BODIES OF REVOLUTION
HAVING MINIMUM TOTAL DRAG
IN HYPERSONIC FLOW

by Waldo I. Oehman and Sylvia A. Wallace

Langley Research Center
Langley Station, Hampton, Va.
The calculus of variations was used to study minimum-drag bodies in hypersonic flow. Newton's formula for pressure drag was assumed, and viscous drag was formulated by use of a variable local skin-friction coefficient. Numerical results are included to assess the effect of the viscous drag for bodies having either given length and base height or given length and volume. The computer program is included for convenience.
BODIES OF REVOLUTION HAVING MINIMUM TOTAL DRAG IN HYPERSONIC FLOW

By Waldo I. Oehman and Sylvia A. Wallace
Langley Research Center

SUMMARY

The calculus of variations was used to study minimum drag bodies of revolution in hypersonic flow. Newton's formula for pressure drag was assumed, and viscous drag was formulated by use of a variable skin-friction coefficient. Constraints of either given length and base height or given length and volume were imposed on the bodies.

Fineness ratios to about 9 were investigated. The minimum drag bodies obtained were characterized by flat noses having, at most, a diameter of 3.5 percent of the maximum body diameter. The effect of viscous drag was a reduction of the volume of the bodies for the larger fineness ratios. Practical body shapes, for which the body slope was required to be greater than zero, have an upper limit on the value of fineness ratio. By use of a "slender body" approximation, other investigators have obtained a similar limit on the fineness ratio. For a few cases investigated for which the ratio of volume to body length was held constant rather than the fineness ratio, it was found that viscous drag had almost a negligible effect on the minimum drag body shapes.

INTRODUCTION

The meridian shapes of bodies of revolution that produce minimum Newtonian pressure drag have been calculated by Eggers, and others. (See ref. 1.) Suddath and Oehman (refs. 2 and 3) calculated the minimum pressure drag shapes for bodies with elliptical cross sections. Several authors have recently included the effect of viscous forces in the problem of determining the shapes of minimum drag bodies in hypersonic flow. In reference 4, Kennet considered slender bodies (that is, bodies for which the local slope is much smaller than unity) having an assumed constant skin-friction drag coefficient. Bryson, in chapter 18 of reference 6, dropped the slender-body approximation, but retained the assumption of a constant skin-friction coefficient. A study by Miele and Cole (refs. 5 and 6) of two-dimensional shapes and slender pointed bodies of revolution included a variable skin-friction coefficient.

The present investigation extends the previous work by considering nonslender bodies, both pointed and flat-nosed, and a variable skin-friction coefficient. In this
extension a calculus of variations solution of the problem has been obtained, numerically, on a digital computer. Computed minimum-total-drag body shapes are presented to assess the effect of friction drag and to illustrate the use of the computer program. In addition to the constraint of given length and base height, body shapes were computed for the constraint of given length and volume. Skin-friction coefficients for either laminar or turbulent boundary layers have been used.

SYMBOLS

A constant in skin-friction-coefficient formula

\[C_D \] drag coefficient, \(\frac{\text{Drag}}{\frac{1}{2} \rho \pi y L^2} \)

\[C_{DF} \] friction drag coefficient

\[c_f \] local skin-friction coefficient

\[D_b \] base drag of body

\[D_f \] friction drag

\[D_p \] pressure drag

\[D_{total} \] sum of \(D_b, D_f, \) and \(D_p \)

\(f,F,g \) integrand functions

\[f(x,y,y') \] integrand function in equation (6)

\[F(x,y,y',u,\lambda,\beta) \] integrand function in equation (10)

\[F_{uu} = \frac{\partial^2 F}{\partial u^2} \]

\[F_{y'y'} = \frac{\partial^2 F(x,y,y',u,\lambda,\beta)}{\partial y'^2} \]

\[F_y' = \frac{\partial F(x,y,y',u,\lambda,\beta)}{\partial y'} \]

\[g(y) \] integrand function (see eq. (7))

2
G value of integral in equation (7)
I functional defined by equation (6)
J functional defined by equation (9)
L length of body
n fineness ratio defined as ratio of length to base diameter of body of revolution
q_\infty free-stream dynamic pressure
u,y' body slope, \frac{dy}{dx}
V volume of body of revolution
x,y body coordinates, nondimensional with respect to L, along and perpendicular, respectively, to axis of rotation
\alpha exponent in skin-friction-coefficient formula
\beta Lagrange multiplier
\delta variation consistent with prescribed boundary conditions
\bar{\delta} variation taken at constant station x
\sigma constant in skin-friction-coefficient formula
\lambda multiplier function
\Phi(Y_0) function of body radius at x = 0 (see eq. (6))

Subscripts:
o value at body nose, x = 0
1 value at body base, x = 1
i ith value

Dot over a symbol denotes derivative with respect to x. A prime also denotes a derivative with respect to x.
PROBLEM FORMULATION AND SOLUTION

Statement of the Problem

A body of revolution, at zero angle of attack, is considered to be in a hypersonic flow of air. The total drag of the body may be expressed as the sum of pressure drag, skin-friction drag, and base drag, or

\[D_{\text{total}} = D_p + D_f + D_b \] (1)

The pressure drag is assumed to satisfy Newton's law of resistance and is formulated as follows:

\[D_p = 2\pi q_\infty L^2 \left(y_0^2 + \int_0^1 \frac{2y^3}{1 + y^2} \, dx \right) \] (2)

Formulation of the skin-friction drag is the following integral:

\[D_f = 2\pi q_\infty L^2 \int_0^x y c_f \, dx \] (3)

The local skin-friction coefficient is assumed to satisfy

\[c_f = \frac{A}{(\sigma + x \sqrt{1 + y^2})^\alpha} \] (4)

where the value of the parameter \(A \) depends on the physics of the flow conditions, and the value of the exponent \(\alpha \) depends on the character of the boundary layer. Usually, \(\alpha = 0.2 \) is associated with a turbulent boundary layer and \(\alpha = 0.5 \) is associated with a laminar boundary layer. The quantity in the parentheses represents, approximately, the distance along the body meridian. The constant \(\sigma \) is included to avoid the problem associated with an infinite skin-friction coefficient when \(x = 0 \).

Base drag is assumed to be negligibly small and is set equal to zero. Also, the effect of boundary-layer thickness on the pressure distributions has not been included in equation (2). Furthermore, the boundary layer does not have a transition region.

Combining equations (1), (2), and (3), the total drag is

\[D_{\text{total}} = 2\pi q_\infty L^2 \left(y_0^2 + \int_0^1 \frac{2y^3}{1 + y^2} + \frac{A}{(\sigma + x \sqrt{1 + y^2})^\alpha} \right) \, dx \]
or, in nondimensional form,

\[
\frac{D_{\text{total}}}{2\pi q_\infty L^2} = y_0^2 + \int_0^1 y \left[\frac{2y'^3}{1 + y'^2} + \frac{A}{(\sigma + x\sqrt{1 + y'^2})^\alpha} \right] \, dx
\]

(5)

If the function \(y(x) \) is known, the drag factor \(D_{\text{total}}/2\pi q_\infty L^2 \) may be evaluated by performing the integration indicated by equation (5). However, the problem of interest is to determine the function \(y(x) \) that makes the drag factor a minimum. In the development of equation (5), it has been assumed that the length of the body is known. Therefore, the minimization of the drag factor is to be accomplished for a given length and either a given base height or a given volume.

Method of Solution

The solution of the problem is obtained by applying the calculus of variations and by using a digital computer to solve the resulting two-point boundary-value problem. A brief development of conditions that the solution must satisfy is presented in functional form.

For convenience, a quantity \(I \) is defined by

\[
I = \frac{D_{\text{total}}}{2\pi q_\infty L^2} = \Phi(y_0) + \int_0^1 f(x,y,y') \, dx
\]

(6)

where

\[
\Phi(y_0) = y_0^2
\]

and

\[
f(x,y,y') = y \left[\frac{2y'^3}{1 + y'^2} + \frac{A}{(\sigma + x\sqrt{1 + y'^2})^\alpha} \right]
\]

If the volume of the body is specified, the functional \(I \) is to be minimized so that an integral of the form

\[
G = \int_0^1 g(y) \, dx
\]

(7)

has the prescribed value. Furthermore, it will be convenient to substitute \(u \) for \(y' \) in \(f(x,y,y') \) and introduce the differential equation

\[
u - y' = 0
\]

(8)
as a subsidiary condition. A new functional \(J \) which is to be minimized is given by

\[
J = \Phi(y_0) + \int_0^1 \left[f(x,y,u) + \lambda(x) (u - y') + \beta g(y) \right] \, dx
\]

(9)

or

\[
J = \Phi(y_0) + \int_0^1 F(x,y,y',u,\lambda,\beta) \, dx
\]

(10)

where \(\lambda(x) \) is a variable multiplier and \(\beta \) is a constant multiplier. Minimization of the functional \(J \) is equivalent to minimization of \(I \) subject to the integral constraint (eq. (7)) and the subsidiary condition (eq. (8)).

Calculating the first variation of \(J \) and setting it equal to zero leads to

\[
\delta J = \left[\frac{\partial \Phi}{\partial y} + \frac{\partial F}{\partial y'} \right] \delta y \bigg|_{x=0}^{x=1} + \int_0^1 \left[\frac{\partial F}{\partial y} \frac{d}{dx} \frac{\partial F}{\partial y'} - \frac{\partial F}{\partial u} \delta u + \frac{\partial F}{\partial \lambda} \delta \lambda \right] \, dx = 0
\]

(11)

where the symbol \(\delta \) denotes a variation consistent with prescribed boundary conditions and \(\tilde{\delta} \) denotes a variation taken at a constant station \(x \). From familiar arguments concerning the arbitrary variations \(\delta y, \tilde{\delta} y, \delta u, \text{ and } \tilde{\delta} \lambda \), equation (11) leads to the following three necessary conditions:

1. Satisfaction of Euler equations
2. Satisfaction of end conditions
3. Satisfaction of Legendre condition.

\underline{Euler equations.} - The Euler equations which must be satisfied over the interval \(0 \leq x \leq 1 \) are when the length and base height are given:

\[
\begin{aligned}
\frac{d\lambda}{dx} &= - \frac{\partial F}{\partial y} = - \frac{\partial f}{\partial y} \\
\frac{dy}{dx} &= u \\
\frac{\partial F}{\partial u} &= \frac{\partial f}{\partial u} + \lambda = 0
\end{aligned}
\]

(12a)
and when the length and volume are given:

$$\frac{d\lambda}{dx} = -\frac{\partial F}{\partial y} = -\frac{\partial f}{\partial y} - \beta \frac{\partial g}{\partial y}$$

$$\frac{dy}{dx} = u$$

$$\frac{\partial F}{\partial u} = \frac{\partial f}{\partial u} + \lambda = 0$$

It is possible to obtain a first integral of the Euler equations that contains an additional variable multiplier. However, since the integration provides no additional information for these problems, the integral has been omitted.

