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BODIES OF REVOLUTION HAVING MINIMUM 

TOTAL DRAG IN HYPERSONIC FLOW 

By Waldo I. Oehman and Sylvia A. Wallace 
Langley Research Center 

SUMMARY 

The calculus of variations was used to  study minimum drag  bodies of revolution in 
hypersonic flow. 
was formulated by use of a variable skin-friction coefficient. 
length and base height o r  given length and volume were imposed on the bodies. 

Newton's formula for  pressure  drag was assumed, and viscous drag  
Constraints of either given 

Fineness ratios to  about 9 were investigated. The minimum drag  bodies obtained 
were characterized by flat noses having, at most, a diameter of 3.5 percent of the maxi- 
mum body diameter.  
bodies for the larger  fineness ratios.  Practical  body shapes,  for which the body slope 
was required to  be greater  than zero,  have an upper limit on the value of fineness ratio. 
By use of a "slender body" approximation, other investigators have obtained a s imilar  
limit on the fineness ratio. 
to body length w a s  held constant rather than the fineness ratio,  it w a s  found that viscous 
drag had almost a negligible effect on the minimum drag  body shapes. 

The effect of viscous drag w a s  a reduction of the volume of the 

For  a few cases  investigated for  which the rat io  of volume 

INTRODUCTION 

The meridian shapes of bodies of revolution that produce minimum Newtonian pres-  
(See ref.  1.) Suddath and Oehnian su re  drag  have been calculated by Eggers,  and others. 

(refs.  2 and 3)  calculated the minimum pressure drag shapes for  bodies with elliptical 
c ross  sections. 
problem of determining the shapes of minimum drag  bodies in hypersonic flow. 
ence 4, Kennet considered slender bodies (that is, bodies for which the local slope is much 
smaller  than unity) having an assumed constant skin-friction drag  coefficient. Bryson, 
in chapter 18 of reference 6, dropped the slender-body approximation, but retained the 
assumption of a constant skin-friction coefficient. A study by Miele and Cole (refs. 5 
and 6) of two-dimensional shapes and slender pointed bodies of revolution included a 
variable skin-friction coefficient. 

Several authors have recently included the effect of viscous forces  in the 
In refer-  

The present investigation extends the previous work by considering nonslender 
bodies, both pointed and flat-nosed, and a variable skin-friction coefficient. In this 



f 

1 extension a calculus of variations solution of the problem has been obtained, numerically, 
on a digital computer. 
a s s e s s  the effect of friction drag  and to  i l lustrate the use  of the computer program. In 
addition to the constraint of given length and base height, body shapes we,-e computed for 
the constraint of given length and volume. 
o r  turbulent boundary layers  have been used. 

I 

i Computed minimum-total-drag body shapes are presented to  

Skin-friction coefficients for  either laminar 

A 

CD 

CDF 

Cf 

Db 

D f 

DP 

"total 

f ,F ,g  

SYMBOLS 

constant in skin-friction-coefficient formula 

Drag 
drag  coefficient, 

9,n-Y 12L2 

friction d rag  coefficient 

local skin-friction coefficient 

base drag  of body 

friction d rag  

pressure d rag  

sum of Db, Df, and Dp 

integrand functions 

f(x,y,y') integrand function in equation (6) 

F(x,y,y',u,X,p) integrand function in equation (10) 

function (see eq. (7)) 



. .. r , , ,  , . _ . . . ,  .._.... , ...._...-... . ..._... .-.. ....-.... ... - . .. ...,, , ,.,,,. ,.,. , . . .  

G 

I 

J 

L length of body 

n 

value of integral in equation (7) 

functional defined by equation (6) 

functional defined by equation (9) 

fineness ra t io  defined as rat io  of length to  base diameter of body of revolution 

free-s t ream dynamic pressure  400 

body slope, d y  
dx U,Y' 

v volume of body of revolution 

X,Y body coordinates, nondimensional with respect to  L, along and perpendicular, 
respectively, to  axis of rotation 

a exponent in skin- f r ict ion- c oeff ic ient for  mula 

P Lagrange multiplier 

6 variation consistent with prescribed boundary conditions 

8 variation taken at constant station x 

(3 constant in skin-friction-coefficient formula 

h multiplier function 

function of body radius at x = 0 (see eq. (6)) 
@'(YO) 

Subscripts: 

0 value at body nose, x = 0 

1 value at body base,  x = 1 

i ith value 

Dot over a symbol denotes derivative with respect to  x. A prime also denotes a 
derivative with respect t o  x. 
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PROBLEM FORMULATION AND SOLUTION 

Statement of the Problem 

A body of revolution, at ze ro  angle of attack, is considered to  be in a hypersonic 
flow of air. The total d r a g  of the body may be expressed as the sum of pressure  drag, 
skin-friction drag,  and base drag, or 

Dtotal = ’p -k ’f + Db 

The pressure  drag  is assumed to  satisfy Newton’s law of res is tance and is formulated as 
follows : 

Formulation of the skin-friction drag  is the following integral: 

The local skin-friction coefficient is assumed to  satisfy 

A 
Cf = 

(CJ + x h c p > ”  
where the value of the parameter  A depends on the physics of the flow conditions, and 
the value of the exponent Q depends on the character of the boundary layer. Usually, 
a! = 0.2 is associated with a turbulent boundary layer and Q = 0.5 is associated with a 
laminar boundary layer.  
distance along the body meridian. The constant CJ is included t o  avoid the problem 
associated with an infinite skin-friction coefficient when x = 0. 

The quantity in the parentheses represents ,  approximately, the 

Base drag  is assumed t o  be negligibly small  and is set equal t o  zero.  Also, the 
effect of boundary-layer thickness on the pressure  distributions has not been included in 
equation (2). Furthermore,  the boundary layer does not have a transition region. 

Combining equations (l), (2), and (3), the total d rag  is 
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o r ,  in nondimensional form,  

ry 
JO 

(5) 

If the function y(x) is known, the drag  factor Dtota1/21rq,L2 may be evaluated by per- 
forming the integration indicated by equation (5). However, the problem of interest is to  
determine the function y(x) that makes the drag  factor a minimum. In the development 
of equation (5), it has been assumed that the length of the body is known. Therefore, the 
minimization of the drag factor is to be accomplished for  a given length and either a given 
base height or a given volume. 

Method of Solution 

The solution of the problem is obtained by applying the calculus of variations and by 
using a digital computer to  solve the resulting two-point boundary-value problem. 
development of conditions that the solution must satisfy is presented in functional form. 

A brief 

For convenience, a quantity I is defined by 

where 

and 

@(Yo) e Yo 2 

If the volume of the body is specified, the functional I is to  be minimized so  that an 
integral of the form 

(7) 

has the prescribed value. Furthermore,  it will be convenient t o  substitute u for  y' in 
f(x,y,y') and introduce the differential equation 

u - y ' = O  ( 8 )  
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as a subsidiary condition. A new functional J which is to be minimized is given by 

o r  

where X(x) is a variable multiplier and p is a constant multipl-zr. Mir-mization of 
the functional J is equivalent to minimization of I subject to the integral constraint 
(eq. (7)) and the subsidiary condition (eq. (8)). 

Calculating the f i r s t  variation of J and setting it equal t o  ze ro  leads t o  

where the symbol 
and E denotes a variation taken at a constant station x. F rom familiar arguments con- 
cerning the arbi t rary variations 6y, 6y, 6u, and EA,  equation (11) leads to  the following 
three  necessary conditions : 

6 denotes a variation consistent with prescribed boundary conditions 

- -  

(1) Satisfaction of Euler equations 

(2) Satisfaction of end conditions 

(3)  Satisfaction of Legendre condition. 

Euler equations.- The Euler equations which must be satisfied over the interval 
0 Zx 5 1 are when the length and base height are given: 
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and when the length and volume are given: 

!LU 
dx 

It is possible t o  obtain a first integral of the Euler equations that contains an additional 
variable multiplier. However, s ince the integration provides no additional information 
for  these problems, the integral has  been omitted. 

End conditions.- The initial condition that must be satisfied is 

which is applicable for  both problems, and the final condition is 

F = o  

which is applicable only for  the problem with given length and volume. 

Legendre condition.- The solution y(x) must be obtained s o  that the Legendre con- 
dition is satisfied in the interval 0 5 x 5 1; that is, 

Fuu 2 0 

This se t  of necessary conditions must be satisfied by the functions y(x), u(x), and 
in order  to extremize the functional of equation (9). h(x) Furthermore,  the resulting 

extremal is called a weak extremal. It has been implied, in this development, that the 
body slope is greater  than ze ro  for all values of x. 

Specific Solutions 

Given length and base height.- The integrand function for  the problem in which the 
length and base height are given (see eqs. (9) and (10)) is written explicitly as 

7 



The Euler equations are 

d y z U  
dx 

Applying the end condition at x = 0 (eq. (13)) gives 

which is the initial condition for  the differential equation for  A.  The value of yo is not 
specified and must be chosen so that the integration of equation (18) from x = 0 t o  x = 1 
yields the given value of yl. Choices of yo = 0 or  yo > 0 lead t o  separate  conse- 
quences. 
yo = 0, the last equation of the system (eqs. (17)) is an identity and does not provide any 
information for  evaluation of uo. However, if the Euler equation of the drag  integral 
(eq. (6)) is evaluated at x = 0, an  equation in yo1 is obtained. The Euler equation is 

If yo 7 0, then, by using equations (17) and (18), the value of uo is unity. If 

where the function f is defined for  equation (6). Since f is of the form 

the Euler equation becomes 

or 

g = o  
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When x = 0, yo = 0 and the first t e rm of the Euler equation is zero. Thus, at x = 0, 

(Y' 5- g j  = 0 
x=o 

Explicitly, the last form of the Euler equation becomes 

or more simply, 

A - - = o  4Y0'3 

2 (sa (1 + Yo'2) 

which, on expansion, becomes a fourth-degree equation in yo' as follows: 

'4 - 4 8  --y0'3 + 2y0'2 + 1 = 0 
YO (19) 

Thus, for  yo = 0, this form of the Euler equation evaluated at x = 0 (eq. (19)) provides 
four values for the initial body slope yo' = uo. Application of simple algebraic theorems 
shows that two of the roots of equation (19) a r e  real and positive and that the other roots 
a r e  a conjugate complex pair .  Only the rea l  roots a r e  significant for the present 
investigation. 

