +E+Z sDRF 4DVFyCKsLEGMAXSATP)
FVT=AMAX1(1eE~14414F—-8%DVF*%2)
EVT=AMINI(EVTs1.E=-8)

CALL QUTI(XF4QF ¢ X0sN01sLEGMAX0)
TF{KCOUNT o GFE ¢ KMAX) GO TO 79
IF({DRFsGEeel e OReDVF4GE4e005) GO TO 1
CALL OUT(X0+Q0E s XFsQF s LEGMAX 1)

RETURN

END

SUBROUTINE COAST(X0sQOsXFsQF yPHIsDPHI sUKsLEGsATPsNO)
COMMON/WCOAST/PSY s ALPHALFT

A-10
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COMMON/CCOAST/ANN(292)sBNN(343)4XX0(696)sRO(3) sVOL(3)sR(3)sV(3)
1sDRO(3) sDVO(3)sDR(3)sDV(3)9sDAN(2+2)sDBNN{3293)sDXX0(696)
COMPLEX CALPH,CAPSY
DIMENSION XO(6) sQ0{6)sXF(6)sQF (6) sPHI(696) sDPHI(6s6) sATP(792)
DIMENSION HO(3)
LFG5=5+LEG
TIME OF COAST
T=ATP(LEG+1+s1)=ATP(LEG,1)
Q0 (Q AT START OF COAST)
DO 40 I=143
13=1+3
ROLTI)N=XO(1)
VO(T)=X0(I+3)
DRNO(T)I=Q0(T)
DVO(T)I=00(13)
RO,VO STATE AT START OF COAST
JUMP=0
RMO=SQRT(RO{1)*RO(1)+RO(2)% RO(2)+RO(3)*RO(3))
DRMO={RO(1)*¥DRO(1)+R0O(2)#DRO(2)+RO{3)*DRO(3})) /RMO
STGO=RO(1)*¥VO(1)+RO(2)%¥VO(2)+R0O(3)*V0O(3)
DSIGO= (VO(1)*DRO(1)+VO(2)*DRO(2)+VO(3) *DRO(3)+R0O(1)1%*DVO(1)
1+RO(2)*DVD(2)+RO(3)%DVO(3))
ALPHA=VO(1)*VO(1)}+VO(2)1%VO0(2)+VO(3)%¥V0{3)=2¢%UK/RMO
HN(1)=RO(2)%V0(3)=RO(3)%V0(2)
HO(2)=RO(3)%*VO(1)-RO(1)%VO(3)
HNO(3)=RO(1)*VO(2)=RO(2)%VO(1)
PN= (HO(1)*HO( 1) +HO (2 ) *HO(2)+HO( 3)*HO(3) ) /UK
PSY=T /PO
IF(ALPHA)81,82,82
CALPH=CMPLX(SQRT(~ALPHA) 304 )
GO TO 83
CALPH=CMPLX (0« s SQRT(ALPHA) )
CAPSY=PSY*CALPH
SO=REAL (CCOS(CAPSY))
S1=REAL(CSIN(CAPSY) /CALPH)
$2=(S0-10) /ALPHA
S3=(S1~-PSY)/ALPHA
FT=RMO*S1+STGO*S2+UK*S3
RM=RMN*S0+STGO*S1+UK%S2
IF{JUMP.,FA.1) GO TO 84
PSY=PSY+(T-FT) /RM
TF(ABS(T~FT)eGE«eN001) GO TO 83
JUMP=1
GO TO 83
FM1=~UK*S2/RMO
F=1e0+FM]
FD=-UK*S1/(RM%RMO)
G=FT-UK%*53
GDM1==UK#*52 /RM
GN=1,0+GDM1
UKR3=UK/ { RM¥RM*RM)
UKRO3=UK/ (RMO%XRMO*RMO )
DALPH=240% (VO (1)%¥DVO(1)+VO(2)*DVO(2)+VO(3)%DVO(3)+UKRO3*(
1RO(1)*DRO(1)+RO(2)*DRO(2)+RO(3)#DRO(3}) )
DAPA=DALPH/ALPHA
DAPA2=DAPA/ALPHA
DPSY==(DRMO*S1+DSIGO*S2+RMO*(PSY*50~51)*DAPA*¢5+STGO*(PSY*S]1%¢5~
152 ) *DAPA+UK* (PSY-1e5%S1+PSY*S0% ,5) *DAPA2) /RM
DSO= (ALPHAXDPSY+.5%PSY*DALPH) %51
DS1=SO*DPSY+(PSY*S0-51)%DAPA%,5

CA-11



DS2=S1*DPSY+{ «5*PSY*¥S1-52) ¥DAPA
DS3=S2%DPSY+(PSY-145%S1+.5%¥PSY*S0)*DAPA2
S4=(S2-PSY*¥PSY¥®.5) /ALPHA
DS4=S3%DPSY+ (PSYX*PSY¥45-240%52+,5%PSY%*S1 ) *DAPA?2
S5=(S3-PSY*PSY%PSY /640) /ALPHA
DSS5=S4#DPSY+ (PSY#PSY*PSY/6e0+(2 4 0¥PSY—-2,5%51+45%¥PSY*S0) /ALPHA)

