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BODIES OF REVOLUTION HAVING MINIMUM
TOTAL DRAG IN HYPERSONIC FLOW

By Waldo I. Oehman and Sylvia A. Wallace
Langley Research Center

SUMMARY

The calculus of variations was used to study minimum drag bodies of revolution in
hypersonic flow. Newton's formula for pressure drag was assumed, and viscous drag
was formulated by use of a variable skin-friction coefficient. Constraints of either given
length and base height or given length and volume were imposed on the bodies.

Fineness ratios to about 9 were investigated. The minimum drag bodies obtained
were characterized by flat noses having, at most, a diameter of 3.5 percent of the maxi-
mum body diameter. The effect of viscous drag was a reduction of the volume of the
bodies for the larger fineness ratios. Practical body shapes, for which the body slope
was required to be greater than zero, have an upper limit on the value of fineness ratio.
By use of a ""slender body'' approximation, other investigators have obtained a similar
limit on the fineness ratio. For a few cases investigated for which the ratio of volume
to body length was held constant rather than the fineness ratio, it was found that viscous
drag had almost a negligible effect on the minimum drag body shapes.

INTRODUCTION

The meridian shapes of bodies of revolution that produce minimum Newtonian pres-
sure drag have been calculated by Eggers, and others. (See ref. 1.) Suddath and Oehman
(refs. 2 and 3) calculated the minimum pressure drag shapes for bodies with elliptical
cross sections. Several authors have recently included the effect of viscous forces in the
problem of determining the shapes of minimum drag bodies in hypersonic flow. In refer-
ence 4, Kennet considered slender bodies (that is, bodies for which the local slope is much
smaller than unity) having an assumed constant skin-friction drag coefficient. Bryson,
in chapter 18 of reference 6, dropped the slender-body approximation, but retained the
assumption of a constant skin-friction coefficient. A study by Miele and Cole (refs. 5
and 6) of two-dimensional shapes and slender pointed bodies of revolution included a
variable skin-friction coefficient.

The present investigation extends the previous work by considering nonslender
bodies, both pointed and flat-nosed, and a variable skin-friction coefficient. In this



extension a calculus of variations solution of the problem has been obtained, numerically,
on a digital computer. Computed minimum-total-drag body shapes are presented to
assess the effect of friction drag and to illustrate the use of the computer program. In
addition to the constraint of given length and base height, body shapes were computed for
the constraint of given length and volume. Skin-friction coefficients for either laminar
or turbulent boundary layers have been used.

SYMBOLS
A constant in skin-friction-coefficient formula
Cp drag coefficient, ﬁﬁ
Cpr friction drag coefficient
Cs local skin-friction coefficient
Dy, base drag of body
Dy friction drag
Dp pressure drag
Diotal sum of Dy, D¢, and Dy
f,F,g integrand functions
f(x,y,y") integrand function in equation (6)

F(x,y,y',u,X,B) integrand function in equation (10)

2
9°F
F, = &L
w Ty
82F (x,y,5',u,1,6)
F.or.o =
'y 5y'2
F aF(X7y,y‘ ’u7x7B)
y' - ay'
g(y) integrand function (see eq. (7))




G value of integral in equation (7)

I functional defined by equation (6)

J functional defined by equation (9)

L length of body

n fineness ratio defined as ratio of length to base diameter of body of revolution
a_. free-stream dynamic pressure

u,y' body slope, (;—i

\" volume of body of revolution

X,y body coordinates, nondimensional with respect to L, along and perpendicular,

respectively, to axis of rotation

o exponent in skin-friction-coefficient formula
B Lagrange multiplier

) variation consistent with prescribed boundary conditions
5 variation taken at constant station x

o) constant in skin-friction-coefficient formula
A multiplier function

3(¥,) function of body radius at x =0 (see eq. (6))
Subscripts:

o) value at body nose, x =0

1 value at body base, x=1

i ith value

Dot over a symbol denotes derivative with respect to x. A prime also denotes a
derivative with respect to x.



PROBLEM FORMULATION AND SOLUTION

Statement of the Problem

A body of revolution, at zero angle of attack, is considered to be in a hypersonic
flow of air. The total drag of the body may be expressed as the sum of pressure drag,
skin-friction drag, and base drag, or

Distal = Pp + Dt + Dy, (1)

The pressure drag is assumed to satisfy Newton's law of resistance and is formulated as

1 '3
D, = 277qu2 yOZ +S‘ 2yy © dx' (2)
0 1+ y'2

follows:

Formulation of the skin-friction drag is the following integral:
X
Dg = 277qu2 50 yeg dx (3)
The local skin-friction coefficient is assumed to satisfy

- A (4)
! (0 +x\1 + y'z)a

where the value of the parameter A depends on the physics of the flow conditions, and
the value of the exponent o« depends on the character of the boundary layer. Usually,
o= 0.2 is associated with a turbulent boundary layer and « = 0.5 is associated with a
laminar boundary layer. The quantity in the parentheses represents, approximately, the
distance along the body meridian. The constant ¢ is included to avoid the problem
associated with an infinite skin-friction coefficient when x = 0.

Base drag is assumed to be negligibly small and is set equal to zero. Also, the
effect of boundary-layer thickness on the pressure distributions has not been included in
equation (2). Furthermore, the boundary layer does not have a transition region.

Combining equations (1), (2), and (3), the total drag is

1 ]
2y'3 A dx

= 27rqu2 2 ¢ y 3 + 5
(0 + X1 + y')

D
total o 14y

0

e




or, in nondimensional form,

dx (5)

D '3
total _ v.2 4 2y A —!

2 °° 12 o
27, L o L+y (0 + x\/l + y'z)—l

If the function y(x) is known, the drag factor Djqiay /27rqooL2 may be evaluated by per-
forming the integration indicated by equation (5). However, the problem of interest is to
determine the function y(x) that makes the drag factor a minimum. In the development
of equation (5), it has been assumed that the length of the body is known. Therefore, the
minimization of the drag factor is to be accomplished for a given length and either a given
base height or a given volume.

Method of Solution

The solution of the problem is obtained by applying the calculus of variations and by
using a digital computer to solve the resulting two-point boundary-value problem. A brief
development of conditions that the solution must satisfy is presented in functional form.

For convenience, a quantity 1 is defined by

D 1
14 _'F_Q.'Eili = @(yo) +§ f(x,y,y') dx (6)
2mq L 0
where
<I>(yo) 2%,
and
3
' 2y’ A
£(x,y,5") = y|—— 5
1l+y

If the volume of the body is specified, the functional I is to be minimized so that an
integral of the form

1
G = §0 gly) dx (7)

has the prescribed value. Furthermore, it will be convenient to substitute u for y' in
f(x,y,y') and introduce the differential equation

u-y' =0 (8)



as a subsidiary condition. A new functional J which is to be minimized is given by

1
= 8(yo) + | Foey.e) + 360 (u - ¥7) + ey ax ©)
or
1
T=a(yo)+ | Fooy.y urg) ox (10)

where A(x) is a variable multiplier and A is a constant multiplier. Minimization of
the functional J is equivalent to minimization of I subject to the integral constraint
(eq. (7)) and the subsidiary condition (eq. (8)).

Calculating the first variation of J and setting it equal to zero leads to

x=1 1

oF oF d ©oF F oF

5J‘<W+5y—)5y} * [(5; d_xﬁ)éhaé“”‘“]dx 0 (11)
-

where the symbol & denotes a variation consistent with prescribed boundary conditions
and 5 denotes a variation taken at a constant station x. From familiar arguments con-
cerning the arbitrary variations &y, 0y, 0ou, and Ox, equation (11) leads to the following

three necessary conditions:
(1) Satisfaction of Euler equations
(2) Satisfaction of end conditions
(3) Satisfaction of Legendre condition.

Euler equations.- The Euler equations which must be satisfied over the interval
0 =x =1 are when the length and base height are given:

d _ _9F _ _ af )
dx dy dy

|
dy
= - 12
o > (12a)
oF of |
== =0
™ au+7\ )

- - ——EE— =t —— 1 11 I ——




and when the length and volume are given:

dy__8F_ ot 40
dx oy ay ay
dy
—~Z-=u (12b)
ax %
OF _ % =0
du ou
S

It is possible to obtain a first integral of the Euler equations that contains an additional
variable multiplier. However, since the integration provides no additional information
for these problems, the integral has been omitted.

End conditions.- The initial condition that must be satisfied is

8% _ E] =0 (13)
x=0

8Yo ay'
which is applicable for both problems, and the final condition is

Fy':l =0 (14)

which is applicable only for the problem with given length and volume.

Legendre condition.- The solution y(x) must be obtained so that the Legendre con-
dition is satisfied in the interval 0 =x = 1; that is,

F..20 (15)

This set of necessary conditions must be satisfied by the functions y(x), u(x), and
A(x) in order to extremize the functional of equation (9). Furthermore, the resulting
extremal is called a weak extremal. It has been implied, in this development, that the
body slope is greater than zero for all values of Xx.