End conditions.- The initial condition that must be satisfied is

$$\frac{\partial \Phi}{\partial y_0} - \frac{\partial F}{\partial y'} = 0$$

$$\left.\right|_{x=0}$$

which is applicable for both problems, and the final condition is

$$\left.\frac{F_y'}{x=1} = 0\right|$$

which is applicable only for the problem with given length and volume.

Legendre condition.- The solution $y(x)$ must be obtained so that the Legendre condition is satisfied in the interval $0 \leq x \leq 1$; that is,

$$F_{uu} \geq 0$$

This set of necessary conditions must be satisfied by the functions $y(x)$, $u(x)$, and $\lambda(x)$ in order to extremize the functional of equation (9). Furthermore, the resulting extremal is called a weak extremal. It has been implied, in this development, that the body slope is greater than zero for all values of x.

Specific Solutions

Given length and base height.- The integrand function for the problem in which the length and base height are given (see eqs. (9) and (10)) is written explicitly as
The Euler equations are

\[
F = y \left[\frac{2u^3}{1 + u^2} + \frac{A}{(\sigma + x\sqrt{1 + u^2})^\alpha} \right] + \lambda \left(u - \frac{dy}{dx} \right) \quad (16)
\]

Applying the end condition at \(x = 0 \) (eq. (13)) gives

\[
\frac{d\lambda}{dx} = -\frac{2u^3}{1 + u^2} - \frac{A}{(\sigma + x\sqrt{1 + u^2})^\alpha}
\]

\[
\frac{dy}{dx} = u
\]

\[
y \left[\frac{2u^2(3 + u^2)}{(1 + u^2)^2} - \frac{\alphaAux}{\sqrt{1 + u^2}(\sigma + x\sqrt{1 + u^2})^{\alpha+1}} \right] + \lambda = 0
\]

(17)

Applying the end condition at \(x = 0 \) (eq. (13)) gives

\[
\lambda_0 = -2y_0 \quad (18)
\]

which is the initial condition for the differential equation for \(\lambda \). The value of \(y_0 \) is not specified and must be chosen so that the integration of equation (18) from \(x = 0 \) to \(x = 1 \) yields the given value of \(y_1 \). Choices of \(y_0 = 0 \) or \(y_0 > 0 \) lead to separate consequences. If \(y_0 > 0 \), then, by using equations (17) and (18), the value of \(u_0 \) is unity. If \(y_0 = 0 \), the last equation of the system (eqs. (17)) is an identity and does not provide any information for evaluation of \(u_0 \). However, if the Euler equation of the drag integral (eq. (6)) is evaluated at \(x = 0 \), an equation in \(y_0' \) is obtained. The Euler equation is

\[
\frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) - \frac{\partial f}{\partial y} = 0
\]

where the function \(f \) is defined for equation (6). Since \(f \) is of the form

\[
f(x, y, y') = yg(x, y')
\]

the Euler equation becomes

\[
\frac{d}{dx} \left(y \frac{\partial g}{\partial y'} \right) - g = 0
\]

or

\[
y \frac{d}{dx} \left(\frac{\partial g}{\partial y'} \right) + y' \frac{\partial g}{\partial y'} - g = 0
\]
When \(x = 0, \ y_0 = 0 \) and the first term of the Euler equation is zero. Thus, at \(x = 0, \)

\[
\left(y' \frac{\partial g}{\partial y'} - g \right)_{x=0} = 0
\]

Explicitly, the last form of the Euler equation becomes

\[
y_0' - \frac{2y_0'2(3 + y_0')}{(1 + y_0')^2} - \frac{2y_0'3(1 + y_0')}{(1 + y_0')^2} - \frac{A}{\sigma^\alpha} = 0
\]

or more simply,

\[
\frac{4y_0'^3}{(1 + y_0')^2} - \frac{A}{\sigma^\alpha} = 0
\]

which, on expansion, becomes a fourth-degree equation in \(y_0' \) as follows:

\[
y_0'^4 - \frac{4\sigma\alpha}{A} y_0'^3 + 2y_0'^2 + 1 = 0
\]

Thus, for \(y_0 = 0, \) this form of the Euler equation evaluated at \(x = 0 \) (eq. (19)) provides four values for the initial body slope \(y_0' = u_0. \) Application of simple algebraic theorems shows that two of the roots of equation (19) are real and positive and that the other roots are a conjugate complex pair. Only the real roots are significant for the present investigation.

The Legendre condition (inequality (15)) which must hold for all \(x \) is

\[
F_{uu} = \frac{y}{1 + u^2} \left(\frac{4u(3 - u^2)}{(1 + u^2)^2} + \frac{\alpha A}{(\sigma + \sqrt{1 + u^2})^{2+\alpha}} \left[x^2 \left[(1 + \alpha)u^2 - 1 \right] - \frac{\sigma x}{\sqrt{1 + u^2}} \right] \right) \geq 0
\]

The conditions of the problem require that \(y(x) > 0 \) and that \(u(x) > 0 \) for \(0 < x \leq 1. \) Consequently, inequality (20) may be solved numerically to obtain \(u(x) \) for \(0 < x < 1. \) When \(x = 0, \ y_0 \) must be greater than or equal to zero \((y_0 \geq 0)\) and \(u_0 \) must be greater than zero \((u_0 > 0). \) Obviously, when \(y_0 = 0, \) \(F_{uu} = 0 \) and any positive value of \(u_0 \) satisfies the Legendre condition; and, when \(y_0 > 0 \) any \(0 < u_0 \leq \sqrt{3} \) satisfies the Legendre condition. A plot of \(u \) as a function of \(x \) is presented in figure 1 to illustrate the permissible values of \(u \) that satisfy the Legendre condition. Thus, any body shape, with \(y(x) > 0, \) generated from the other necessary conditions will minimize the drag integral only if the body slope \(u \) is on or between the boundary curves \((F_{uu} = 0)\)
of figure 1. If \(y_0 = 0 \), the slope \(u_0 \) may take on any positive value, but for \(0 < x \leq 1 \), the slope \(u \) must be on or between the boundary curves.

Given length and volume.—For the problem in which the length and volume are given, the volume is the integral of equation (7) with \(g(y) = y^2 \) or

\[
G = \frac{V}{\pi l^3} = \int_0^1 y^2 \, dx
\]

The explicit integrand function of equation (10) is

\[
F = y \left[\frac{2u^3}{1 + u^2} + \frac{A}{(\sigma + x\sqrt{1 + u^2})^\alpha} \right] + \lambda \left(u - \frac{dy}{dx} \right) + \beta y^2
\]

The Euler equations are:

\[
\begin{align*}
\frac{d\lambda}{dx} &= -\frac{2u^3}{1 + u^2} \frac{A}{(\sigma + x\sqrt{1 + u^2})^\alpha} - 2\beta y \\
y \left[\frac{2u^2(3 + u^2)}{(1 + u^2)^2} - \frac{\alpha A u x}{\sqrt{1 + u^2 (\sigma + x\sqrt{1 + u^2})^{\alpha + 1}}} \right] + \lambda &= 0
\end{align*}
\]

The end condition at \(x = 0 \) is the same as equation (18), that is, \(\lambda_0 = -2y_0 \); and the end condition at \(x = 1 \) (see eq. (14)) requires that \(\lambda_1 = 0 \) (24)

Since \(y_0 \) and \(\beta \) are not specified, they must be chosen so that \(G \) has the specified value and \(\lambda_1 = 0 \) when equations (23) are integrated from \(x = 0 \) to \(x = 1 \). In order for \(\lambda \) to go to zero at \(x = 1 \), \(\beta \) must be a negative number. The discussion of the Legendre condition in the preceding section also applies to this problem. As before, \(u_0 = 1 \) for \(y_0 > 0 \) and \(u_0 > 0 \) for \(y_0 = 0 \). At \(x = 1 \), however, the last equation of the system (eqs. (23)) may be solved for \(u_1 \). That is, \(u_1 \) must be a solution of

\[
y_1 u_1 \left(\frac{2u_1(3 + u_1^2)}{(1 + u_1^2)^2} - \frac{\alpha A}{\sqrt{1 + u_1^2 (\sigma + \sqrt{1 + u_1^2})^{\alpha + 1}}} \right) = 0
\]

10
The solution $u_1 = 0$ is not admissible since the Legendre condition requires $u_1 > 0$. Consequently, the quantity in parentheses in equation (25) must be zero; and further analysis shows that u_1 must be near zero. Furthermore, the computed value of u_1 must be greater than the value on the lower Legendre boundary at $x = 1$ in figure 1 for an acceptable solution of the problem.

RESULTS AND COMPUTATIONS

The preceding development of the necessary conditions from the first variation of the drag integral has led to the problem of solving sets of ordinary, first-order differential equations (Euler eqs. (17) and (23)). Some, but not all, of the initial and final conditions are known. Therefore, a two-point boundary-value problem must be solved. Usually, an iterative procedure with some sort of convergence is applied to obtain specific solutions. The approach taken in the present investigation has been to consider the unknown initial conditions y_0 or u_0 and β as parameters and to obtain solutions of the Euler equations for particular values of these parameters. In addition to initial conditions, the constants A, α, and σ are parameters that reflect the flow conditions and a solution (that is, a body shape) may be obtained for each set of parameters. Because the numerical results presented in the following sections were obtained for a few selected sets of these parameters, the digital computer program is presented, for convenience, in the appendix. The computer time is about 3 minutes for each set of initial conditions.