The Legendre condition (inequality (15)) which must hold for all x is 

The conditions of the problem require that y(x) > 0 and that u(x) > 0 for  
0 < x 5 1. Consequently, inequality (20) may be solved numerically to  obtain u(x) for  
0 < x < 1. When x = 0, yo must be greater  than or equal t o  zero yo 2 0 and uo 
must be greater than zero (uo > 0). Obviously, when yo = 0, Fuu = 0 and any positive 
value of uo satisfies the Legendre condition; and, when yo > 0 any 0 < uo S fi satis- 
f ies  the Legendre condition. A plot of u as a function of x is presented in figure 1 to 
i l lustrate the permissible values of u that satisfy the Legendre condition. Thus, any 
body shape, with y(x) > 0, generated from the other necessary conditions will minimize 
the drag  integral only if the body slope u is on o r  between the boundary curves (Fuu = 0) 

0 
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of figure 1. If yo = 0, the slope uo may take on any positive value, but for  0 < x 5 1, 
the slope u must be on or between the boundary curves. 

Given length and volume.- For the problem in which the length and volume are 
given, the volume is the integral of equation (7) with g(y) = y2 or 

The explicit integrand function of equation (10) is 

F = y  

The Euler equations a re :  

- 
zU3 + A 2 

1 + u 2  ( $-- 
u + x  l + u 2 )  

9Lu 
d x  

The end condition at x = 0 is the same as equation (18), that is, A, = -2y0; and the end 
condition at x = 1 (see eq. (14)) requires that 

A 1  = 0 (24) 

Since yo and p a r e  not specified, they must be chosen s o  that G has the specified 
value and A 1  = 0 when equations (23) a r e  integrated from x = 0 to  x = 1. In order  
for h t o  go to ze ro  at x = 1, p must be a negative number. The discussion of the 
Legendre condition in the preceding section also applies t o  this problem. As  before, 
uo = 1 for yo > 0 and uo > 0 for yo = 0. At x = 1, however, the last equation of 
the system (eqs. (23)) may be solved for u1. That is, u1 must be a solution of 
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The solution u1 = 0 is not admissible since the Legendre condition requires u1  > 0. 
Consequently, the quantity in parentheses in equation (25) must be zero; and further anal- 
y s i s  shows that u1 must be near zero. Furthermore,  the computed value of u1 must 
be greater  than the value on the lower Legendre boundary at x = 1 in figure 1 for  an 
acceptable solution of the problem. 

RESULTS AND COMPUTATIONS 

The preceding development of the necessary conditions from the first variation of 
the drag  integral has led to the problem of solving sets of ordinary, f i rs t -order  differen- 
tial equations (Euler eqs. (17) and (23)). Some, but not all, of the initial and final condi- 
tions are known. Therefore,  a two-point boundary-value problem must be solved. Usu- 
ally, an iterative procedure with some so r t  of convergence is applied to  obtain specific 
solutions. The approach taken in the present investigation has been to  consider the 
unknown initial conditions yo o r  uo and p as parameters  and to obtain solutions of 
the Euler equations for  particular values of these parameters .  In addition to initial con- 
ditions, the constants A, a, and 0 are parameters  that reflect the flow conditions and 
a solution (that is, a body shape) may be obtained for  each set of parameters.  Because 
the numerical resul ts  presented in the following sections were obtained for  a few selected 
sets of these parameters ,  the digital computer program is presented, for  convenience, in 
the appendix. The computer t ime is about 3 minutes for  each set of initial conditions. 

Given Length and Base Height 

A family of flat-nosed minimum-drag bodies has been computed for  the parameter 
sets (A, a, u) of (0, -, -), (0.0002, 0.5, 0.01), (0.0005, 0.2, 0.01), and (0.0009, 0.2, 0.01), 
and for  initial body ordinates yo ranging from to  The initial body slope 
was,  of course,  uo = 1 for  each body of the family. A plot of yo as a function of fine- 
ness ra t io  (that is, the rat io  of length to  base diameter) is presented in figure 2. The 
minimum pressure  d r a g  bodies (A = 0) are characterized by the continued increase of 
fineness ra t io  as yo tends to  zero.  However, the fineness ra t io  of minimum drag  bodies 
(A > 0) approaches an  upper limit as yo tends to  zero.  
ra t io  for  each set (A, a, 0) is the value of n indicated fo r  yo = in figure 2. These 
values are also the s a m e  as were  obtained fo r  yo = The main result  for  flat-nose 
bodies that produce minimum drag  is that the choice of fineness ratio for  given flow con- 
ditions is limited. 

The upper limit of the fineness 

For pointed bodies (yo = 0), solution of equation (19) yields initial values of the body 
slope yo'. The real values, computed fo r  the present investigation, are 

11 



0.0002, 0.5, 0.01 

.0009, 0.2, .01 
I -0005, 0.2, .01 

The values of yo' depend on the set (A, a, u) which embodies the flight conditions. Fur-  
thermore,  since yo(yo = 0), yo'(yof = uo), and X,(X, = 0) are known, the minimum-drag 
body shape is completely determined by integrating equations (17) f rom x = 0 to  x = 1. 
Consequently, for  a given length, the base height cannot be specified arbi t rar i ly  but is 
dependent on the flight conditions. For  each set (A, a, u), there  are two values of yo' 
each of which leads to  a solution (body shape) of the problem. 
almost identical for  x > However, the total d rag  of the body having the smal le r  
initial slope is slightly l e s s  than the total d rag  of the body having the larger  initial slope. 
Therefore, when solving equation (19) for  yo', only the smal le r  value yields the correct  
minimum-drag body slope. It should be emphasized that the restriction on the choice of 
fineness ra t io  noted here  and in the preceding paragraph is a consequence of requiring 
that u(x) > 0. However, the body shapes for larger  fineness ra t ios  obtainable when 
u(x) = 0 for  some 0 < x < 1 a r e  not compatible with the mathematical model of the 
drag  given herein. The restr ic t ion on the choice of fineness ra t io  is the same as may be 
derived from the resul ts  given in reference 5 for  "slender" bodies with a subcritical value 
of the friction parameters.  However, the minimum-drag bodies of reference 5 are blunt 
bodies that have an infinite slope at the nose. 

Both body shapes are 

The body shapes presented in figure 3 for  fineness ratios of 2 and 5 illustrate the 
effect of the friction drag. 
the three se t s  of (A, a, u) that is, (0, -, -), (0.0005, 0.2, O . O l ) ,  and (0.0009, 0.2, 0.01). 
Thus, the body shaping is dominated by the pressure  drag. However, for  n = 5, 
increasing the local skin-friction coefficient (that is, increasing A) causes a decrease of 
the local body radius. 
to  a decrease of the volume of a minimum drag  body with a given fineness ratio. The 
curves in figure 4 show that the friction drag coefficient becomes larger  than the pressure  
drag  coefficient as the fineness ratio increases.  Thus, the importance of including vis- 
cous drag  in the problem formulation is emphasized. 

In figure 3(a), the body shapes (n = 2) a r e  almost identical for  

(See fig. 3(b).) Thus, the viscous t e rm in the drag integral leads 

0.0797058575; 1999.99900 
.068 1782789; 3 184.8 5674 
.0830586184; 1769.36407 

Given Length and Volume 

Sets (A, a, a) of (0.0005, 0.2, 0.01) and (0.0009, 0.2, 0.01) were combined with values 
of yo ranging from to  10-7 (flat-nosed bodies) to  compute minimum-drag bodies 
having given length and volume. The calculations were performed by iterating to  obtain 
a value of p for each set of (A, a, 0) and yo that would force X t o  go t o  ze ro  when 
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x = 1. Figure 5 presents yo and the corresponding multiplier p for  the volume ratio 
V/L3. Two points for  A = 0 are also presented in figure 5(a). (These points for  flat- 
nose bodies are taken from ref. 1.) This figure shows that,  for  a specific volume ratio,  
a slightly different value of yo is required for  each set (A, CY, u). Figure 6 shows that 
the resulting fineness ra t io  is not appreciably affected by changes of A. Consequently, 
the effect of viscous drag  on the body shape is almost negligible although the viscous 
drag  coefficient is as much as 80 percent of the total d rag  coefficient. (See fig. 7.) 

One effect of viscous d rag  was the requirement imposed by the Legendre condition 
that the body slope at the base must be greater  than zero. 
of refs. 2 and 3 with given length and volume have a zero slope at the base.) 
required slope is very small  compared with unity. 
body shapes fo r  given length and volume for  several  values of the volume ratio. 