1%DAPA2
U=S2#FT+UK*(PSY%*54-3,40%55)

DU=DS2%FT+UK* (DPSY*S4+PSY*¥DS4-3,0%DS5)
DRM=SO*DRMO+DSO*RMO+S1%DSTIGO+DS1#STGO+UK*DS2

DF=(-UK%#DS2-FM1*DRMO) /RMO

DG=-UK*DS3

DGD={(-UK*¥DS2~GDM1*DRM) /RM

RO1=RMO*RM
DRO1=RM%DRMO+DRM*RM0O
DFD=(—-UK*DS1-FD*DR0O1)/R0O1

DO 4 I=1,3
DR(I)=RO(TII*DF+VO(I)*DG+DRO(T I *¥F+DVO( 1} *G
QF(I)=DR(I)

R(IN=RO(IV¥F+VO(I)*G
DV(I)=RO(I)*DFD+VO(I)%#DGD+DRO(T)Y*¥FD+DVO (1) *GD
AF(T+3)=DVI(T)
VIII=RO(I)*FD+VN(T1)*GD
RsV STATE AT END OF COAST
IF(ND.EQel) GO TO 90
DUKR3==240%¥JKR3 ¥NRM/RM
DURO3==3 4 0*UKRO3*DRMO/RMO
S1R0=51/RMO
DS1R0O={DS1~-S1RO*¥DRMO) /RMO
S1R=S51/RM
DS1R=(DS1-S1R*DRM)/RM
R0O2=1+0/(RMO*RM0)
R2=140/(RM*RM)
UUKO3=-U*UKRO?3
DUUK3==DU*UKR0O3-U*DURO03
ANN(1,1)=-FD%¥S1RO-FM1%*RO2
ANN(142)=-FD*S2
ANN(2,41)=FM1%#SIRO+UUKO3
ANN(2,2)=FM]1 %52
DUMM1=ANN(1,s1)
DAN(1+1)==FD*DS1RO-DFD*¥SIRO+UKRO3%*NS2+DURO3 %52
DUMMY=DAN(1,1)
DAN(142)=-DFD*S2~-FD*DS?2
DAN(241)=FM1*DS1R0O+DF*S1RO+DUUK?3
DAN(242)=FM1%DS2+DF*52
CALL AMULT
DO 5 I=193
DO 5 U=1,43
DXXO(IsJY=DBNN(TsJ)
XXO(T 4 J)=BNN(I4J)
DO 6 I=143
DXXO(Tsel)=DXXO(I,T1)+DF
XXO(T4I)=XX0(Ts1)+F
ANN(1s1)=ANN(1,2)
ANN(2411=ANN(242)
ANN(142)=—GDM1%52
ANN(24,2)=G%52-U
DAN(141}1=DAN(1+2)
DAN(2451)=DAN(2,2)
DAN(142)=-GDM1¥DS2-DGD*S?2
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DAN(2,42)==DU+DG*52+G%DS2
CALL AMULT

DO 7 I=1,3

DO 7 J=1,3

J3=J+3 '
DXXO0(19J3)=DBNN(TsJ)
XX0(14J3)=BNN(IsJ)

DO 8 I=1,23

13=1+3
DXXO0(T1513)=DXX0(Is13)+DG
XXO(TI4I3)=XX0(1413)+G
ANN(2,1)1==ANN{1,1)
ANN(242)=-ANN(1,2)
ANN(141)=—FD*¥S1R-GDM1*R2
ANN(142)=U¥UKR3-GDM1%S1R
DAN(241)=~DAN(1s1)
DAN(242)==DAN(1,2)

DAN(191)=~DFD%#S1R~FD*DS1R+UKR3%DS2+DUKR3%S2
DAN(142)=~GDM1#DSIR-DGD*S1R+DU*UKR3+U*DUKR3

CALL AMULT

DO 9 I=14+3

DO 9 J=143

T3=1+13

J3=J+13
DXXO(134J3)=DBNN(TI,J}
XX0(T13sJ3)=BNNI(T )