Given Length and Base Height

A family of flat-nosed minimum-drag bodies has been computed for the parameter sets (A, α, σ) of $(0, -,-)$, $(0.0002, 0.5, 0.01)$, $(0.0005, 0.2, 0.01)$, and $(0.0009, 0.2, 0.01)$, and for initial body ordinates y_0 ranging from 10^{-2} to 10^{-30}. The initial body slope was, of course, $u_0 = 1$ for each body of the family. A plot of y_0 as a function of fineness ratio (that is, the ratio of length to base diameter) is presented in figure 2. The minimum pressure drag bodies $(A = 0)$ are characterized by the continued increase of fineness ratio as y_0 tends to zero. However, the fineness ratio of minimum drag bodies $(A > 0)$ approaches an upper limit as y_0 tends to zero. The upper limit of the fineness ratio for each set (A, α, σ) is the value of n indicated for $y_0 = 10^{-7}$ in figure 2. These values are also the same as were obtained for $y_0 = 10^{-30}$. The main result for flat-nose bodies that produce minimum drag is that the choice of fineness ratio for given flow conditions is limited.

For pointed bodies $(y_0 = 0)$, solution of equation (19) yields initial values of the body slope y_0'. The real values, computed for the present investigation, are
The values of \(y'_o \) depend on the set \((A, \alpha, \sigma)\) which embodies the flight conditions. Furthermore, since \(y_o(y_o = 0)\), \(y'_o(y'_o = u_o)\), and \(\lambda_o(\lambda_o = 0)\) are known, the minimum-drag body shape is completely determined by integrating equations (17) from \(x = 0 \) to \(x = 1 \). Consequently, for a given length, the base height cannot be specified arbitrarily but is dependent on the flight conditions. For each set \((A, \alpha, \sigma)\), there are two values of \(y'_o \) each of which leads to a solution (body shape) of the problem. Both body shapes are almost identical for \(x > 10^{-3} \). However, the total drag of the body having the smaller initial slope is slightly less than the total drag of the body having the larger initial slope. Therefore, when solving equation (19) for \(y'_o \), only the smaller value yields the correct minimum-drag body slope. It should be emphasized that the restriction on the choice of fineness ratio noted here and in the preceding paragraph is a consequence of requiring that \(u(x) > 0 \). However, the body shapes for larger fineness ratios obtainable when \(u(x) = 0 \) for some \(0 < x < 1 \) are not compatible with the mathematical model of the drag given herein. The restriction on the choice of fineness ratio is the same as may be derived from the results given in reference 5 for "slender" bodies with a subcritical value of the friction parameters. However, the minimum-drag bodies of reference 5 are blunt bodies that have an infinite slope at the nose.

The body shapes presented in figure 3 for fineness ratios of 2 and 5 illustrate the effect of the friction drag. In figure 3(a), the body shapes \((n = 2) \) are almost identical for the three sets of \((A, \alpha, \sigma)\) that is, \((0, -,-)\), \((0.0005, 0.2, 0.01)\), and \((0.0009, 0.2, 0.01)\). Thus, the body shaping is dominated by the pressure drag. However, for \(n = 5 \), increasing the local skin-friction coefficient (that is, increasing \(A \)) causes a decrease of the local body radius. (See fig. 3(b).) Thus, the viscous term in the drag integral leads to a decrease of the volume of a minimum drag body with a given fineness ratio. The curves in figure 4 show that the friction drag coefficient becomes larger than the pressure drag coefficient as the fineness ratio increases. Thus, the importance of including viscous drag in the problem formulation is emphasized.

<table>
<thead>
<tr>
<th>(A, \alpha, \sigma)</th>
<th>(y'_o = u_o)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0002, 0.5, 0.01</td>
<td>0.0797058575; 1999.99900</td>
</tr>
<tr>
<td>.0005, 0.2, .01</td>
<td>0.0681782789; 3184.85674</td>
</tr>
<tr>
<td>.0009, 0.2, .01</td>
<td>0.0830586184; 1769.36407</td>
</tr>
</tbody>
</table>

Given Length and Volume

Sets \((A, \alpha, \sigma)\) of \((0.0005, 0.2, 0.01)\) and \((0.0009, 0.2, 0.01)\) were combined with values of \(y_o \) ranging from \(10^{-2} \) to \(10^{-7} \) (flat-nosed bodies) to compute minimum-drag bodies having given length and volume. The calculations were performed by iterating to obtain a value of \(\beta \) for each set of \((A, \alpha, \sigma)\) and \(y_o \) that would force \(\lambda \) to go to zero when
Figure 5 presents \(y_0 \) and the corresponding multiplier \(\beta \) for the volume ratio \(V/L^3 \). Two points for \(A = 0 \) are also presented in figure 5(a). (These points for flat-nose bodies are taken from ref. 1.) This figure shows that, for a specific volume ratio, a slightly different value of \(y_0 \) is required for each set \((A, \alpha, \phi) \). Figure 6 shows that the resulting fineness ratio is not appreciably affected by changes of \(A \). Consequently, the effect of viscous drag on the body shape is almost negligible although the viscous drag coefficient is as much as 80 percent of the total drag coefficient. (See fig. 7.)

One effect of viscous drag was the requirement imposed by the Legendre condition that the body slope at the base must be greater than zero. (Minimum pressure drag bodies of refs. 2 and 3 with given length and volume have a zero slope at the base.) However, the required slope is very small compared with unity. Figure 8 presents some minimum-drag body shapes for given length and volume for several values of the volume ratio.

CONCLUDING REMARKS

An analytical investigation was made to determine the meridian shapes of minimum-drag bodies having either given length and base height or given length and volume. The flow was assumed to be hypersonic and Newton's formula for pressure drag to be applicable. Viscous drag was formulated by using a skin-friction coefficient that varied with distance along the body meridian and the boundary-layer flow was considered to be either laminar or turbulent. A solution was obtained by application of the calculus of variations, and equations obtained from the necessary conditions were programmed for a digital computer.

A limited parametric analysis has been made to assess the effect of viscous drag on minimum-drag body shapes and to illustrate the use of the computer program. Minimum-drag body shapes, with fineness ratios to about 9, were characterized by flat noses having, at most, a diameter of 3.5 percent of the maximum body diameter. The effect of viscous drag was a reduction of the volume of these bodies for the larger fineness ratios. Practical body shapes, for which the body slope was required to be greater than zero, have an upper limit on the value of fineness ratio. A similar limit on the fineness ratio has been obtained by other investigators who have used a "slender body" approximation. The main conclusion for flat-nose minimum-drag bodies having given length and volume is that the viscous drag has almost a negligible effect on the body shapes.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 17, 1969,
126-13-02-27-23.
APPENDIX

DESCRIPTION OF PROGRAM

The computer program was written in the FORTRAN IV language under SCOPE Version 3.0 for Control Data Corporation's Series 6000 computers at the Langley Research Center. A brief description of the program, as well as a flow diagram and actual listing of the program is included in this appendix. The output from an example problem is also given.

Contents of the Program

The program numerically integrates the Euler equations (eqs. (23)) which must be satisfied over the interval $0 \leq x \leq 1$. Subroutines FALG, INT1A, and ITR2 are used for the solution of the quartic (eq. (19)) for the two real values of u_0, for the integration of the differential equations, and for the implicit solution of the u (eqs. (17) or (23)), respectively. The program determines the drag given in equation (5) using the trapezoidal rule to compute the separate integrals for the pressure drag and friction drag coefficients.

Subprograms

The program makes use of three library subroutines, FALG, INT1A, and ITR2, from the Langley Research Center. A complete listing of these subroutines is included in this paper.

FALG is a subroutine which calculates the n roots of a polynomial of degree n, where the coefficients may be either real or complex. In this program it is used to obtain the u_0 only if $y_0 = 0$. Error returns are:

$IERRF = 0$; normal return

$IERRF = 1$; the leading coefficient is zero

$IERRF = 2$; one of the roots failed to converge in the initial iteration cycle

$IERRF = 3$; one of the roots failed to converge in the improvement iteration cycle.

INT1A is a closed subroutine for the solution of a set of simultaneous differential equations. It is a variable-interval-size routine and uses the fourth-order Runge-Kutta formula in conjunction with Richardson's extrapolation to the limit theory. Error returns are:

$IERR = 1$; normal return

$IERR = 2$; ELT block is not monotonic in the direction of integration
APPENDIX

IERR = 3; variables have failed to meet the local truncation error requirements nine consecutive times

IERR = 4; variables have failed to meet the local truncation error requirements at least nine times over the last three intervals. An acceptable answer has been reached, however, and is in the VAR array.

ITR2 finds a value for \(x \) within a given epsilon of relative error in a given interval for a given \(F(x) = 0 \). Error returns are:

\(\text{ICODE} = 0; \) normal return

\(\text{ICODE} = 1; \) maximum iterations (= 150) are exceeded

\(\text{ICODE} = 2; \) \(\text{DELTX} \) (the scanning interval) = 0, or negative

\(\text{ICODE} = 3; \) a root cannot be found within the given bounds, \(\text{ALLU} \) and \(\text{BULU} \)

\(\text{ICODE} = 4; \) \(\text{ALLU} > \text{BULU} \)

CHSUB and DERSUB are subroutines required by INT1A

FOFX is a function called by ITR2.

Options

An option is available for including or omitting \(\beta \) from the \(\dot{\lambda} \) equation. A value for \(\beta \) can be read in and will be included in equations (23), or it need not be read if it is not to be included in the \(\dot{\lambda} \) equation. The variable controlling this option is listed under "Input."