Specific Solutions

Given length and base height.- The integrand function for the problem in which the
length and base height are given (see eqs. (9) and (10)) is written explicitly as




3
Foyl-2 . A +x(-9§ (16)

1+u? (0+x\/1 + uz)a

The Euler equations are-

~
dr _ _ 2uS _ A
dx 1+u2 (0 + x,/l + uz)a
g_){ —u ) (17)
y 2u2(3 + uzz) _ o Aux —r =0

(1 +u?) /1 +u2 (0 +xfl + u2) j

Applying the end condition at x =0 (eq. (13)) gives

Ao = -2Y, (18)

which is the initial condition for the differential equation for . The value of Yo is not
specified and must be chosen so that the integration of equation (18) from x=0 to x=1
yields the given value of y;. Choices of Vo = 0 or y,>0 leadto separate conse-
quences. I y, >0, then, by using equations (177) and (18), the value of u, is unity. I
Yo = 0, the last equation of the system (egs. (17)) is an identity and does not provide any
information for evaluation of u,. However, if the Euler equation of the drag integral

(eq. (6)) is evaluated at x = 0, an equation in y,' is obtained. The Euler equation is

where the function f is defined for equation (6). Since f is of the form
f(x,y,y") = yex,y")

the Euler equation becomes

or



When x =0, y,=0 and the first term of the Euler equation is zero. Thus, at x=0,

SR
ay'’
x=0

Explicitly, the last form of the Euler equation becomes

' 2y0'2(3 + yo'z) 2y0'3(1 + yo'z)

A _
Yo 2 PR
(1+y0' ) <1+y0' )
or more simply,
13
4y0 A _ 0
2 4o

which, on expansion, becomes a fourth-degree equation in y,' as follows:

yo'4 - %Z—ayo'3 + 2y0'2 +1=0 (19)
Thus, for y, =0, this form of the Euler equation evaluated at x =0 (eq. (19)) provides
four values for the initial body slope yo' = uy. Application of simple algebraic theorems
shows that two of the roots of equation (19) are real and positive and that the other roots
are a conjugate complex pair. Only the real roots are significant for the present
investigation.

The Legendre condition (inequality (15)) which must hold for all x is

__7J /lu(3-u2) aA
- 1+u2\(1+u2) (O'+X\/1+u

The conditions of the problem require that y(x) >0 and that u(x) >0 for
0 <x =1. Consequently, inequality (20) may be solved numerically to obtain u(x) for
0<x<1l. When x =0, Vo must be greater than or equal to zero (yo z 0) and u,
must be greater than zero (uo > 0). Obviously, when y, =0, F,,=0 and any positive
value of u, satisfies the Legendre condition; and, when y5 >0 any 0 <ug = V3 satis-

)2+a{ l:(l + oz)u2 - l:l \/?Z 20 (20)

fies the Legendre condition. A plot of u as a function of x is presented in figure 1 to
illustrate the permissible values of u that satisfy the Legendre condition. Thus, any
body shape, with y(x) > 0, generated from the other necessary conditions will minimize
the drag integral only if the body slope u is on or between the boundary curves (Fuu = O)

9



of figure 1. ¥ y, =0, the slope u, may take on any positive value, but for 0 <x =1,
the slope u must be on or between the boundary curves.

Given length and volume.- For the problem in which the length and volume are
given, the volume is the integral of equation (7) with g(y) =y2 or

1
G-V =§ y2 dx (21)
71L3 0

The explicit integrand function of equation (10) is

3
F=y 2u” _ A a+)\(u-g%)+ﬁy2 (22)

L+ u? (O'+X\/1 +u2)

The Euler equations are:

@_:: —2113 _ A _ ZBy N
dx 2 a
1+u (o+x\/1+u2>
dy _
ax " ) (23)
y 2u2(3 + u22) } a Aux ——+2=0
(1 + u2) \/1 +u? (0 +x\1 + u2> J

The end condition at x =0 is the same as equation (18), that is, Ao = -2y0; and the end
condition at x =1 (see eq. (14)) requires that

A= 0 (24)

Since y, and B are not specified, they must be chosen so that G has the specified
value and X{ = 0 when equations (23) are integrated from x=0 to x=1. In order
for 2 togotozeroat x =1, B must be a negative number. The discussion of the
Legendre condition in the preceding section also applies to this problem. As before,
u,=1 for y,>0 and uy>0 for y,=0. At x =1, however, the last equation of
the system (egs. (23)) may be solved for uy. That is, uy must be a solution of

2u (3 +u 2)
1 1
yqug - A =0 (25)

a+l
1+ u12<cr + ‘/1 + u12>

10



The solution u; =0 is not admissible since the Legendre condition requires uy >0.
Consequently, the quantity in parentheses in equation (25) must be zero; and further anal-
ysis shows that uj must be near zero. Furthermore, the computed value of u; must
be greater than the value on the lower Legendre boundary at x =1 infigure 1 for an
acceptable solution of the problem.

RESULTS AND COMPUTATIONS

The preceding development of the necessary conditions from the first variation of
the drag integral has led to the problem of solving sets of ordinary, first-order differen-
tial equations (Euler eqs. (17) and (23)). Some, but not all, of the initial and final condi-
tions are known. Therefore, a two-point boundary-value problem must be solved. Usu-
ally, an iterative procedure with some sort of convergence is applied to obtain specific
solutions. The approach taken in the present investigation has been to consider the

unknown initial conditions y_, or u, and g as parameters and to obtain solutions of

o
the Euler equations for particular values of these parameters. In addition to initial con-
ditions, the constants A, «, and o0 are parameters that reflect the flow conditions and
a solution (that is, a body shape) may be obtained for each set of parameters. Because
the numerical results presented in the following sections were obtained for a few selected
sets of these parameters, the digital computer program is presented, for convenience, in

the appendix. The computer time is about 3 minutes for each set of initial conditions.

Given Length and Base Height

A family of flat-nosed minimum-drag bodies has been computed for the parameter
sets (A, @, 0) of (0, -, -), (0.0002, 0.5, 0.01), (0.0005, 0.2, 0.01), and (0.0009, 0.2, 0.01),
and for initial body ordinates y, ranging from 10-2 to 10-30, The initial body slope
was, of course, u,=1 for each body of the family. A plot of y, as a function of fine-
ness ratio (that is, the ratio of length to base diameter) is presented in figure 2. The
minimum pressure drag bodies (A = 0) are characterized by the continued increase of
fineness ratio as y, tends to zero. However, the fineness ratio of minimum drag bodies
(A > 0) approaches an upper limit as y, tends to zero. The upper limit of the fineness
ratio for each set (A, ¢, 0) is the value of n indicated for Vo = 10-7 in figure 2. These
values are also the same as were obtained for y, = 10-30, The main result for flat-nose
bodies that produce minimum drag is that the choice of fineness ratio for given flow con-
ditions is limited.

For pointed bodies (yq = 0), solution of equation (19) yields initial values of the body
slope y,'. The real values, computed for the present investigation, are

11



A @ o Yo' =Yg

0.0002, 0.5, 0.01 0.0797058575; 1999.99900
.0005, 0.2, .01 .06817821789; 3184.85674

.0009, 0.2, .01 .0830586184; 1769.36407

The values of y,' depend on the set (A, @, 0) which embodies the flight conditions. Fur-
thermore, since yq(yo = 0), Yo'(¥o' =), and Xo(ro = 0) are known, the minimum-drag
body shape is completely determined by integrating equations (17) from x=0 to x=1.
Consequently, for a given length, the base height cannot be specified arbitrarily but is
dependent on the flight conditions. For each set (A, o, 0), there are two values of y,'
each of which leads to a solution (body shape) of the problem. Both body shapes are
almost identical for x > 10-3. However, the total drag of the body having the smaller
initial slope is slightly less than the total drag of the body having the larger initial slope.
Therefore, when solving equation (19) for y,', only the smaller value yields the correct
minimum-drag body slope. It should be emphasized that the restriction on the choice of
fineness ratio noted here and in the preceding paragraph is a consequence of requiring
that u(x) > 0. However, the body shapes for larger fineness ratios obtainable when

u(x) =0 for some 0 <x <1 are not compatible with the mathematical model of the

drag given herein. The restriction on the choice of fineness ratio is the same as may be
derived from the results given in reference 5 for ''slender' bodies with a subcritical value
of the friction parameters. However, the minimum-drag bodies of reference 5 are blunt
bodies that have an infinite slope at the nose.

The body shapes presented in figure 3 for fineness ratios of 2 and 5 illustrate the
effect of the friction drag. In figure 3(a), the body shapes (n = 2) are almost identical for
the three sets of (A, @, 0) that is, (0, -, -), (0.0005, 0.2, 0.01), and (0.0009, 0.2, 0.01).
Thus, the body shaping is dominated by the pressure drag. However, for n =5,
increasing the local skin-friction coefficient (that is, increasing A) causes a decrease of
the local body radius. (See fig. 3(b).) Thus, the viscous term in the drag integral leads
to a decrease of the volume of a minimum drag body with a given fineness ratio. The
curves in figure 4 show that the friction drag coefficient becomes larger than the pressure
drag coefficient as the fineness ratio increases. Thus, the importance of including vis-
cous drag in the problem formulation is emphasized.