DO 10 I=446
DXXO(Ts1)=DXXO(T141)Y+DGD

XXO0O(TeT)=XXO(1sT)+GD

ANN{142)=ANN(1,1)
ANN(2,2)=ANN(2,y1)
ANN(2,41)==DUMM1

ANN(1,1)==FD*(SO/RO1+R2+R02)-UUKO3*UKR3

DAN(1,2)=DAN(1,1)
DAN{(242)=DAN(241)
DAN{(241)==DUMMY

CALL AMULT
DO 11 I=1,3
DO 11 J=1,3

13=1+3
DXX0(13,J)=DBNN(T1,4)
XX0(I34J)Y=BNN(I,J)
DO 12 1=1,3

I3=1+3

DXXO(13s1)=DXX0O(I3,1)4+DFD

XX0(T13,1)=XX0(13s1)4FD

XX0 PARTIAL OF XF WITH RESPECT T0O XO
DXX0 PARTIAL OF QF WITH RESPFECT TO XO

DO 50 I=1,6

DO 50 J=1,6
PHI{TsJ)=XX0(1,)
DPHI(T15J)=DXX0(1I4+J)
DO 52 I=1,72
XF(T}=R(1)
XE(I+3)=V(I)

RETURN

END

DAN(1,51)=-UUKO3%DUKR3-DUUK3*UKR3-DFD*(SO/RO1+R2+R02)=FD*( (DSO0-S0*
IDRND1I/RN1Y/RO1-24D*¥(R2%¥DRM/RM+RO2%DPMO/RMO ) )



SUBROUTINE AMULT

COMMON/CCOAST/ANN(232) sBNN(353)sXX0(636)9sR0O(3) sVOLI3)sR(3)sV(3)
1sDRO(3) sDVO(3 )} sDR(3)sDV(3)sDAN(252)sDBNN(393)sDXX0(696)

DIMENSION DA{3,42)

DIMENSION A(342)

DO 1 1I=143

DO 1 U=1s2

DA(T s J)=DR(T)*ANN(1sJV+DV(TI*ANN(24J)+RIT)I*DAN{(1sJ)+V(I)*¥DAN(2sJ)
A(T o JY=ANN(14J)XR(TI)I+ANNI(24J)*V (1)

DO 2 I=1,13

DO 2 U=1,23

DENN(TsJ)=A(T 1) *¥DRO(IIFA{ T +2)¥DVO{II+DA(TH1)I%RO(II+DA(T+2)%VO(I)Y
BNN(TI s J)Y=A(T 1) #¥RO(JI+A(T92)%¥VO(J)

RETURN

END

SUBROUTINE RKGO31(X09sQO0sXFsQF sZ oEVT4HMAX s LEGMAX sNO)
COMMON /CCPINJ/UK 9 LEGIATP (792 ) s AMyBMAX s CEXY
DIMENSION XO0(6)sQ0(6)sXF(6)9sQF (6)9Z(12512)9sYN(6Es13)9sYDN{(6Es13)
1Y3H(6s13)sYD3H{6913) sYM{6913)sYDMIBs13)sEY(6)sFYDI(6)
LEG6=LEG+6
DO 1 I=1,3
YN(T41)=X0(1)
YN(T+391)=Q0(1)
YDN(T41)=X0(14+3)
YODN({I+341)=Q0(I+3)
DO 1 JU=2,4,LFEG6
YN(TsJ)=Z(1sJ-1)
YN{TI+3sJ)=Z(1+6sJ-1)
YON(T s J)=2(T1+3,4J-1)
YON(T+3,4J)=7(14+94J-1)
TF=ATP(LEG+1,1)
TO=ATP(LFGs1)
H=SIGN(HMAXsTF=-TO)
TN=TO
GO TO 7
CALL RKSTEP({YNsYDNsTNsY3HsYD3HsHs14LEG)
CALL RKSTEP(YNsYDNsTNsYMeYDMyH/3440sLEG)
CALL RKSTEP(YMaYDMy TN+(H/3e)sYMsYDMeH/3490sLEG)
CALL RKSTEP(YMsYDMeTN+(H/3e) %24 s YMyYDMsH/3430sLEG)
DO 3 I=1,6
FEY(I)=gl25E-1%(YM(Ts1)-Y3H(I,s1}))
EYD(IV1=4125E-1%(YDM(I41)~YD3H(I,41))
EVPMIN=14FE=13%(YDM(1s1)%#%¥2+YDM(2,1)%%24+YDM(3,41) %%2)
FVL2=AMAX1(FVTFV2MIN)
R=(EYD(1)*%2+EYD(2) ¥%2+EYD(3)#%2) /FVL2
DO B T1=1,6
YN(Is1)=YM(T41)+EY(T)
YDN(T41)=YDM(I41)+EYD(I)
DO 6 1=1,46
DO 6 U=2,LEGS6
YN(TI 9 J)Y=Y3H(T sJ)
YON(T 4J)=YD3H(T4J)
IF( ABS(H) «GEe ABS(TF-TN) ) GO TO 8
TN=TN+H
IF(RelLTe NeN4) R=404
H=H/P®*%4125
IF ( ARS(H) «GTe ABS(TF-TN) } H=TF~TN
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IF( ABS(H) «GTe HMAX) H=STIGN{(HMAXsH)
GO TO 2