Input

The NAMELIST statement is used to put data in. NAMELIST names and the variable names contained in each with their explanations are listed in the following table:

<table>
<thead>
<tr>
<th>NAMELIST name</th>
<th>Variable names</th>
<th>Explanations of variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAM1</td>
<td>A</td>
<td>A</td>
</tr>
<tr>
<td></td>
<td>SIGMA</td>
<td>(\sigma)</td>
</tr>
<tr>
<td></td>
<td>ALPHA</td>
<td>(\alpha)</td>
</tr>
<tr>
<td></td>
<td>PRMIN</td>
<td>The absolute value of an increment of the independent variable which is the frequency of printing results. (See "Output.")</td>
</tr>
</tbody>
</table>
APPENDIX

<table>
<thead>
<tr>
<th>NAMELIST name</th>
<th>Variable names</th>
<th>Explanations of variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CII, CIMAX</td>
<td>The initial computing interval and maximum desired computing interval, respectively, as required by INT1A.</td>
</tr>
<tr>
<td></td>
<td>ALLUI, BULUI, DELTX</td>
<td>The lower bound or initial guess for u, the upper bound or final guess for u, and the size of the scanning interval, respectively, as required by ITR2 in solving for u.</td>
</tr>
<tr>
<td></td>
<td>EP1, EP2</td>
<td>Relative and absolute error criterion, respectively, used in ITR2 to stop the iteration when either of these convergence criteria are satisfied:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1. If $</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2. If $u_i \leq EP1$, $</td>
</tr>
<tr>
<td></td>
<td>NT</td>
<td>The number of values in the ELT block described below.</td>
</tr>
<tr>
<td></td>
<td>IOPBETA</td>
<td>Equals 0, β is not read and is not included in the λ equation.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Equals 2, β is read and is included in the λ equation.</td>
</tr>
<tr>
<td></td>
<td>NAM2</td>
<td>A one-dimensional array containing the initial values of the independent variable followed by the three dependent variables, x, y, and λ, in that order.</td>
</tr>
<tr>
<td></td>
<td>VAR0</td>
<td></td>
</tr>
</tbody>
</table>
APPENDIX

<table>
<thead>
<tr>
<th>NAMELIST name</th>
<th>Variable names</th>
<th>Explanations of variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAM3</td>
<td>BETA</td>
<td>β, read only if IOPBETA = 2.</td>
</tr>
</tbody>
</table>

Variable names	One-dimensional arrays containing the upper bounds of relative truncation error and "relative zeros," respectively, for the dependent variables as required by INT1A. If the error for any variable exceeds its respective ELE1 value, the computing interval is halved and the integration restarted at the beginning of the interval. Under certain criteria the interval is doubled. If the absolute value of any of the variables is less than its respective ELE2 value, the relative error criteria for that variable will not be applied. Satisfactory results have been obtained using ELE1 values $= 10^{-7}$ and ELE2 values $= 10^{-8}$.
ELE1, ELE2	
ELT	One-dimensional array of NT values, monotonic in the direction of integration, at which the user specifically desires control returned to his program from INT1A. (See "Output.")

Output

The frequency of printing results is determined by the input quantity PRMIN. The initial values are printed and the results will be printed again when the independent value is first greater than PRMIN and thereafter when the independent value has been updated by at least as much as PRMIN. The final value in the ELT array should be the final value of the independent variable (equals 1.0). INT1A iterates to obtain results at the specific values listed in ELT. If results at values of x other than 1.0 are desired, the program can be easily modified to have them printed. Values of the drag coefficients are printed at the end of each case. The total drag coefficient is given, as well as the pressure and friction drag coefficients.

Computational Flow Diagram

A concise computational flow diagram is included here to show the steps in computing. Details can be readily obtained from the listing.
APPENDIX

Input from NAMELIST: NAM1, NAM2, NAM3

Initialization of constants and of arrays of independent and dependent variables

Output: NAMELIST variables and headings

\[y_0 : 0.0 \]

Obtain \(u_0 \) as one of the two real roots of the quartic equation (19)

Initialization:
Call INT1A to initialize for integration; determine \(u_0 \) from equations (17) or (23) if \(y_0 \neq 0 \); compute initial values for drag integrals

Call INT1A for integration step

Yes

Check for error from integration routine

No

Update drag integral

Check to see whether values should be printed

Yes

Print values

No

\(X < \text{PER} \)

\(X : \text{PER} \)

\(X \geq \text{PER} \)
APPENDIX

Listing of FORTRAN Program

The FORTRAN program, including FALG, INT1A, and ITR2 (Langley Research Center library subroutines) is as follows:

```
C PROGRAM TO COMPUTE BODIES OF REVOLUTION HAVING MINIMUM VISCOS
C PLUS (NEWTONIAN) PRESSURE DRAG IN HYPERSONIC FLOW.
C VARIABLES NEEDED IN INTEGRATION ARE STORED IN THE VAR ARRAY
C (TENTATIVE ANSWERS IN CORRESPONDING POSITIONS IN THE CUVAR
C ARRAY)
C
VAR(1) INDEPENDENT VARIABLE
VAR(2) X
VAR(3) Y
VAR(4) LAMBDA

Y PRIME IS REFERRED TO AS U IN THIS PROGRAM

OPTIONS
IF IOPBETA = 0, BETA IS NOT READ AND IS NOT INCLUDED IN THE
LAMBDA DOT EQUATION.
IF IOPBETA = 2, BETA IS READ AND IS INCLUDED IN THE LAMBDA DOT
EQUATION.

COMPLEX ROOTS, TEMP
DIMENSION ELF1(3), EL=2(3), ELT(10), ERRVAL(3), COEFFS(10), ROOTS(4),
1 TEMP(10)
EXTERNAL DERSUR, CHSUR
COMMON /BLK1/CUVAR(4), VAR(4), DER(4), VAR0(4), ASIGMA, ALPHA, U, ALLU,
1 BULU, DELTX, FP1, FP2, ICODE, II, CI, BETA, IOPHETA, IOPUO, UO
1 NAMFLIST /NAM1/ASIGMA, ALPHA, PRMIN, CI, CMAX, ALLU, BULU, DELTX,
1 FP1, FP2, NT, IOPHETA
2 /NAM2/VAR0, FLF1, FLF2, FL
3 /NAM3/BETA
10 READ (5,NAM1)
READ (5,NAM2)
C READ QUANTITIES IN NAM3 ONLY IF THEY ARE REQUIRED FOR THE RUN.
C SEE IOPUO AND IOPHETA ABOVE.
READ (5,NAM3)
NCASE=0
IF (VAR0(3), FG, 0, 0) NCASE=1
11 CI=CI
PER=0.99999999
N=3
ITEXT=0
SPEC=0, 0
II="
NPLUS1=N+1
DO 20 I=1,NPLUS1
20 VAR(I)=VAR0(I)
C ALLU=ALLU
BULU=BULU
WRITE (6,NAM1)
WRITE (6,NAM2)
WRITE (6,NAM3)
WRITE (6,70)
WRITE (6,80) VAR(3), ASIGMA, ALPHA
```
APPENDIX

IF (VAR0(3) .NE. 0.0) WRITE (6, 90)
IF (VAR0(3) .EQ. 0.0) WRITE (6, 100)
IF (IOPBETA .EQ. 0) WRITE (6, 120)
IF (IOPBETA .EQ. 2) WRITE (6, 130) BETA

C IF Y IS INITIALLY = 0, THE INITIAL U WILL BE OBTAINED FROM THE
C QUARTIC IN U (IOPUO=2). THERE WILL BE TWO REAL ROOTS, U01
C AND U02. COMPUTATIONS WILL BE DONE FOR BOTH CASES. IF Y IS
C NOT = 0 INITIALLY, THE INITIAL U IS OBTAINED FROM THE
C IMPLICIT EULER EQUATION (IOPUO = 0).

IF (VAR0(3) .NE. 0.0) IOPUO=0
IF (VAR0(3) .NE. 0.0) GO TO 72
IF (NCASE .NE. 2) GO TO 76
U0=U02
GO TO 72

76 CONTINUE
IOPUO=2
NDFG=4
ICOFF=0
COEFFS(1)=1.0
COEFFS(2)=0*
(COGF+ROOTS.TEMP.1FRRF
IF (IERR .EQ. 0) GO TO 73
WRITE (6, 160) IERRF
GO TO 70

73 CONTINUE
IRR=1
DO 24 I=1,4
RI=AIMAG (ROOTS(I))
IF (RI .NE. 0.0) GO TO 24
IF (IRR .EQ. 2) GO TO 25
U01=REAL (ROOTS(I))
IRR=2
GO TO 24

25 U02=REAL (ROOTS(I))

24 CONTINUE
UO=U01

22 CONTINUE
C INITIALIZE IN SUBROUTINE INTIA
CALL INTIA (11.*NT.1.*SPEC.CIMAX1.IERR.VAR**CUVR.DER.EFF1.EFF2.ELT
1,FRRVALREDUR.CHRED.1FXT)
C COMPUTATION FOR DRAG INTEGRAL (INITIALIZATION)
C DRAG1 CONTAINS THE Y0**2 TERM PLUS THE FIRST PART OF THE INTEGRAL
C DRAG2 CONTAINS ONLY THE A TERM OF THE INTEGRAL
FDIM1=VAR(3)*((2.0*U**3/(1.0+U**2)))
FDIM2=VAR(3)*((SIGMA+VAR(2)*SORT(1.0+U**2)*ALPHA))
DRAG1=VAR(3)**2
DRAG2=0.0
DRAG=DRAG1+DRAG2
STORFT=VAR(1)
WRITE (6, 140)
GO TO 50
C START INTEGRATION
30 CALL INTIA (11.*NT.1.*SPEC.CIMAX1.IERR.VAR**CUVR.DER.EFF1.EFF2.ELT
1,FRRVALREDUR.CHRED.1FXT)
IF ((IERR .EQ. 1).OR. (IERR .NE. 4)) GO TO 40
APPENDIX

```
WRITE (6,110) IFRF
GO TO 10

40 CONTINUE
IF (I1.EQ.2) GO TO 30
C
COMPUTATION FOR DRAG INTEGRAL
FD1=VAR(3).*(2.*U**3/(1.0+U**2))
FD2=VAR(3).*((SIGMA+VAR(2)**2)/SQRT(1.0+U**2))**ALPHA
FDA1=(FD1M1+FD1)/2.0
FDA2=(FD2M1+FD2)/2.0
FDINT1=FDA1*(VAR(1)-STORET)
FDINT2=FDA2*(VAR(1)-STORET)
DRAG1=DRAG1+FDINT1
DRAG2=DRAG2+FDINT2
DRAG=DRAG1+DRAG2
FD1M1=FD1
FD2M1=FD2
STORET=VAR(1)
C TEST TO SEE IF VALUES SHOULD BE PRINTED
IF (VAR(1).GT.PRF) GO TO 50
PRF=VAR(1)-PRF
IF (PRF.GT.PRF.MIN) GO TO 50
IF (VAR(1).LT.PRF) GO TO 30
CONTINUE
PRF=VAR(1)
WRITE (6,60) VAR(2),VAR(3),U
IF (VAR(1).LT.PRF) GO TO 30
CONVD=2.0/(VAR(3)**2)
CDT=DRAG*CONVD
CDF=DRAG*CONVD
WRITE (6,150) CDT,CDF
IF (IOPLF.EQ.0) GO TO 10
IF (NCASE.EQ.2) GO TO 10
NCASE=2
GO TO 11
C
60 FORMAT (4E18.8)
70 FORMAT (1H11X*PRODIES OF REVOLUTION HAVING MINIMUM VISCOSITY OF
1US (NFWTONIAN) PRESSURE DRAG IN HYPERSONIC FLW)
80 FORMAT (/*/10X5HINPUT16X2HY017X1MA13X5H5IGMA13X6HALPHA/E36.83F18.8)
90 FORMAT (/*/1H14HXINITIAL U OBTAINED FROM NESLIER EQUATION*)
100 FORMAT (1H14H*INITIAL U OBTAINED FROM QUARTIC EQUATION*)
110 FORMAT (1X32HERROR RETURN FROM INT* IERR = 14/*)
120 FORMAT (1H14H*TOTAL DRAG COEFF Not Included in Lamba Dot EQUATION)
130 FORMAT (1H14H*TOTAL DRAG COEFF Included in Lamba Dot EQUATION. DFTA =E16.8)
140 FORMAT (/*/14X1H1X17X1HY11X7HY PRIM/)
150 FORMAT (/*/6X16HTOTAL DRAG COEFF7X15HPRES DRAG COEFF3X19HFRCTION D
DRAG COEFF/3F22.8)
160 FORMAT (1X*ERROR RETURN FROM FALG* IFRF =##.14)
END
```
APPENDIX