Given Length and Volume

Sets (A, a, o) of (0.0005, 0.2, 0.01) and (0.0009, 0.2, 0.01) were combined with values
of y, rangingfrom 10-2 to 10-7 (flat-nosed bodies) to compute minimum-drag bodies
having given length and volume. The calculations were performed by iterating to obtain
a value of B for each set of (A, o, 0) and y, that would force X to go to zero when

12



x = 1. Figure 5 presents y, and the corresponding multiplier g {for the volume ratio
V/L3. Two points for A =0 are also presented in figure 5(a). (These points for flat-
nose bodies are taken from ref. 1.) This figure shows that, for a specific volume ratio,
a slightly different value of y, is required for each set (A, @, 0). Figure 6 shows that
the resulting fineness ratio is not appreciably affected by changes of A. Consequently,
the effect of viscous drag on the body shape is almost negligible although the viscous
drag coefficient is as much as 80 percent of the total drag coefficient. (See fig. 7.)

One effect of viscous drag was the requirement imposed by the Legendre condition
that the body slope at the base must be greater than zero. (Minimum pressure drag bodies
of refs. 2 and 3 with given length and volume have a zero slope at the base.) However, the
required slope is very small compared with unity. Figure 8 presents some minimum-drag
body shapes for given length and volume for several values of the volume ratio.

CONCLUDING REMARKS

An analytical investigation was made to determine the meridian shapes of minimum-
drag bodies having either given length and base height or given length and volume. The
flow was assumed to be hypersonic and Newton's formula for pressure drag to be appli-
cable. Viscous drag was formulated by using a skin-friction coefficient that varied with
distance along the body meridian and the boundary-layer flow was considered to be either
laminar or turbulent. A solution was obtained by application of the calculus of variations,
and equations obtained from the necessary conditions were programed for a digital
computer.

A limited parametric analysis has been made to assess the effect of viscous drag on
minimum-drag body shapes and to illustrate the use of the computer program. Minimum-
drag body shapes, with fineness ratios to about 9, were characterized by flat noses having,
at most, a diameter of 3.5 percent of the maximum body diameter. The effect of viscous
drag was a reduction of the volume of these bodies for the larger fineness ratios. Practi-
cal body shapes, for which the body slope was required to be greater than zero, have an
upper limit on the value of fineness ratio. A similar limit on the fineness ratio has been
obtained by other investigators who have used a "slender body' approximation. The main
conclusion for flat-nose minimum-drag bodies having given length and volume is that the
viscous drag has almost a negligible effect on the body shapes.

Langley Research Center,
National Aeronautics and Space Administration,
Langley Station, Hampton, Va., June 17, 1969,
126-13-02-27-23.
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APPENDIX
DESCRIPTION OF PROGRAM

The computer program was written in the FORTRAN IV language under SCOPE
Version 3.0 for Control Data Corporation's Series 6000 computers at the Langley Research
Center. A brief description of the program, as well as a flow diagram and actual listing
of the program is included in this appendix. The output from an example problem is also

given.

Contents of the Program

The program numerically integrates the Euler equations (egs. (23)) which must be
satisfied over the interval 0 £x =1. Subroutines FALG, INT1A, and ITR2 are used for
the solution of the quartic (eq. (19)) for the two real values of ug, for the integration of
the differential equations, and for the implicit solution of the u (egs. (17) or (23)),
respectively. The program determines the drag given in equation (5) using the trape-
zoidal rule to compute the separate integrals for the pressure drag and friction drag

coefficients.

Subprograms

The program makes use of three library subroutines, FALG, INT1A, and ITR2, from
the Langley Research Center. A complete listing of these subroutines is included in this

paper.

FALG is a subroutine which calculates the n roots of a polynomial of degree n,
where the coefficients may be either real or complex. In this program it is used to obtain
the ugy only if y,=0. Error returns are:

IERRF = 0; normal return

IERRF = 1; the leading coefficient is zero

IERRF = 2; one of the roots failed to converge in the initial iteration cycle

IERRF = 3; one of the roots failed to converge in the improvement iteration cycle.

INT1A is a closed subroutine for the solution of a set of simultaneous differential
equations. It is a variable-interval-size routine and uses the fourth-order Runge-Kutta
formula in conjunction with Richardson's extrapolation to the limit theory. Error returns

are:
IERR = 1; normal return

IERR = 2; ELT block is not monotonic in the direction of integration

14



IERR = 3;

IERR = 4;

APPENDIX

variables have failed to meet the local truncation error requirements
nine consecutive times

variables have failed to meet the local truncation error requirements
at least nine times over the last three intervals. An acceptable
answer has been reached, however, and is in the VAR array.

ITR2 finds a value for x within a given epsilon of relative error in a given interval
for a given F(x) =0. Error returns are:

ICODE = 0; normal return

ICODE = 1; maximum iterations (= 150) are exceeded

ICODE = 2; DELTX (the scanning interval) = 0, or negative

ICODE = 3; a root cannot be found within the given bounds, ALLU and BULU

ICODE = 4; ALLU > BULU

CHSUB and DERSUB are subroutines required by INT1A

FOFX is a function called by ITR2.

Options

An option is available for including or omitting g from the X equation. A value
for B can be read in and will be included in equations (23), or it need not be read if it
is not to be included in the X equation. The variable controlling this option is listed

under "'Input.”

Input

The NAMELIST statement is used to put data in. NAMELIST names and the variable
names contained in each with their explanations are listed in the following table:

NAMELIST
name

NAM1

Variable names Explanations of variables
A A
SIGMA o)

ALPHA o

PRMIN The absolute value of an increment of the indepen-
' dent variable which is the frequency of printing
results. (See '"Output.')

15
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NAMELIST
name

Variable names

NAM?2

CII, CIMAX

ALLUI, BULUI,
DELTX

EP1, EP2

NT

IOPBETA

VARO

APPENDIX

Explanations of variables

The initial computing interval and maximum desired
computing interval, respectively, as required by
INT1A.

The lower bound or initial guess for u, the upper
bound or final guess for u, and the size of the
scanning interval, respectively, as required by
ITR2 in solving for u.

Relative and absolute error criterion, respectively,
used in ITR2 to stop the iteration when either of
these convergence criteria are satisfied:

1. If Iull > EP].,

Yi - Yi-1
Ui

= EP1

2. I ui = EP].,
|ui - ui—ll Z EP2

Values of EP1 = EP2 = 0.1 X 10-6 have given
satisfactory results.

The number of values in the ELT block described
below.

Equals 0, B is not read and is not included in
the X equation.

Equals 2, B is read and is included in the
A equation.

A one-dimensional array containing the initial
values of the independent variable followed by
the three dependent variables, x, y,and A,
in that order.




APPENDIX

NAgg}fnLéIST Variable names Explanations of variables

ELE1l, ELE2 |One-dimensional arrays containing the upper bounds
of relative truncation error and '"relative zeros,"
respectively, for the dependent variables as
required by INT1A. K the error for any variable
exceeds its respective ELE1 value, the computing
interval is halved and the integration restarted at
the beginning of the interval. Under certain cri-
teria the interval is doubled. X the absolute value
of any of the variables is less than its respective
ELE2 value, the relative error criteria for that
variable will not be applied. Satisfactory results
have been obtained using ELE1 values = 10-7
and ELE2 values = 10-8,

ELT One-dimensional array of NT values, monotonic in
the direction of integration, at which the user
specifically desires control returned to his pro-
gram from INT1A. (See "Output.')

NAM3 BETA B, read only if IOPBETA = 2.

Output

The frequency of printing results is determined by the input quantity PRMIN. The
initial values are printed and the results will be printed again when the independent value
is first greater than PRMIN and thereafter when the independent value has been updated
by at least as much as PRMIN. The final value in the ELT array should be the final value
of the independent variable (equals 1.0). INT1A iterates to obtain results at the specific
values listed in ELT. ¥ results at values of x other than 1.0 are desired, the program
can be easily modified to have them printed. Values of the drag coefficients are printed
at the end of each case. The total drag coefficient is given, as well as the pressure and
friction drag coefficients.

Computational Flow Diagram

A concise computational flow diagram is included here to show the steps in com-
puting. Details can be readily obtained from the listing.
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Input from NAMELIST:
A NAM1, NAM2, NAM3

Initialization of constants
and of arrays of independent
and dependent variables

Output:
NAMELIST variables
and headings

=0.0 Obtain u, as one of the
& two real roots of the quartic

equation (19)

Initialization:

Call INT1A to initialize for integration;

determine ug from equations %17)

Ab Call INT1A for integration step or (23) if y, # 0; compute initial values
— for drag integrals

Check for error from
integration routine

Update drag integral

V_

v .
i >\ Print values /

Check to see whether
values should be printed

18
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Listing of FORTRAN Program

The FORTRAN program, including FALG, INT1A, and ITR2 (Langley Research.

