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ABSTRACT

Studies were made on the effects of simulated solar ultt,'aviolet radiation, temperature,

and vacutml on the stability of solar absorptance and total hemispherical emittance of

seven potential low-temperature space power system radiator coatings. A calori-

metric in situ technique was used to measure broadband spectral and toL_tl absorptanee

and total hemispherie_ emittance as a function of time of exposure to an ultraviolet

source (xenon lamp) at a 1-sun level.* Exposures were for durations varying from

500 to t0,000 hr and at temperatures from 300°K (80_F) to 533°K (500_F). The

eoalit_gs invcsilgzttcd were titanium dioxide and zinc oxide p_gments in methyl silicone

binders; zinc oxide, zirconium silicate, and aluminum silicate in potassium silicate

binders; and the Optical Solar Reflector. The Optical Solar Ileflector was the most

sklble coaling a_ 150_F; no change in its solar absorptance or total hemispherical

emittanee was observed during testing. Zinc oxide in potassium silicate (IITRI Z-93

system) showed the greatest stability for the paint-t:r_pe coatings; total hemispherical

emittance remained constant and solar absorptance increased 0.06 during I0,000 hr

of exposure at 422"K (300_F).

*One sun is defined as the flux density of extraterrestrial solar radiatiotl in the 0.20-

to 0.40-/an wavelength region which is incident upon a fiat plate oriented perpendicular

to the solar vector at a distance of 1 astronomical unit (A, U.) from the sun.



FOREWORD

This document was prepared by the Lockheed Palo Alto Research Labor-

atory, Lockheed Missiles & Space Company, for the Lewis Research Center

of the National Aeronautics and Space Administration as the final report of the
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Manager was Mr. John A. Milko, Space Power Systems Division, Lewis

Research Center.
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Section 1

INTRODUCTION

The objective of this program is the evaluation of the environmental stability of coatings

which would be used to obtain the maximum heat rejection efficiency for low-temperature

spacecraft radiators. Several types of high thermal efficiency power systems being de-
veloped for use on spacecraft having long operational lifetimes present a problem re-

garding the optical properties of the radiator surface. To achieve maximum efficiency,

this surface must have a high total hemispherical emittance over the radiator operating

temperature range. However, to be consistent with high cycle thermal efficiency, the

power systems reject heat at relatively low temperature. Therefore, for missions

where the radiator is exposedto solar radiation, the surfaces must have a low absorp-

tance to electromagnetic energy in the solar spectrum.

The stability of the radiative properties of the surface in the space environment is a

critical factor since changesin either absorptance or emittance during a mission might

result in severe problems with the power system operation. Changesin the radiative

properties may occur becauseof exposure to temperature, vacuum, temperature cycl-

ing, andthe complex radiation fields of the space environment. The requirement of

high emittance andlow solar absorptanceprecludes the use of bare metallic surfaces.

Two classes of coatings or surface treatments meet the radiative properties require-
ment. Theseare the white pigmented paint-type coatings and the secondsurface

mirror or Optical Solar Reflector (commonly referred to as the OSR). The white

pigmented coatings typically showan increase in solar absorptance during prolonged

exposure to simulated spaceradiation environment (Ref. 1). This changeis a function

of the energy and flux as well as the temperature and atmosphere during exposut:e.

The OSRsurface has beenshownto be extremely stable in laboratory investigations
(Ref. 2) for a wide range of environments.

A number of coatings havebeen developedwhich showedpromise for the radiator appli-

cation as their emittance is relatively high (greater than 0.80), solar absorptance is



low (0.20 or less), and in laboratory tests small changesin absorptance were observed

during ultraviolet exposure in vacuum. Particulate (electrons andprotons) radiation

was not considered in this program becauseof the proposed orbit for this application,
< 300 urn.

The program consisted of three phases. The initial phase had as its objective evalua-

tion of the radiative properties and their stability for six candidate coatings under

conditions of exposure (500 to 2000 hr) to ultraviolet radiation, vacuum of 1 × 10 -7

Torr, elevated temperature, and temperature cycling. The second phase of the pro-

gram was the long-term exposure (10,000 hr) of one coating selected on the basis of

the result of Phase 1. The final phase of the program was the investigation of the

second surface mirror for use at temperatures to 340°K (150°F). This material has

been reported (Ref. 2) to have a solar absorptance of 0.06 or less with a total hemi-

spherical emittance of 0.75 to 0.80. All ultraviolet exposure tests were conducted

at a 1-sun level (0.20 to 0.40 p_).

The coatings investigated and their ultraviolet exposure conditions are:

• Titanium dioxide/methyl silicone (Thermatrol 2A-100, LMSC)

395°K (250°F) -550 hr

• Zinc oxide/methyl silicone (S-13, IITRI)

395°K (250°F) - 500 hr

• Modified zinc oxide/methyl silicone (S-13G, IITRI)

395°K (250°F) -520 hr

• Zirconium silicate/potassium silicate (LMSC)

533°K (500°F) - 500 hr

• Aluminum silicate/potassium silicate (Hughes)

533°K (500°F) - 530 hr

• Zinc oxide/potassium silicate (Z-93, IITRI)

300°K (80°F)- 2001hr

367 °K (200 °F) - 2024 hr

422°K (300°F) - 500 hr

2



450°K (350°F) - 1004hr

533°K (500°F) - 502hr

422°K (300°F) - 4574hr*

422°K (300°F) - i0,014 hr*

OSR(LMSC)

339°K (150°F) - 2040hr

Of the paint-type coatings, the zinc oxide/potassium silicate system (IITRI No. Z-93)
exhibited the greatest stability in solar absorptance at temperatures to 422°K (300°F).

The changein solar absorptance observed during the three exposure tests at this tem-

perature did not exceed 0.06. All other materials tested at 395°K (250°F) showed

increases in solar absorptance of 0.08 or greater. At 533°K (500°F), the minimum

increase in solar absorptance was 0.13, and this againwas for the Z-93 material.

All of the coatings have initial values of solar absorptance of 0.12 or greater which

drastically reduces radiator efficiency at temperatures of 339°K (150°F) or less.
Thus it was decided to investigate the secondsurface mirror (OSR)concept,

o_ _< 0.06, for the very low temperature radiator application. No change in solar
s

absorptance was observed during a 2024-hr exposure test of this material at 339 °K

(150°F).

Detailed discussions of the experimental techniques and results are given in the

following sections.

*Long-term exposure tests; first test terminated at 4574 hr due to vacuum system
failure.



Section 2

LITERATURE SURVEYANDSELECTION OF COATING

2.1 BACKGROUND

A survey of the literature (Refs. 3 through 60)was conductedto provide the data for the

selection of the candidate surfaces to be experimentally evaluated in this program.

These findings are also applied to the evaluation and comparison of the experimental

data of this program with those of other investigators.

The criteria for selection of the coatings were: solar absorptance-< 0.20 and total

hemispherical emittance >- 0.80; long-term stability of optical properties, solar ab-

sorptance, andtotal hemispherical emittance; andadhesionand compatibility with the
substrate material, 6061aluminum. Coatingswere evaluatedfor several environ-

mental aspects considered to be potential sources of significant damage; i.e., ultra-
violet irradiation, vacuum, elevated temperatures, and temperature cycling. The

thermal-control coatings must be optically and physically stable at temperatures up to
533°K (S00°F) for extended periods of time in the space environments.

Requirements of the spaceprograms have resulted in the developmentof surface mate-

rials which have desirable thermal-control properties and which have somedegree of

resistance to degradation in the space environment (Refs. 1 through 13). These mate-

rials studies havefor the most part been conductedat room temperature, with fewer

studies at elevated and cryogenic temperatures. It has beena general observation that

exposure to ultraviolet radiation degrades the properties of low _s/C surface mate-
rials by causing an increase in solar absorptance. The total hemispherical emittance

of the more promising materials is not adversely affected by this environment.

• : Changesin optical properties which occur during the vehicle lifetime may be accounted

for in the vehicle thermal designwhen the extent of degradation is knownas a function

of exposure time and temperature.

4



Progress in the prediction of degradation rates and the developmentof stable materials

has beenhampered to a large extent by the lack of precise knowledgeconcerning the

mechanisms of optical damage. A number of investigators have postulated various

damagemechanisms (Ref. 14) in an attempt to understand the results on a specific

material. However, the processes of degradation are complex, and for any given

material several mechanisms appear to interact in producing the observed changes in

spectral absorptance. While the postulated mechanisms have proved useful in guiding

material development work, no complete picture is available which allows correlation

from one exposure condition to another without experimental observations.

2.2 EFFECTS OF THE SPACECRAFT ENVIRONMENT

The radiation environment encountered by space vehicles is generally the most impor-

tant source of damage to low as/_ thermal-control surfaces (Ref. 3). As the orbital

conditions specified for this application were a near-earth orbit, 300 nm or less,

the principal radiation environment considered was electromagnetic radiation in the

ultraviolet spectrum. The candidate coatings were evaluated for the combined effects

of ultraviolet radiation, vacuum, temperature, and temperature cycling. The selec-

tion of the initial coatings was based on the information available in 1966. A brief

summary of space environmental effects on optical properties follows.

Ascent environment. The operational environment of a spacecraft begins with

tlie ascent of the vehicle from the launch pad. The primary sources of damage

during ascent are elevated temperatures (Ref. 15). However, it is very likely

that the critical surfaces of low-temperature space radiators will be protected

by a shroud or fairing during ascent, and consequently they will not be subjected

to temperatures in excess of their maximum design operating temperatures

during this phase of vehicle operation.

Vacuum. In addition to its role in the damage mechanisms, the extremely rare-

fied environment of vacuum makes volatilization of thermal-control coatings a

5



possible problem. However, coatings suchas acrylics, silicones, and inorganic

silicates that are used for thermal-control applications have beenextensively

studied in various environmental tests with 11onoted indications of instability due
to vacuum alone.