IF(LEGsLT«LEGMAX) GO TO 10
CALL YDDRHS(YN’YDBH,I.oATP(LEG+1»1);0)
DO 11 I=1,3

Z(Ts6+LEGMAX)=YDN(Ts1)
Z(1+3,6+LEGMAX)=YD3H(I,1)
2(1+646+LEGMAX)=YDN(T+3,1)
2(149,6+LEGMAX)=YD3H(I+3,1)

DO 12 1=1,3

XF(I)=YN(Ts1)

XE(I+3)=YDN(Is1)

QF (T)=YN(I+3,1)

OF (I+3)=YDN(I+3,1)

DO 12 J=2,4LEGS

Z(IsJ=1)=YN(IyJ)
Z{I+34J=1)=YDN(1,J)
ZUI+6,5J=1Y=YN(I1+34.)
Z{1+9,5J=1)=YDN(I+3,4J)

AM=AM=BMAX* (ATP(LEG+1s1)=ATP(LEG»1))
RETURN
END

SUBROUTINE RKSTEP{YNsYDNsTNsYN1sYDN1sHsNsLEG)

THIS PROGRAM ADVANCES YN AND YDN BY A STEP OF SIZE H' TO YN1 AND YDN1
USING A FOURTH-ORDER RUNGE-KUTTA NUMERICAL INTEGRATION SCHEME. IF N
IS POSITIVEs ALL ELEMENTS OF THE MATRICES YN AND YDN ARE ADVANCED.
OTHERWISE ONLY THE FIRST COLUMN OF EACH MATRIX IS UPDATED.

DIMENSION YN(6913)sYDN(6513)sD1(6913)9eD2(6+13)19D3(6913)sY(6913)
19YN1(6413)9sYDN1(6513)
JMAX=1
IF(N.GT«0) UMAX=6+LEG
H2=.5*H
CALL YDDRHS({YNsD1 sHsTNyN)
DO 1 JU=1,JMAX
DO 1 1=1,46
Y(TsJ)=YN(TsJI)+H2%X(YDN(T 3 J)+e25%D1(T4J))
CALL YDDRHS(YsD2sHsTN+H24N)
DO 2 J=1,JMAX
DO 2 1=1,6
Y(TeoJY=YN(TsJI)+H®X(YDN(T9J)+a5%#D2(1T4U))
CALL YDDRHS(Y sD3sHs TN+HsN)
DO 3 J=14JMAX
DO 3 1=1,6
YNICT o i=YNIT o J)+HX(YDN(ToJ)+41666666T7*(D1 (1) +2e%D2(T19J)))

-YDNl(IsJ)—YDN(I,J)+ 1666666T7*(D1(13sJ)+44*¥D2(1sJ)+D3(19J))

RETURN
END

SUBROUTINE YDDRHS(YsYDDyeHseToeN)
COMMON/CCPINJ/UKsLEGSATP(732) 9 AMsBMAX s CEXV
DIMENSION Y{(6313)sYDD(6+13)sR(3)sU(3)9B(6+6)

COMPUTE BASIC QUANTITIES COMMON TO MANY COMPONENTS OF YDDe

LEG6=6+LFEG
DO 1 1=1,3
RIT)Y=Y(1,1)

1 ULT)=Y(T1+3,1)

AM1=AM=(T-ATP(LEG,1) ) *BMAX
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RZ=1e/(R{1)})*¥R(1)+R(2)V*¥R(2)+R(3)#R(3))
U2=1e/(U(1)XX24U(2)%%2+U(3)%%2)
RU=R({I)*®U{L)+R(2)*U(2)1+R{3)*U(3)
ALPHA=-HXUK*R2%¥SQRT(R2)
BETA=H%*SQRT(U2)*CEXV*BMAX/AM]
GAMMA=-3  *ALPHAXR2¥RU
COMPUTE RDD AND UDD,
DO 2 1=1,3
YDD(T1,1)=R(I)*ALPHA+U(I)*BETA
2 YDOD(T4+391)=R{T)#GAMMA+U(T)*ALPHA
DECIDF WHETHFER WDD 7S REQUIRFD AT THIS TIME,
21 TIF({N.LE.0) RETURN
COMPUTE ADDITIONAL QUANTITIES COMMON TO MANY COMPONENTS OF WDD,
DELTA==3*ALPHA*R?2
EPSIL=-BETA%*U2
ZETA=~5 4 *GAMMA®R2
COMPUTE THE MATRIX B NEEDED IN THE MATRIX EQUATION WDD=B*W,
DO 3 J=143
RRI=DELTA*R(J)
RUJ=EPSIL#U(J)
URJ=ZETA*R{JY+DELTA*Ut )
UUJ=RRY
DO 3 [=1,2
Q=0,
iF (I.EQ. JY Q=1
B{TleJ)=R(I)®*RRJ+Q*ALPHA
B(TeJ+3)=U(I)*RUJ+Q*BETA
B(I+34J)=R(I)*¥URJ+U( ) *UUJI+Q*GAMMA
3 B(I+3,U+3)=B(1sJ
PERFORM THE MATRIX MULTIPLICATION B*W TO GET WDD.
DO 5 I=146
DO 5 J=2,LEGS6
SUM=0,
DO 4 K=1,6
SUM=SUM+B (T sK)%¥Y(KosJ)
YDD(I,J1=8UM
IF(LEGaLE«1) RETURN
RDDMB==-BETA*BMAX /AM1
DO 6 J=8sLEGSE