Center library subroutines) is as follows:

PROGRAM BODREV ( INPUT ¢ OUTRPUT « TAPES=INPUT s TARPE6=00UTRPUT )

C PROGRAM TO COMPUTE BODIES OF REVOLUTION HAVING MINIMUM VISCOUS
C PLUS (NEWTONITAN) PRESSURE DRAG IN HYDPFRSONIC FLOWe
C VARIABLES NEEDEND IN INTEGRATION ARE STORFD IN THF VAR ARRAY
C (TENTATIVF ANSWFRS IN CORRESPONDING POSITIONS IN THE CUVAR
C ARRAY)
C VAR (1) INDFEPFNDENT VARTABLE
C VAR (2) X
C VAR (3) Y
C VAR (4) LAMBDA
C
C Y PRIME 1S REFFRRED TO AS U IN THIS PROGRAM
C
C OPTIONS
C IF TOPRETA = 0, B=TA IS NOT RFAD AND IS NOT INCLUDFEFD IN THE
C LAMBDA DOT FQUATIONS
C IF IOPBETA = 2. BETA IS READ AND IS INCLUDED IN THFE LAMBDA DOT
C FQUATIONe
C
COMPLEX ROOTSsTFMP
DIMENSION ELF1(3)¢ELF2(3)2EZLT(10) ERRVAL (3)+COEFFS(10)eROOTS (4 )
1 TEMP (10)
EXTERNAL DERSUR 4CHSUR
COMMON /BLK1/CUVAR(4) s VAR (4)4DER(4)aVARD (4 )0 AeSIGMAJALPHAWU ALY
1 BULUSDELTXaFPL 4FP2¢1CODF 1401 aBFTAZIOPBFTALWIORPUD IO
NAMELTIST /NAMI /AZSITVMAGALPHA yPRMINGCTITaZIMAXGALLUT ¢BULUT «DELTX
1 FP1+EP24yNT+IOPRETA
2 /NAMZ /VARO FLF L 4FLITZ LT
3 /NAM3/BFTA
10 READ (5¢.NAM1)
READ (SeNAM2)
c RFAD QUANTITIES IN NAM3 ONLY IF THFY ARF REQUIREND FOR THE RUNe
C SEE 10PUN AND 10PRBETA AROVF e
READ (5.NAM3)
NCASE=0
IF(VARO (3)eFQeNe O INCASF=1
11 CI=Cl11
PER=N 4999999949
N=3
ITEXT=0
SPEC=040
11=0n
NPLUST=N+1
DO 20 1=1NPLUS]
?0 VAR(I)I=VARO (1)

ALLU=ALLUI

BuLU=BULUI

WRITE (64NAM1)

WRITE (64NAM2)

WRITE (64+NAM3)

WRITF (6+470)

WRITE (6+80) VAR(3)+A¢SIGMA ALPHA

19
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IF(VARO(3)eNF gD g IWRITEF (690)
IF(VARO(3)eFQeNe MIWRITF (64100

IF (IOPBFTA«FQe0Q) VWRITF (64+4120)

IF (IOPBFTA«XQe?) WRITF (64130) BETA

C
C IF Y IS INITIALLY = 0Os THE INITIAL U WwWILL BE OBTAINED FROM THE
C QUARTIC IN U (I0PUND=2) . THERF WILL BE TWO REAL ROOTS. UNI
C AND UNZP e COMPUTATIONS wILL BF DONE FOR RNOTH CASES. IF v IS
C NOT = 0O INITIALLYs THE INITIAL U IS OBTAINED FROM THE
C IMPLICIT EULER EQUATION (IOPUQ = 0Q)e
IF(VARO(3)eNE e o 0)IOPUNO=0
IF(VARD (3)eNT 40 40)E0 TO 22
IF(NCASEWNE2)G0O TO 26
ut=u02
GO TO 22
76 CONT INUF
10PUO=2
NDEG=4
ICOFFF=0
COEFFS(1)=140
COFFFSA{2)=—4¢N¥ (SIGMAXX¥ALPHAY /A
COEFFS(3)=2e"
COAFFFS(4)=0eN
COFFFS(5)=1,0
CALL FALG(COTFFS4sNDTG4 ICCEFFFsROCTR W TFMP 4 [FRRF)
IF(IERRF «EQes0)YGO TO 273
WRITE(As1A0) 1ERPF
GO TO 10
23 CONT INUF
IRR=1
PN 24 1=1.4
RI=AIMAG(ROOTS (1))
IF(RIeNFeNeaN)IGO TO P4
IF(IRREGe2)GQ TC 2%
UO 1 =REAL (ROOTS (1))
IRR=2
GO TO 24
25 UQ2=REAL (ROOTS (1))
24 CONT INUF
ue=ynl
22 CONT INUF
C INITIALIZE IN SUERQUTINE INTI1A
CALL INTIA (ITeNMeNTsCI¢SPECICIMAXS IERR4VARGCUVARDFR«ELF14FLE24FLT
1+ FRRVAL ¢DERQUR s CHSUE y I TEXT)
C COMPUTATION FOR DRAG INTEGRAL (INITIALIZATION)
C CRAG1 CONTAINS THE Yo*¥2 TERM PLUS THE FIRST PART OF THE INTEGRAL
C CRAG? CONTAINS ONLY THE A TERM CF THE INTEGRAL
FOIMI=SVAR(Z)# (P 4OXUKX3/ (1 e0+LIH%2))
FD2MI=VAR(Z)¥ (A/ ((SIGMA+VAR(2)%*SART (1 « 0+UX*¥2 ) )#*ALPHA))
DRAGI=VAR(3)¥%*2
CRAG2=0e"
CRAG=DRAG1 +DRAGP?
STORFT=VAR (1)
WRITE (64140)
GO TO sN
C START INTFGRATION
30 CALL INT1IA (ITaNeNTsCI+SPECCIMAXsIERRIVARICUVARGDERWELE14ELE2+ELT

1 +FRRVAL +DERSUB «CHSUB s ITEXT)
IF ((IERRCQe1)eCRe(IFRReEQed)) GO TO 40
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WRITE (64110) IFRP

GO TO 10

CONT INUE

IF (I1eEQe2) GO TO 30
COMPUTATION FOR DRAG INTEGRAL
FDI1=VAR(R)¥ (2 0%UJ# %3/ (1 e O+UX%2 ) )
FP2=VAR(3)¥(A/ ((SIGHMA+VAR(2)#SQRT (1 s O+U%*2) ) *FALPHA) )
FDAl=(FDIMI+FD13)/Z2e0
FDA2=(FD2M1+FD2)/2eC
FDINTI=FDAL1*¥ (VAR (1)~-STORET)
FDINT2=FDAZ2¥ (VAR(1)1-3TORET)
CRAG1=DRAGI+FDINTI
DRAG2=DRAG2+FDINT?2
DRAG=DRAG1+NRAG?2

FD1IM1=FDI

FDam1=FD2

STORFT=VAR(1)

TEST TO SEE IF VALUES SHOULD RF PRINTFD
IF (VAR(1)eGFePFR) GO TO S0
PRFRFQ=VAR (1)—-PRVAL

IF (PRFREQeGTeFPRMIN)Y GO TO =N
IF (VAR (1)eLTePFR)Y GO TO 30
CONT INUF

PRVAL=VAR(1)

WRITE (6+460) VAR(Z)sVAR(Z) U
IF (VAR(1)eLTePFR) GO TO 30
CONVD=2 e N/ (VAR () #%2)
COT=NRAG*CONVD

CDP=DRAG!I *CONVD
CDF=NRAG2*¥CONVD

WRITF (64150) CNT«CNOLCDHF
IF(IOPUNFQeOYAN TO 10O

IF (NCASE«EQe?2)G0O TO 10
NCASF=2

GO TO 11

FORMAT (4F188)

FORMAT (1H11X4HRONIFS OF RFVOLUTION HAVING MINIMUM yvISCOUSLE X44HPL
TUS (NFWTONIAN)Y PRESTURS DRAG IN HYPFRESONICIX4aHFLOW)

FORMAT (///10XSHINPUTIGEX2HYQ1 7XIHATIRAXSHSIGMA ] AXSHALPHA/E36e8+¢3F 18
1877

FORMAT (18X*INITIAL U OBTAINFD FROM FULLFR FQUATIONX)

FORMAT (18X*INITIAL U OBTAINFD FROM QUARTIC FQUATION*)

FORMAT (1X32HFRRPOR RFTURN FROM INT1. IERR = 14,//)

FORMAT (18X40HRFTA NOT INCLUDFD IN LAMABDA DOT FQUATION)

FORMAT (18X46HBFTA INCLUDED IN LAMBDA DOT EQUATIONe. BFTA =E1648)

FORMAT (//14X1HX17X1HY11X7HY PRIME /)

FORMAT (//AX1AHTOTAL DRAG COFFF7X15HPRES DRAG COFFF3XI9HFRICTION D
1RAG COFFF/3F228)

FORMAT (1X¥ERROR RETURM FROM FALG IFRRF =#414)

END
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SUBROUT INE CH<UIR
RFTURN
END

SUBROUT INF DFR<UR

EXTERNAL FOFX
COMMON /BLK1/CUVAR (4 )+ VAR (4) «DER(4) s VARN(4) s As SIGMAGALPHAZUWALLU

1 BULUSDELTXs5P1 4FP2¢1COLESs I TaClsBFETASTIOPRFTASIOPUDWUN

IF ((IOPUNeNF e2)e0ORs (1 1eNFeD)Y)Y GO TO 10
u=un
GO TO 30

CALL ITRZ2 (UsALLUWBULUWDELTXsFOFXER14EP2415041CODF)