(Minimum pressure  drag  bodies 

Figure 8 presents some minimum-drag 
However, the 

CONCLUDING REMAFXS 

An analytical investigation w a s  made t o  determine the meridian shapes of minimum- 
drag  bodies having either given length and base height or given length and volume. The 
flow was assumed to  be hypersonic and Newton's formula for  pressure  drag  to  be appli- 
cable. Viscous drag  was formulated by using a skin-friction coefficient that varied with 
distance along the body meridian and the boundary-layer flow was considered to  be either 
laminar o r  turbulent. 
and equations obtained f rom the necessary conditions were programed for  a digital 
computer . 

A solution was obtained by application of the calculus of variations, 

A limited parametr ic  analysis has been made to assess the effect of viscous drag on 
minimum-drag body shapes and to  illustrate the use of the computer program. Minimum- 
drag body shapes,  with fineness ratios to  about 9, were characterized by flat noses having, 
at most, a diameter of 3.5 percent of the maximum body diameter.  The effect of viscous 
drag  was a reduction of the volume of these bodies for  the larger  fineness ratios.  Pract i -  
cal body shapes, fo r  which the body slope was required to  be greater  than zero,  have an 
upper limit on the value of fineness ratio. A s imilar  limit on the fineness ratio has been 
obtained by other investigators who have used a "slender body'' approximation. 
conclusion for  flat-nose minimum-drag bodies having given length and volume is that the 
viscous drag  has almost a negligible effect on the body shapes. 

The main 

Langley Research Center, 
National Aeronautics and Space Administ rat ion, 

Langley Station, Hampton, Va., June 17, 1969, 
126-13-02-27-23. 
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APPENDIX 

DESCRIPTION OF PROGRAM 

The computer program was written in  the FORTRAN IV language under SCOPE 
Version 3.0 for  Control Data Corporation's Ser ies  6000 computers at the Langley Research 
Center. A brief description of the program, as well as a flow diagram and actual listing 
of the program is included in this appendix. The output f rom an  example problem is also 
given. 

7 

Contents of the Program 

The program numerically integrates the Euler equations (eqs. (23)) which must be 
satisfied over the interval 0 5 x 5 1. Subroutines FALG, INTlA, and ITR2 are used for  
the solution of the quartic (eq. (19)) for  the two real values of uo, for the integration of 
the differential equations, and for  the implicit solution of the 
respectively. 
zoidal rule to compute the separate integrals for  the pressure  drag and friction drag  
coefficients. 

u (eqs. (17) o r  (23)), 
The program determines the drag given in equation (5) using the trape- 

Subprograms 

The program makes use  of three l ibrary subroutines, FALG, INTlA, and ITR2, f rom 
the Langley Research Center. A complete listing of these subroutines is included in this 
paper. 

FALG is a subroutine which calculates the n roots of a polynomial of degree n, 
where the coefficients may be either rea l  o r  complex. 
the uo only if yo = 0. E r r o r  re turns  are: 

In this program it is used to  obtain 

IERRF = 0; normal re turn 

IERRF = 1; the leading coefficient is zero  

IERRF = 2; one of the roots failed to  converge in the initial iteration cycle 

IERRF = 3; one of the roots failed to converge in the improvement iteration cycle. 

INTlA is a closed subroutine f o r  the solution of a set of simultaneous differential 
equations. 
formula in conjunction with Richardson's extrapolation t o  the limit theory. 
a r e :  

It is a variable-interval-size routine and uses  the fourth-order Runge-Kutta 
E r r o r  re turns  

IERR = 1; normal re turn 

IERR = 2; ELT block is not monotonic in the direction of integration 

14 
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APPENDIX 

IERR = 3; variables have failed to  meet the local truncation e r r o r  requirements 
nine consecutive t imes 

IERR = 4; variables have failed to  meet the local truncation e r r o r  requirements 
at least nine t imes over the last three intervals. An acceptable 
answer has been reached, however, and is in the VAR array. 

ITR2 finds a value for  x within a given epsilon of relative e r r o r  in a given interval 
for  a given F(x) = 0. E r r o r  re turns  are: 

ICODE = 0; normal re turn  

ICODE = 1; maximum iterations (= 150) a r e  exceeded 

ICODE = 2; DELTX (the scanning interval) = 0, o r  negative 

ICODE = 3; a root cannot be found within the given bounds, ALLU and BULU 

ICODE = 4; ALLU > BULU 

CHSUB and DERSUB a r e  subroutines required by INTlA 

FOFX is a function called by ITR2. 

Options 

An option is available f o r  including o r  omitting p f rom the equation. A value 
p can be read in and will be included in equations (23), or it need not be read if it 

The variable controlling this option is listed 
f o r  
is not to be included in the 
under "Input." 

equation. 

Input 

The NAMELIST statement is used to  put data in. NAMELIST names and the variable 
names contained in each with their  explanations a r e  listed in the following table: 

NAMELIST 
name 

NAM1 

Variable names 

A 

SIGMA 

ALPHA 

PRMIN 

.- 

Explanations of variables 

A 

U 

CY 

The absolute value of an increment of the indepen- 
dent variable which is the frequency of printing 
results.  (See "Output.") 
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APPENDIX 

Explanations of variables 

The initial computing interval and maximum desired 
computing interval, respectively, as required by 
INT 1A. 

The lower bound or initial guess for  u, the upper 
bound or  final guess for u, and the s ize  of the 
scanning interval, respectively, as required by 
ITR2 in solving for u. 

Relative and absolute e r r o r  cri terion, respectively, 
used in ITR2 to  stop the iteration when either of 
these convergence c r i te r ia  a r e  satisfied: 

1. If luil > EP1, 

qAMELIST 
name 

NAM2 

Variable nameE 

CII, CIMAX 

ALLUI, BULUI, 
DELTX 

EP1, EP2 

NT 

IOPBETA 

VARO 

Values of EP1 = EP2 = 0.1 X 10-6 have given 
satisfactory results.  

rhe number of values in the ELT block described 
below. 

Squals 0, p is not read and is not included in 

3quals 2, p is read and is included in the 
the i equation. 

i equation. 

1 one-dimensional a r r ay  containing the initial 
values of the independent variable followed by 
the three dependent variables, x,  y,  and X, 
in that order.  

16 
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, 

NAME LIST 
name 

NAM3 

Variable names 

ELE1, ELE2 

ELT 

BETA 

Explanat ions of variables 

3ne-dimensional a r r ays  containing the upper bounds 
of relative truncation e r r o r  and "relative zeros," 
respectively, for  the dependent variables as 
required by INTlA. If the e r r o r  for  any variable 
exceeds its respective ELEl  value, the computing 
interval is halved and the integration restar ted at 
the beginning of the interval. Under certain c r i -  
teria the interval is doubled. If the absolute value 
of any of the variables is less than its respective 
ELE2 value, the relative e r r o r  c r i te r ia  fo r  that 
variable will not be applied. Satisfactory resul ts  
have been obtained using ELEl  values = l o d 7  
and ELE2 values = 

-- 

he-dimensional  a r r ay  of NT values, monotonic in 
the direction of integration, at which the use r  
specifically des i res  control returned to  his pro- 
gram from INTlA. (See "Output.") 

3, read only if IOPBETA = 2. 

Output 

The frequency of printing resul ts  is determined by the input quantity PRMIN. The 
initial values are printed and the resul ts  will be printed again when the independent value 
is first greater  than PRMIN and thereafter when the independent value has been updated 
by at least  as much as PRMIN. The final value in the ELT a r ray  should be the final value 
of the independent variable (equals 1.0). INTlA i terates  to  obtain resul ts  at the specific 
values listed in ELT. If resul ts  at values of x other than 1.0 a r e  desired,  the program 
can be easily modified t o  have them printed. Values of the drag  coefficients are printed 
at the end of each case. The total d rag  coefficient is given, as well as the pressure  and 
friction drag  coefficients. 

Computational Flow Diagram 

A concise computational flow diagram is included here  t o  show the s teps  in com- 
puting. Details can be readily obtained from the listing. 
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r 

Initialization: 
Call INTlA to initialize for  inte ration; 
determine uo from equations rl7) 
or  (23) if yo # 0; compute initial values 
for  drag  integrals 

18 

I Input f rom NAMELIST: 
NAM1, NAMB, NAM3 

h 1 

Obtain uo as one of the 
two real roots  of the quartic 
equation (19) 

X < PER 

X 2 PER 

3 J 

-~ ... ._  . .  . . ..... . 
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Listing of FORTRAN Program 

The FORTRAN program, including FALG, INTlA, and ITR2 (Langley Research, 
Center library subroutines) is as follows: 

C 
c 
C 
C 
C 
C 
c 
C 
C 
c 
C 
C 
c 
C 
C 
C 
C 
c 

i n  

c 
c 

1 1  

20 
c 

P R O G R A M  
P R O G R A M  T O  C O M P ~ J T E  B O D I F S  O F  R E V O L k . J T I O N  H A V I N G  V I N I M C J M  V I ? C O U ’ ?  

V A R I A B L E S  N’EEDFO I N  I N T i i G R A T I O N  A R F  S T O Q F D  I N  T H F  V A R  A R R A Y  

B O D R E V  ( INPUT OIJTP~JT * T A P E 5 =  I N P O T  t TAPE~=OIITP(JT ) 

P L U S  ( N E W T O N I A N )  P R E S S l J R E  D R A G  I N  HY~!=RS;Or \ l IC .  F L O W .  