Extraterrestrial solar radiation. In general, the continued exposure of many

low O_s/C materials to ultraviolet energy in a vacuum increases the solar

absorptance until some saturation value is reached (Refs. 14 through 24). The

total increase in solar absorptance is usually dependent upon temperature level

and may or may not be a function of intensity of radiation. Figure 2-1 shows the

solar absorptance of six coatings as a function of exposure time to ultraviolet

radiation in sun-hours at room temperature (Ref. 24). The effect of ultraviolet

radiation on the solar absorptance of several thermal-control materials at 530 °K

(495°F) is shown in Fig. 2-2 (Ref. 27). For several organic and inorganic sys-

tems the degradation has been observed to increase with increasing temperature

as shown in Fig. 2-3. Spectral absorptance curves for a titanium dioxide/epoxy

coating are shown in Fig. 2-4 to illustrate the change in spectral absorptance as

a function of exposure temperature. An initial large change in absorptance due

to exposure to ultraviolet radiation at 305°K (89°F) is observed. At increasing

temperatures, the same exposure causes a general increase in absorptance with

a fairly regular pattern. The shape of the curve at 530°K (495°F) appears to

deviate considerably from the pattern for the lower temperature exposures which

may indicate that a different process or a different rate of degradation has begun,

so extrapolation of the data beyond this temperature would be unwise.

The spectral absorptance curves for the zirconium silicate/potassium silicate

coating (Fig. 2-5) show a large initial change in absorptance due to exposure to

ultraviolet radiation at 305°K (89 °F). As the exposure temperature increases,

the absorptance increases in the visible and infrared regions of the spectrum,

but decreases in the ultraviolet region. The net result is an increase in the

solar absorptance with increasing temperature.
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The ultraviolet radiation induced absorption of pigmented coatings may be related

to the photolytic decomposition of the pigment material (Ref. 28). The liberation

of oxygen from some pigments during irradiation has been postulated for materials

such as zinc oxide (Refs. 14,30-33). At elevated temperatures in vacuum, the

oxygen may then be physically desorbed creating a metal-rich surface. The

metal diffusion into the bulk increases with increasing temperature resulting in

increased absorption. Under a NASA-Marshall Space Flight Center contract

(Ref. 14), LMSC has investigated solar radiation induced damage to the optical

properties of zinc oxide. That program succeeded in demonstrating that the

damage mechanism for zinc oxide pigments was based on a photochemical evolu-

tion of oxygen. Furthermore, on the basis of in situ measurements of ultraviolet

radiation damage in vacuum, it was conclusively demonstrated that uv-degraded

zinc oxide rapidly recovered its initial optical properties upon reexposure to air.

This recovery phenomena has made much of the earlier exposure data suspect as

degradation was evaluated on the basis of post-test reflectance measurements in

air.

A second problem in evaluation of earlier data is that the assumption was made

that a reciprocal relationship existed between the effects of time and ultraviolet

irradiance, with regard to the damage produced; i.e., exposure to 1 sun for 10 hr

will produce the same effect as exposure to 10 suns for 1 hr. Although this

assumption served as a useful first approximation, it has not been proven to, be

valid for all of the materials under discussion. At the time of the coating selec-

tion, no long-term in situ exposures of thermal-control coatings at a 1-sun level

and at elevated temperatures had been attempted to verify or disprove this

assumption.

A final consideration is that the majority of exposure data had been obtained

using a high pressure mercury lamp which has several very strong lines in the

uv region and is not a good match to the solar spectrum.
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Meteoroids. As no valid estimates had been made of the micrometeoroid flux at

the time of the inception of this program, no evaluation was made of the effects

of this environment on the candidate coatings.

Penetrating radiation. For prolonged mission exposure in a polar orbit or high-

altitude (> 500 nm) trajectories, constituents of the space environment other than

ultraviolet irradiation can induce first-order damage to optical surface materials;

i.e., the intense high-energy electron and the low-energy proton portions of the

geomagnetically trapped particle environment. In addition, for missions beyond

the earth's geomagnetic field, the low-energy proton portion of the quiescent solar

plasma (solar wind), galactic cosmic radiation, solar cosmic radiation from solar

cosmic events, solar x-rays, and solar extreme ultraviolet radiation must be

considered.

With regard to experimental techniques, in situ measurements on zinc oxide and

titanium dioxide pigmented silicone paints (Ref. 53) specifically indicated that these

paints exhibited the same damage and recovery phenomena as the free pigments.

Also, results from the Ames emissivity experiment on OSO-II (Ref. 54) were in sub-

stantial agreement with the laboratory in situ results for these coatings. However,

gross disagreement was observed between the flight data and conventional pre- and

post-test measurements. The results of the in situ measurements coupled with the

flight data lead to the incontestable conclusion that all prior uv radiation test data

based on pre- and post-test measurements of optical properties performed in air must

be critically reexamined. For this reason, considerable data of this nature which

have been published prior to 1966 (during the period of this survey) have not been

included in this report.

2° 3 SELECTION OF COATINGS

The coatings to be evaluated in this program were selected on the basis of evidence

available in the literature in 1966 which indicated high total hemispherical emittance,

low solar absorptance, and stability in the space environment. The majority of

13



the exposure data available at the time of the selection was from post-exposure
reflectance measurements in air and are therefore not reliable for someof the sys-

tems. In making the selection of materials recommendedfor study, the following
criteria were considered:

• Thermal stability

• Stability under ultraviolet irradiation
• Solar absorptance and total hemispherical emittance
• Adhesion characteristics

• Compatibility with substrates

From the data compiled during the literature and technology survey, ten candidate

coating materials were selected for detailed evaluation of the stability of optical prop-
erties under ultraviolet radiation in vacuum at elevated temperatures. These candidate

coatings are tabulated in Table 2-1. Experimental data on the effects of ultraviolet

radiation are shownin Table 2-2. Overall coating evaluations are presented in

Table 2-3.

The sodium silicate coating systems were eliminated becauseof poor stability in

ultraviolet radiation at elevated temperature, as shownin Fig. 2-3 and Table 2-2.

Also, the titanium dioxide/polyvinyl butyral coating was eliminated becauseof its

marginal ultraviolet stability evenat room temperature and lower. The coatings
listed in Table 2-4 were recommendedas candidates for the 390° to 530°K range and

the 295 ° to 390°K range. This recommendation was approved, and these coating

materials were tested during the program. Complete descriptions of these coatings

are contained in Appendix A.
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Table 2- 1

CANDIDATE COATING MATERIALS

Class Binder Pigment Source

Inorganic

Inorganic

Inorganic

Inorganic

Inorganic

Inorganic

Organic

Organic

Organic

Potassium Silicate

Sodium Silicate

Potassium Silicate

Potassium Silicate

Aluminum Phosphate

Potassium Silicate

Methyl Silicone

Methyl Silicone

Polyvinyl Butyral

Optical Solar Reflector (a)

Zirconium Silicate

Lithium-Aluminum Silicate

Lithium-Aluminum Silicate
Zinc Oxide

Chromium-Cobalt-Nickel Spinel
with Stannic Oxide Overlay
Aluminum Silicate

Zinc Oxide

Titanium Dioxide

Titanium Dioxide

LMSC

LMSC

LMSC

IITRI
AI

Hughes
IITRI

LMSC

American
Cyanamid
LMSC

(a) This system consists of 6 to 8 mils of high purity fused silica with a
vacuum-deposited silver secondsurface.
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Table 2-2

EFFECT OF ULTRAVIOLET RADIATION

Pigment/Binder

Zirconium Silicate/Potassium Silicate

Lithium-Aluminum Silicate/Sodium Silicate

Lithium-Aluminum Silicate/Potassium
Silicate

Zinc Oxide/Potassium Silicate

Stannic Oxide Overlay on Chromium-Cobalt-
Nickel Spinel/Aluminum Phosphate

Aluminum Silicate/Potassium Silicate

Zinc Oxide/Silicone

Titanium Dioxide/Silicone

Titanium Dioxide/Butyral

Optical Solar Reflector

Initial Final Exposure

c_ s _ s (sun-hr)

0.13 0.42 7200
0.11 0.21 600

0.16 0.49 280

0.13 0.19 600

0.12 0.32 7200
0.11 0.15 440

0.17 0.33 7200

0.16 0.18 1050

0.35 0.46 3000

0.17 0.22 1000

0.18 0.27 7200

0.23 0.26 440

0.18 0.39 320

0.18 0.22 3500

0.19 0.27 2700

0.05 0.05 430

Temperature

(°K) (°F)

530 495
292 67

530 495

292 67

530 495
292 67

530 495

305 90

589 600

292 67

530 493

335 145

530 493
292 67

292 65

292 65

Data

Reference

(27)

(IO)

(22)

(io)

(27)

(a)

(27)

(23)

(55)(a)

(9)

(27)
(27)

(27)
(45)

(a)

(48)

Coating
Source

LMSC

LMSC

LMSC

IITRI

AI

Hughes

IITRI

LMSC

American

Cyanamid

LMSC

(a) LMSC Thermophysics Materials, Investigation Reports.



Table 2-3

OVERALL COATING EVALUATIONS

Pigment/Binder

Zirconium Silicate/Potassium Silicate

Lithium-Aluminum Silicate/Sodium
Silicate

Lithium-Aluminum Silicate/Potassium
Silicate

Zinc Oxide/Potassium Silicate

Stannic Oxide Overlay, Chromium-
Cobalt-Nickel Spinel/Aluminum
Phosphate

Aluminum Silicate/Potassium Silicate

Initial (a)

S

0. ii 0.85

0.13 0.85

0. ii 0.85

0.16 0.85

0.35 0.91

0.17 0.85

Thermal Stability

390°K 530°K

(242 °F) (495 °F)

Good Good

Good Good

Good Good

Good Good

Good Good

Good Good

Adhesion

Good

Good

Good

Good

Good

Good

Substrate

Compatibility
(6061-T6)

Good

Good

Good

Good

(b)

Good

Zinc Oxide/Silicone

Titanium Dioxide/Silicone

Titanium Dioxide/Butyral

OSR

0.18 0.85

0.18 0.85

0.19 0.85

0.05 0.80

Good Poor

Good Poor

Good Poor

Good Good

Fair

Fair

Fair

Fair

Good

Good

Good

Good

Predicted
Ultraviolet

Stability
250°F 500°F

Fair Fair

Good Poor

Fair Fair

Good Fair

- Fair

Good Fair

Good -

Fair -

Fair -

Good Good

(a) Room Temperature

(b) 1100 Aluminum Substrate



Table 2-4

RECOMMENDEDCOATINGS

Temperatures to 533°K (500°F)

Zinc Oxide/Potassium Silicate

Zirconium Silicate/Potassium Silicate

Aluminum Silicate/Potassium Silicate

Temperatures to 394°K (250°F)

Zinc Oxide/Methyl Silicone

Titanium Dioxide/Methyl Silicone

Zinc Oxide/Potassium Silicate

Temperatures to 339°K (150°F)

Optical Solar Reflector

Coating Source

IITRI

LMSC

Hughes

IITRI

LMSC

IITRI

LMSC
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Section 3

SAMPLE PREPARATION

The candidate coatings were applied by their manufacturers to disk substrates of

6061-T6 aluminum supplied by LMSC. The disks, 2.54-cm (1-in.) diameter by 0. 050
in. thick, were polished on ane side and edgeto obtain an emittance of 0.03 + 0.01.