(S I

DO & I=1,3

J1=4-7
YOD(1oJ)=YDD(TsJ)=SIGN(RDDMBsATP(J1s2))%U(T)
RETURN

END

SUBROUTINE BVEVAL(XFsQF sZ9CeFyDC)

THIS IS VERSION A OF SUBPROGRAM BVEVAL, DECK NAME 'OPDK3A?,

THIS VERSION DEALS WITH A FIVE-CONSTRAINT RIGHT-END BOUNDARY-VALUE
PROBLEM WHERE THE FIVE CONSTRAINED FUNCTIONS ARE THE THREE COMPON-
ENTS OF THE ORBITAL ANGULAR VELOCITY VECTOR (R CROSS V) AND THE FIRST
TWO COMPONENTS OF THE VECTOR WHOSE DIRECTION IS THE DIRECTION OF
PERICENTER AND WHOSE MAGNITUDE IS THE ORBITAL ECCENTRICITY. THUS, IN
EFFECTs ALL OF THE SIX CLASSICAL ORBITAL ELEMENTS ARE CONSTRAINED
FXCEPT THF MEAN ANOMALY, WHICH IS FREF,

COMMON/CCPINJ/UKSsLEGsATP(792) 9 AMyBMAX s CEXV .
DIMENSTION XF(6)sC(12)sDC(12)sG(796)92(12512)sE(12513)9R(3)sV(3)
1 +sQF (6) 4 DUMMY (12)
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LEG6=6+LEG

DO 1 1=1,3

R(IV=XF(I)

VIIY=XF(I1+3)

R2=R (1 )%¥%2+R(2)%*%2+R (3 ) %%*2

G(1s2)1=V(3})

G(ls3)==V(2)

G(2+3)=V(1)

G(ls5)==R(3)

Gl1+6)1=R(2)

G(2+6)=—R(1)

RM=SQRT(R2)

R3=RM%R2
Cl==1,0/RM+(V(1)*%24+V(2)%*%2+V(3)%%2) /UK
C2==(RI1}I*¥V(1)+R(2)®V(2)+R(3)*V(3)}) /UK

DO &4 TI=1,3

DO 3 JU=1,3
IF({IsLEsJ) GO TO 2

GlTeJ)y==G(Js1)

GlIoeJ+3)==G(Js1+3)

G(I+3,J)=R{I)}Y*¥R(J)/R3-V(T)*V(J) 7UK

GITI+3,J+3)=(RII})XV(J)I%2,=-V(T)I*R(J)}) /UK

G(1s1)=0,

G(TsI+3)=0.

G(I+3,11=G(1+3,1)+C1

G(I+3,1+3)=G(1+3,I+3)+C?2

DO 5 I=1,2

DC(I1)1=0.

DO 5 J=1,3

DCUTI)=DC(I)+G( T4 J)*R({J)

DO 8 1=1,42

SUM=0,

DO 7 J=1,3

SUM=SUM+G( T, J)%DC( J)

DC(I+3}=C(I+3)}+R(1)/RM+SUM/UK

DO 9 1=1,3
DCtIV=C(I1}-DC(T)

DO 10 I=1,5
DO 10 J=14LFG6

E(T4J)=0,

DO 10 K=146

E(TeJI=E(T4JY+G (T sK)*¥Z(KoJ)
RS=XF(1)Y#QF (1)+XF(2)*QF (2)+XF (3)*QF(3)

C3=~UK/R3
C4==-3,0%C3%RS/R2
DC(6) = XF{4)*QF (4)+XF(5)*¥QF (5)+XF(6) *¥QF (6)-C3%RS

DO 16 I=1,3

DUMMY (1) =-C3%QF (I}—-C4%XF (1)
DUMMY (1+3)=QF (T1+3)

DUMMY (1+6)=~C3%XF (1)

DUMMY (1+9)=XF(I+3)

DO 17 J=1,LEGéE

DO 17 K=1,12
E(69sJ)=—DUMMY (K) ¥Z (K9 J)+E( 69 J)
RETURN

END

SUBROUTINE ADJUST(QOs+EsZ+sDRFsDVF»CKILEGMAXsATP)
COMMON/WADJ/ A(8) +DXF (6}

A-17



S8 -

DIMENSION QO(6) sE(12513)52({12512)4ATP(7+2)

CALL SOLVE(E sLEGMAX)