IF (ICODFfEQen) GO TO 20

FUNU=CUVAR(3)# (2o 0¥ U 2% (3 0+UHH*2)/ ( (1 « NHURX2 ) ¥%D )~ ALPHA*¥L*¥CUVAR (2
TYRUZC(SORT (1 e N+1#¥2) ) ¥ ((SIGMAFCUVAR(2)¥SORT (1 « Q+UXHX2) )% % (1 « NHALPHA
Y)Y )1)+CUVAR(4)

[F (FUNUeLTeMNel==06) ~O TG 20

WRITE (6440) I1CODE U WFUNU

STOP

CONT INUE

CONT INUF

CFR(1)=0e0

CER(2)=1eN

CFR(3)Y=U

NFR(4)=—2 ¢ CHURK I/ (1eN+UXK¥2)=A/ ((SIGMALCUVAR(2)IXSOQRT (1 e O+UR¥2 ) ) *¥XAL

1PHA)
IF (INPRFETATNQe2) NTR(4I=ZDR(4)-Z«O#*¥RFTAXCUVARI(3)

RFTURN

FOARMAT (1 X33HERDNR RETURN FRNOM [ TRZ.,. ICODE = [4,3X4HU = F1684¢3X7
IHF (U) = Fl16e8/7/)

END

FUNCTION FOFX(X)

COMMON  /RLK1 /CUVAR(4 )4 VAR (4 ) ¢ NDFR{4) s VARN (4 ) ¢ AsSIGMAZALPHAZUCALL
1 BULUSDELTXsFP1 ¢EP241CONT 41 14CI+BETALIOPRETAS IOPUNUN

FOEXZ2  OFXEHXP¥ (R O+X¥¥2 )/ ( (1 aN+X¥EX2)#%2 )= (ALPHA¥AX¥CUVAR(2)#X )/ ( (SQ
IRT (1 ¢0+X*¥%2) )% ( (SIGMA+CUVAR (2 )#SCRT (1 « O+X#%¥2) 1 %% (1« 0+ALPHA ) ) )+CUVA
PR(4)/CUVAR(3)

RE TURN

END
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SUBROUTINE FALC(COEFFSaNal «ROOT +TEMP 4 IERR)
HXRXREX (¥ NDOCUMFNT NATF 08-01-68 SURRCUT INE RFVISEDR 08-01-68 *#¥¥%¥¥%%
DIMENSION COFFFS(1)sTFMP(1)sROOT (1)
DIMENSION XIDIFF (2) +RDIFF(2)4APPRIX(3)
COMPLEX F +FPR,APPROX, TEMP +ROOT
COMPLEX TEMPM
COMPLEX RELTST
NSAVF=N
IERR=0
1B=0
ICLEAN=2%N+2
c CLEAR WORKING ARFA
DO 7771 LLL=1+ICLEAN
7771 TEMP (LLL)=0.0
c CLEAR ROOT STORAGE
DO 7772 LLL=14N
7772 ROOT(LLL)=0e0

C CONSTANTS TO TEST

C CONVERGFNCF
CONST=e1E=-6

C OVERFLOW
OVCON=1 eF150

C MAGNITUDE OF ROOTS
RCONST=1eF=-21

C JONJON=0+FIRST ITERATION
JONJON=0

C CHECK CONSTANT TFRM FOR 7FRO
JJd=1
NCO=N+1

802 IF(leNEe1)GO TO 800
C COMPLEX COFFFICIFNTS

NCO=2%NCO
IF(COEFFS(NCO~1)eNEs0De)GO TO 101
C HERE IF RTAL COFFFICIENTS
800 IF(COEFFS(NCO)eNFas0e)GO TO 101
C ROOT=2ZFRO
B01 ROOT(JJJ)I=Ce
NCO=NCO~-1
JIJI=JdJdI+1
C REDUCE DEGRFF AND IF 1+STORE ROOT AND FXIT
N=N-1
IF(NeNE«1)GO TO BOZ?
ROOT (JJJ)=0e
GO TO 1006

C
C ENTRY FIRST AND SECOND ITFERATIONS
101 Jd=JJJ
NTERMS=N+1
KCONJ=0
C CLEAR APPROX

APPROX(1)=040
APPROX (2)=0e0
APPROX(3)=040
IF(leEQel) GO TO 43
c REAL COEFFINIFENTS
DO 78 I1JFF=1+NTFRMS
78 TEMP(IJUFF)=CMPLX(COEFFS(IJUFF ) 40e0)
GO TO 7N0
c COMPLEX COFFFICIFNTS
43 DO 79 111X=1+NTEFRMS
79 TEMP(IITIX)=CMPLX(COEFFS(2%I11X~1)+COEFFS(2%¥111X))
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CHECK LFADING COFFFICIENT FOR 0 OR 1
700 TEMPL=REAL (TEMP (1))
IF(TEMPLeNESQe)GO TO 701
IF REAL IS ZEROLCHECK IMAGINARY
TEMPL=AIMAG(TEMP (1))
IF(TEMPLeNE«Qe)GO TO 701
LFADINA FOEFFICTIENT 75RO IFRR=1
IFRR=1
GO TO 10Nng
DIVIDE BY LFADING COFFFICIENT
701 TEMPM=TEMP (1)
BN 702 LLA=] 4NTFRMS
TNP TEMD(LLA)=TFEMD (LI A)/TFMPM
KCONJ=14 TRIAL VALUE=CONJUGATE

746 1F (KCONJeNESD)IGO TO 47
FIRST TRIAL vALUS
APPROX (1)=(e0144N1)
DIFFERENTIATF
47 DN 8 11=1,NTERMe
XPON=NTERMS =11
NNOw=1 I1+NTERMS
8 TEMP (NNOW)=XPON#TEMP (11)
NPON=NTERMS~1
KA=0 FOR FIRST TRIAL VALUE
KA=N

JONJON=1 SECOND ITERATION
749 IF(JONJONLEQe1 )ARPPROX (1 )=ROOT (J)
CLEAR RNDIFFW«XITIFF
DO 7773 LiLL=142
RDIFF(LLL)Y=0e0
7772 XIDIFFA(LLL)=0eN

ROOT EVALUATION
MAXIMUM [TFRATIONS =120
13 L=2
PARTR1= REAL (APPROX (1))
PARTMI =AIMAG (APPROX (1))
DO 172 K=Pl.121
FVALUATF F (X))
10 F= (N egNyDeN)
DO 9 1T1I=14NTFRMS
F=APPROX (I.=1)#F+TEMP (I 1)
XF=ABS(RTAL (F))
YF=ABS (AIMAG (F))
CHECK FOR QVERFLOW
[F(XF oGTeOVCONsOReYF «GTeOVCONIGO TO 14
@ CONTINUE
EVALUATE FPRIMR (X)
FPR=(0e0a0e0)
DO 11 JJ=1«NPON
NNOwW=JJ+NTERMS
FPR=APPROX (L—1 ) ¥FPR+TEMP (NNOW )
YFP=ABS (AIMAG (FPRR))
XFP=ABS (REAL (FPR))
CHECK FOR OVERFLOW
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IF (XFPeGTeOVCONsORe YFPeGTeOVCONIGE TO 14
CONT INUFE

SEE IF FPRIME=0
IF(XFPeEQeOeNe ANDeYFPeFQe0s0)IGC TO 14

IF NOT ZEROJNEW APPROXIMATION
APPROX (L) =APPROX (L—1)-F/FPR
PARTR2= REAL (APPROXI(L))

PARTM2=AIMAG (APPROX (L))

SET FITHER PART TO ZERO IF LFSS THAN 1.F-21
IF(ABS (PARTR2) e LE e« RCONSTIPARTR2=04
IF(ABS(PARTMZ2 ) ¢« LE e RCONST)IPARTMZ2=04
IF(PARTR2e¢EQe0e s ANDePARTMZ e FQeNe)GO TO 6732
GO TO 732

ZERO ROOT
IF(LeEQe3)APPROX (2)=APPROX (3)

GO TO B1

RDIFF(L-1)=ABS (PARTR2-PARTR1)

XIDIFF(L-1)=ABS (PARTM2~-PARTM1)
IF(LeEQe3) GO TN 18
L=3

PARTR1=PARTR2
PARTMI =PARTM2

GO TO 10
TEST 1

IF((RDIFF(Z2)+XINDIFF(2))eLTe (RDIFF(1H)+XIDIFF(1)))GO TO
TEST 2

RELTST=(APPROX (3)~-APPROX(2))/APPROX (3)
DIFFR=ABS(RFAL(RELTST))
DIFFXI=ABS(AIMAG(RFLTST))
IF(DIFFReLTe¢CONSTeANNeNIFFX] 4. TeCONST)IGO TO 81
APPROX (2)=CMPILX (PARTR? 4 PARTM? )

PARTR1 =PARTRZ2

PARTM1 =RPARTM2

RDIFF(1)=RDIFF (2}

XIDIFF(1)=XIDIFF (2)

MAXIMUM TTFRATIONS TXCEFDFD OR

OVERFLOW OR

FPRIME=0

TRY AGAIN wITH SECOND TRIAL VALUF
IF(JUONJUONSEQe1)~O TO 136
IF(KAeFQa10%)EN TO 71
APPROX(1)=(1e414)
KA=105
GO TO 13

SECOND ITERATICN NONCONVERGENT ROOT IFRR=3
IERR=3

STORE RESULT AND IMPROVF NEXT ROOT
GO TO 82

8700
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FIRST ITERATION ROOT R NONCONVERGFNT IFRR=2
IMPROVE (R-=1) ROOTS
IERR=2
IB=LAST CONVERGFNT ROOT
IB=J
ROOT (J)=AP=ROX (2)
IF(IBeNE«1)GO TO 9971
FIRST ROOT FAILRD RETURN
GO TO 1006
JONJON=1
GO TO 10!