The emittance of each disk was inspected using a Lion Research Corporation Optical

Surface Comparator to ensure conformance to the established standard. The surface

to be painted was machined to a 30 _= 3 rms finish. A number of disks were randomly

selected, and the surface roughness measured using a Micrometrical Manufacturing

Company Proficorder. The results indicated that the machine surfaces were within the

specified tolerance. The disks were instrumented for temperature measurement by

inserting 1/4-in. long, 26-gage pins of constantan and chromel into the edge. The

constantan-chromel combination was selected for its high thermoelectric emf and

stability in the temperature range of interest. The pins were inserted 1/8 in. into the

disk and were peened to ensure mechanical and electrical integrity. The pins were

located 90 deg apart to give the sample stability when it is suspended in the chamber.

The calorimetric absorptance method requires that the specific heat of the substrate be

accurately known. To provide these data, the specific heat of the 6061-T6 aluminum

stock from which the substrates were cut was determined by LMSC. The method con-

sisted of measuring the enthalpy of the material as a function of temperature using a

flooded ice-mantle drop-type calorimeter. Enthalpy versus temperature data was

fitted to the formula

= + alT + a 2T 2 + a3 T-1AH32 ao
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using a least-square method. The computationwasperformed using a digital com-

puter. Specific heat was calculated from the derivative with respect to temperature

of the enthalpy equation. The specific heat and data are shownin Fig. 3-1. Maximum

uncertainty in specific heat data is calculated to be 3%.
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Section 4

EXPERIMENTAL APPARATUS

4.1 THERMAL CYCLING

The ability of the coating systems to withstand thermal stresses was evaluated by

cycling two samples of each coating-substrate combination four times between their

maximum intended operating temperature and 83 °K (-310°F).

Samples of the coatings were tested in the thermal cycling apparatus shown by Fig. 4-1.

The apparatus consisted essentially of a sample holder, vacuum system, temperature

control systems for the sample holder, and recorder for continuously monitoring

coating substrate temperature. The sample holder was supported on the stainless

steel base plate of the vacuum chamber within a glass bell jar. The system was

pumped through a liquid nitrogen trap with a 4-in. oil diffusion pump and 5-cfm

mechanical pump.

The sample holder, Fig. 4-2, was a machined copper block having six flat surfaces

for mounting of the specimens. A 500-W cartridge heater was incorporated into the

upper portion of the block, and a copper cooling coil, for passage of liquid nitrogen,

was brazed to the lower end of the block. Heater power was controlled with a variable

transformer. The cooling rate was controlled using two solenoid valves which regu-

lated the flow of liquid nitrogen to the block by a bypass arrangement. This permitted

maximum flow of liquid at the start of the cycle in order to achieve the required initial

rapid cooling rate and then a reduction in flow to decrease the rate as a function of

time.
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Fig. 4-1 Temperature Cycling Apparatus 

Fig. 4-2 Sample Holder 
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4.2 SPECTRAL REFLECTANCE MEASUREMENT APPARATUS

Pre- and post-test values of solar absorptance for each coating system were determined

from room temperature near normal spectral reflectance measurements over the wave-

length region of 0.27 to 1_ 8 pro. Pre-test total hemispherical emittance was calculated

from room temperature near normal spectral reflectance measurements from 2.0 to

25.0 pm. A Lion Research Corp. Optical Surface Comparator was also employed to

obtain a room temperature emittance value for each specimen of a given coating system.

The solar absorptance of test samples was determined by two separate procedures.

The first method was by measurement of the spectral reflectance, 0.27 to 1.8 # m,

with a Cary Model 14 spectrophotometer with an integrating sphere attachment. The

resulting spectral data are then integrated against the Johnson curve (Ref. 52) to obtain

solar reflectance from which the solar absorptance is inferred from Kirchoff's law.

The Cary sphere is small and has relatively large apertures for entrance and exit of

sample, reference, and sphere illumination beams. The sphere is illuminated by

external optics and the reflected sample energy is directed to the entrance slits of the

monochromator. Because of large apertures, a bright spot from the illuminating beam,

and the small sphere size, it is obvious that the instrument has significant sources of

error. The absolute magnitude of error is considerably reduced by establishing opera-

tional procedures which circumvent the major difficulties. Normal operations in the

laboratory call for calibration of the system against a known first surface aluminum

mirror. This is done by setting reflectance values at each wavelength to correspond

to the known mirror properties. Unknown samples are then run, and the reading is

obtained in absolute reflectance units. This procedure minimizes but does not elimi-

nate effects of the apertures and bright spot. T] "i data obtained are relative in the

sense that the instrument is initially calibrated against a known surface. Therefore,

continuous checks must be made to assure the validity of the values used for the

calibration. The instrument is used as a control for large numbers of samples since

it is easily operated, is fast, and within limits has reasonable accuracy. Where

changes in spectrum or comparisons among identical samples are desired, it is a

highly useful laboratory tool.
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In view of the relative nature of Cary results,it is also necessary to obtain a limited

number of absolute measurements to verify the Cary spectrum. These measurements

were performed on a single beam Gier-Dunkle Model SP210integrating sphere attached

to a Perkin-Elmer Model 98 monochromator. This sphere is much larger than the

Cary (24-cm diameter), has only two small apertures (entranceport 2.54-cm diameter,

detector area - 2.5-cm diameter), and does not suffer from direct sample illumination

of the detector. The sample is centrally mounted in the sphere and may be rotated at

angles from 0 to 90 deg relative to the entrance port. Whenthe sample is normal to

the port, its shapefactor to the hole is approximately 0. 011. This construction per-

mits direct measurements of the absolute reflectance of test samples and also permits

cross checks which verify the validity of data obtained.

In normal operation, a 2.54-cm disk sample is mountedon the sample holder and

rotated 10deg off axis from the entry port. Monochromatic energy is then directed

alternately to the sphere wall andthen to the sample. Detector response is ratioed for

eachbeam position with the ratio of response being directly the absolute reflectance of

the sample. Detector response is rated for each beam position with the ratio of re-

sponsebeing directly the absolute reflectance of the sample. This procedure is re-

peated for each required wavelength throughout the spectral region of 0. 275to 2.75 pm.

The data are then integrated against the Johnson curve to obtain the solar absorptance.

The Gier-Dunkle instrument has an inherent accuracy of 0.01% in determination of

spectral reflectance. When initial measurements are made using the Gier-Dunkle

sphere and the results used to calibrate Cary measurements on identical samples, the

accuracy in reflectance for the latter instrument is 0.02.

Measurements of spectral reflectance between 2 and 25 pm, are made with a Gier-

Dunkle Model HC-300 heated cavity reflectometer, which is used in conjunction with

a Perkin-Elmer Model 98 monochrometer and a Brewer Model 129 chopper-amplifier

system. The optical system is a single-beam, double-pass arrangement. Near-normal

reflectance measurements are made point-by-point at each wavelength of interest. For
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most sample surfaces, the limit of precision is on the order of + 0. 002, and the

maximum absolute error is no greater than :_0.010 of the value of the measured re-

flectance, dependingon the surface characteristics and reflectance of the sample.

The heatedcavity reflectometer contains a cooled sample that is irradiated by a
surrounding hot cavity. Radiant flux reflected from the sample, in a small solid

angle about the polar and azimuthal angles to the surface, fills the entrance slit of

the monochrometer. The major sources of measurement error are associatedwith

nonuniformity of the cavity wall intensity and with sample emission. Principal con-

tributors to nonuniform intensity are (i) the presence of the water-cooled sample and

sample holder, (2) specularity of the cavity walls, (3) temperature gradients along
the cavity walls, and (4) the presence of the viewing port. By careful design of the

cavity and sample-holder geometry and of the cavity heater circuits, the effects of

the first three factors are reduced to negligible proportions relative to the viewing-

port error. For a perfectly diffuse sample, the shapefactor from the sample to the

viewing point is 0. 035 cos 0. Thus, at near-normal viewing angles, an error of
3.5% is introduced. For a perfectly specular sample, the measurement at 0 = 0 deg

is invalid since the reflected flux viewed from the sample originates from the viewing

port itself. At angles of 0 greater than about 15 deg, however, there is no error

for a specular sample since the reflected flux then originates entirely from the cavity

wall. For an arbitrary sample that is neither perfectly diffuse nor perfectly specular,

some knowledge of the reflectance distribution function or bidirectional reflectance

is necessary to assess the viewing-port error.

For the low infrared reflectance radiator coating sample materials, the emission

error is minimized because the coatings are relatively thin and they are mounted on

good conducting substrates (6061 aluminum). Using a high coolant flow rate, the sur-

face temperature of the sample is maintained near room temperature. Measurements

on the samples were performed at several coolant flow rates, and no change in reflec-

tance was observed. Thus, the sample emission error is negligible for these

specimens.
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The error introduced by stray energy scattered by the optical components of the

monochrometer is minimized by the use of a scatter plate at long wavelengths (i. e.,

X > 11 pro) and by filters.