L6=6+LEGMAX

L7=LEGMAX+7
DO 5 I=1,6
DXF(I11=0,

DO 5 K=1sL6

DXF(T)=DXF(TI)+2(TsK)*¥E(K s T+LEGMAX)
DRF=SQRT(DXF (1) **¥2+DXF (2) *X2+DXF (3 ) %¥#2)
DVF=SQRT (DXF(4) ¥%2+DXF (5) **2+DXF (6) %%2)
DU2=SQRT(E(1sT+LEGMAX) ¥%2+E(2 s 7+LEGMAX ) %% 2+E (3 3 7+LEGMAX ) %%2)
DUD2=SORT(E(4 s T+LEGMAX ) ¥ %2+E (54 7T+LEGMAX) ¥%2+E (69 7+LEGMAX ) %%2)
A(1)=42/DU2

A(2)=,0003/DUD2

A(3)=140

IF(ATP(192)eLTe0) A(3)=(o5%(ATP(25s1)=ATP(1s1))/ABS(E(TSsLT)))
CK=AMINL(1e0sA(1)sA(2)sA(3))

DO 8 1=2,LEGMAX

12=T1+2
ACT2)=(o5%(ATP(T+151)~ATP(151))/ABSIE(I+64sLT)I=E(T+55L7)))
CK=AMINL (CKsA{12))

DO 6 I=1,6

ATP(T+151)=ATP(I+1,1)+CK*E (1464 7+LEGMAX)
QO(T)=Q0(1)+CK*E (T T+LEGMAX)
UM=SQRT(QO (1) %%¥2+Q0(2) ¥¥2+Q0(3) %%2)

DO 7 1=1+6
NO(IN’=Q0(1) /UM
RETURN

END

SUBROUTINFE SOLVE (A,LEGMAX)
DIMENSION A(12413)
L6=6+LEGMAX
L7=7+LEGMAX

DO 6 N=1,L6

IBIG=N

DO 1 I=NsL6

IF( ABS( A(TsN) )YeGTe ABS(A(IBIGsN) ) IBIG=1
CONTINUE

IF (IBIG.EQeN) GO TO 3
DO 2 J=NsL7
Q=A (N, J)

A(Ny J)=A(IRIGsJ)
A(IBIG,J)Y=0Q

DO 5 I=1,L6

IF(IeEQeN) GO TO 5
Q=A(I4N)/A(NLN)

M=N+1

DO 4 K=M,L7
AlTsKI=A(TI4K)=-Q*¥A(NyK)
CONT INUE
CONTINUE

DO 7 I=1,L6
A(TSLTI=A{ILLTI/A(TH])
RETURN

END

DATA FOR CASE 1
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398601456 12644651,
5087493 4132,6342
e 4668414 -—-47801086

1674.8434960914504
450

1034, 1.0
1434, =10

168948176 140
2041742732-1,0
2054643832140

2238444079441540729 100.

114470552 44900796

—e1528746 —e5666 E—3-,6626 E-3-41548 E-3

-87016417 040
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VA

CASE NUMBER 1

UKa 398601.56 INITIAL MASSa 1.26446510E+07 MASS RATEz 2,23844079E+04 EXHAUST VELOCITYa 4415407290E+00 HMAXa 100000

IMaXz S0 LEGMAX=E &
TIME TYPE OF ARC(+ COASTs= RURN)
1403400000E+03 100000000E+00
1.43600000F+03 . wle00000000E«00 . e
1.68981760E+03 1.00000000F+00
2.06172732E+04 ~1400000000E+00
2.05663832E+04 1200000000E+00
INITIAL STATE X0 5087,4930000 4132,6342000 114,7055200 4,9007960 =8,0877962 00669744
ESTIMATED Qo 4868414 . TeTBOIO0BS .__ . __=,]182B746 . ... __..=.0005666. . . -=.0006626 0001848
DESIRED FINAL C =1,674R4340E+03 9,60915040E+04 =B,70161700E+04 O, 0, =04 04
ITERATION NUMBER 1
COAST ARC T - Tt C