SUBROUTINE CHU1A
RETURN
END

SUBROUTINE DEFUR
EXTERNAL FOFX
COMMON /BLK1/CUVAR(4),VAR(4),DER(4),VARO(4),A,SIGMA,ALPHA,U,ALLU,
1 BULU,DELTX,EP1,EP2,ICODEF,II,ICL,BETA,IOPBETA,IOPUO,UN
IF ((IOPUO*NE.2) OR ((II*NE.0)) GO TO 10
U=U
GO TO 30
10 CALL ITR2(U,ALLU,BULU,DELTX,FOFX,EP1,EP2,150,ICODEF),
IF (ICODEF.EQ.0) GO TO 20
FUNU=CUVAR(3)*(2*U**2*(3*O+U**2))/((1.0+U**2)**2)-ALPHA*A*CUVAR(2)*U/((SORT(1.0+U**2)),(SIGMA+CUVAR(2)*SORT(1.0+U**2)**(1.0+ALPHA)))+CUVAR(4)
IF (FUNU.LT.0.1E-06) GO TO 20
WRITE (6,40) ICODEF,U,FUNU
STOP
20 CONTINUE
30 CONTINUE
DEF(1)=0.0
DEF(2)=1.0
DEF(3)=U
DEF(4)=-2.0*U**3/(1.0+U**2)-A/((SIGMA+CUVAR(2)*SORT(1.0+U**2)**ALPHA)
IF (IOPBETA.EQ.2) DEF(4)=DEF(4)-2.0*BETA*CUVAR(3)
RETURN
40 FORMAT (1X33,HEPERROR,RETURN FROM ITR2. ICODEF = 14.3X4HU = E16.8,3X7,1HF(U) = F16.8/*)
END

FUNCTION FOFX(X)
COMMON /BLK1/CUVAR(4),VAR(4),DER(4),VARO(4),A,SIGMA,ALPHA,U,ALLU,
1 BULU,DELTX,EP1,EP2,ICODEF,II,ICL,BETA,IOPBETA,IOPUO,UN
FOFX=2.0*X**2*(1.0*X**2)**2/(1.0+X**2)**2-(ALPHA*A*CUVAR(2)*X)/((SQRT(1.0+X**2)),(SIGMA+CUVAR(2)*SORT(1.0+X**2)**(1.0+ALPHA)))+CUVAR
2*FOFX(4)/CUVAR(3)
RETURN
END
APPENDIX

SUBROUTINE FALC(COEFFS,N,ROOT,TEMP,IERR)

********* DOCUMENT DATE 08-01-68 SUBROUTINE REVISED 08-01-68 *********

DIMENSION COEFFS(1), TEMP(1), ROOT(1)
DIMENSION DIRDIFF(2), IDIFF(2), APPROX(3)
COMPLEX F, FR, RDIFF, APPROX, TEMP, ROOT
COMPLEX TEMP
COMPLEX RELST
NSA=2+N
IERR=0
10 I=0
ICLEAN=2*N+2
C CLEAR WORKING AREA
DO 771 LLL=1, ICLEAN
771 TEMP(LLL)=0.0
C CLEAR ROOT STORAGE
DO 772 LLL=1, N
772 ROOT(LLL)=0.0
C CONSTANTS TO TEST
C CONVERGENCE
CONST=1.E-6
C OVERFLOW
OVERFLOW=1.E-150
C MAGNITUDE OF ROOTS
RCONST=1.E-21
C JONJON=0
JJJ=0
C CHECK CONSTANT TERM FOR ZERO
JJJ=1
NCO=N+1
802 IF(I*NE.1)GO TO 800
C COMPLEX COEFFICIENTS
NCO=2*NCO
IF(COEFFS(NCO-1)*NE.0) GO TO 101
C HERE IF REAL COEFFICIENTS
800 IF(COEFFS(NCO)*NE.0) GO TO 101
C ROOT=ZERO
801 ROOT(JJJ)=0.0
NCO=NCO-1
JJJ=JJJ+1
C REDUCE DEGREE AND IF 1, STORE ROOT AND EXIT
N=N-1
IF(N*NE.1)GO TO 802
ROOT(JJJ)=0.
GO TO 1006
C ENTRY FIRST AND SECOND ITERATIONS
101 J=JJJ
NTERMS=N+1
KCONJ=0
C CLEAR APPROX
APPROX(1)=0.0
APPROX(2)=0.0
APPROX(3)=0.0
IF(I*EQ.1) GO TO 43
C REAL COEFFICIENTS
DO 78 IJFF=1,NTERMS
78 TEMP(IJFF)=CMPLX(COEFFS(IJFF),0.0)
GO TO 700
C COMPLEX COEFFICIENTS
43 DO 79 IIX=1,NTERMS
79 TEMP(IIX)=CMPLX(COEFFS(2*IIX-1),COEFFS(2*IIX))
APPENDIX

C
C CHECK LEADING COEFFICIENT FOR 0 OR 1
700 TEMP=REAL(TEMP(1))
 IF(TEMP.NE.0.0)GO TO 701
C
C IF REAL IS ZERO, CHECK IMAGINARY
801 TEMP=AIMAG(TEMP(1))
 IF(TEMP.NE.0.0)GO TO 701
C
C LEADING COEFFICIENT ZERO
 IF(RR=1)
 GO TO 1006
C
C DIVIDE BY LEADING COEFFICIENT
701 TEMPM=TEMP(1)
 DO 702 LLL=1,INTERMS
702 TEMP(LLL)=TEMP(LLL)/TEMPM
C
C KCONJ=1, TRIAL VALUE=CONJUGATE
C
C 746 IF(KCONJ.NE.0)GO TO 47
C
C FIRST TRIAL VALUE
 APPROX(1)=(0.0,0.0)
C
C DIFFERENTIATE
47 DO 8 II=1,INTERMS
6 XPOX=INTERMS-II
7 NNOW=II+INTERMS
8 TEMP(II)=XPOX*TEMP(II)
C
C KA=0 FOR FIRST TRIAL VALUE
 KA=0
C
C JONJON=1, SECOND ITERATION
749 IF(JONJON.EQ.0.1)APPROX(1)=ROOT(I)
C
C CLEAR RDIFF, XI DIFF
DO 7773 LLL=1,2
 RDIFF(LLL)=0.0
7773 XIDIFF(LLL)=0.0
C
C ROOT EVALUATION
C
C MAXIMUM ITERATIONS =120
13 L=2
 PART1= REAL(APPROX(1))
6 PARTM=AIMAG(APPROX(1))
 DO 12 K=2,13
C
C EVALUATE F(X)
10 F=(C*O,O,O)
 DO 9 II=1,INTERMS
7 F=APPROX(II-1)*F+TEMP(II)
8 XF=ABS(REAL(F))
9 YF=ABS(AIMAG(F))
C
C CHECK FOR OVERFLOW
 IF(XF*GT*OVCON OR YF*GT*OVCON)GO TO 14
C
C CONTINUE
C
C EVALUATE FPRIME(X)
6 FPR=(O*0,O,O)
 DO 11 JJ=1,INTERMS
11 NNOW=JJ+INTERMS
 FPR=APPROX(JJ-1)*FPR+TEMP(NNOW)
 YFP=ABS(AIMAG(FPR))
6 XFP=ABS(REAL(FPR))
C
C CHECK FOR OVERFLOW
APPENDIX

IF (XFP.GT.0.0.EQ.GOV OR YFP.GT.0.0.EQ.GOV) GO TO 14
11 CONTINUE
C SEE IF FPRIME=0
C IF (XFP.EQ.0.0.AND.YFP.EQ.0.0) GO TO 14
C IF NOT ZERO*NEW APPROXIMATION
APPROX(L)=APPROX(L-1)-F/FPR
PARTR2= REAL(APPROX(L))
PARTM2=AIMAG(APPROX(L))
C SET EITHER PART TO ZERO IF LESS THAN 1.E-21
IF (ABS(PARTR2).LE.RCONST) PARTR2=0.
IF (ABS(PARTM2).LE.RCONST) PARTM2=0.
IF (PARTR2.EQ.0.0.AND.PARTM2.EQ.0.0) GO TO 6732
GO TO 732
C ZERO ROOT
6732 IF (L.EQ.3) APPROX(2)=APPROX(3)
GO TO 81
C
732 RDIFF(L-1)=ABS(PARTR2-PARTR1)
XIDIFF(L-1)=ABS(PARTM2-PARTM1)
IF (L.EQ.3) GO TO 18
L=3
PARTR1=PARTR2
PARTM1=PARTM2
GO TO 10
C
C TEST 1
18 IF ((RDIFF(2)+XIDIFF(2)).LT.(RDIFF(1)+XIDIFF(1))) GO TO 8700
C
C TEST 2
RELTST=(APPROX(3)-APPROX(2))/APPROX(3)
DIFFR=ABS(REAL(RELTST))
DIFFX=ABS(AIMAG(RELTST))
IF (DIFFR.LT.RCONST.AND.DIFFX.LT.RCONST) GO TO 81
8700 APPROX(2)=CMPLX(PARTR2,PARTM2)
PARTR1=PARTR2
PARTM1=PARTM2
RDIFF(1)=RDIFF(2)
12 XIDIFF(1)=XIDIFF(2)
C
C MAXIMUM ITERATIONS EXCEEDED OR
C OVERFLOW OR
C FPRIME=0
C TRY AGAIN WITH SECOND TRIAL VALUE
14 IF (JONJON.EQ.1) GO TO 136
IF (KA.EQ.105) GO TO 71
APPROX(1)=(1.1)
KA=105
GO TO 13
C
136 IERR=3
C SECOND ITERATION NONCONVERGENT ROOT IFRR=3
C STORE RESULT AND IMPROVE NEXT ROOT
GO TO 82
APPENDIX