A Lion Research Corporation Model 25 emissometer was used for comparative meas-

urement of the room temperature emittance of each coating specimen. This unit is a

radiometric comparison instrument that functions in the following way: First, the

detector views a 0.9-in.-diameter surface area. Energy emitted from the surface

passes through a KRS-5 window and is detected with a cooled thermopile that is mounted

in an evacuated chamber. Before each measurement, the detector output is calibrated

using three standards. The temperatures of the standard and the specimen are keptthe

same for a measurement. The standards for the measurements have total hemispher-

ical emittances of 0.59 and 0.98.

4.3 EXPOSURE APPARATUS

The experimental exposure apparatus, shown in Figs. 4-3 and 4-4, consists of a vac-

uum chamber with liquid nitrogen cooled walls, a xenon lamp for the ultraviolet radi-

ation source, a tungsten lamp source for maintaining the desired sample temperature,

and the necessary controls and instrumentation for measuring sample temperature and

monitoring and controlling the xenon and tungsten lamps. The vacuum is maintained

by an electronic pump.

4.3.1 Vacuum Chamber

The vacuum chamber is a cylinder 30.5 cm (12.5 in. ) in diameter and 63.5 cm (25.0 in.)

long mounted in its major axis in a horizontal plane. It is capped with removable

end plates sealed with O rings. Two 5.1-cm (2.5-in.) diameter Suprasil windows are

provided, one in each end on the centerline of the cylinder, to transmit the ultraviolet

irractiation and the energy from a tungsten lamp source to maintain the sample at the

required temperature. The Suprasfl windows were selected for stability in the long-

term ultraviolet environment. Exterior shutters are provided to allow the energy to
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be removed from the samples without disturbing the energy source. In addition, the

chamber is equipped with 5.1-cm (2.5-in. )- diameter quartz inspection windows in the

center of the cylinder and perpendicular to its centerline. Inside the vacuum chamber

is a split copper liquid-nitrogen reservoir (Fig. 4-5), the halves of which may be sep-

arated to allow insertion of the test sample. The interior of the cold wall is painted

black to ensure a diffusely absorbing heatsink. The paint is a Finch Paint and Chemical

Co. "Cat-a-lac" fiat black, Code 463 -3-8, consisting of a carbon pigment in an epoxy

binder. The LN 2 reservoir is automatically maintained nearly full by use of a timer-

controlled fill system. The sample, suspended by the 0. 003-in.-diameter thermocouple

leads, is installed through a vacuum lock on the chamber with the cold wall in the sep-

arated position.

4.3.2 Vacuum System

The vacuum system consists of a Varian "VacSorb" forepump and a Varian 140 liter/

second "VacIon" main pump. An ion gage is provided to measure chamber pressure.

In addition, the electronic pump power control unit has a calibrated output which is

connected to a recorder for continuous monitoring of pump pressure. The system

operates at a pressure of not greater than 1 x 10 -7 Torr. The vacuum system was

modified during 1967 by the installation of a turbomolecular pump to increase the reli-

ability of the exposure apparatus. The addition of this pump eliminated the possible

loss of vacuum due to "VacIon" pump shutoff which occurs during gas burst loads or

warming up of the liquid nitrogen reservoirs. It also is used when starting a test to

reduce chamber pressure to a value such that ion pump starting time is less than 1 min,

and, therefore, possible damage to the sample by pump starting discharge is eliminated.

The added pump is a complete turbomolecular pumping system, Welch Model 3102A.

The system consists of a 260 liter/sec No. 3102 turbomolecular pump, a closed sys-

tem mechanical refrigerator for continuous cooling of bearing housings, and a Welch

"Duo-Seal" No. 1397 Fore Pump with connected valving to theturbomolecular pump.
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This turbomolecular system has a blank-off pressure of 2 x 10 -9 Torr. The pumping

speed is 260 liter/sec from 10 -2 to 10 -9 Tort. There is no detectable migration of

forepump fluid vapors back into the system. The pump is connected to the two ex-

posure chambers through pneumatically operated valves. The turbomolecular pump

is used to rough down tb_ chambers to 10 -6 Torr and then used as a standby for the

VacIon pumps. The pneumatically operated valves are controlled by a relay which is

actuated by chamber pressure. A significant rise in pressure will connect the turbo-

molecular pump to the chamber until good vacuum conditions are reestablished.

4.3.3 Ultraviolet Source

The ultraviolet source is a 900-W Hanovia xenon lamp, Model 538-CL, mounted in

an Orion Optics Corporation universal lamp housing, Model C-60-50-5-15. This

lamp housing uses a 11.5-cm (4.5-in.) focal length, 3.8-cm (1.5-in.) diameter quartz

condensing lens as a collector. The energy collected by the lens is augmented by the

use of a spherical mirror placed behind the lamp to reimage the arc back on itself.

The intensity of the lamp is controlled by an Engelhard Hanovia Model 27801, 1000-W,

dc power system, including both a current regulating power supply and a high voltage

RF starter.

The spectral energy distributions of the source were determined at the sample posi-

tion in order to characterize specimen irradiation conditions. Measurements were

performed with the lamp in its housing and the chamber window between the lamp and

specimen position. Distances from lamp to window and window to specimen position

were identical with those used for the exposure testing. In this manner, the effects

of lamp optics and the window were included in the spectral irradiance data.

Xenon lamp calibration was accomplished using a Cary Model 14 spectrophotometer

fitted with a Cary Part No. 50-601-020 radiometer accessory. This accessory

utilizes a rotating integrating sphere to alternately collect the energy from the un-

known source and a calibrated G.E. Type DXW-1000-W quartz-iodide reference lamp.
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Light from the sphere is thenpassed through the entrance slit of the spectrophoto-

meter. The reference lamp (Eppley No. EPI-1228) waspreviously calibrated against
a NBStraceable standard lamp.

Spectral irradiance data at the sample position (39 cm from sphere entrance port) for
the ultraviolet source are shownin Fig. 4-6. These are compared with the extra

terrestrial solar spectral irradiance data of F. S. Johnson (Ref. 52). This lamp was
aged 50hr prior to measurement. Spectral irradiance measurements were also made

on lamps which had been operated 1000to 1500hr. For these lamps, operated at power

levels which gave the same total irradiance at the sample location as a new lamp, a
10 to 15%decrease in energy in the 0.20- to 0.40-pm spectral bandwas observed.
Comparative bandenergy data are shownin Table 4-1.*

Table 4-1

COMPARISONOF XENONSOURCEENERGIESAS A FUNCTION OF
LAMP OPERATING TIME

Spectral Irradiance (W/cm2)
Band

Solar Xenon Lamp XenonLamp
(pro) (Ref. 52) (50 hr) (1500hr)

0.20/0.40

0.40/0.60

0.60/0.85

0.0126

0.0392

0.0356

0.0127

0.0331

0.0522

0.0109

0.0315

0,0539

Uniformity of the source total irradiance at the sample position was determined by
traversing across the beam using a thermopile detector. The radial variation in

energy did not exceed 10%within 1 cm of the center of the sample position, Fig. 4-7.

The irradiance as a function of distance along the optic axis was determined using a
1-cm aperture thermopile. A 1-cm variation in sample position resulted in less than
5%variation in irradiance, Fig. 4-8.

*As measured by an Eppley No. 9780Thermopile located at sample position.
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Fig. 4-6 Spectral Irradiance of Xenon Ultraviolet Source at Sample Position
Compared to Extraterrestrial Solar Spectral Irradiance at 1 A. U.
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Monitoring of the xenon source during a test was accomplished using an Eppley

thermopile which was mounted exterior to the chamber and at the sample distance

from the source as the test specimen. Energy was directed onto the thermopile by

inserting a first surface mirror into the beam betweenthe source housing and the

exposure chamber. Both total irradiance and irradiance in the 0.23- to 0.42-prn band

were monitored. A Corning No. 7-54 filter was used for the spectral monitoring. A

Coming No. 2-63 filter was employedto correct for the 0.55- to 1.25-pm transmission
band of the 7-54 filter.

4.3.4 Tungsten Lamp Radiant Heater

A tungsten lamp is used to provide the additional energy necessary to maintain the

samples at the required temperature. A 1000-W tungsten iodide lamp, GEDXW, with

a light pipe arrangement, is used to provide heating of the back surface of samples.

The light pipe shownin Figs. 4-4 and 4-5 consists of a short external aluminum tube,

polished on the inside, which extends from the lamp to the exterior of the chamber

window. A spherical mirror mountedin back of the lamp augmentsthe energy col-

lected by the light pipe. The internal light pipe is a polished copper tube extending

from the chamber window to the sample. The tube is attached to th_ liquid nitrogen

cold wall, and its exterior surface is coatedwith a diffuse black paint. The end of

the tube adjacent to the sample is fitted with a sapphire window. The optical and

thermal properties of the window are such that it appears, to the sample, to be iden-

tical tu the cold wall. This has beenverified experimentally in the apparatus by

measuring the slope of the temperature decay of the sample with the sample in normal

position and then rotating the sample 90 deg and remeasuring temperature decay.

Comparison of results indicates no errors are introduced by the tungsten source light

pipe.

The tungsten source is controllable and programmable, thus the sample canbe main-

tained at a given temperature or thermally cycled automatically. The control system

andpower supply consists of four major interconnected components. A Leeds and

Northrup Speedomax W AZAR recorder provides a continuous record of sample
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temperature. A slide wire output from the recorder is fed into a Leeds & Northrup

current adjusting type set point controller. The controller regulates the power output

from a Leeds & Northrup SCR, which in turn controls the intensity of the tungsten

lamp. When the sample is to be temperature cycled, an RI Controls, "Data-Track"

card programmer is used to provide the desired reference signal for control of the

cycle.
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Section 5

EXPERIMENTAL PROCEDURES

5.1 THERMAL CYCLING TEST

All coatings were thermally cycled, in duplicate, four times from their maximum

intended operating temperature to near liquid nitrogen temperature. Chamberpressure
was maintained at 5 x 10-6 Torr or lower during testing. The rate of temperature

changeduring cooling was selected to simulate the cooling of a gas radiator in space,

with the heat source removed, whenthe radiator is in the earth's shadow. Calculations

of the cooling curves were based upona 0. 159 cm (1/16 in. ) thick 6061-T6 aluminum

fiat plate radiator having a coating with a 0.85 total hemispherical emittance on both

faces. Figures 5-1 and 5-2 show the calculated cooling curves for the 395°K (250°_

and 533°K (500°1_operating temperatures and the actual cooling curves as measured

during the testing. Each cycle consisted of holding the sample at test temperature

(395° or 5330K)for 1/2 hr, a cooling period for 6 hr, and a 17.5-hr period during

which time the sample temperature slowly increased to 300°K (80°F). The specimen

was then brought to test temperature within 10 rain and the cycle repeated. Specimens

were attached to the holder at the edgeof the disk at two points 180deg apart, using

No. 8-32 stainless steel screws andwashers. As heating and cooling were by con-

duction between the copper block and substrate, a silicone heat-transfer grease (Dow-

Coming DC-340) was placed at this interface to minimize thermal contact resistance.