( T E N T A T I V F  A N S W F R S  I N  C O R R t S P O N O I N G  P O S I T I O N S  I N  T H E  C l J V A R  
A R R A Y  1 
V A R ( 1  ) I N D F F F N D E N T  V A R I A S L E  
V A R  ( 2  X 
V A R ( 3 )  Y 
V A R  (4 ) L A M B D A  

Y P R I M E  I ?  R E F F Q R E O  T O  A S  U I N  T H I S  PQOGRAM 

O P T  I ON? 
I F  I O P S F T A  = n, B C T A  I S  N O T  R F A I 3  A N D  I S  N O T  1 N C L t ) r ) F D  I N  T H E  

LAIWHDA D O T  F Q U A T  I ON. 
IF IOPEETA = 2 .  ?ETA I S   REA^ AND I S  I w L u D E r )  I N  THF LAMBDA :)OT 

E Q U A T  I ON. 

C O M P L E X  ROOTS.TFI \ ”P  
D I M E N S I O N  E L F l ( ~ ) . F L ~ ~ ~ ( 3 ) . ~ L T ( l ~ ) ~ ~ ~ R V A L ( 3 ) t C O ~ F ~ S ( l 0 ) * ~ O O T ~ ( ~ + ) ~  

1 T F M P ( ~ ~ )  
E X T E R N A L  D E R S U R  t C H S t J e  
COMMON / B L K  1 / C U V A R  ( 4 ) t V A R  ( 4  ) Q F R  ( 4 ) + V A R O  ( 4  ) 9 A t S I GMA t A L P H A  I U t A L L ~ J  1 

1 R U L U I D E L T X ~ F P ~  t F P 2 t  I C O ~ J F I  I I . T I  t H F ‘ T A q  I O D R F T A I  I O P U O . I J O  

N A b ’ F L I S T  / N A M ~ / A ~ S I S V A I  ~ L P H , ~ ~ P R M I N I C I  I . C : I M ? A X . A L L I J I  .W,JL \J I  . I>CLTX.  
1 F P I . E P ? . N S I I O P Y F T A  
2 / N A M 2 / V A 4 0  FLF 1 9 FLt--P 9 C L T  
3 / N A M 3 / s F T A  

R E A D  ( 5 t N 4 M 1  
R E A D  ( 5 9 N A M 2  ) 
R F A D  Q u A N T I T I E 5  I N  N A M 3  O N L Y  I F  T H F Y  A R F  K f Q U I R F O  F O R  THT- RUN. 

S E E  I O P l J n  A N D  I O P H F T E ,  A R O \ / F *  
R E A D  ( 5 v N A M 3 )  
N C A S F = n  
I F ( V A R 0 ( 3 ) . F O . n . ~ ) N ~ A S ~ = l  
c I = c I  I 
P E R = ” . 9 9 9 9 3 9 Q Q  
Y =  3 
I T E X T = O  
S P E C = O  0 
I I = ”  
N P L U S l = N + I  
D O  20  1 = 1  . N P L I J S l  

V A R (  I ) = V A R O  ( I ) 

A L L U = A L L U I  
B I J L U = R U L U  I 
W R I T F  ( 6 r N A M l )  
W R I T E  ( 6 9 N A M 2 )  
WR I T F  (6 9 N A M 3  1 
W R I T F  (6.70) 
WRITE (6-80) V A R ( ~ ) . A I S I C M A . A L P H A  

19 
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26 

?-4 

25 
?Lt  

P? 
C 

C 
C 
C 

c 
3 0  

I F ( V A R O  ( 3 ) NF 0 P ) WR I TF; ( 6 * 9 0 ) 
I F  ( V A R O  ( 3 )  .FQ. C .n ) W 2 I  TF- ( 6 9  1 0 0  ) 
I F  ( 1 O P R F T A . F Q . O )  W R I T F  ( 6 9 1 2 0 )  
I F  ( I O P i 3 F T P . F O . 2 )  W R I T E  ( 6 , 1 3 9 )  R F T A  

I F  Y I? I N I T I A L L Y  = 0 ,  T H E  I N I T I A L  U WILL 5F: O h T A I ' V E D  F R 3 M  THE 

Q I I A R T I  C I N  I) ( I O P i . J 0 = 2  ) 0 T H E R F  WILL R E  TWO Q F A L  R O O T S  9 Uq1 

N O T  = 0 I N I T I A L L Y *  T H E  I N I T I A L  U I S  O t 3 T A I N E D  F R O M  THE 
I M P L I C I T  E l i L E R  E O I J A T I O N  ( I O P U O  = 0 ) .  

AND 1.~02. CWPIJTATIONS WILL FE mw FOR + ~ T H  CASES. IF Y I S  

I F ( V A R 0 ( 3 ) . N E o O . @ ) I O P U O = O  
I F ( V P R 0 ( 3 ) . N ' . @ . D ) S O  T O  2 2  
I F ( N C A 5 E . N E . P ) G O  TO ?6 
un=uo2 
GO T O  ? 2  
C O N T  INlJF 
I O P I J O = 2  
N D F G = 4  
I C O F F F = O  
C O E F F S  ( 1 
C O F F F S  ( 2 ) =-4 qic ( q I GP'4 * * A L P H A  ) / A  
C O E F F S ( 3 ) = 2 . ?  

= 1 0 

C O F F F ?  ( 4 ) = c1. n 
COFFFS(S)=l.g 
C A L L  F A L G  ( C O - F F C ,  * Nr)=G * I C G F F F  R O O T C  T F M P  I F R R F  ) 
I F ( I E 4 R F . E O . O ) G O  T O  ?3  

WR I T E ( 6 9 1 6 0 
GO T O  1 0  
C O N T  1 NUF 
I 4 R =  1 
rr) ?4 I = 1 * 4  
R I = A  I M A G  ( 9 0 0 T q  ( I ) ) 

IF(RI .~~.n.n ) G O  T O  ?a 

U O  1 = R E A L  ( R O O T S  ( I 1 ) 

I R R = ?  

U 0 2 = R E A L ( R O O T S ( I ) )  

CONT I NlJF 

C O N T  I NllE 
I N I T I A L I Z C  I N  S ~ I E ; ? O U T I N F  I N T l A  
C A L L  I V T I A  ( I I r h f . N T * C I  ~ ~ P E C * C I V A X I  I ' R ~ ~ V A R ~ C U V A R I D F R . E L F ~  q F L E 2 r E L T  

C O W l F l J T A T I  O N  F O 4  D R A G  I N T E G g A L  ( I N I T I AL I Z A T  I ON ) 

C R A G 1  C O N T A I N S  TFFI  Y O * * 2  T E 2 M  P L I J S  TPE FIRS1 P A R T  OF- T H E  I N T E G R A L  

1 E R P F  

I F ( I R R . E G . Z ) G C  TC 25 

GO T O  2 4  

cjp=unI 

1 * F R R V A L  I D E R ~ U F I  C + C \ J t ' q  I T F X T  ) 

C R A G ?  CONTAINS n u y  THF 4 TERM C F  THE INTEGRAL 
F D l M l = V A R ( 3 ) * ( ? o O * I J ~ * 3 t /  ( 1  00+t,t**2 1 ) 
F D P M I = V A R ( S ) * ( A / (  ( S I G ~ k + V A R ( 2 ) * c O R T ( l . O + U 3 * 2 ) ) + H A L P H A ) ) ~ * A L P H A ) )  
D R A G I = V A R ( 3 ) * * 2  

C R A G = D R A G l + D Q A G ?  
S T O Q F T = V A R  ( 1 ) 

W Q I T E  ( 6 1 1 4 O )  
GO T O  59 
S T A R T  I N T F C R 4 T I O N  
C A L L  I N T l A  ~ I I ~ N ~ N T ~ C I ~ c P E C * C I M A X * I ~ ~ R * V A R ~ C ~ J V ~ R ~ ~ ~ R ~ E L ~ l ~ E L E 2 ~ E L T  

CRAGE=CI 

1 9 C R R V A L  ~ D E R ~ C J H  9 CHSCIR. I T E X T  ) 
I F  ( (  I E R R . E Q * I  ).OR. (IFRR.EO.4) ) G O  T O  40 

I 
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4n 

C 

C 

5n 

c 
60 
7 0  

8@ 

on 

1 0 0  
1 1 0  
1 2 n  
1 3 0  
14n 
1 Tin 

W R I T E  ( 6 . 1 1 0 )  I c R O  
GO T O  I O  
C O N T  I NU€ 
I F  ( I I o E Q o 2 )  GO T O  30 
C O M P U T A T I O N  F O R  DPAC- I N T E G R A L  
F D l = \ / A R ( . ? ) * ( 2 . C + I J * * 3 / (  1 oO+U**? 1 )  
F 0 2 = V A R ( 3 ) * ( P / ( ( ' ; I G ' J ; 4 + V e R ( 2 ) x ~ Q Y T c l . O + l J * * 2 )  ) * * A L P H A )  1 
F D A  1 = ( F D 1  M 1  + F D l  ) / ?  00 
F D A 2 = ( F D 2 M l + F D 2  ) / 2 . C  
FDINTI=FDAl*(VAQ(l)-CTORFT) 
F D I N T 2 = F D A 2 * ( V P R ( 1 ) - S T O R E T )  
C R A G l = D R A G l + F D I N T I  
D R A t P = D R A G 2 + C D  I NT2 
D R A t = D R A G l + D R A G P  
F D l M I = F D l  
F D 2 M 1  = F D 2  
S T O R F T = V A R  ( 1 1 
T E S T  T O  SEE I F  v A L I J E ~  S H O U L D  9F P Q I N T F D  
I F  ( V A R ( 1  ) o G F o P c R )  GO T O  4 @  
P R F R F Q z V A R  ( 1 )--PF>VfiL 