C FIRST ITERATION ROOT R NONCONVERGENT IERR=2
C IMPROVE (R-1) ROOTS

71 IERR=2
C IB=LAST CONVERGENT ROOT
 IB=J
 ROOT(J)=APPROX(P)
 IF(IB.NE.1)GO TO 9971
C FIRST ROOT FAILED RETURN
 GO TO 1006
9971 JONJON=1
 GO TO 101
C
C STORE ROOTS
81 IF(JONJON.EQ.1) GO TO 82
C HERE IS FIRST ITERATION
 ROOT(J)=APPROX(P)
C REDUCE POLYNOMIAL BY SYNTHETIC DIVISION
1 NTERMS=NTERMS-1
 DO 7 IK=2,NTERMS
 TEMP(IK)=ROOT(J)*TEMP(IK-1)+TEMP(IK)
 CONTINUE
7 CONTINUE
C NEXT ROOT IF COMPLEX COEFFICIENTS
 IF(J.EQ.1)GO TO 745
C HERE IF REAL COEFFICIENTS
 IF(KCONJ.EQ.0)GO TO 744
C RESET KCONJ IF ROOT IS CONJUGATE OF PREVIOUS ROOT
 KCONJ=0
 GO TO 745
744 X=REAL(ROOT(J))
 Y=AIMAG(ROOT(J))
 IF(X.EQ.0)GO TO 745
C SEE IF REAL OR COMPLEX
 IF(ABS(Y/X).LE.1.E-10)GO TO 745
C COMPLEX ROOT TRIAL VALUF=CONJUGATE
 APPROX(J)=CONJG(ROOT(J))
 KCONJ=1
C NEXT ROOT
745 J=J+1
 IF(J.NE.NSARV)GO TO 746
C LAST ROOT
 ROOT(J)=-TEMP(2)/TEMP(1)
 JONJON=1
 GO TO 101
C
C IMPROVED ROOT FROM SECOND ITERATION
B2 ROOT(J)=APPROX(P)
 X=ABS(REAL(ROOT(J)))
 Y=ABS(AIMAG(ROOT(J)))
C SET REAL OR IMAG TO ZERO IF LESS THAN RCONST
 IF(X.LT.RCONST.AND.Y.LT.RCONST)GO TO 33
 IF(X.LT.RCONST)ROOT(J)=CMPLX(X,0.0,AIMAG(ROOT(J)))
 IF(Y.LT.RCONST)ROOT(J)=CMPLX(REAL(ROOT(J)),Y,0.0)
 GO TO 108
33 IF(X.GEQ.Y) GO TO 34
C ROOT(J)=CMPLX(X,0.0,AIMAG(ROOT(J)))
 GO TO 108
34 ROOT(J)=CMPLX(Y,0.0,AIMAG(ROOT(J)))
C
APPENDIX

C IF(R-1) ROOTS IMPROVED, RETURN
106 IF(J.EQ.1B)GO TO 1005
 J=J+1
C IF N ROOTS IMPROVED, RETURN
 IF(J.LE.NSAVE)GO TO 749
1006 N=NSAVE
 RETURN
 END

SUBROUTINE ITR2 (X,A,R,DFLTX,FOFX,F1,F2,MAXI,ICOND)
 X=A
 KX=0
 LX=0
 IF (DFLTX).LE.11111111112
 112 IF (B- A) .LE.113113114
 114 I =0
 IF (FOFX(A))1,2,3
 1 XBX=X
 IF(LX.NE.0)GO TO 1001
 X =X+DFLTX
 IF(X-B)1000,1000,1004
 1004 X=B
 LX=1
1000 IF (FOFX(X))1,2,4
 4 XBX=X
 X=X-DFLTX/(2.**(1+1))
999 I=I+1
 IF(MAXI.LE.I)GO TO 444
 IF (FOFX(X))6,2,7
 6 L=1
 XX=XR
 GO TO 18
 7 L=2
 XX=XB1
 GO TO 18
 3 XBX=X
 IF(KX.NE.0)GO TO 1001
 X =X+DFLTX
 IF(X-B)1002,1002,1003
6003 X=B
 KX=1
1002 IF (FOFX(X))5,2,3
 5 XBX=X
 X=X-DFLTX/(2.**(1+1))
998 I=I+1
 IF(MAXI.LE.I)GO TO 444
 IF (FOFX(X))8,2,9
 9 L=3
 XX=XB
 GO TO 18
 8 L =4
 XX=XB1

27
APPENDIX

18 IF (ABS(X)-E1)36.36.37
37 IF (ABS((XX-X)/X)-E1)2.2.17
36 IF (ABS(XX-X)-E2)2.2.17
17 GO TO (B1,4,B15)*L
81 XAI = X
 X = X + NELTX*(2.***(I+1))
 GO TO (999,4,998)*L
111 ICODF = 2
 GO TO 79
113 ICODF = 4
 GO TO 79
100 ICODF = 3
 GO TO 79
444 ICODF = 1
 GO TO 79
2 ICODF = 0
79 CONTINUE
RETURN
END

SUBROUTINE INTA (I, N, NT, CI, SPEC, CIMAX, IERR, VAR, CUVAR, DER, ELE1, ELE2, ELT, ERRVAL, DERSUB, CHSUB, TEXT)
DIMENSION S1VAR(20), SFILE(20), FLE(20), ELE(20), DER(21),
1 EDEV, SNR(20), SDY(20), SDY1(20), CNCP(20), ERRVAL(20), ERVOVH(20),
2 FELT(10), FELT(13), RFLMIN(20), STF(3)
DIMENSION VAR(21), CUVAR(21)
INTEGER TEX(15)
INTEGER ICODF, TP, SUMHAF, STEP, TEST, DCOF
REAL K1
C BEGIN INITIALIZATION
IF (110 GT 0) GO TO 520
1 TP = C
 SSPEC = SIGN(SPEC, CI)
 SCIMAX = SIGN(CIMAX, CI)
 VAR1 = VAP(I)
 IF (CI .EQ. 0.0) GO TO 151
 IF (SSPEC .EQ. 0.0) GO TO 7
 IF (ABS(SCIMAX) .GT. ABS(SSPEC) .OR. SCIMAX .EQ. 0.0)
 1 SCIMAX = SSPEC
 C TEST TO SEE IF VAR IS ZERO
 IF (ABS(VAR1) .GT. 1.0E-11) GO TO 2
 TP = SSPEC
 GO TO 7
2 IF ((VAR1/SSPEC) .GT. 1.0E-13) GO TO 4
3 K1 = 0.0
 GO TO A
4 K1 = 1.0
 TP = VAR1 - AMOD(VAR1, SSPEC)
 IF (ABS(TP-VAR1) .LT. 1.0E-12) K1 = 1.0
 TP = TP + K1*SSPEC
 IF (ABS((TP-VAR1)/VAR1) .LT. 1.0E-11) TP = TP + SPEC
 C TEST FOR DIRECTION OF INTEGRATION
 7 K1 = 1.0
 IF (CI .EQ. 0.0) K1 = -1.0
 CIK = CI*K1
APPENDIX

C MAXK = SCMAX*K1
TPK=TP*K1
VAR=VAR1*K1

C SET UP STORAGE FOR INTERNAL USE
NP1=N+1
REMAI1=0.0
NHAF=
N1S=NT
SUMHAF=0
LOOP=0

DO 91 I=1,3
91 STEP(I)=0
IF(IAT=1
DO 8 I=1,NP1
8 CUVAR(I) =VAR(I)
DO 101 I=1,N
101 SELFL(I)=ELEI(I)
IF (NT .EQ. 0) GO TO 13
100 IF (NT .EQ. 1) GO TO 10
NTM1=NT-1
FLTK=K1*FLT(I)
DO 9 I=1,NTM1
ELTK2=K1*FLT(I+1)
IF (FLTK .LT. ELTK2) GO TO 9
GO TO 995
9 FLTK=ELTK2
CONT
ELTK=K1*ELT(NFLT)
IF (VAR .LT. FLTK) GO TO 101
IF (NELT .EQ. NT) GO TO 13
NELT=NELT+1
GO TO 10
11 NFLTL=NT-NELT+1
GO TO 12
12 DO 14 I=1,N
14 RELMIN(I)=SFLFl(I)/l?F%*Cl
IF (NT .LE. 2) GO TO 124
DO 995 I=1,NT
995 SELT(I)=ELT(I)
996 CALL DERSUB
IF (II .EQ. 4) GO TO 120
DO 15 II=1,N
15 FDERV(I)=DER(I+1)
II=1
TEST=0
DO 300 II=1,15
300 TFX(I)=0
TEX(I)=1
TEX2(I)=1
KK3=1
IF (ITEXT) 635,63,63K
15 PRINT 1000
1000 FORMAT (/11H C1 IS FRO)
STOP
C END OF INITIALIZATION
APPENDIX