Sample temperatures were measured using chromel-constantan thermocouples affixed

to the coating substrate. Temperatures were measured using a Minneapolis-Honeywell

(SX!53X-67) multipoint strip chart recorder.

The test criterion was baseduponvisual observation of the coatings during and following

testing with no cracking or spalling evident to the unaidedeye. Also pre- and post-

test photographswere made of each sample lx and 100x magnification.
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5.2 EXPOSURE TEST

5.2.1 Total Source Absorptance

Absorptance measurements are made by alternately heating and cooling the specimen

which is an aluminum disk coated on one surface with the material undergoing exposure.

This specimen is suspended in a vacuum chamber having liquid nitrogen cooled walls,

and the coated surface is exposed to a nearly collimated beam of energy from the

xenon lamp. Energy from the tungsten filament lamp is focused onto the polished

rear surface of the disk for maintaining the specimen at a desired temperature level.

For a disk sample having one side painted, while the edges and other sides are polished

aluminum surfaces, the thermal behavior is described by the following equation:

mCp d---0dT= GHAHaH - _HAHaT 4 - (A e + At) CtaT 4 - CAwT + GtAto_t (5.1)

where

me
P

dT/dO

= sensible heat of specimen

= rate of change of absolute temperature with time

GHAHa H =

CHAHaT 4

(Ae + A t)£tcrT4

CA T
W

energy absorbed from a source of irradiance G H bythe painted

surface A H having an absorptance for the source spectral

distribution of c_H

= energy emitted by painted surface area A H at temperature T

with surface emittance eH

= energy emitted by the back surface area A t and the edge

surface A e at temperature T with surface emittance c t

= energy transferred from the sample by thermocouple lead

wires

GtAt_t = energy absorbed from tungsten lamp source of irradiance Gt

by the sample back surface A t with absorptance a t for the

lamp spectrum
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If the sample is held at a constant temperature by the tungsten lamp and thenexposed

to irradiation at the front surface by a solar simulation source at a constant energy
level, the heating response is:

mCp(_---_T) = GHAHOZ H - CHAHaT4 - (Ae + At)ct_Th - CAwTh + GtAtoz t
h

(5.2)

By blanking off the solar simulation source with a shutter, and maintaining the tungsten

source constant, the cooling response is:

p(dj) 4 At) ct(rT 4mc = - _HAHaT - (A c + - CA T + GtAtc_t (5.3)
C _ W C

Subtraction of the cooling response from the heating response yields:

Let

Then

and

mCp d-Oh - _c = GHAH_ H for Tc = Th (5.4)

h R h and = R c

mcp(R h - R e) = GHAI_ H (5.6)

: mcp(%- %)
H GHA H

(5.7)

Total source irradiance, G H , is measured for each data point using a thermopile

detector located exterior to the chamber. Measured irradiance is corrected for

window transmission and mirror reflectance to yield sample irradiance.
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5.2.2 Conversion From Source to Solar Absorptance

From the spectral irradiance Hk incident on the sample and the spectral absorptance

of the sample, the source absorptance _H may be converted into a solar absorptance

as The value of _H obtained in the preceding manner may be written as

o_H

O(3

= 1H f _kHk dk
O

The solar absorptance may be written as

oO

ifs - S _kSk dA (5.8)
O

Thus,

f ozkSkdk
Ho

C_s = a Ng _ (5.9)

_xHx dx
0

A knowledge of the spectral absorptance of the sample is required to convert from a

source absorptance to a solar absorptance. Absorptances obtained from pre- and

post-test reflectance measurements may be used, but these are valid only for coating

systems which ao not exhibit partial recovery of the ultraviolet damage upon reexposure

to air (Ref. 53). Also, if absorptance data are desired as a function of time during

continuous exposure, some spectral data are required at each time interval. Broad-

band spectral measurements are made to form a basis for shifting the original spectral

absorptance curve as the surface degrades. This permits an increased accuracy in

the conversion from source absorptance to solar absorptance both during testing and

for the final value at the completion of the exposure.
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5.2.3 BroadbandSpectral Absorptanee

Broadband spectral absorptances are determined by the use of sharp cut-off filters,

Coming filters Nos. 7-57, 2-63, and3-75. Transmissions of theseare shownplotted

in Fig. 5-3 with the relative spectral distribution of a xenon lamp. This choice divides

the absorptances into four regions; 0.2 to 0.41, 0.41 to 0.60, 0.60 to 0.85, and 0.85

to 2 #m. The absorptances are determined from the filter transmissions and the spectral

distribution of the source. From the relation

mC

_H = ----'P--
AHG H (Rh - Rc)

Let

mC
_.P-. =

AHG H KH

then

o_H = KH(R n - Rc)

(5.10)

Placing the 3-75 filter, fl ' in front of the xenon lamp then

A

fl - Tf I(R n - Rc)fl (5.11)

where Tfl is the transmission of the 3-75 filter for the xenon source, and Rh and

R are the measured heating and cooling slopes for the sample with the filter inter-
c

posed between the sample and source. Likewise for the other two filters, filter

2-63 = f2 and filter 7-57 = f3 ,we have

_f2 Tf-2(Rn - Rc)f2
(5.12)
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and

= __ (R n - Rn)f 3
_f3 Tf 3

(5.13)

The transmissions _'fl ' Tf2 ' and _'f3 are measured using the xenon source and

an Epply thermopile. Thus, the total transmission of the filters weighted for the

spectral distribution of the xenon source is determined directly.

The relative distribution of the xenon source in the four spectral bands is determined

using two identical sets of the filters. By measuring the transmission for one filter

and then for both filters, the transmission of the filter in its transmission band is

determined. Dividing the transmitted signal by this transmission band transmission

and the total signal we have the percentage energy of the xenon lamp source in the

transmission band of the filter. Subtracting this from 100 gives the percentage energy

in the cut-off region of the filter. In this manner the percentage energies of the source

E 1 , E 2 , E 3 , and E 4 in the four spectral regions shown in Fig. 5-3 are determined.

The band absorptances may now be calculated. For the total absorptance and filter fl

the following relationship applies

GH = EI_ 1 + (1 - E1)_fl , total (5.14)

where G1 = G0.2 to 0.41#m

For filters fl and f2 we have
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- (1 - E1) fl

E 1

(1 - E1)_fl = E2_ 2 + [1- (E 1 + E2)]_f2

[1 - E 1 + E 2]_f2

c_2 = (1 - E1)_fl E2 for 0.41 to 0.6#

(5.15)

(5.16)

(5.17)



For filters f2 and f3 we have

(1 - E1 - E2)o_f2 = E3_ 3 + (1 - E 1 - E 2 - E3)_f3 (5.18)

(1 - E 1 - E2)(_f2 - (1 - E 1 - E 2 - E3)o_f3

a 3 = E3 for 0.6 to 0.85pro (5.19)

For the wavelength region a4 from ), > 0.85 #m the absorptance of this regionis given

by the 7-57 filter or thus
af 3

_4 (5.20)= _f3

5.2.4 Uncertainty Analysis

The total source absorptance is determined from Eq. (5.7)

= mcp(Rh - Rc)

_H GHA H

The maximum probable error of a variable M = f(w,y, z) is given by the relation

3M 2fl/2
AM= (5.21)

Thus, for the above equation we have the maximum probable error in aH given by

i/2

(5.22)
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Data typical for the samples measured result in the following uncertainty:

/kC
m = 1.70g p = 0.05"

C
P

c = 900 J °K
P K-g AG

oz = 0.20
H

G

AR

GhA H = 1.0W R h -R c

R h - R c = 7×10 -1 °K/sec Atom

AA
Am _ 0. 003
m A

0.03

0,006

- 0. 003

- 0.0020

Thus, the maximum uncertainty in source absorptance, _H ' is 5.9%. The total solar

absorptance is determined from Eq. (5.9)

co

HaHf (_%S%d},
O

c_ = (5.23)
S ov

S _ _xHxdX
O

A parameter N is established which relates the spectral absorptance and the solar

and source spectrums. It is defined as:

oo

0

oo

f oz_H_d_
o

*Includes effect of uncertainty in coating heat capacity on total heat Capacity of coating

plus aluminum substrate.
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Therefore :

For a material having an absorptance of 0.2, the calculated uncertainty, based upon

spectral absorptance data, is 9.3%.

For the broadband absorptance measurements, consider a filter which transmits all

the source radiant energy above 0.4 pin. The probable error given as

m = 1.7g

c = 900 J °K
p

o_H = 0.20

GHA H = 0.83 W

(R h - Rc) = 1.2 xl0-1 °K/sec

Am
= 0. 003

m

+ I_o__ (_2)_.

AA
- 0. 002

A

AG
- 0.03

G

Ac
p =0.05

C
P

AIR

(R h - Rc)
- 0. 0035

AT'
-- = 0.02

T'

+(_)_+_f%A,,_"c)_]'/*
(5.25)

Where T is the transmission of filter and AT its uncertainty.

A_H 1
= 7.9%

°_H 1
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For a filter which transmits all the source radiant energy above0.6 pln, the probable

error is 8.7%, and for a filter which transmits all the source radiant energy above

0.8 tam, the probable error is 12.0%.

In summary, the maximum uncertainty for the xenon source absorptance value is 5.9%.

The maximum uncertainty in the solar absorptance value computed from the broad-

band spectral absorptance data is determined by the uncertainty for each of the broad-

band spectral absorptances weighted against the energy in each spectral band. This

is calculated to be 12% for the data reported here.