STORE ROOTS
15 (JONJUONGSEQel) GO TO 82

HFEFRE I FIRST ITEFRATION
ROOT (J)=APPROX (2)

REDUCE POLYNOMIAL RY SYNTHETIC DIVISION
NTERMS=NTERMS— ]
DO 7 IK=2.NTERM=
TEMP (IK)=ROOT (J)XTEMP (IK=1)+TEMP ([K)
CONT INUE

NEXT ROOT IF COMPLEX COFFFICIENTS
IF(14EQel)GO TO 745

HER= IF R=AL COFFFICIFNTS
IF(KCONJeEQaTHYGO TO 744

RESET KCONJ IF POOT IS CONJUGATE OF PREVIOUS ROOT
KCONJU=0
GO TO 745
X=RFAL (ROOT (J))
Y=AIMAG (ROOT (J))
IF(XeEQele)GO TO 745

SEE IF REAL OR COMPLEX
IF(ABS(Y/X)elLEele=-10)GO TO 745

COMPLEX ROOT TRIAL VALUF=CONJUGATE
APPROX (1 )=CONJG (ROQT(J))
KCONJ=1

NEXT ROOT
J=J+1
IF (JeNFeNSAVEIGO TO 746

LAST ROOT
ROOT(JHYyY==TEMP(2)Y/TENMP (1)
JONJON=1
GO TO 101

IMPROVFD ROOT FROM SZCOND ITFRATION
ROOT (J)Y=APFROX (2)
X=ABS(REAL (ROOT (J)Y))
Y=ABS(AIMAG (ROOT(J)))

SET REAL OPR IMAGe TO ZERO IF LLESS THAN RCONST
IF (XeLTeRCONSTeaAND Yo LTeRCONST)IGC TO 131
IF(XeLTeRCONSTIRCOT(JI=CMELX(NeNaATMAG(ROOT (J)))
IF(Y.LT.QCONQT)QOOT(J)=CMPLX(QFAL(QOOT(J))90.0)
GO TO 108
IF(XeGTeaY) GO TO 34

ROOT(J)I=CMPLX(CeNsAIMAG(ROOT (J)))

GO TO 108
ROOT(J)=CMPLX(REAL(ROOT(J))s0e0)
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C IF(R-1) ROOTS IVPROVEDWRETURN
108 IF(JeFQeIB)IGO TO 10C5
J=J+1
C IF N RCOTS IMPROVFDRETURN

[IF(JUeLE«NSAVFIGO TO 749
1006 N=NSAVE

RFETURN

END

SUBROUTINE ITRZ2 (X+sAsB+DFLTXsFOFXsE1F2sMAXT« ICONF)

Y= A

KX=0

LX=nr

IF (DELTX)111e4171a112
112 IF (B- A ) 11341134114
114 1 =0

IF (FOFX(A))14243

1 XBl=X

IF (LXeNE«0)IGO TA 1001
X =X+DELTX
IF(X=B)1000,1n00,1004

1004 X=8B
Lx=1

100N IF (FOFX(X))14244

4 xXB=X
X=X~-DELTX/ (2e#% (1+1))

999 I=1+1

IF(MAXTeLTe1)1GO TO 444
IF (FOFX(X))64247

6 L=1
XX =XR
GO TO 18

7 L=2
XX=XB1
GO TO 18

3 XBl=x
IF(KXeNE«O)IGO TH 1001
X= X+DELTX
IF(X=B)10N2+1NN241003

1003 x=8
KX =1

1002 IF(FOFX(X))5e2423

5 XB=x
X=X-DELTX/ (2e%# (1+1))

998 1=1+1
IF(MAXI«LTe1)GO TO 444
IF(FOFX(X))Bvy240

9 L=3
XX=XB
GO TO 18
8 L =4
XX=XB1
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18 IF (ASS(X)—E1)Y36+36+37
27 IF (ABS((XX=-X)/X)=E1)2+s2417
36 IF (ABS(XX—X)=FP)2«Z4+17
17 GO TO (B144+48145)a0L
81 xXBl1 =X
X=X+NFLTX/ (2e¥# (1+1))
CO TO (99944 49945 )Y e
111 ICODRF =2
GO TO 79
1123 ICODF =4
GO TO 79
1771 ICODF =3
GO TO 79
444 T1CODE= 1
GO TO 79
2 1CODF =0
79 CONTINUF
RFTURN
END

SUBROUTINEINTIA (I T eNyNT+sCI +SPEC+sCIMAXs IERR sVARSCUVARIDERGELE1L
1ELE2 s SLTWERRVAL sDFRSUB « CHSUB 4 ITEXT)
DIMENSION SIVAR(Z20)+SFLEL(20)+FLE1(20)+ELE2(20)+DER(21 )
1 FOFRYV (21 )4 SNY (P0)sSDYL(2N) s YINCR(PD)4ERRVAL (20) s ERVOVH (20 )
PELT(IO)YSFLT(IR)YeRFLMINI(ZD) 4 STFRP(3)
DIMENSION VAR (21 ) 4CUVAR {21
INTEGER TEX(15)
INTEGER CODF o« TRCHsSUMHAF 2 STEP S TEST e DCODE
REAL K1
C BEGIN INITIALIZATION
IF (11 eGTe 0) GO TO 720
1 TP=C
SSPEC=SIGN(SPEC+C1)
SCIMAX=SIGN(CIMAX+CI)
VAR = VAR (1)
IF (Cl oFQe 0e0y GO TO 151
IF (SSPEC «FQe 0Ne0) GO TO 7
IF (ABS(SCIMAX) oGTe ABRS(SESPFC) oORe SCIMAX oEQe.0e0)
SCIMAX=SSPEC
C TEST TO SEE IF vAR [s ZERO
IF(ABS(VAR]1 )eGT el a0E=11)1GO TO 2
TP=8SSPFC
GO TO 7
2 IF ((VAR1/SSPEC) ¢GTe 1eE~13) GO TO 4
3 K1=Ce0
GOTO6
4 Ki=1640
A TP=yVAR]I —AMOD(VAR] 4 SSPF(C)
IF(ABS(TO=-VAR] JelL.TeleF=121K1=1e0
TP=TP+K 1#35PEC
IF (ABS((TP=-VAR1)/VAR1) eLTe 1leE-11) TP = TP + SPEC
c TEST FOR DIRECTION OF INTEGRATION
7 Kl=1e0
IF (CI eLie OenN) Kiz=1e0
CIK=CI#K1

—

28
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CIMAXK=5C ITMAX#K 1
TPK=TP#K1
VARK=VAR] %<1
SET UP STORAGE FOR INTFRNAL USE
NP1 =N+1
NELT=1
REMAIN=0Qe0
NHAF =M
NTS=NT
SUMHAF =0
LOOP=0
DO 91 1=1+3

91 STEP(I1)=0

IERR=1
Co 8 =1 a4NFP1
8 CUVARI(I) =VARC(I)

DO 10l I=1sN
101 SELF1(I)=ELEL ()
IF (NT «FQe 0) GO TO 13
100 IF (NT «EQe 1) GO TC 10
NTMI=NT-1
FLTK=K1¥FLT (1)
DO 9 I=1,4NTM!
ELTK2=K1%¥FLT (I+1)
IF (FLTK «LTe FLTKZ) GO TO9
GN TO S0N
9 FLTK=FELTK?
10 CONTINUF
ELTK=K1#ELT(NEL T)
IF (VARK oL Te FLTK) GO TO11
IF (NELT +EQs NT) GO TO 173
NELT=NFLT+1

GO TO 10

11 NFLTL=NT-NELT+1
GO TO12

13 NELTL=0

12 DO 14 I=1sN

14 RELMIN(INI=SFLEL (11712840
IF (NT eFQe ) GO TO 996

DO 995 I=1NT

995 SELT(I)y=eLT (1)

996 CALL DERSUB
IF (11 eFQe 4) GO TO 120
DO 15 1=14N

15 FDERV(II=DER(I+1)
I1=1
TEST=0
DO 300 I=14+15
300 TEX(1)=0

TEX(1)=1
TEX(2)=1
KK3=1

IF (ITEXT) 635+63+635

151 PRINT 1000

1000 FORMAT (//11H C1 IS 7FRO)
STORP
END OF INITIALIZATION



O

52N

19
N

540

[==Ha

=oa

o4

21

APPENDIX

11=1
TPSH=D

LTSH=0

VARK=VAR (1 )#K]