520 11=1
TPSH=0
LTSH=0
VARK=VAR(1)*K1
CIK=CI*K1
S1=VARK+CIK
IF (SSPEC *EQ. 0.0) GO TO 525
KK=1
IF (NELTL *EQ. 0) GO TO 17
IF (FLTK=TPK) 16 16 17
16 CV=FLTK
CODE=1
GO TO 18
17 CV=TPK
CODE=2
18 IF (ABS(CV) LT 1E-12) GO TO 530
IF (CV=SV1) 20 20 12
19 IF (ABS((CV-SV1)/CV) .GE. 1E-11) GO TO 535
20 IF (NELTL *EQ. 0) GO TO 540
IF (ABS((FLTK-TPK)/CV) LT 1E-11) GO TO 550
IF (CODE *EQ. 1) GO TO 545
540 DX=TP-VAR(1)
TEN(5)=1
TP=TP+SSPEC
TPK=TP*K1
TPSH=1
GO TO 560
C SHORT INTERVAL DUE TO BOTH
600 TP=TP+SSPEC
TEN(6)=1
TPK=TP*K1
TPSH=1
GO TO 545
C IF HERE CV IS LIKELY ZERO
530 IF (CODE *EQ. 1) GO TO 550
IF (NELTL *EQ. 0) GO TO 540
IF (ABS(FLTK) LT 1.0E-12) GO TO 550
GO TO 540
C SPEC IS ZERO
525 IF (ABS(2*MAIN) *GT. 1E-11) GO TO 96
IF (NFLTL *EQ. 0) GO TO 565
94 IF (ABS(FLTK) *GE. 1E-12) GO TO 21
IF (S1 LT -1E-12) GO TO 565
GO TO 545
21 S2=FLTK-51
IF (S2) 545 545 22
22 IF (ABS(S2/FLTK) LT 1.0E-12) GO TO 545
GO TO 565
C SHORT INTERVAL IS DUE TO ELT BLOCK
645 NFLTL= NFLT(NFLT)
TEN(4)=1
DX=NFLT- VAR(1)
REMAIN=CI-DX
REMA[K]=REMA[N*K]
LTSH=1
NFLTL=NFLT+1
NFLTL=NFLTL-1
IF (NELTL *EQ. 0) GO TO 560
FLTK=K1*SFLT(NFLT)
GO TO 560
APPENDIX

565 DX=CI
TFX(3)=1
GO TO 560
96 IF (NELTL .EQ. 0) GO TO 98
IF (ELTK .LT. (VARK+RFMAIN)) GO TO 94
98 DX=RFMAIN
TFX(7)=1
RFMAIN=0
GO TO 560
535 DX=CI
TEX(3)=1
TEST=1
GO TO 555

C BEGIN RUNGE-KUTTA

560 TEST=0
555 DO 24 I=1,N
24 SIVAR(I)= VAR(I+1)
575 CUVAR(I)=VAR(I)
576 DO 26 I=1,N
SDY(I)=DER(I+1)
25 CUVAR(I+1)=SIVAR(I)+(DX*DER(I+1))/2.0
CUVAR(I)=CUVAR(I)+DX/2.0
CALL DERSUB
IF (I1 .EQ. 4) GO TO 120
580 GO TO 26
585 DO 27 I=1,N
SDY(I)=SDY(I)+2.0*DER(I+1)
26 CUVAR(I+1)=SIVAR(I)+(DX*DER(I+1))/2.0
CALL DERSUB
IF (I1 .EQ. 4) GO TO 120
590 DO 29 I=1,N
SDY(I)=(SDY(I)+DVAR(I+1))/6.0
90 CONTINUE
IF (LOOP) 28,28,29
28 DO30 I=1,N
SDY(I)=SDY(I)
YINCR(I)=0
30 DER(I+1)=FDERV(I)
DX=DX/2.0
LOOP=1
GO TO 575

C LOOP WAS NOT 7FRO

29 DO 31 I=1,N
31 YINCR(I)=YINCR(I)+SDY(I)
IF (LOOP .EQ. 2) GO TO 33
DO 32 I=1,N
SIVAR(I)=VAR(I+1)+DX*YINCR(I)
32 CUVAR(I+1)=SIVAR(I)
CUVAR(I)=VAR(I)+DX
APPENDIX

LOOP=2
CALL NFRSUB
IF (II*FO*4) GO TO 120
GO TO 576

33 LOOP=0
H=2.0*DX
DO 34 I=1,N
ERVOH(I)=(YINC(R)/P0-SDY(I))/15.0
ERR(V)=H*ERVOH(I)
34 S1VAR(I)=S1VAR(I)+DX*SDY(I)+ERR(V)

C
S1VAR HOLD THE APPROXIMATE ANSWERS
C

IF (SCIMAX) 36, 35, 36
36 IF (ABS(SCIMAX-CI)*LT.1*OE-12) GO TO 38
35 IF (ABS(H-CI)*GT.1*OE-12) GO TO 38
DCOF=0
GO TO 605
38 DCOF=1
605 CONTINUE
I=0
40 I=I+1
IF (I*GT. N) GO TO 45
IF (ABS(S1VAR(I)) *LT. ELE2(I)) GO TO 40
REL=ABS(ERR(V)/S1VAR(I))
IF (REL*GT. RELF(I)) GO TO 615
IF (REL*GT. REL*N(I)) DCOF=1
GO TO 40
45 CONTINUE
IF (DCOF=1) 610, 620, 610
610 CONTINUE
IF (SSPEC) 41, 42, 41
42 IF (SCIMAX) 41, 43, 41
43 CI=2.0*CI
TEX(A)=1
NHAF=NHAF=1
GO TO 620
41 IF (2.0*ABS(CI)*LE. ABS(SCIMAX)) GO TO 43
44 CI=SCIMAX
TFX(A)=1
GO TO 620

C
HALF INTERVAL
615 NHAF=NHAF+1
TFX(9)=1
NVAR=I+1
IF (NHAF-8)47, 47, 505
47 IF (LTSH .EQ. 0) GO TO 48
TFST=1
LTS=0
NFLT=NFLT-1
NFLTL=NFLTL+1
FLTK=K1*FLTL(NFLTL)
REMAIN=0.0
48 IF (TPSH .EQ. 0) GO TO 49
TFST=1
TP=TP-SSPFC
TPD=K1*TP
TPSH=0
49 IF (SSPEC .NE. N*0) GO TO 99A
TFST=0
APPENDIX

IF (ABS(CI-2.0*DX) .GT. 1.E-12) GO TO 1100
998 CI=DX
999 DX=DX/2.0
CIK=KI*CI
DO 50 I=1,N
50 SIVAR(I)=VAR(I+1)
DER(I+1)=FDERV(I)
SDY(I)=YINCR(I)-SDY(I)
YINCR(I)=AOO
KK=2
IF (I-TEXT .EQ. 1) GO TO 637
99 LOOP=1
GO TO 575
1100 CONTINUE
IF (NHAF .GT. 1) GO TO 999
NTS=NTS+1
IF (NTS .GT. 13) GO TO 998
ACV=VAR(1)+CI
ACVK=ACV*KI
IF (NELTL .EQ. 0) GO TO 1102
NLT=NELT
1101 FLTK1=SFLT(NLT)*KI
IF (ACVK .LT. FLTK1) GO TO 1103
NLT=NLT+1
IF (NLT .EQ. NTS) GO TO 1106
GO TO 1101
1102 SFLT(NELT)=ACV
GO TO 1105
1103 NLTPL=NLT+1
I=NTS
1108 SFLT(I)=SFLT(I-1)
IF (I .EQ. NLTPL) GO TO 1106
I=I-1
GO TO 1108
1106 SFLT(NELT)=ACV
1105 NFLTL=NFLTL+1
TFX(9)=0
TFX(I0)=1
FLTK=KI*SFLT(NFLTL)
GO TO 999
C
C DOUBLE PRECISION UPDATING
C
620 LOOP=0
DH=H
DO 51 I=1,N
PHI=FRV0VH(I)+YINCR(I)/2.0
DPHI=PHI
51 CUVAR(I+1)=VAR(I+1)+DH*DPHI
CUVAR(I)=VAR(I)+DH
CALL DERSUB
IF (I-I .EQ. 4) GO TO 120
CALL CHSUB
IF (I-I .EQ. 0) GO TO 120
121 TEST=0
54 DO 57 I=1,N
57 FDERV(I)=DER(I+1)
SUMHAF=SUMHAF+NHAF-STEP(I)
APPENDIX

```
STEP(1)=STEP(2)
STEP(2)=STEP(3)
STEP(3)=NHAF

I1R1=1
IF (SUMHAF=8) 63, 53, 510
63 DO 59 I=1, NP1
59 VAR(I)=CUVAR(I)
TXX(12)=1
501 KK3=4
   IF (ITFXT *EQ. 1) GO TO 637
68 IF (TFST *EQ. 1) GO TO 520
120 RETURN
C
C    RECOMPUTE INTERVAL
C
600 TFST=0
   NHAF=0
   I1=1
   DX=CI
   TXX(11)=1
   KK3=3
   IF (ITFXT *EQ. 1) GO TO 636
70 C1K=C1*K1
   DO 60 I=1, N
      DFR(I+1)=DFRV(I)
60   CUVAR(I)= VAR(I)
      CUVAR(N+1)= VAR(N+1)
      IF (TPSH *EQ. 0) GO TO 61
      TP=TP-SPEC
      TPK=TP*K1
      TPSH=0
61 IF (LTSH *EQ. 0) GO TO 655
   NFLT=NFLT-1
   RMAIN=N*, N
   NFLTL=NFLTL+1
   FLTK=SFLT(NFLT)*K1
   GO TO 55E
636 PRINT 183, VAR(1), DX
   GO TO 102
635 IF (TX(1) *EQ. 1) PRINT 171, VAR(1)
   IF (TX(2) *EQ. 1) PRINT 172, CI, C1MAX, SPEC
637 IF (TX(3) *EQ. 1) PRINT 173
   IF (TX(4) *EQ. 1) PRINT 174, H
   IF (TX(5) *EQ. 1) PRINT 175, H
   IF (TX(6) *EQ. 1) PRINT 176, H
   IF (TX(7) *EQ. 1) PRINT 184, H
   IF (TX(8) *EQ. 1) PRINT 177, CI
   IF (TX(9) *EQ. 1) PRINT 178, NVAR, CI
   IF (TX(10) *EQ. 1) PRINT 185, NVAR, DX
   IF (TX(11) *EQ. 1) PRINT 183, VAR(1), DX
   IF (TX(12) *EQ. 1) PRINT 179, VAR(1)...
   IF (TX(13) *EQ. 1) PRINT 180
   IF (TX(14) *EQ. 1) PRINT 181
   IF (TX(15) *EQ. 1) PRINT 182
102 DO 320 I=3, 13
320 TXX(I)=0
```
APPENDIX