5.2.5 Total Hemispherical Emittance

The total hemispherical emittance of the coating is determined by blanking off both

incident beams from the xenon and tungsten lamps, and recording the temperature

response of the sample.

With G T = Gh -- 0, Eq. (5.2)becomes

d T CTH AHCrT 4 A t) ct_T 4mCpd-_ = - - (Ae + - CAwT (5.26)

I °T ]Cp d-_ + (Ae + At)ct crT4 + CA T
= _ w (5.27)

CTH AH_T 4

This relationship permits computation of CTH from the temperature history recorded

during cooling and a knowledge of m • Cp. The measured emittance of the aluminum

edges and backface of the disk provides a very low value of c t making the second

term small in comparison to the first. Also, the sample is suspended in the

chamber by 3 mil thermocouple wires which makes the third term in Eq. (5.27) negli-

gible. The specific heat is that of the coating-aluminum disk combination. Substrate
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specific heat is knownto 3%. For some of the coatings, actual specific heatmeas-

urements had been made earlier on the coating material under a separate program.

For those which had not beenmeasured, specific heat was calculated using the law

of mixtures from data in the literature on the various constituents of the system.

For these specimens, the mass of the coating was less than 10%of the total. Thus,

a 20%error in calculated coating specific heat results in a 2%error in specific heat

of the composite. The calculated maximum uncertainty in ETH is 0.04 for the

specimens tested in this program (i. e., for an CTH of 0.86, the uncertainty results
in eTH = 0.90/0.82).
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Section 6

EXPERIMENTAL RESULTS

6.1 THERMAL CYCLING TEST

No evidence of cracking or spallation of any of the coatings wasobserved by the unaided

eye or at 100×magnification. The areas directly adjacent to the mounting screws were

disregarded during the examination as clamping pressures could haveintroduced
stresses at thesepoints which are not relevant to the purpose of this test. Both sam-

ples of the aluminum silicate/potassium silicate coating had several areas of aslightly

brown appearanceduring andafter testing. Onesample had a greater number of dis-

colored brown spots than the other. Room temperature spectral reflectance measure-

ments were performed on these samples after the test. The sample solar absorptances
calculated from these data showedan increase of 0.04 for one specimenand 0.07 for

the other. No attempt was made to determine the cause of this discoloration. However,

it was extremely improbable this could be attributed to contaminationby the test system.

Four other specimenswere tested in the chamber at the same time andthey showedno
evidence of discoloration.

6.2 EXPOSURETEST

Test samples of seventhermal control coatings were exposedto uv irradiation at a
1-sun level. The exposure conditions and a summary of the results are presented in

Table 6-1. During the screening tests, the samples were cycled to room temperature

every 4.7 hr. Cycle time was 10min.
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Table 6-1

SUMMARY OF ULTRAVIOLET EXPOSURE TESTS

Coating

Titanium Dioxide/

Methyl Silicone
(Thermatr})l 2A- 100)

Zinc Oxide/Methyl

Silicone (S-13)

Zinc Oxide/Methyl

Silicone (S-13G)

Zirconium Silicate/

Potassium Silicate

Aluminum Silicate/
Potassium Silicate

Zinc Oxide/

Potassium Silicate

(Z-93)

OSR

(a)

_)
(c)

Spec. Time

No. (hr)

1 550

27 500

28 636 (a)

43 500

44 520

9 100

14 500

19 122

21 530

35 502

36 331 (a)

40 1004

38 50O

39 4574 (a)

59 i0,014

56 2024

42 2001

I 60 2024

Tempe rature ETH
Initial

"K °F Initial Final C_Lry Cal.

S

Final
_._

S

Vacuum system or instrumentation failure during test.

395/250 0.87 0.85 0.15 0.18 0.26

395/250 0.86 0.86

395/250 0.85 0.87

395/250 0.90 0.91

395/250 0.91 0.91

534/500 0.80 0.71

534/500 0.71 0.71

534/500 0.72 0.72

534/500 0.82 0,81

534/500 0.81 0.81

534/500 0.81 0.81

450/350 0.87 0.87

422/300 0.88 0.88

422/300 0.91 0.88

422/300 0.88 0.88

366/200 0.89 0.89

300/80 0.90 0.88

339/150 0.80 0.79

0.32 0. ii 0.14

0.18 0.21 0.28 0.28 0. i0 0.07

0.19 0.20 0.31 0.30 0.12 0. i0

0.19 0.20 0.31 0.28 0.12 0.08

0.20 0.19 0.27 0.25 0.07 0.06

0.12 0.13 0.36 0.36 0.24 0.23

0.12 0.12 0.51 0.42 0.39 0.30

0.14 0.20 0.41 0.46 0.27 0.26

0.14 0.16 0.45 0.50 0.29 0.34

0.14 0.12 0.26 0.25 0.12 0.13

0.14 0. ii 0.42 (a) 0.30 (b) 0.19 (a)

_ B

! 0.14 0.12 0.23 0.26 0.12 0..14

0.14 0.14 0.20 0.19 0.06 0.05

0.14 0.11 0.34 (a) 0.16 (b) 0.05 (a)

0.15 0.14 0_21 0.20 0.06 0.06

0.15 0.14 0.21 0.20 0.06 0.06

0.14 0.14 0.17 0.18 0.03 0.04

0.06 0.06 0.06 0.06 0,00 0.00

Post-test Cary taken after vacuum failure; substantial change in absorptance observed due to test failure.

Test in progress.

Cary Cal. Cary Cal.



6.2.1 Titanium Dioxide/Methyl Silicone (Thermatrol 2A-100)

Specimen 1 was exposed at the 1-sun level for 500 hr at 395°K (250°F). At 245 hr the

electronic pump shut off and chamber pressure rose to 20-50 p. The pump was re-

started and data taken as soon as chamber pressure was decreased to the operating

level of 6 x 10 -8 Tort. These data showed that a had decreased from the last value
s

computed before vacuum failure. The solar absorptance slowly increased after vacuum

was reestablished and the final value of _s was 0.32 after 550 hr of uv exposure. The

absorptance and total hemispherical emittance data as a function of time are shown

graphically by Fig. 6-1. Total hemispherical emittance at 395°K (250°F) was meas-
+0.01

ured to be 0.87 -0.02 over the entire test period. The absorptance and emittanee data

are contained in Table B-1.

The decrease in solar absorptance observed after the vacuum failure is in agreement

with the data reported by McMillan et al. (Ref. 53) and is believed to be associated with

recovery in the near infrared region due to the presence of oxygen. Room temperature

normal spectral reflectance data taken at 5 min and 30 min intervals after exposure of

the specimen to air show the recovery phenomena (Fig. 6-2).

Solar absorptance appeared to reach a saturation level of 0.32, Aa = 0.14, afters

400 hr under these exposure conditions. If the vacuum failures had not occurred, it

is estimated the solar absorptance would have been essentially constant after approxi-

mately 200 hr. The change in _ during this test is greater than that reported in Ref.s

53 for room temperature exposure to an AH-6 lamp (mercury) at a 1-sun level for the

same time period. The room temperature data, however, reached approximately the

same saturation value. The initial _s value based upon Cary data was 0.15, whereas

the calorimetric value was 0.18. This latter value is in good agreement with the inte-

grated absolute reflectance data from the Gier-Dunkle apparatus, 0.17. The specular-

ity of the coating is felt to account for the lower values measured using the Cary which

has a small integrating sphere. Considering the uncertainty limits for each measure-

ment, the three values of _s all fall within the uncertainty ban (O_Cary = 0.15 + 0.02,

oz =0.17±0.01, _Cal = 0.18±0.02).GD
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6.2.2 Zinc Oxide/Methyl Silicone (S-13)

The results of the calorimetric in situ measurementsmade during the exposure tests
on the duplicate Samples27 and 28 are tabulated in Tables B-2 and B-3. The solar

absorptance and total hemispherical emittance of the two samples as a function of

exposure time are showngraphically by Fig. 6-3. The solar absorptance of Sample27
increased from 0.21 to 0.28 under uv irradiation at a 1-sun level. This increase

occurred during the first 250hours of exposure time with the absorptance remaining

essentially constant after that time. Solar absorptance of Sample28 increased from

0.20 to 0.30 under these conditions. The loss of vacuum for Sample 28at 325 hr is

marked by a partial recovery as is shownby the datapresented in Fig. 6-3. This is

believed to be dueto the oxygenrecovery phenomenadiscussed by Greenberg et al.

(Ref. 14) for the zinc oxide. After reexposure under high vacuum, the absorptance of

0.4 1.0

J
I

0.3 _- A A I Pressure Was Reduced to 6 × 10 -8 Torr
/

0.2

O O SAMPLE 27|
A SAMPLE 28 °_sI
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Fig. 6-3 Solar Absorptance and Total Hemispherical Emittance of Zinc Oxide/Methyl
Silicone (S-13) Coating Samples as a Function of Exposure Time at a
1-Sun Level and 395°K (250°F)
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the sample increased to near its previous level and remained constant for the duration

of the test. Sample28 was exposedfor a total of 636hr. The changein solar absorp-

tance, a s , measured during these tests agrees well with that determined by

S. Greenberg et al. at LMSC using the in situ bidirectional reflectance exposure

apparatus. They report a limiting value of Aa s of 0.09 for the S-13 coating when

exposed at approximately 300°K (80°F). Data from the OSO-II flight experiment show

a change in solar absorptance of 0.06 for 500-hr exposure (equivalent sunhours in

space flight}. As no specimen temperatures are reported for these flight experiment

data, a direct comparison cannot be made with the laboratory data of this program.

After exposure, the sample coatings had turned to a light tan color. The color was

not quite uniform, varying from light tan to almost white for a small portion on one

side of the sample.

Pre- and post-test room spectral reflectance data for the two samples are shown

in Figs. 6-4 and 6-5. The spectral band absorptances are determined from these

reflectance curves and presented in the data tables for the two samples. Comparison

of the > 0.85-pro spectral band absorptances from the in situ data show the near

infrared recovery of this system when exposed to air.