CIK=CI%*K1

S1=VARK+C K

IF (SSPFC «FQe Ne0) GO TO 525
KK=1

IF (NELTLeEQs 0) GO TO 17

TF (FLTK=TPK) 16416417

CV=F_TK

CODF=1

Gn TO 18

CV=TPx

[alalal=F=2-]

IF{ABS(CV)elLTel a5 =12)G0 TO 513n

IF (CV=R1)312N,72M 41"
IF(ARS((CV=S1)/CV)efriTealF=-11)G0 TH 53K
IF (NELTL Qe ") GO TN 540
IF(ABRS((FLT<=TPK)/CV)alLTeelE=11)1G0 TO 550
1IF (CODE «£EQe 1) GO TO 545
DX=TP~VAR(1)

TEX(5)y=1

TP=TP+SSPEC

TPK=TP %K1

TPSH=1

GO TO 560

SHORT INTERVAL NUF To BOTH
TR=TP+S<PFC

TEX(6)Y=1

TRPK=T2%K1

[PSH=1

GO TO 545

IF HERF Cv IS LIKELY ZFRO
IF(SlelLTe=1e0E~12)1G0 TO 535

IF (CODE +FQe 1) GO TO 550

IF (NELTL eEQe N) GO TO 540
IF(ARSH(FLIK)elLTel «0r~12)G0O TO 550
GO TO s4C

SPEC IS ZFRO

IF (ABS(RFMAIN) e CTeelF=11)G0 TH 96
IF (NFLTL ¢5Qe N) GO TO 565
IF(ABS(ELTK)eGF 4l eF~12)1G0 TO 21
IF(SlelLTe=1e0F=12)1G0 TO 565

GO TO 5485

S2=FL1K=-51

dF(S2) 545¢H45422

IF(ABS(SP/ELTK) eLTele0F=12)160 TO 545
GO TO 5€&5

SHORTINTFRVAL I< DUz TO ELT BLOCK
DELT= SELT(NELT)

TEFX(4)Y=1

DX=DFLLT- VAR (1)

RFMAIN=CT~-DX

REFMA IK=RFMA IN¥K |

LTSH=1

NELT=NFLT+1

NFLTL=NSLTL-1

IFI(NELTLe=QeN)YGO TO 560
FLTK=K]1#*#SEFLT (NF] T)

GO TO S60



DO D

OO0

APPENDIX

565 CX=Cl1
TEX(3)=1
GO TO 560
96 IF (NELTL oEQe 0) GO TO 98
IF (FLTK oLTe (VARKH+RRFMAIK)) GO TO 94
98 DX=RFMAIN
TEX(7)=1
RFMAIN=0e0
GO TO 560
53% DX=CI1
TEX(3)=1
TEST=1
GO TO 555

BFGIN RUNGE-KUTTA

560 TFST=0
555 DO 24 1=1aN
24 S1VAR(I)= VAR(I+1)

575 CUVAR(1)=VAR (1)

576 DO 25 I=1.N
SDY(I)=DFR(1+1)

25 CUVAR(I+1)=SIVAR(I)I+(DX¥DER(I+1))/2e0

CUVAR (1 )=CUVAR(1)}+DX /20
CALL NDFRSURB
IF (11 «FQe 4) GO TO 120

580 DO 26 I=1N
SDY(I)=SDY (I)+2.0%¥NDER (I +1)

26 CUVAR(I+1)=SIVAR(II+(DX*¥DZR(1+1))/2e0
CALL DFRSUR
IF (Il «FQe 4) GO TO 120

585 DO 27 I1=1N
SDY(I1)=SDY (I )+2.0%DFER(1+1)

27 CUVAR(I+1)=S1VAR(I)+NX*¥DER(I1+1)
CUVAR (1) =CUVAR(1)+DX/2+0
CALL DFRSUR
IF (Il «FQe 4) GO TC 120

S90 DO 90 I=14N
SDY(I)=(SDY (I )+NFR(I+1)) /60

90 CONTINUF
IF (LOOP) 28.4+28,29

28 NDO20 I=14N
SDY1 (1)Yy=sDPY (1)
YINCR(I)=0e0

30 PER(I+1)=FOERV (1)
DX=DX/2 0
LOOP=1
GO TO 575

LOOP WAS NOT Z7FRO

29 DO 31 1I=1sN
31 YINCR(ID)=YINCR(I)+SDY (1)
IF (LOOP «EQe 2y GO TO 33
DO 32 I=1.N
SIVAR(IHI=VAR(T+1)+NX*YINCR(I)
32 CUVAR(I+1)=S1VARI(I)
CUVAR(1)=VAR (1 )+DX
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LOOP=2
CALL NFRSyUB

IF (11T «FQe 4) GO TO 120
GO TO 576
33 LOOP=0O

H=240%NX

N0 24 1I=14N
ERVOVH({I)=(YINCR(I)/Pe0=SOY1([))/15«0
ERRVAL (I)=H*ERVOVH(])

34 SIVAR(I)=S1VAR(I)+DX*¥SDY (1)+FRRVAL (1)
SIVAR HOLD THF APPROXIMATE ANSQWFRS

IF (SCIMAX) 264354736
26 IF(ABS(SCIMAX=CI1)elLTeleQE-12)GO TO 38
RE JF(ARS(H-Cl)eGT 41 eNF=12)GC TO 38
CCODFE=9
GO TC K058
28 BCODF=1
605 CONTINUF

=0
at I=1+1
IF (1 «GTe N) GO TO 45
IF (ABS(S1VAR(I)) eL.Te ELEZ2(I)) GO TO 40
RELFR=ARS(ERRVAL (1) /S1IVAR(I )
IF (RTZILER «GTe <FLFI(IY) GO TO 615
IF (RFLFR «GTe RELMIN(CI)) DCONFE=1
GO TO 40

45 CONT INUE
IF (DCODE—=1) 61046204610
61C CONTINUE
IF (SSPEC)I41 142441
42 1F (SCIMAX)Y4l+47441
43 Cl=260%C]1
TEX(8)=1
NHAF =NHAF — 1
GO TO 620
a4l IF (2e0%ABS(CI1) elLFe ABS(SCIMAX)) GO TO 43
44 Cl=8CImMAX
TEX(8)=1
GO TO 620

HALF INTFRVAL

615 NHAS=NHAF4+1
TEX(9)=1
NVAR=T+1
IF (NHAF=8)47447+4505

a7 IF (LTSH «EQe 0) GO TO 48
TEST=1
LTSH="
NFLT=NFLT-1
NTLTL=NTLTL+1
FLTK=K1#SSLT (NFLLT)
RFMAIN=040

48 IF (T2SH «cQe N) GO TO 49
TEFST=1
TR=TP-SSPFC
TPK=K1%T>
TPSH=O

49 IF (SSPEC eNFe NeN) GO TO 998
TFST=N



998
999

99

1100

11C1

1106
1105

00N

620

51

121
54
57

APPENDIX

IF (ABS(CI~20%#NX) «5Te 1eF—-12)GO0 TO
Cl1=DX

EX=DX/2e¢0

CIK=K1*C1I

DO 50 I=1.N
SIVAR(I1)=VAR(I+1)
CER(I+1)=FDFRV (1)
SDYL(I)=YINCR(IYy-SDY (1)
YINCR(I)Y=0e0

KK3=2

IF (ITEXT eFQe 1) GO TO 637
Loop=1

GO TO &75

CONT INUF

IF (NHAF oGTe 1) GO TO 999
NTS=NTS+1

IF (NTS «GTe 13) GO TO 998
ACV=VAR(1)+CI

ACVK=ACV*K1

IF (NELTL «FQe 0) GO TO 1102
NLT=NELT

FLTK1=SELT(NLT)*K1

IF (ACVK oLTe FLLTK1) GO TO 1103
NLT=NLT+1

IF (NLT «FQe NTS) GO TO 1106
O TO 1101

SELTINELT)Y=ACV

GO TO 1105

NLTPI=NLT+1
I=NTS
SELT(IY=SELT(I-1)

IF¢ 1 Qe NLTRPI) GO TO 1106
I=1-1

GO TO 1108

SFLT(NLT)Y=ACV

NFELTL=NFLTL+1

TEX(9)=0

TEX(1n)=1

FLTK=K1¥SFLT (NSI_T)

GO TO 999

DouBLE PRFCISITON UPDATING

LOOP=0

DH=H

DO 51 1=14N
PHI=FRVOVH(I)+YINCR(T1)/2e0
DPHI=PHI
CUVAR(I1+1)=VAR(T+1)+DH*DPHI
CUVAR(1)Y=VAR (1 )+DH

CALL DERSUB

IF (11 «FQe 49 GO TO 120
CALL CHSUR

IF (I1=2) 54+.6004121
TEST=0

DO 57 1=1N
FDERV(1)=DER(I1+4+1)

SUMHAF =SUMHAF +NHAF=STFR (1)

11N0

33



[aaNe!