I F  ( P R F R E Q o G T o F Q M I N )  GO T O  i n  
I F  ( V A R ( 1 ) o L T o P E R )  GO T O  7 0  
C n N T  J W l  J c  
P R v A L = v A R  ( 1 ) 

W R I T E  (6160 ) V A R  ( 2  1 V A R  ( 3  ) 1 IJ 
I F  ( V A R ( 1 ) o L T m P F R )  GO T O  30  
C O N V D ' ~ o ~ / ( V A R ( 7 ) * * 2 )  
C D T = n R A G t C O N V D  
C D P = D R A G l + C O N V D  
C D F = D R A G 2 + C O N V D  
W R I T F  ( 6 . 1 5 0 )  C P T I C D D ~ C D F  
I F ( I O P l J n o F Q o 0 ) G O  T O  10 
I F ( N C A S F e E Q o 2 ) t n  TO 1 0  
N C A C i F = 7  
GO T O  1 1  

F O R M A T  ( 4 F 1 8 . R )  
F O R V A T  ( l H 1  l X 4 7 H 8 O D I F 5  O F  R F V O L I J T I O N  H A V I N G  I v r I N I M U V  V I S C O l J 5 1 X 4 4 H P L  

I U S  ( N F W T O N I A N )  P R E ? ' I J Y C  DRAC- I N  H Y P F R c O N I C l X 4 H ~ L O \ U )  
F 0 R M A T ( / / / 1 CI X 'iH I N? U T 1 6 X 2  H Y 0 1 7 X 1 H A  1 3 X5 H 5 I GIM A 1 3 Xq H A  L P H A  /E 36 R 1 3F: 1 8 

1 e / / )  
F O R M A T  ( I R X * I N I T I A L  !J O h T A I N F O  FROivl FI . tLFR F O V A T I O N * )  
F O R M A T  ( 1 R X - X I N I T I A L  '.J O R T A I N F r )  F R O M  O I J A R T I C  K Q U A T I O N U )  
F O R M A T  ( I X 3 2 H F Q R O Y  Q F T I J R N  F R O M  I N T l  I F K P  = 1 4 / / )  
F O R V A T  ( 1 8 X 4 O H P F T A  N O T  INCL1.JDFO I N  L A M 3 r I A  D C T  F Q L J A T I O N )  
F O R M A T  ( 1 8 X 4 6 H R F T A  I W C L U D E D  I N  L A M B D A  D O T  E O U A T I O N .  l j F T A  = E 1 6 o R )  
F O R M A T  ( / / 1 4 X l H X 1 7 X I H Y I  l X 7 H Y  P R I M F / )  
F O R M A T  ( / / ~ X ~ ~ H T O T A L  D R A G  C O F F F 7 X l S H P Q F S  D R A G  C O F F F 3 X 1 9 H F R I C T I O N  0 

l R A G  C O F F F / 3 c 2 2 . A )  
F O R M A T  ( 1  X X E R Q O R  R F T ! J G N  F ? O M  F A L G .  I F Q R F  = * *  I 4  ) 
FWD 

21 
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S U B R P U T  I NE C Y q l  l R  

R F T t  I R N  
END 

1 0  

3c1 
7n CON 

C F R  
C E R  
C F R  
C F R  

I P H A  
I F  

22 
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S U B R O U T I N E  F A L C ( C O E F F S ~ N I I I D O O T  r T E M P r I E R R )  

+*++*9*9+ i 7 O C U M F N T  n @ T F  0 6 - 0 1 - 6 8  S U R R O U T I N E  R F V I S E C  0 8 - 0 1 - 6 8  ********* 
D I M E N S I O N  cOFFF' i (1  ) r T F M P ( l  ) r R O O T ( l )  
C I M E N S I O N  X I D I F F ( 2 ) r R D I F F ( 2 ) r A P P R 3 X ( 3 )  
C O M P L E X  F r F P R r A P P 9 0 X r T F M P  rRC)OT 
C O M P L F X  T E M P M  

N S  A V F  =N 
I E R R = O  
I R = C  
I C L E A N = P * N + 2  

COMPLEX RELTST 

C C L E A R  Ik IOQKrNG A Q F A  
DO 7 7 7 1  LLL=l .  I C L E A N  
T E M P  (LLL ) = 0 .  0 7 7 7 1  

C C L E A R  R O O T  S T O R A G E  
CO 7772 L L L z 1 . N  

7772 R O O T  (LLL Z O O  0 
C CONSTANTS TO TEST 
C C O N V E R G F N C F  

C O V E  R F L O  \r l  

c M A G N I T U D E  CF R O O T S  

C O N S T = . l E - 6  

O \ / C O N =  1 F 1 50 

R C O N S T = l . F - 2 1  
C J O N J O N = O r F I ? S T  I T E R A T I O Y  

J O N J O N = O  

JJJ=I 
N C O = N + l  

C C H E C K  CONC.TANT T F D M  F O R  7 F R O  

8 0 2  I F ( I o N E o 1 ) G O  T O  8 0 0  
C C O M P L E X  C O F F F I C I F N T S  

N C O = 2 * N C O  
IF(COEFFS(NCO-I).NE*O*)GO T O  1 9 1  

C H F R E  I F  Q r A L  C O F F F I C I E N T S  

C ROOT=ZFQO 
R O O  IF(COEFFS(NCO).W.O. ) G O  T O  i n 1  

601 R O O T ( J J J ) = @ .  
N C O z N C O -  1 
JJJ=JJJ+I 

C R E D U C E  D E G R F F  A N D  I F  1 . S T O R F  R O O T  A N D  F X I T  
N = N - 1  
I F ( N . N E . 1  ) G O  T O  R O T  
R O O T ( J J J ) = O .  
GO T O  1006 

c. 
c E N T R Y  F I R C T  ANT) S E C O N D  I T E R A T I O N S  

1 n 1  J = J J J  
N T E R M S = N + l  
KCONJ=O 

c C L E A R  A P p R n X  
A P P R O X  ( 1 ) =O 0 
A P P R O X  ( 2  ) = 0 .  0 
A P P R O X ( 3 ) = O . O  
I F ( I . E Q . 1 )  G O  T O  43 

C R E A L  C O E F F I C I F N T S  
DO 78 I J F F = l r N T F R M S  

78 T E M P ( I J F F ) = C M P L X ( C O E ~ " S ~ ~ D . O )  
GO T O  700 

C C O M P L E X  C O F F F I C I F N T S  
43 DO 79 I I I X = l r N T F R M S  
79 T E M P ( 1  I I X ) = C M P L X ( C O E F F S ( 2 * 1  I I X - l ) r C O E ~ F F S ( 2 * I  I I X ) )  
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C 
C 

7 0 3  

C 

c 

c 
7 C  1 

7 C ?  
C 
C 

C 

c 

746 

47 

R 

C 

c 
C 

C 
749 

7772 

1 3  

1 P  

9 

C H E C K  L E A D I N G  C O F F F I C I F N T  F O R  0 
T E V P L = R E A L  ( T E M P  ( 1 ) ) 

I F ( T E ' 4 P L o N E o O o ) G O  T O  7 0 1  
I F  R E A L  I ?  Z E R O q C H E C K  I M A G I N A q Y  

T E M P L = A I M A C ( T E M P ( I ) )  
I F ( T E M P L o N E o 0 o  )GO T O  701 

L F A n T N C  r O c F F T C l c N T  7 C R O  
T F R R =  1 
~n T n  i nn6  

D I V I D E  R Y  ~ F A n 1 h l G  C O F F F I C I E N T  
T E M P M = T E M P  ( 1 ) 

cn  7n2 LL~= I *NTFRMC 
T F W P  ( L L A )  = T F M D  (L I  A ) / T F M P M  

K C O N J Z l r  T 7 I A L  V A L U E = C O N J U G A T E  

I F ( K C 0 N J o N E o O ) G O  T O  47  
F I R S T  T R I A L  V n L l J C  

A D P R O X (  1 ) =  ( - 0 1  9 0 0 1  ) 
C I F F E Q F N T I 4 T F  
DO 8 I I = I . N T F R M c  

X P O N = N T E R P S - I 1  

T E M P  ("OW ) =XPON-*TFMF' ( I I ) 
N P O N Z N T E R M S - 1  

"OW= I I + N T E R W S  

K A = O  F O R  F I R S T  T R I A L  V A L U E  
K A = n  

J O N J O N =  1 S E C O N D  I T E R A T I O N  
I F ( J O N J O N o E Q o 2  ) A D P R O X ( l  ) = R O O T ( J )  

C L E A R  
DO 7773 L L L = l r 2  
R D I F F ( L L L ) = O o O  

R n  I FF r X I ' 3  I F F  

XIDIFF(LLL)=O.~  

R O O T  E V A L U A T I O N  
M A X  I MUM I TFRAT I C)NS = 1 2 0  

L=2 
P A R T R l =  R E A L  ( A P P R G X  ( 1 1 ) 
P A R T M  1 = A  I MAG ( 4 P D R O X  ( 1 ) 

DO l? K = 2 * 1 ? 1  
F V A L U A T F  F ( X  1. 