LEGa 1 STATE AT END  6,408976E+03 1.340597E+03 1.277190E+02 1¢579651F+00 =7.638430FE+00 ~3.115995F.03
. COSTATE AT END  1.678600E=0) =9.661125E=01 =1+961118E~0) =848103I58E=04 =2.277036E=04 =5+6T77916E=05
PSYs 64104706E=02 ALPHAS =6,088936E+0] CALCULATED COAST TIME=s 4,000000€¢02
SEMIMAJOR AXISE 6,546326E+03 RMIN® 6,531)70E+03 RMAX=E 6,561482E+03 ENERGY=® =3,044468E+01
PERIOD= - 5,271167E403 HMAGs $,108191E+04 H VECTOR 9,713054E+02 - 2,217218F+02 =8,107215E+04
EMAG®  2,315202E=03 E VECTOR 7.232001E=05 =2.314056E=03 =B,670576E-06 RMAG= §,548030E+03
RURN ARC
LEGE 2 STATE AT END  6.535795E+03- »9.242956E402-- 6+411060E+01 =64737298E=01 =1,018129€40]1 =5.422821E=¢]
COSTATE AT END =6.291197E~02 ~9,793821E~01 =2,014162E~0]1 «B.896451E=04 1,235212E=04 1.567432E-08
MASS AT END OF LEG= 6,918325F+06
COAST ARC - - e e -
LEGs 3 STATE AT END -4.2130135004 -1.5701245003 -8.0565175*02 -7-4460845-02 1.591d64E’00 a.:ovzzqz-oz
COSTATE AT END <=2,6B3B06E=02 ?2.0940BTE=01 G.T79458TE=01 2¢541943E-0% 1,117771E=06 T.909943E=07
PsYs 7,576405E=01 ALPHA® -=1.,636083E«01 CALCULATED COAST TIME= 1,872T744E+04
SEMIMAJOR AXISm 2,436317E+04 RMINm 6,558651E+03 RMAXe 4,216749E+04 ENEROY= =8,180413E400
PERIOD= 3,784522E+04 HMAG® 6.726664E+04 H VECTOR 1.1539305003 3.500856E+03 =6+T16587E*04
EMAGE T,307965E=01 E VECTOR . 7.302401E=01 2.,492529E=02 1.384498E=02 RMAGR 4,216713E+04
BURN ARC
LEGa 4 STATE AT END =64,214131F+04 =1¢336984E+03 =6.660099E+02 =1+017078E~01 2,062185E400 2.278494E4+00
COSTATE AT END =~2,355503E~02 2.09543BE=01 O,7951T4E=01 2.543611E=05 9,739700E=07 1.186818E.07
MaSS AT END OF LEG= 4,028275E+06
SEMIMAJOR AXIS® 4,21754B8E+04 RMINm 4,216491E+04 RMAX= 4,218406E+04 ENERGYs =4,725513E+00
PERIOD=z B.619865E+04 HMAGE 1,2G6E81F+05 W VECTOR =1,672874E+03 9.60864AE+04 =8.703913E+04
EMAG=  2,032591E-04 E VECTOR =1.798668BE=04 =6,525732E~05 =6,858151E-05 RMAG= 4,21677TE+04
TOTAL BURN TIME= 3,849276E+02 ARC TIMES  4.000000E+02 2.55B176E+02 1.872746E+04 1.291100E+02

DC -1,968911E+00 5,063665E+00 2,296253E+0)1 1,79866BE-04 6,525732E-0S 1 145031E-08
9,004042E~-07 1.874982E~08 ~9,7B042TE=05 0, 0.

DETERMINANT OF E= «4,953781E+06 DIAGONAL OF E 2,363277E+06 T.716025E«04 2.779020E00b S+059689E+03
1.282783E¢03 14344838E+01 14453115E~02 =9.844T76TE=06 5.183974E-03 =1.510309E-08

DXF =14395360€-01 =2.832318E=01 3,898002F=01 2.955619E=04 =5,430284E~04 1,18226TE=04

DRFE  5,016321E-01 DVF= £,294555E=-04 CK= 1,000000E+00 EVT= 1,000000E-14

CKuMIN OF 9425126E+02 1,46230E+402 1.00000E¢00  7,52355E405 4.49457E+03 2.23327E+08%

CHANGE REQUISTED IN INITIAL COSTATE,SWITCHING TIMES AND FINAL TIME




YA

NEW Q0 54061979E-01 =B8.463290E=01 =]1¢658037E=01 =6,144147E=0é =T7.187790F=04 =1.,480213E~04
NEW SWITCH TIMES . 14433832E+03 1.689650E+03 2.041919F+04 2.054830E+04