34

6
=9

501

=8
120

an

Al

63A

635

637

102
320

STFP(1)Y=QTEP (2)
STERP(2)=STEP ()
STEP (3 )y=NHAF
NHAF=0

IFRR=1

IF (SUMHAF~-8)
BO 59 1=1,NP1
VAR (1)Y=CUVAR (1)
TEX(12)=1
KK3=4

IF (1TFXT
IF (TFST
RETUPN

sFQe 1) GO

eENe 1

RECOMPUTE INTFRVAL
TFST=0
NHAF =N
IT=1
Cx=C1
TEX(11)=1
Kk3=3
IF (ITEXT
CIK=CT*K1
DO 60 1=14N
CER(I+1)=FDFRV (1)
CUVAR(I)= VARC(1)
CUVAR(N+1 )= VAR(N+1)
IF (TP&H 4E0e 0)y GO T
TP=TP=SP~C
TPK=TP#K ]
TRPSH=0
IF (LTSH «FEQe
NELT=NFLT=-1
RFEFMAIN=NN
NELTL=NFLTL+!
FLTK=SFLTINFLT)Y*K 1
GO TH 588
PRINT 1834,VAR(1)+DX
GO TO 102
IF(TFX(1)eEQe1l
IF(TEX(2)eEQel
IF(TEX(3)eQoel
ITF(TEX(4)eEQel
IF(TEX(5)eEQel
IF(TEX(6)eEQel
IF(TEX(7)eF Dol
IF(TEX(8)sEQel
IF(TEX(9)eZQel
IF(TEX(ID)Ye™mGal YFRINT
IF(TEX(11)e=Qael )PRINT
IF(TEFX(12)eFQel )PRINT
IF(TEX(13)eEQel yPRINT
IS(TEX(14)eEQeal YPRINT
IF(TEX(15)e=Qel )PRINT
DO 320 [=34123
TEX(I1)=0

«FQe 1) GO

0y

YPRINT
YPRINT
JPRINT
YPRINT
YPRINT
YPRINT
YPRINT
YPRINT
YPRINT

APPENDIX

629534510

TO 637

GO TO 520

TO 636

0O 61

GO TO 555

171 sVAR(1)

1724CI1«CIMAX s SPEC
173

1744+H

175+H

176+H

1844+H

1774C1

178« NVAR,,CI
185 ¢NVAR$DX
183+ VAR(1)sDX
179+ VARI(1)
180
181

182
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GO TO (120479470 458)KK2
171 FORMAT (33H INTTIALIZATION STARTS AT VAR(1)=4F1648/)

172 FORMAT (4H CI=+F15e8,9H CIMAX=sT1%548,8H  SPFC=,F15.8/)

173 FORMAT (37H DX IS THF FULL COMPUTING INTERVAL Cl1/)

174 FORMAT (28H DX 1S A SHORTENED INTFRVAL +E138425H DUE TO A CRITIC
1AL VALUE/)

175 FORMAT (28H DX IS A SHORTENED INTERVAL +F15e8421H DUF TO A SPEC V
TALUE/)

176 FORMAT (28H DX 1S A SHORTENED INTFRVAL +E15e8+39H DUE TO BOTH A S
1PEC AND CRITICAL VALUF/)

177 FORMAT (27H C1 HAS BFFN LENGTHENED TO +sF1648/)

178 FORMAT (5H VAR (,12422H) HAS CAUSER Cl TO RBE HALVFD TO +E1648/)

179 FORMAT (27H VAR(1) HAS BFEN UPDATFD TO+F16e84/)

180 FORMAT (31H FRROR RFTURN-ELT NOT MONOTONIC/)

181 FORMAT (55H FRROR RETURN-HAVE HALVED 9 TIMFS OVER LAST 3 INTERVALS
1/

182 FORMAT (45H FRROR RSTURN-rAVF HALVED 9 CONSFCUTIVE TIMES/)

183 FORMAT (31H INTFRVAL RFCOMPUTED AT VAR(1)=4E16+8+,9H WITH DX=+F16e8
1/)

184 FORMAT(25H Dx I& SHORTENED INTERVALsE1648,28H DUF TO A PREVIOUS FL
1T VALUF/)

185 FORMAT (5H VAR(,12432H) HAS CAUSFD DX TO BE HALVED TO +E1648.38H 8U
1T NOT CI SINCF €1 ALRFADY SHORTFN=D/)

500 IFRR=2
TEX(13)=1
TFST=0
GO TO 63

505 [FRR=3
TEX(15)=1
TFST=n
GO TO =01

510 IFRR=4
TFST=0
TEX(14)=1
GO TO 63
END
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Sample Output

The following is an example case with the input quantities and results printed:

SNA ML
A = 0.0,

SIGMA = 0.1E-01,

ALPHA = C.2F+CC,

PRMIN = 0.5E-01,

cIt =  0.26-12,

CIMAX =  C.4E-C2,

ALLUI = 0.1E-04,

BULUI = C.12E+C1,

JELTX = GC.1E+00,

EP1 = 0.1E-06,

EP2 =  0.1E-Cé&,

NT = 1,

ICPBETA = O,

$END.

$NAM2

VAR O = Cue0» CoeCy O0uSSS5E-05, -0.1S9E-C4,
ELEL = CelE-06, O0.1E-06, O0.1E-Cby
ELE2 = 0.1E-07, 0.1E-C7y 0Q.ZE=C7,

ELT = ColE+Cly T, Iy Iy Ia Iy T4 Iy Iy I,
$END

SNAM3

BET A = 1,

$ENC

36



INPUT

O.
€. 004€E3715E-L2
1.00446538E-01
1.5CE46538E-01
2.0124€528E-C1
205164€6538E-01
3.0204€£38E-01
» £2446538E-C1
4,0284€E28E-C1
4, 5324€538E-01
£.C364€5328F-C1
554046538E-01
€.C444€538E-C1
6.54846538E-01
TaC524€528E-01
7¢55646538E-01
8.C06C4¢€¢538E-C1
8.56446538E-01
GeCHE4EE3BE-C]
9.,57246538E-01
1.COCCCO00E+00

BOOIES OF REVCLLTICN HAVING MININMUM VISCCUS PLUS

YO
9.95000C0CE-CE

Y

9.95000000E-C¢€
£.246885G64E-03
8483062E50E-C2
1.19701598E-02
1,4€51G4C1E-C2
1.75564510E-02
2.0127€547E-C2
2 425930939E-02
2¢4S714G27E-C2
24712763376E-02
249E177€22E-C2
3.17036372€-02
2.3E84C2272E~-02
3e459326228€-C2
2. T75E8CT45E-C2
4.00011000E-02
4419837262E-02
4,3G355483E-(2
4.585881G67E-02
4,77555131€E-C2
4.93449]116E-C2

C.

INITIAL U CBTAINEL FRCM EULER EQUATION

BETA NOT INCLUDED IN LAMBDA DOT EQUATION

Y PRIME

Ge $SG99986E-01
7.82930417E-02
6s ST406731E-C2
5.93708350E-02
5¢£2342547E~-C2
522272838E-02
4,68934044E-02
4,80023159E-02
b4e €4226021E-02
4.50726701E-02
4, 38985957E~02
4.28630186E-02
4.19390632E-02
44.11067857E-C2
4, C3510107E-02
3.56599425E-02
3.9024253CE-02
3,£4364380E~02
3.78903641E-02
3, 73809887E-C2
3,69745143E-02

SIGMA
1.00000000E-02

(NEWTONIAN) PRESSURE DRAG IN HYPERSONIC FLOW

ALPHA
2.00000000E-01

XIANZddV

Lg

TOTAL DRAG COEFF
4.(S5765800E-03

PRES DRAG COEFF FRICTION DRAG COEFF
44.09765800E-03 Ge
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Figure 1.- Legendre boundaries. ¢ = 0.01.
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(b A =0.0009; a=0.2

Figure 1.- Continued.
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(c) A =0.0002; a=05.

Figure 1.- Concluded.

41



42

10

10

| lWlIIIl

T

IIIIHI

lll[ll]

|||||ll T

Figure 2.- Initial condition y, required to obtain a given fineness ratio n. o = 0.0L




(a) Fineness ratio, 2.

Figure 3.- Minimum-drag body profiles. Length and base height given; ¢ = 0.01.
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(b} Fineness ratio, 5.

Figure 3.- Concluded.
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Figure 4.- Ratio of friction drag coefficient to total drag coefficient for given fineness ratio. ¢ = 0.01.
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(a) Radius at nose.

Figure 5.- Radius at nose and Lagrange multiplier for given length and volume. ¢ = 0.01.
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(b) Lagrange multipiier.

Figure 5.- Concluded.
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Figure 6.- Body fineness ratio for given length and volume. ¢ = 0.01.
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Figure 7.- Drag coefficient ratio of minimum-drag bodies with given length and volume. ¢ = 0.01.
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Figure 8.- Minimum-drag body profiles. Length and volume are given; ¢ = 0.0L
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Figure 8.- Concluded.
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