The total hemispherical emittance measured calorimetrically during the exposure test

+0.02 for both samples, and was essentially constant for the test duration.was 0.86 -0.01

Pre-test solar absorptances calculated from spectral reflectance data using the Gier-

Dunkle apparatus were 0.20 for both samples which agrees well with the calorimetric

values of 0.20 and 0.21.

6.2.3 Zinc Oxide/Methyl Silicone (S-13G)

The S-13G coating developed by IITRI was formulated from a zinc oxide pigment treated*

to improve the resistance to degradation in the near-infrared region. The results of

the calorimetric in situ measurements made during the exposure tests of the duplicate

Samples 43 and 44 are tabulated in Tables B-4 and B-5. The solar absorptance and

*See Appendix A.
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total hemispherical emittance of the two samples as a function of exposure time are

showngraphically by Fig. 6-6. Solar absorptance of S-13GSample43 increased from

0.20 to 0.28 under uv irradiation at a 1-sun level. The changein solar absorptance

for Sample44 was not as great as that observed for Sample43; the corresponding

changewas from 0.19 to 0.25. Visual inspection of the sample showedan area on

the side of the sample (approximately 20%of the exposedarea) to be considerably

lighter in color than the remainder of the surface. A slight shift in the beam position

occurred which resulted in this portion of the sample being exposedto a somewhat
lower uv intensity. Therefore, it is felt that the changein a of 0.08 is the relevants
figure. Coating color was a light tan for both samples at the completion of the
exposure tests.

0.4

0.3

00.2

© 0.1

0

mO • __m imm. a • mo • m .
" • -- • m--

_. ,=,=g_" -.-.

O SAMPLE 43}•x SAMPLE 44 °_s

• SAMPLE 43)
• SAMPLE 441 CTH

I I I I I

0 i00 200 300 400 500

EXPOSURE TIME (HR)

1.0

-0.9

-0.8

--0.7

--0.6

600

Z

<

[D

<

O

Fig. 6-6 Solar Absorptance and Total Hemispherical Emittance of Zinc Oxide/Methyl
Silicone (S-13G) Coatings as a Function of Exposure Time at a 1-Sun
Level and 395°K (250°F)
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The broadbandspectral data showthe improvement in the near infrared region for

this coating as reported by IITRI. In the >0.85- m region the final absorptancewas
0.18 for the S-13Gcoating and 0.28 and 0.30 for the S-13 coatings. However, the

changein absorptance from 0.2 to 0.8 p_m is as great or greater than that for S-13,

as is seen in the tabulated data in Appendix B.

Pre- and post-test room temperature spectral reflectance data are plotted in Figs. 6-7

and 6-8 for Samples 43 and 44. These data show a greater degradation in the 0.4-

to 0.85-pro spectral region for Sample 43.

The total hemispherical emittance, measured calorimetrically during the exposure

+0.02 oK
test, was 0.91 -0.01 at 395 (250°F) for both samples and was essentially constant

for the test duration. Initial measurements of CTH as a function of temperature

showed essentially no change for Sample 44 over the temperature range of 295 °K

(70°F) to 395°K (250°F) (0.90 to 0.91). For Sample 43, the measured values of CTH

versus temperature were 0.86 at 295°K (70°F), 0.89 at 339°K (150°F), and 0.92 at

395°K (250°F). No obvious reason is apparent for the small emittance temperature

dependence of this sample. No temperature dependence was evident for either of the

S-13 coatings or the other S-13G coating.

6.2.4 Zirconium Silicate/Potassium Silicate (LMSC)

The results of the calorimetric in situ measurements made during the exposure test

on these samples at 534°K (500°F) are tabulated in Tables B-6 and B-7. The solar

absorptance and total hemispherical emittance as a function of exposure time are

shown graphically by Fig. 6-9. Sample 9 was exposed for a period of 100 hr. The

test was terminated at this time due to a vacuum chamber failure. The second dupli-

cate sample, 14, was exposed for the full 500-hr period. The solar absorptance of

this coating increased from 0.12 to 0.42. Almost all this increase occurred in the

first 150 hr of exposure time. This agrees very well with data reported by Streed

(Ref. 27). Absorptance increased from 0.13 to a final value of 0.42 for 700-sun hr

at i0-sun intensity and at a temperature of 527°K (490°F). Since this coating showed
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a very high degree of degradation upon exposure to uv at a temperature of 534°K

(500 °F), and since the data for Sample 9 showed the same trend of a large increase

in absorptance, it was felt unnecessary to run a third sample. Although the coating

has a low initial (_s ' 0.12, it is severely and rapidly degraded by 1-sun level uv

exposure at 534°K (500°F).

Sample 14 turned a dark grey with a visible narrow ring around the edge of the sample.

Inside of the ring the surface was slightly darker in color. This appears to be due to

variations in surface texture and thickness. Sample 9 was lighter in color than

Sample 14, with a slightly tan hue. A large portion of surface had a mottled appear-

ance. Pre- and post-test room temperature reflectance data for the samples are

shown in Figs. 6-10 and 6-11.
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The total hemispherical emittance measured calorimetrically for this coating de-

creased from 0.87 at 294°K (70°F) to 0.71 at 534°K (500°F). The emittance of both
+0.02 for the duration of the testssamples remained relatively constantat 0.70 -0.01

For Sample 9 emittance initially at 534°K was 0.80 but dropped to 0.70 at 1 hr. A
value of 0.71 was measured after 1 hr for Sample14.

6.2.5 Aluminum Silicate/Potassium Silicate (Hughes)

The results of the calorimetric in situ measurementsmade during the exposure tests

at 534°K (500°F) on the duplicate samples, 19and 21, are tabulated in Tables B-8 and
B-9. The solar absorptance andtotal hemispherical emittance of the two samples as

a function of exposure time are showngraphically by Fig. 6-12. The test on Sample19
was terminated at 122hr becauseof a broken thermocouple support wire. It is seen

that the solar absorptance of both samples degradedvery rapidly in the first 100hr of

exposure, with the absorptance increasing from 0.15 to over 0.40. The solar absorp-

tance of Sample 21 increased from an initial value of 0.16 to 0.50 after 530 hr of expo-

sure. Severe damageoccurred in the 0.41 to > 0.85-#m spectral bands. Becauseof

the large degradation in solar absorptanceat 534°K, a third test was not conductedto
500hr.

After exposureboth samples showeda definite ring-like discoloration around the outer

periphery of the sample. It waspostulated that this might be due to the contact with the

strippable protective coating on the edgeof the sample during application and curing of

coating. The strippable coatings were also baked onand were extremely hard to re-

move. They were finally removed by scraping with a knife blade. The sample color

after exposure was a medium grey with a slightly darker border around the outer edge

of the sample. A microprobe analysis of the coating was madeto determine if any con-

tamination was present which could have causedthe ring-like discolorations.

An electron microprobe x-ray analyzer with an electron beam scanningsystem was used

to test the two sample surfaces for carbon and titanium contamination. The field-of-view

of the instrument is 500#, the resolution is 1 p, and the detection range is atomic num-

ber 5 and up. Both specimens were tested only for carbon and titanium since it was
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believed that these were the most likely contaminants - carbon from the strippable

coating and the inner chamber black coating, and titanium from the ion pumps. There

was no evidence of carbon on either of the samples. There was no evidence of titanium

on Sample 21. Sample 19 showed a very minor trace of titanium at a single location

on the surface. If pump contamination had occurred, one would expect a uniform de-

position of this element. It is most probable this element was present in a trace

amount in the coating ingredients.
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Pre- and post-test room temperature reflectance data for the two samples are shown

in Figs. 6-13 and 6-14. The spectral bandabsorptances were determined from
these reflectance curves and are presented in the data tables for comparison.

The total hemispherical emittance of Sample19 decreased from 0.90 at room tem-

perature to 0.72 at 535°K (500°F). Sample21 decreased from 0.94 at room tempera-

ture to 0.80 at 535°K (500°F). There is no evident indication of why this large

difference occurred betweenthe two samples.

6.2.6 Zinc Oxide/Potassium Silicate (Z-93) (IITRI)

Initially two specimens of this coating were exposedto a 1-sun level at 534°K (500°F).
The results of these tests showedan increase in solar absorptance of 0.13 which was

far less than that shownby the other candidate coatings tested for this temperature

level. Considering these data and those for the material from the OSO-II flight experi-

ment which showedno degradation in 1000hr, it was decided to conduct additional

tests at various temperatures in order to evaluate degradation as a function of exposure

temperature for this material. This coating has a lower initial solar absorptancethan
the zinc oxide/methyl silicone system and a higher total hemispherical emittance at

395°K (250°F). Thus, if its changein _ is of the same order of the S-13or S-13Gs
systems, it would be a better choice for a radiator coating at this temperature level.

For clarity, the results of the various tests are reported in order of temperature

rather than chronologically.

534°K _00°____FF)_Exposure Tests

The results of the calorimetric in situ measurementsmade during the exposure tests

on duplicate samples, 35 and 36, are tabulated in Tables B-10 and B-11. The solar

absorptance and total hemispherical emittance of the two samples as a function of ex-

posure time are showngraphically by Fig. 6-15. The solar absorptance of Sample35
increased from 0.12 to 0.25 during 502 hr of exposure. The absorptance reached 0.24

at 256hr and wasessentially constant thereafter. The absorptanceof Sample36 in-

creased more rapidly and reached a value of 0.24 at 87hr andremained constant to

66



10[
0.8--

_ 0.6

,-3 0.4

0.2

0

0.2

Fig. 6-13

I I I I I I I I
0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8

WAVELENGTH (pro)

2.0

Room Temperature Spectral Reflectance of Aluminum Silicate/Potassium
Silicate Coating, Sample 19, Before and After 122-hr Exposure Test

1.0

0.8 _ __

_0.

_ BEFORE EXPOSURE, c_s : 0.14

0. _ --mAFTER EXPOSURE, (_s = 0.45

I I I I 1 I 1 I
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

WAVELENGTH (#m)

Fig. 6-14 Room Temperature Spectral Reflectance of Aluminum Silicate/Potassium
Silicate Coating, Sample 21, Before and After 530-hr Exposure'Test

67



0.4 F 1.0

0.3

0.2
<

_0. i

01
0

Vacuum System Failure,Pressure > 100 Torr

- _.._. _..