F = ( P . ~ , o , ~ )  

DO 9 I I = I . N T F Q M $  
F = A D P R O X  ( l - - l  ) * F + T C M P  ( I J ) 

X F = A R S ( R F A L ( F )  
Y F = A R S  ( A I MAG (F ) ) 

C H E C K  F O R  O V E R F L O W  
I F ( X F  o G T . O V C O N . 0 9 o Y F  o G T * O V C O N ) G O  T O  
C O N T  I NU€ 

E V A L U A T F  F P R I M F ( X 1  
F P R = ( O o @ r O * O  1 
DO 1 1  J J z l e N P O N  
V N O W = J J + N T E R M S  
- P R = A P P R O X  (L- 1 ) * F P R + T E M P  ( NNOW ) 
Y F P = A R S ( A I V A G ( F D R )  1 
X F P = A B S  ( R E A L  ( F P R )  1 

C H E C K  F O R  O V E R F L O W  

O R  1 

1 4  

I E R R =  1 

1 

I 

C 
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APPENDIX 

1 1  
C 

C 

C 

C 
6732 

c 
732 

c 
C 

C 
1 8  

A 7 P "  

1 2  
c 
C 
C 
c: 
c 

1 4  

C 

C 
1 3 6  

I F ( X ~ P ~ G T O O V C O N O ~ ~ O Y F P . G T . O V C O N ) G C  T O  14 
C O N T  I NUE 

SEE I F  FPR1ME=G 
I F ~ X F P O E Q O O O O O A N ~ O Y ~ ~ O ' ~ O ~ O O ~ ~ C  T C  I4 

I F  N O T  Z E R O q N F W  A P P R O X I M A T I O N  
A P P R O X  (L  1 = A P P R O X  (L- 1 ) --F/FPQ 
P A R T R E =  R E A L  ( A P P R O X ( L  ) 1 
P A R T M ? = A I M A G  ( A P P R O X ( L )  1 

I F ( A R S ( P A R T R 2 ) o L E o R C O N 5 T ) P A R T R 2 = O .  
I F ( A B S ( P A R T Y ~ ) O L E O R C O N S T ) P A R T ~ ~ = O O  
I F ( P A R T R ~ o E Q o O O . A N D O P A R T ~ ~ O ~ Q O O O ) ~ ~  T O  6732 

5 E T  F I T H F R  P A R T  T O  7 E R O  I F  L F S S  T H A N  1 . F - 2 1  

GO T O  732 
Z E R O  R O O T  

I F ( L o E Q o ~ ) A P P R O X ( ~ ) = ? P P R O X ( ~ )  
GO T O  A 1  

R D I F F ( L - l ) = A F 3 S ( P A R T R 2 - P A R T R l )  
X I D I F F ( L - 1  ) = A R S ( P A R T M P - P A R T M l I  
I F ( L o F Q . 3 )  GO T n  1 8  
L=3  
P A R T R l = P A R T R E  
P A R T M l = P A R T M E  
GO T O  1 0  

T E S T  1 

T E S T  2 
I F (  ( R D I F F ( 2 ) + X l n I F F ( 2 )  ) o L T o  ( R D I F F ( 1  ) + X I D I F F ( l  ) ) ) G O  T O  8700 

R E L T S T = ( A P P R O X ( 3 ) - A P P ~ O X ( 2 )  ) / A P P R O X ( 3 )  
D I F F R = A a S  ( R F A L  ( R F L T S T  1 ) 

DIFFXI=ARS(AIMAC(RFLTST) 1 
I F  ( D I F F R o L T o C O N ~ T O A N ~ ~ O D I F F X I  . L T o C O N . ~ T ) G O  T O  A 1  
A P P R O X ( 2 ) = C M P L X ( ~ A 9 T ~ ~ * P A ~ T M ? )  
P A R T R I = P A R T 4 2  
P A R T M l = P A Q T M 2  
R D I F F ( 1  ) = R D I F F ( P )  
X I D I F F ( 1  ) = X I D I F F ( 2 )  

M A X I M U M  I T E R A T I O N S  F X C F F D F P  OR 
O V E R F L O W  OR 
F P R I M E = O  
T R Y  A G A I W  W I T H  S F C O N D  T R I A L  V A L I I '  

I F ( J O N J O N o E Q o 1  ) e 0  T 3  1 3 6  
I F ( K A . = o . ~ ~ ~ ) G ~  T O  71 

K A = l O 5  
GO T O  1 3  

I E R R = 3  

GO T O  82 

A P P R O X (  1 ) =  ( 1  * 1 ) 

S E C O N D  I T E R A T I C Y  N O N C O N V E R G E N T  R O O T  I F R R = 3  

S T O R E  RFSIJLT A N D  I b " P 2 O V F  N E X T  R O Q T  

25 



c 
c 
(J 

C 
7 1  

C 

997 1 

c 
c 

c 

c 

A I  

z 

1 

7 
C 

c 

c 

7 4 4  

C 

C 

C 
745 

c 

c. 
C 

e2 

c 

7 3 

34 
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F I R S T  I T E R A T I O N  R O O T  ci N O N C O N V F R G F N T  I F R R = ; ?  
I M P R O V F  ( R - 1  ) 4C)r)TS 

I F R R = 2  

I R = J  
R O O T ( J ) = A P = Q O X ( ? )  

I R = L A S T  C O N V E R C F N T  R O O T  

I F ( I R . N E . 1  ) G O  T O  9 9 7 1  
F I R S T  R O O T  F A I L F D  R t TURN 

GO T O  1 0 0 6  
J O N J O N =  1 
GO T O  l c l l  

S T O R E  R O O T q  

HERE I= F J D S T  I T E D A T I O N  

R F D U C E  P O L Y N O M  I A L  R Y  S Y N T H F T  I C D J V I ? I  O N  

I F ( J O V J O N o E Q o 1 )  G 3  T O  82 

R O O T  ( J  ) = A P P R Q X  ( 2  ) 

N T E R M S Z N T E R M S - 1  
D O  7 I K = 2 r N T E R M c  
T E M P ( I K ) = R O O T ( J ) . A T E i G i P (  I K - 1  ) + T E I Y I P ( I I < )  
C O N T I N U E  

N E X T  GOOT I F  C O M J L E X  C O F F F I C I E N T S  

H E R E  I F  R'AL C O F F F I C I F N T S  
I F ( I . E Q . 1  ) G O  T O  745 

I F ( K C O Y J . F Q . O ) G C  TO 7 4 4  
RF.qF1- K C O N J  I F  R O O T  I S  C O N J V G A T E  O F  P R F V I O U S  Q O O T  

K C O N  J = 0 
GO T O  745 
X = R F A L  ( R O O T  ( J  1 ) 

Y = A I M A G ( R O O T ( J )  ) 

I F ( X o E Q . 3 .  ) G O  T O  745 
SEE I F  R E A L  OR C3VVIPLEX 

C O V P L E X  R O O T  T Q I A L  V A L U F = C O N J U G A T E  
I F ( A R S ( Y / X )  oLF. 1 sF-lC! ) G O  T O  745 

A P P R O X ( l ) = C O N J G ( R O O T ( J ) )  
K C O N J = l  

J= J+ 1 
N E X T  R O O T  

I F ( J . N F . N S A V F ) G O  T O  746 
LA.5.T GOQT 

R O O T  ( J  ) = - T E M E  ( 2  ) /TFi'/D ( 1 1 
J O N J O r \ l =  1 
GO T O  i n 1  

c 
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C I F  ( R -  1 ) R O O T S  I V P R O V E D  * R F T U R N  
l P 8  I F ( J o E Q o 1 B ) G O  T O  1 C C 5  

J= J+l 
C IF N RSOTS IMDROVFDIFZETOZ!N 

I F ( J o L E o N ? A V F ) G O  T O  749 
inp6 N=NSAVE 

R F T U R N  
EN0 

S U B R O U T I N E  I T R P  ( X I A , H I D F L T X I F O F X I E ~ * F ~ ~ M A X I * I C O D F )  
v=  A 
K X = O  
L x = r  
I F  ( D E L T X ) 1 1 1 ~ 1 1 1 ~ ~ 1 2  

1 1 2  I F  (5-  A ) 1 1 3 ~ l l 3 r 1 1 4  
1 1 4  I = o  

I F  ( F O F X ( A )  ) 1 r 2 r 3  
1 x B l = x  

IF(LX.NE.O ) G O  T n  1 0 0 1  
X = X + D F L T X  
I F ( X - R ) 1 0 0 0 * 1 n 0 0 * 1 0 0 4  

L x =  1 
1 0 C 4  X = R  

I n o n  I F  ( F O F X ( X ) ) 1 + 2 * 4  

4 X B = X  
X = X - D E L T X / ( 2 . * * ( 1 + 1 ) )  

999 I=I+l 
I F ( M A X I e L T * I ) G O  T O  444  
I F  ( F O F X ( X )  ) 6 9 2 r 7  

6 L = l  
X X = X R  
GO T O  1 R  

X X = X R l  
GO T O  1 8  

7 L = 2  

3 x f 3 1 = x  
I F ( K X o N E o 0 ) G O  T A  1 0 0 1  
X =  X + D E L T x  
1 ~ ( ~ - ~ ) 1 0 ~ 2 . i n n ? ~ i 0 0 3  

K X =  1 

5 X R = X  

inn3  X = R  

i o n 2  I F ( F O F X ( X ) ) F ~ . ~ , ~  

X = X - D E L T X /  (20** ( I + 1  ) ) 

998 I = I + 1  
I F ( M A X I o L T 0 I ) G O  T O  444  
I F  ( F O F X  ( X  ) ) 8  r .2 19 

X X = X R  
GO T O  1 8  

9 L=3 

a L =4 
x-x = XR-1 
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APPENDIX 
1 8  I F  ( A s S ( X ) - E l  ) 3 6 ~ 3 6 * 3 7  
?7 15 ( A ~ S ( ( X X - X ) / X ) - E 1 ) 2 . 2 . 1 7  
36 I F  ( A S S ( X X - X ) - F ? ) 2 . 2 . 1 7  
17 GO T O  ( H l . 4 r B l r S ) ~ L  
8 1  X H I  =x 

x = x + n F i _ ~ ~ /  (2.+it ( I + ]  ) ) 