GO TO (120,99,70,58),kk3
171 FORMAT (33H INITIALIZATION STARTS AT VAR(1)=,F16.8/)
172 FORMAT (4H CI=,F15.8,9H Cimax=,F15.8,8H SPEC=,F15.8/)
173 FORMAT (37H DX IS THE FULL COMPUTING INTERVAL CI/)
174 FORMAT (28H DX IS A SHORTENED INTERVAL,E15.8,25H DUE TO A CRITICAL VALUE/)
175 FORMAT (28H DX IS A SHORTENED INTERVAL,E15.8,21H DUE TO A SPECIFIC VALUE/)
176 FORMAT (28H DX IS A SHORTENED INTERVAL,E15.8,39H DUE TO BOTH A SPECIFIC AND CRITICAL VALUE/)
177 FORMAT (27H CI HAS BEEN LENGTHENED TO,F16.8/)
178 FORMAT (5H VAR(,12,32H) HAS CAUSED CI TO BE HALVED TO,E16.8/)
179 FORMAT (27H VAR(1) HAS BEEN UPDATED TO,F16.8/)
180 FORMAT (31H ERROR RETURN-ELT NOT MONOTONIC/)
181 FORMAT (55H ERROR RETURN-HAVE HALVED 9 TIMES OVER LAST 3 INTERVALS 1/)
182 FORMAT (45H ERROR RETURN-HAVE HALVED 9 CONSECUTIVE TIMES/)
183 FORMAT (31H INTERVAL RECOMPUTED AT VAR(1)=,E16.8,9H WITH DX=,F16.8/)
184 FORMAT (25H DX IS SHORTENED INTERVAL,E16.8,28H DUE TO A PREVIOUS FLAT VALUE/)
185 FORMAT (5H VAR(,12,32H) HAS CAUSED DX TO BE HALVED TO,E16.8,38H BUT NOT CI SINCE CI ALREADY SHORTENED/)
500 IFRR=2
 TEX(13)=1
 TFST=0
 GO TO 63
505 IFRR=3
 TEX(15)=1
 TFST=0
 GO TO 501
510 IFRR=4
 TFST=0
 TFX(14)=1
 GO TO 63
END
APPENDIX

Sample Output

The following is an example case with the input quantities and results printed:

```plaintext
$SNAM1
A = 0.0,
SIGMA = 0.1E-01,
ALPHA = C.2F+CC,
PRMIN = 0.5E-01,
CII = 0.2E-12,
CIMAX = C.4E-C3,
ALLUI = 0.1E-04,
BULUI = C.12E+Cl,
DELTX = 0.1E+00,
EPI = 0.1E-06,
EP2 = 0.1E-C6,
NT = 1,
ICPBETA = 0,
$END

$SNAM2
VAR0 = C.0, C.C, 0.955E-05, -0.199E-C4,
ELE1 = C.1E-06, 0.1E-06, 0.1E-06,
ELE2 = 0.1E-07, 0.1E-C7, 0.2E-C7,
ELT = C.1E+01, 1, 1, 1, 1, 1, 1, 1,
$END

$SNAM3
BETA = 1,
$END

36
**Bodies of Relevance Having Minimum Viscous Plus (Newtonian) Pressure Drag in Hypersonic Flow**

<table>
<thead>
<tr>
<th>INPUT</th>
<th>YO</th>
<th>A</th>
<th>SIGMA</th>
<th>ALPHA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>9.95000000E-06</td>
<td>C.</td>
<td>1.00000000E-02</td>
<td>2.00000000E-01</td>
</tr>
</tbody>
</table>

*Initial U obtained from Euler equation*
*Beta not included in Lambda dot equation*

<table>
<thead>
<tr>
<th>X</th>
<th>Y</th>
<th>Y PRIME</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>9.95000000E-06</td>
<td>9.55999986E-01</td>
<td></td>
</tr>
<tr>
<td>5.00465375E-02</td>
<td>5.24688594E-03</td>
<td>7.82930417E-02</td>
<td></td>
</tr>
<tr>
<td>1.00446538E-01</td>
<td>8.83052859E-03</td>
<td>6.57406731E-02</td>
<td></td>
</tr>
<tr>
<td>1.50646538E-01</td>
<td>1.19701598E-02</td>
<td>5.93708350E-02</td>
<td></td>
</tr>
<tr>
<td>2.01246538E-01</td>
<td>1.46519451E-02</td>
<td>5.72324547E-02</td>
<td></td>
</tr>
<tr>
<td>2.51646538E-01</td>
<td>1.75564510E-02</td>
<td>5.22272839E-02</td>
<td></td>
</tr>
<tr>
<td>3.02046538E-01</td>
<td>2.01765474E-02</td>
<td>4.58934044E-02</td>
<td></td>
</tr>
<tr>
<td>3.52446538E-01</td>
<td>2.59309399E-02</td>
<td>4.80023159E-02</td>
<td></td>
</tr>
<tr>
<td>4.02846538E-01</td>
<td>2.45714927E-02</td>
<td>4.64260212E-02</td>
<td></td>
</tr>
<tr>
<td>4.53246538E-01</td>
<td>2.72633764E-02</td>
<td>4.50726701E-02</td>
<td></td>
</tr>
<tr>
<td>5.03646538E-01</td>
<td>2.65176326E-02</td>
<td>4.38959571E-02</td>
<td></td>
</tr>
<tr>
<td>5.54046538E-01</td>
<td>3.17036372E-02</td>
<td>4.28630186E-02</td>
<td></td>
</tr>
<tr>
<td>6.04446538E-01</td>
<td>3.36402272E-02</td>
<td>4.19390632E-02</td>
<td></td>
</tr>
<tr>
<td>6.54846538E-01</td>
<td>3.59262225E-02</td>
<td>4.11067857E-02</td>
<td></td>
</tr>
<tr>
<td>7.05246538E-01</td>
<td>3.75357455E-02</td>
<td>4.03510107E-02</td>
<td></td>
</tr>
<tr>
<td>7.55646538E-01</td>
<td>4.00011000E-02</td>
<td>3.96599425E-02</td>
<td></td>
</tr>
<tr>
<td>8.06046538E-01</td>
<td>4.18372626E-02</td>
<td>3.90242536E-02</td>
<td></td>
</tr>
<tr>
<td>8.56446538E-01</td>
<td>4.36554083E-02</td>
<td>3.84364380E-02</td>
<td></td>
</tr>
<tr>
<td>9.06846538E-01</td>
<td>4.56588197E-02</td>
<td>3.78903641E-02</td>
<td></td>
</tr>
<tr>
<td>9.57246538E-01</td>
<td>4.77555131E-02</td>
<td>3.73809887E-02</td>
<td></td>
</tr>
<tr>
<td>1.00000000E+00</td>
<td>4.93449116E-02</td>
<td>3.69745149E-02</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>TOTAL DRAG COEFF</th>
<th>PRESS DRAG COEFF</th>
<th>FRICTION DRAG COEFF</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.09765800E-03</td>
<td>4.09765800E-03</td>
<td>0.008</td>
</tr>
</tbody>
</table>
REFERENCES


Figure 1.- Legendre boundaries. $\sigma = 0.01$.

(a) $A = 0.0005; \alpha = 0.2$. 
Figure 1.- Continued.

(b) $A = 0.0009; \alpha = 0.2.$

Figure 1.- Continued.
\[ F_{uu} = 0 \]
\[ F_{uu} < 0 \]
\[ F_{uu} > 0 \]

(c) \( A = 0.0002; \ a = 0.5 \).

Figure 1.- Concluded.
Figure 2.- Initial condition $y_0$ required to obtain a given fineness ratio $n$. $\sigma = 0.01$. 
(a) Fineness ratio, 2.

Figure 3.- Minimum-drag body profiles. Length and base height given; $\sigma = 0.01$. 
Figure 3.- Concluded.

(b) Fineness ratio, 5.
Figure 4.- Ratio of friction drag coefficient to total drag coefficient for given fineness ratio. $\sigma = 0.01$. 
(a) Radius at nose.

Figure 5.- Radius at nose and Lagrange multiplier for given length and volume. $\sigma = 0.01$. 
(b) Lagrange multiplier.

Figure 5. Concluded.
Figure 6.- Body fineness ratio for given length and volume. $\sigma = 0.01$. 
Figure 7. Drag coefficient ratio of minimum-drag bodies with given length and volume. $\sigma = 0.01$. 
Figure 8.- Minimum-drag body profiles. Length and volume are given; $\sigma = 0.01$. 

(a) $A = 0.005; \alpha = 0.2$. 

$\frac{V}{L^3}$ 
- - - - .08514 
- - - - .00860 
- - - - .00262 
- - - - .00377
(b) \( A = 0.0009; \alpha = 0.2. \)

Figure 8.—Concluded.
"The aeronautical and space activities of the United States shall be conducted so as to contribute... to the expansion of human knowledge of phenomena in the atmosphere and space. The Administration shall provide for the widest practicable and appropriate dissemination of information concerning its activities and the results thereof."

—National Aeronautics and Space Act of 1958

**NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS**

**TECHNICAL REPORTS:** Scientific and technical information considered important, complete, and a lasting contribution to existing knowledge.

**TECHNICAL NOTES:** Information less broad in scope but nevertheless of importance as a contribution to existing knowledge.

**TECHNICAL MEMORANDUMS:** Information receiving limited distribution because of preliminary data, security classification, or other reasons.

**CONTRACTOR REPORTS:** Scientific and technical information generated under a NASA contract or grant and considered an important contribution to existing knowledge.

**TECHNICAL TRANSLATIONS:** Information published in a foreign language considered to merit NASA distribution in English.

**SPECIAL PUBLICATIONS:** Information derived from or of value to NASA activities. Publications include conference proceedings, monographs, data compilations, handbooks, sourcebooks, and special bibliographies.

**TECHNOLOGY UTILIZATION PUBLICATIONS:** Information on technology used by NASA that may be of particular interest in commercial and other non-aerospace applications. Publications include Tech Briefs, Technology Utilization Reports and Notes, and Technology Surveys.

Details on the availability of these publications may be obtained from:

**SCIENTIFIC AND TECHNICAL INFORMATION DIVISION**

**NATIONAL AERONAUTICS AND SPACE ADMINISTRATION**

Washington, D.C. 20546