ITERATION NUMBFR

2

COAST ARC

LEGs 1 STATE AT END  6,408711E+03 1.341881E403 1.277195€+02 1581180E¢00 =70638110E+00 =3¢085522E=03
COSTATE AT END  1,820784E=01 =14048089E+00 =2,127385E=01 =9+556442E=04 ~2+473IS59E=04 =6.175324E=05
PSYs 6,102138E-02 ALPHAZ =6,088936E+01 CALCULATED COAST TIMEs 3,998319E+02
SEMIMAJOR AXISm 6,546326F+03 RMIN® 6,531170E+03 RMAXs 6,561482E+03 ENERGY=® =3,04446B8E401
PERIODa 5,271167E+03 HMAG= 5,108191E+04 H VECTOR 9,713954E+02 2.217218E+02 =5¢107219E+04
EMAGE 2.3]15202€=03 € VECTOR 7.232001E=05 =2.314056E=03 ~8.6T05T6E=06 RMAGE 6.548933E+03
BURN ARC .
LEGs 2 STATE AT END  6,535921E403 =9,229923E402 6.411993E+01 =6:722314E=01 =1,018145E40]1 =5.422219E=01
COSTATE AT END <«6,826809E=02 =1.062571E400 =2,185335E=0] ~9.,652236E=04 1.336812E=04 ].684696E~05
MASS AT END OF LEG= 6,918322F+06
COAST ARC )
LEG= 3 STATE AT END =4,213035E+04 =1,570370E+03 =8,052712E402 =7+415466E-02 1¢591469E400 8.167749E=)2
COSTATE AT END =2,911961E~02 24269079E=01 1.062597E¢00 2.757984E=08 1,191183E«06 8,667272E=07
PSYs  7,576990E=01 _ALPHAR =1,63407BE+01 CALCULATED COAST TIMEs 1,872984E+04
SEMIMAJOR AXISE . 2,436324E¢04 RMINm 6,5S8881E403 RMAXS 4,.216783E¢04 ENERGY= =8,180388E400.
PERIOD= 3.784539E+04 HMAGE 6.726666E+04 H VECTOR 1,153300E403 3.500816E+03 =64716560E¢04
EMAGE  7,307973E~01 £ VECTOR 7,302390E-01 2,498244E-02 1.384107E=02 RMAGE 4,216730F+04
BURN ARC
LEGm 4 STATE AT END =4,214T44E+04 =14337261E¢03 =6,656211E+02 =1+014117E=01 2.061643E+00 2.278624E400
COSTATE AT END <=2,S587SSE=02 2.27081TE=0) 1,062662E+00 2.759790E<-08 1.035336E=06 1.373S26E=07
MASS AT END OF LEGm _4,028264E+06 L . - :
SEMIMAJOR AXIS® 4,216B17E+04 RMINE 4,2i6790E+04 RMAXs 4,2)16844E+04 ENERGYm =4,726332E¢00
PERIODs B8.617623E+04 HMAGE 1.296468E¢05 H VECTOR =1.674842E+03 9,609199E¢04 =B.701623E404
EMAGS 6£,319555E-06 E VECTOR =6+318798E~06 =9.661769E=08 1,492601E+08 RMAGE 4,216790E+04
TOTAL BURN TIMEs 3,849281E+02 ARC TIMES  3,998310E+02 2,55817BE*02 1.8729S4E+04 1.291103E+02

DC =1.123247E=03 =4.82%637E-0) _5.628740FE«02 A£,I18798F~06 9.861769E-08 =2.406201E~1)
=6,245005E=17 4.207506E=-11 1.198258E=05 0. 0o _ O
DETERMINANT OF E® =4,952307E+06 DIAGONAL OF E 2.178922E+06 7.119091E+04 2.55T792E+04 4.666866E¢02
=14390B46E+403 14243308E+01 16454159E=02 ~1+167385E~05 5.562259E~03 =1.638006E~08
DXF =8,B877080E=03 =B¢55606BE=03 =1,748166E=03 =7+214129E=07 =1,813448E=06 ~]1.194664E=0%
ORF= 1.,245251E~02 DVF=s 1,210501E«05 CK= 1,000000E+00 EVT= 1,000000E~14
CKsMIN OF 1.06B15E+405 1.80497E404 1.00000E+00 1+80719E«06 2082071E+07 1.10879E¢08

CHANGE REQUISTED IN INITIAL COSTATE,SWITCHING TIMES AND FINAL TIME
14550672E-07 44476341E~07 =1.811483E=06 =4.608971E=10 1.774056E~10 =1.587006E=09
=24636723E=05 4,441062E=05 44159234E=04 =).662874E=04

END OF ITERATION NUMBER 2
NEW G0  5.061981E=01 =B,463286E=01 =]+658055E=01 =6,144152E=04 =T.187788E=04 =1,680229E~04
NEW SWITCH TIMES  1,633832E403 1.689650E+403 2.041919E+04 2+054830E+04



SUMMARY TABLES

ITERATION TOTAL BURN TIME LENGTH OF BURN AND COAST ARCS

NUMBER

ITERATION
NUMBER

ITERATION
NUMBER

-

[AA 4

6961 ‘£a18ueT-VSVN

0g

3.8492760E+02 440000000E+02 2.5581760E+02 1,8727456E+04 142911000E+02
3.8492806E+02 3.908318BE+02 2.5581777E¢02 1,B729539FE+04 142011029E+02

ERROR IN BOUNDARY CONDITIONS=DC(1=-8)

~1.968911E+00 5,063665E+00 24296253E+401 1.79866BE=04 6.525732E=05 1.1‘5@31!-08 9.004042E=07 1.874982E«08
1412324 TE=03 =4,826637E=01 5.628T740E=02 6+318798E=06 9.661769E~08 ~2,406201E=1]1 =6.245005E=17 4.207806E=11

Tpeee-12y T ' ) " pRF DVF cK
~9.7804266E=05 0. 0 0. © $40163209E=01 6.2945552E~04 1.0000000E400
141982%883E=08 .. 0s. . .. . _.. De . 04 . . 1.24528507E«02 1,2105011E~08 1.0000000E¢00.