GO T O  ( 9 9 9 9 4 r 9 9 R i " ) r L  
1 1  1 I C O i D F  = %  

GO TO 7 9  
1 1 . 3  ICODF = 4  

Cc! T O  79 
1"I I C O O F  =3 

GO T O  79 
444 ICODF= 1 

GO T O  79 
;? ICODF = o  

79 C O N T I N l J F  
R F T U R N  
FND 

I 111 - 1  I 



APPENDIX 

C 

9 1  

8 

1 0 1  

1 @n 

9 
1 9  

1 1  

13 
1 2  
1 4  

995 
996 

1 5  

300  

1 5 1  
1000 

C 

C I MA XK = S C  I iVlA X+ K 1 
T P K = T D * K l  
V A R K = V A R l * K I  
S E T  (JP S T O G A G E  F O l i  I h l T F R N i L  {JCE 

N P I = N + I  
N E L T = l  
R E M A I N = O . @  
N H A F = n  
N T S = h l T  
S U M H A F = O  
L O O P = 0  
DO 9 1  1 ~ 1 9 3  
S T E P (  I ) = O  
I E R R =  1 
CO 8 I = l r N P l  
C U V A R ( 1 )  = V A R ( I )  
DO 1 0 1  1 Z I . N  
S E L F l ( 1  ) = E L E I (  I )  

IF- ( N T  . E O *  1 )  GO T C  1 0  
N T M l  = N T -  1 
F L T K = K I  * F L T  ( 1 ) 

130 9 I = l * N T M I  
E L T K 2 = K I * F L T ( I + l )  

IF (NT .FO. n )  G o  TO 1 7  

I F  ( F L T K  . L T .  F L T K P )  GO T O 9  
GO T O  4 0 Q  
FL T K = E L T K P  
CONT I NtJF 
E L T K = K I * E L T ( N F L  T )  
I F  ( V A R K  . L T .  F L T K )  CsCl T O 1  1 
I F  ( N E L T  .EO. N T )  GO TO 1.3 
N E L T = N F L T +  1 
GO T O  10  
NFLTL=NT-NELT+~ 
GO T O 1 2  
N E L T L  = 0 
D O  1 4  I z 1 . N  
R F I L M I N (  I ) = S F L F l  ( I  ) / l ? F % * C l  
I F  ( N T  .PO. ' 2 )  C-c3 TO Y'46 
D O  995 I = l r N T  
S E L T  ( 1 ) = E L T  ( I ) 
C A L L  D E R S I I B  
I F  ( 1 1  .FO*  4 )  C-0 TO l ? Q  
DO 1 5  I z 1 . N  

F D E R V  ( I 1 =DER ( I + 1 ) 
II=l 
T E S T = O  
DO 300 I = l r l T  

T F X (  I ) = n  
T E X ( 1  ) = I  
T E X  ( 2  ) = 1 
K K 3 =  1 
I F  ( I T E X T )  6 3 5 r A 3 r 6 3 5  
P R I N T  1 0 0 0  
F O R M A T  ( / / l l H  C I  I S  7 F R O )  
STOP 
E N D  O F  I N I T I A L I 7 A T I O N  
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APPENDIX 
52n I I = 1  

T P S H =,3 
L T S H = O  
V A R K = V A R  ( 
c I K = c I  * K 1  
5 1 = V A Q Y + C  
I F  ( S S P F C  
KI<= 1 

) * K 1  



I 
APPENDIX 

565 

96 

98 

535 

P r ,  

480 

26 

585 

27 

59" 

9c) 

28 

C 
c, 
C 

29 
3 1  

32 

cx=c  1 
T F X  ( 3  1 = 1 
GO T O  560 
I F  ( N E L T L  * E Q o  0 )  GO T O  9d 
I F  ( E L T K  . L T .  ( \ / A R K t ' ? F M A I < ) )  GC! T O  QLI 

E X  = R F M A  I N 
T E X  ( 7  ) =  1 
R F M A I N = O . Q  
C-O T O  560 
cx=c I 
T E X  ( 3 )  = 1 
T E S T =  1 
GO T O  455 

B F G  I N RUNGE-ICIJTTA 

L O O P  WAS N O T  7 F Q 0  

D O  3 1  I = l t N  
Y I N C R (  I ) = Y I N C R ( I  ) + S D Y ( I )  
I F  ( L O O P  . E O *  2 )  GO T O  33 
DO 32 I = l r N  
S l V A R (  I ) = V A R ( I + l  ) + D X + Y I N C R (  I )  
C U V A R (  I + l ) = S l V A R ( I )  
C U V A R ( 1  ) = V 4 R ( 1  ) + D X  



APPENDIX 

C H A L F  I N T F R V A L  
6 1 c. NHAL-=VHAF+ 1 

T F X  ( 9 )  = 1 
N V A R =  I +  1 
I F  (NHAF-8 )47 r '+7* 501 

a7 I F  ( L T q H  .F0. 0 )  GO T 3  48 
T F S T =  1 
L T f ; H = n  

N r L T L = N ' L T L + l  
F L T K = K 1 * S C L T  ( N F L T )  

N F L T = N C L T - I  

R F N A I Y = O o L )  
40 I F  ( T J S H  . C O O  3 )  GO T 3  49 

T F S T =  1 

T P K = Y  1 * T 3  
TPSH=CI 

T F S T = n  

T P = T.?-S SPFC 

49 I F  (SSPEC .NE. r,n) GO TO 9 c ) ~  

, 
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I F  ( A B S ( C I - - 2 . n * n X )  .GT. 1 . F - l E ) G O  T O  1 1 0 0  
998 C I = D X  
999 cx=nx/2.0 

C I K=K 1 +C I 

S l V A R (  I ) = V A R ( I + I )  
C E R ( I + l  ) = F D F R V (  I )  

DO 5 0  I = l r N  

S D Y l ( I ) = Y I N C R ( I ) - S D Y ( I )  
5C Y I N C R ( I ) = A o O  

K Y 3 = P  
I F  ( I T E X T  .FQ. 1 1 GO T O  637 

99 L O O P = I  

1 1 P O  C O N T I N U F  
GO T O  575 

I F  ( N H A F  .GT. 1 ) GO T O  999 
N T S = N T S + l  

A C V = V A R  ( 1  ) + C  I 
A C V K = A C V + K l  
IF (NELTL .EO. n )  GO T O  1 1 0 2  
N L T = N E L  T 
FL T K  1 =SEL T ( N L T  1 +K 1 
IF ( A C V K  .LT. FLTKI) GO TO i i n j  
N L T = N L T +  1 

GO T O  I i n 1  
1102 S F L T ( Y E L T ) = A C V  

GC2 TO 1 1 0 5  
I l Q 3  N L T P l = N L T + l  

I = N T S  
l l P 8  S E L T ( 1  ) = S F L T ( I - I  1 

I F  ( N T ?  .GT. 1 3 )  GO T O  998 

1 1 C 1 

I F  ( N L T  .Foe N T C )  GO T O  1196 

I F (  I * E Q *  N L T P l  1 GO T O  1 1 0 6  
I = I - I  
GO T O  1 1 0 8  

1 1 0 6  S F L T ( N L T ) = A C V  
1 1 0 5  N F L T L = N F L T L + l  

T F X ( 9 ) = O  
T F X  ( 1 ) = 1  
F L T K = K l * S F L T  (Nr l .T 1 
GO T O  999 

c 
C D O U B L E  P R F C I S I I O N  U P D A T I N G  
C 

A 2 0  L O O P = 0  
D H = H  

P H I = F R V O V H ( I  ) + Y I N C R  
D P H  I =PH I 

C U V A R ( 1  ) = V A R ( l  )+DH 
C A L L  O E R S U a  

C?O 5 1  I=] .N 

51 C U V A R (  1 + 1  ) = V A R (  1 + 1  ) 

T ) / 2 . 0  

D H + D P H  I 

I F  ( 1 1  .FCI* 4.) GO T O  1 P O  
C A L L  C H S U P  
IF ( 1 1 - 2 )  5 4 r 6 n ~ 1 1 2 1  

1 2 1  T E S T = n  
54 DO 57 I = l r N  
57 F D E R V (  I ) = D E R ( I + I  1 

SUMHAF=SIJMHAF+NHAF-STFP ( 1 ) 
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S T F P  ( 1 ) = c T F D  ( 2  ) 
S T E P ( ? ) = S T E P ( ? )  
S T K P  ( 3 ) = N H A F  
N H P F = O  
I F R R =  1 
I F  ( S U M H A F - 8 )  6 7 r S ? r c i l D  
no 59 I = l . N P l  
V P R ( i  ) = C I J V A R ( I )  
T F  X'( 1 2 = 1 
K K 3 = 4  
I F  ( I T F X T  o F O .  1 )  GO T O  637 
I F  ( T F S T  .En. 1 \ GO T O  f s?O 
R c T \ J P N  

R F C n M P O T r  I N T F R \ / A L  

3 2 C  T F X ( I ) = O  
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GO T O  ( 1 ? 0 * ” 9 * 7 n * 7 8 ) . Y K ?  
1 7 1  F O R M A T  ( ? 3 H  l N l T 1 A L I Z A T l O N  S T A R T S  A T  V A R ( l ) = . F 1 6 . A / )  
172 F O R M A T  ( 4 H  C I = * F 1 5 . 6 . 9 H  C l M A X = . r 1 4 . R . A H  S P F C = + F 1 4 . R / )  
173 FORP!AT ( 3 7 H  D X  1.5 T H F  FlJLL C O M P U T I N G  I N T E R V A L  C . I / )  
174 F O R M A T  ( 2 A H  D X  15 A S H O R T E N F D  I N T F R \ / A L  * E 1 5 0 8 * 2 5 H  DUF T O  A C R I T I C  

1 A L  V A L U E / )  

1 ALUF/ 1 

1 P c C  A N D  C R I T ! C A L  V A L ! J F / )  

1 7 5  F O R W A T  ( S R H  D X  I S  A S H 0 1 7 T E N E D  I N T E R V A L  * E 1 4 . 8 . 2 1 H  D ~ J F  T O  A S P E C  V 

1 7 6  F O R M A T  ( 2 8 H  D X  IS A S H O R T E N E D  I N T F R V A L  * F 1 5 0 8 * 7 9 H  D U E  T O  B O T H  A S 

177 F O R M A T  (27H C I  H A S  BFFN L E N G T H E N E T :  T O  * F 1 6 . 8 / )  
1 7 9  F O R M A T  ( 5 H  V A R ( q I 2 . 7 2 H )  H A S  C A U S F P  C I  T O  RE H A L V F D  T O  .E16 .R / )  
1 7 9  F O R M A T  ( 2 7 H  V A R ( 1 )  HA‘, BFEN ( J P D A T F D  T O * F l h o 8 1 / )  
1 8n F O R M A T  ( 3 1  H F R R n Q  $ = T U Y N - E L T  V O T  F.aONOTON I C /  ) 

1 8 1  F O R M A T  ( 5 5 H  F R R 0 4  R F T U R N - H A V F  H A L V E D  9 T I M F S  O V F S  L A S T  3 I N T E R V f i L S  
1 / )  

1 8 2  F O R M A T  ( 4 5 H  F R R n R  R‘TURN-dAVF H A L V E D  r) C O N S E C U T I V E  T I M E S / )  
1 8 3  F O R M A T  ( 3 1 H  I N T F R V A L  R F C O M P I J T F D  A T  V A R ( I ) = * E ~ ~ . R I S ’ H  W I T H  D X = t F l h o A  

1 / )  

1 T  V A L I J F / )  

1 T  N O T  C I  S I N C F  C I  A L Y F A U Y  S H O R T F N = Q / )  

1 8 4  F O R M A T ( P 5 H  r)X IS S H O R T E N E D  I N T E R V A L * E 1 6 . 8 . 2 8 H  D I J F  TO A P Q E V I O I J S  FL 

185 F O R b ’ A T ( 5 H  V A R ( * I 2 * 3 2 H )  H A 5  C A L I S F D  D X  T O  BF H A L V F O  T O  . E l h o 8 1 3 A H  R U  

5 0 0  I F R R = P  
T E X  ( 1  3 ) = 1  
T F S T = O  
GO T O  63 

405 I F R R = . ?  
T F X  ( 1 5  = 1  
T F S T = 0  
GO T O  5 0 1  

5 1 0  I F R R = 4  
T F S T = r ?  
T F X  ( 1  4 1 = 1  
GO T O  6 3  
E N D  
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Sample Output 

The following is an example case with the input quantities and resul ts  printed: 

SNA M 1  

A = 0.01 

S I G M A  O o l F - 0 1 . 1  

ALPHA = C . 2 F + C C r  

P R M I N  = 0 . 5 E - O I r  

C I I  = 0 . 2 E - 1 2 r  

C I M A X  = C . 4 E - C 3 r  

P L L U I  = 0 . 1 E - 0 4 9  

B U L U I  = C . l 2 E + C l r  

3 E L l X  = G . I E + O O r  

E PI = O o l E - O b r  

EP 2 = O . l F - C 6 r  

MT = 11 

I C P B E T A  = 0 9  

$€NE 

ZNAM3 

BET 4 = I *  

SENC 

36 
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BOOIES OF REVCLLTICN HAVIhG C I A I C C M  V I S C C U S  PLUS ( h E W T O N I A h l  PRESSURE DKAG I N  HYPERSONIC FLOW 

I h F U l  Y O  A SIGMA ALP HA 
9.95000CCCE-Ct C. 1.00000000E-02 2 ~00000000 E-01 

I h I T I A L  U OBTPIhEC FRCM EULER EQUdTION 
B E T A  N O T  INCLlDEO I &  LACBDA D O T  E C U A T I O N  

X 

0. 
5.004t5375E-C2 
1.00 446 53 8 E- 0 1 
1.5CE46538E-01 
2.01 24t53HE-Cl  
2. 51  646538E-01 
3.0204t538E-01 
3. '244653RE-Cl 
4 0 2 846 5 3 8E- C 1 
4.5324t53AE-01 
5 -  C 3 6465 3 8F- C 1 
5.54046538 E-01  
6 .  C444t  5 38E-C 1 
6054846538E-01 
7. C5 2 4 t  5 38E-0 1 
7,55646538 E-01 
8. C6C4t 5 3AE-Cl 
8.56446538E-01 
5.06E4t538E-Cl 
9.57246538E-01 
1. C O O C C O O O E + 0 0  

Y 

9.95000000f-C C 
5.246885S4E-03 
a .a 3 0 ~ 2 ~  59E-C 3 
1.19701598E-32 
1 4E 5 1545 1 E - C  2 
1.75564510 E-02 
2.012i6547E- C 2  
7 -25930939E-02 
2.45714S27E- C2 
2.72763376E-02 
2.95177t32E-CZ 

3.3€4C22 72E-G 2 
3.593i6?25E-C2 
3.7SE5C745E-C2 

3 017036372E-02 

4.00011330E-02 
4.19837262E-DZ 
4 . 3935  54@ 3E-C 2 
4.5E5881S7E-02 
4.7755513 1E-C.2 
4.934491 16E-CZ 

Y P R I M E  

9.  SW99986E-01 
7.82930417E-02 
6. 574G6731E-C2 
5.93708353E-02 
5. 52342547E-GZ 

4, S 8934 044E -02 
5 22 2 7 2 8 3 8 E-0 2 

4.800 23159E-02 
4. t4226021E-02 
4.50726701E-02 
4.38985957E-02 

4.19390632E-02 
4.11067857E-C2 

3 - 9 6  599425E-0 2 

3. E43643 80E- 02 
3.78903641E-02 
3.73809887E-C2 
3.69745149E-02 

4.28630 i a 6 ~ - 0 2  

4. C3510107E-02 

3. 90242 53 CE-02 

T O T A L  D R A G  COEFF P R E S  D R A G  COEFF FRICTION DRAG COEFF 
4. CS765800 E-03 4 009 765 800 E-0 3 0. 



REFERENCES 

1. Eggers,  A. J., Jr.; Resnikoff, Meyer M.; and Dennis, David H.: Bodies of Revolution 
Having Minimum Drag at High Supersonic Airspeeds. NACA Rep. 1306, 1957. 
(Supersedes NACA T N  3666.) 

2. Suddath, Je r ro ld  H.; and Oehman, Waldo I.: Minimum Drag Bodies With Cross-  
Sectional Ellipticity. NASA TN D-2432, 1964. 

3. Suddath, Je r ro ld  H.; and Oehman, Waldo I.: Minimum Drag Bodies With Elliptical 
Cross  Sections. J. Astronaut. Sci., vol. XII, no. 4, 1965, pp. 135-141. 

4. Kennet, H.: The Effect of Skin Friction on Optimum Minimum-Drag Shapes in 
Hypersonic Flow. J. Aerospace Sci., vol. 29, no. 12, Dec. 1962, pp. 1486-1487. 

5. Miele, Angelo; and Cole, Julian: Optimum Slender Bodies in Hypersonic Flow With a 
Variable Friction Coefficient. AIAA J., vol. 1, no. 10, Oct. 1963, pp. 2289-2293. 

6. Miele, Angelo (Editor): Theory of Optimum Aerodynamic Shapes. Academic Press, 
Inc., c.1965. 

38 

. -. . . .. . . , .,..,. . , .  , m .- 



0 

(a) A = 0.0005; a = 0.2. 

Figure 1.- Legendre boundaries. o = 0.01. 
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(b) A = 0.0009; a = 0.2. 

Figure 1.- Continued. 
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(c) A = O.ooO2; a = 0.5. 

Figure 1.- Concluded. 
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Figure 2.- I n i t i a l  condition yo required to obtain a given fineness rat io n. o = 0.01. 
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(a) Fineness ratio, 2. 

F igure 3.- Minimum-drag body profiles. Length and base height given; o = 0.01. 
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(b) Fineness ratio, 5. 

Figure 3.- Concluded. 
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Figure 4.- Ratio of f r ic t ion drag coefficient to total drag coefficient for given fineness ratio. u = 0.01. 
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(a) Radius at nose. 

Figure 5.- Radius a t  nose and Lagrange mul t ip l ier  for given length and volume. o = 0.01. 
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(b) Lagrange multiplier. 

Figure 5.- Concluded. 
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Figure 6.- Body fineness rat io for given length and volume. u = 0.01. 
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Figure 7.- Drag coefficient rat io of minimum-drag bodies w i th  given length and volume. a = 0.01. 
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(a) A = 0.005; a = 0.2. 

Figure 8.- Minimum-drag body profiles. Length and volume are given; 0 = 0.01. 
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(b) A = 0.0009; a = 0.2. 

Figure 8.- Concluded. 
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