I

o
• SAMPLE 351
• SAMPLE 361 as

O SAMPLE 35}A SAMPLE 36 CTH

1 J i ! I
100 200 300 400 500

EXPOSURE TIME (HR)

u

--0.9

--0.8

-0.7

600

L_

L)

L_

.<

0

Fig. 6-15 Solar Absorptance and Total Hemispherical Emittance of Zinc Oxide/

Potassium SilicateCoating (Z-93) as a Function of Exposure Time at

535°K (500°F)

300 hr. A chamber vacuum failure occurred at 331 hr of exposure, and a very notice-

able rise in the solar absorptance of the sample was found. The post-test visual ap-

pearance of Sample 35 showed a slight greying of the surface with a small speckled

area slightly darker in color. Sample 36 appeared more uniform and without the grey

cast. The test of Sample 36 was continued to 450 hr and a slight decrease in (_s was

observed. However, as such severe damage occurred at 331 hr, the data after this

time could not be used for comparison with that of Sample 35.

Pre- and post-test room temperature spectral reflectance data for the sample are

shown in Figs. 6-16 and 6-17. Sample 36 shows a much greater degradation in the

0.4- to 1.4-_m range which is attributed to the vacuum failure. The reason for this

increase in damage is not known, but it was also observed on a sample of this material

tested at a later date.

68



1.0

0.8

_q
(9 O.6 --

[.-,
r_
M

u_
u_ 0.4 --

0.2 --

0

0.2

Fig. 6-16

/

/

BEFORE EXPOSURE, c_s = 0.14

AFTER EXPOSURE, c_s = 0.26

0.4

l I I
0.6 0.8 1.0

i J I I
1.2 1.4 1.6 1.8

WAVE LENGTII (/.tin)

Room Temperature Spectral Reflectance of Zinc Oxide/Potassium

Silicate (Z-93), Sample 35, Before and After 502-hr Exposure Test

1.0

0.8

_9 0.6

r,9'

0.4--

t_

0.2-

0

0.2

/

m

/

f

:J,
0.4

/
/

/
/

/
/

/

/
/

-- BEFORE EXPOSURE, _s = 0.14

---- AFTER EXPOSURE, _xs = 0.42 *

*Vacuum failure at 331 hr, pressure > 100 Tort

I 1 i I I l 1
0.6 0.8 1.0 1.2 1.4 1.6 1,8 2.0

WAVELENGTH' (wn)

Fig. 6-17 Room Temperature Spectral Reflectance of Zinc Oxide/Potassium

Silicate (Z-93), Sample 36, Before and After 450-hr Exposure
Test

69



The total hemispherical emittance of both samples shows a temperature dependence

decreasing from approximately 0.93 at room temperature to 0.81 at 534°K. The

emittance remained relatively constant at 534°K during both tests.

450°K (350°F) Exposure Tests

The results of the calorimetric in situ measurements made during the exposure test

on Sample 40 are tabulated in Table B-12, and the solar absorptance and total hemi-

spherical emittance of the sample as a function of exposure time for 1004 hr are shown

graphically in Fig. 6-18. Absorptance increased from an initial value of 0.12 to 0.26

at the end of the 1004-hr test. The change observed in solar absorptance at 450°K

(350°F) is very similar to that at 534°K (500°F), but the rate of degradation was

slightly less.

Pre- and post-test room temperature spectral reflectance data for the sample are

shown in Fig. 6-19. The spectral band absorptances were determined from the reflec-

tance curve and are presented in the data tabulation for comparison.

422 ° K (300°F) Exposure Tests

Three samples of the coating were exposed for varying periods of time at 422°K and a

chamber pressure at less than 1 × 10 -7 Tort. Sample 38 was the 500-hr screening test.

Based upon the small change in o_s (0.05) observed during this test, it was decided to

conduct a 10,000-hr exposure test on this coating (Sample 39). After 4574 hr, the cham-

ber pressure rose to > 100 # due to failure of the LN 2 cold wall. A third test (Sample

59) was conducted for 10,014-hr of exposure. Prior to this last test, a turbomolecular

pump was connected to the system to preclude any future vacuum failures.

The results of the calorimetric in situ measurements made during the exposure test

on Sample 38 are tabulated in Table B-13. The solar absorptance and total hemispher-

ical emittance of the sample as a function of exposure time are shown graphically in

Fig. 6-20. The solar absorptance of Sample 38 increased to 0.19 at 265 hr and re-

mained at this level to 500 hr. The total hemispherical emittauce of the sample was

7O



0.3

_0.2

_ 0.1

o*°o

Jib _ A

O- -0- -0-- -- _- -0- -- 0

0 = O_
S

0 = 6TH

o I I I I 1
0 200 400 600 800 1000

i.0 al

Z
<

-
b,

-0.9 _
<
O

_

-0.8
M
N

_ _

0

EXPOSURE TIME (HR)

Fig. 6-18 Solar Absorptance and Total Hemispherical Emittance of Zinc Oxide/

Potassium Silicate (Z-93), Sample 40, as a Function of Exposure
Time at 450°K (350°F)

1.0

q.)
Z

o

0.8

0.6

0.4

0.2

0

0.2

BEFORE EXPOSURE, _ = 0.14
s

AFTER EXPOSURE , _ = 0.23
S

0.4 0.6

I I I I I I
0.8 1.0 1.2 1.4 1.6 1.8

WAVELENGTH (pro)

2.0

Fig. 6-19 Room Temperature Spectral Reflectance of Zinc Oxide/Potassium

Silicate (Z-93), Sample 40, Before and After 1004-hr Exposure
Test

71



(D

_D
;0

O

1.0

i

--0.9

0.1

o I I I I I
0 100 200 300 400 500

EXPOSURE TIME (HR)

Fig. 6-20 Solar Absorptance and Total Hemispherical Emittance of Zinc Oxide/
Potassium Silicate Coating (Z-93), Sample 38, as a Function of
Exposure Time at 422°K (300°F)

L)
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0

0.87 =e0.01 through the test period. Pre- and post-test room temperature spectral

reflectance data are shown in Fig. 6-21.

The results of the calorimetric in situ measurements made during the exposure test

on Sample 39 are tabulated in Table B-14, and as and eTH as a function of time

are shown in Fig. 6-22. The uv exposure test on this sample was terminated after

4574 hr. The decision to terminate the test was based upon a large increase in absorp-

tance which occurred during a vacuum system failure. This failure is attributed to an

intermittent fault in the solenoid valve controlling the liquid nitrogen fill system. The

subsequent warming of the liquid nitrogen reservoirs released a volume of adsorbed

gases which overloaded the VacIon pump and caused it to shut down. This overloading

of the VacIon pumps and subsequent loss of vacuum has also been the cause of termina-

tion of previous tests. No explanation has been substantiated for the increase in ab-

sorptance caused by this failure. The specimen temperature did not exceed 422 °K at

any time during the period. A similar increase in absorptance upon pressure rise

was observed for Sample 36. The sample appearance after removal from the chamber
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was a light brown with small darker areas distributed over the sample surface. The

appearanceof these small areas had beennoticed on previous exposedsamples of

this coating. This specimen as well as Sample 36and an unexposedsample were

examined with the electron microprobe. No evidence of carbon or titanium was

found on any of the samples which doesnot substantiate chamber contamination as the
cause of the increase in absorptance.

Pre- andpost-test roomtemperature spectral reflectance datafor Sample39 are shown

in Fig. 6-23. The severe degradation in the 0.4- to 1.0-pro spectral region was ob-

served as was the case for Sample 36. The spectral bandabsorptances were deter-

mined from the reflectance curves and are presented in the data tables for comparison.

The sample total hemispherical emittance was 0.87- 0.02 during this test period.
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Fig. 6-23 Room Temperature Spectral Reflectance of Zinc Oxide/Potassium
Silicate Coating (Z-93), Sample 39, Before and After 4574-hr
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A third sample was exposed for 10,014 hr at a 1-sun level. The total time at tem-

perature in vacuum was 10,517 hr. From 2832to 3335hr, the xenon source was

inoperative as the lamp power supply unit was returned to the manufacturer for repair.

No change in solar absorptance or total hemispherical emittance was observed due to

vacuum or temperature without uv irradiation. The results of the in situ measure-
ments are shownin Fig. 6-24, and the data are tabulated in Table B-15. Room tem-

perature spectral reflectance data for Sample59 are shownin Fig. 6-25.

Solar absorptance increased from an initial value of 0.14 to 0.18 at 500 hr and then

remained essentially constant until approximately 8000hr. After that time, the

calorimetric absorptance values appearedto deerease slightly to the end of the test,

o_s = 0.17. Although this decrease in total absorptance is within the experimental

uncertainty of the method, a definite decreasing trend became evident during the final

1000 hr. This decrease was most pronounced in the 0.20- to 0.41-pro broadband data.

At the conclusion of the test the xenon source window in the vacuum chamber was

examined, and a very thin film was observed to be present on the vacuum side of the

window.

Spectral transmission measurements were made on the contaminated window, and they

were compared with the transmission data for the window before the test and after

cleaning, Fig. 6-26. Little difference was observed between the pre-test transmission

values and those after cleaning indicating no significant degradation of the window

material occurred during the prolonged ultraviolet exposure. However, the film re-

sulted in an appreciable decrease in window transmission from 0.20 to 0.70 pro.

Spectral transmission data for the contaminated window integrated over the four spec-

tral bands are shown in Table 6-2.

The final calorimetric absorptance data were corrected by multiplying the band energies,

based upon the initial transmission data, by the transmission factors shown in

Table 6-2(c). The final corrected solar absorptance value becomes 0.19 which is in

good agreement with the data to 7000 hr of ultraviolet exposure time and compares

with a final value of 0.21 determined from post-test spectral reflectance measurements.
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Table 6-2

SPECTRAL BAND TRANSMISSIONFOR SOURCEWINDOWAT CONCLUSIONOF
10,014 hr EXPOSURETEST COMPAREDTO PRE-TEST WINDOW

TRANSMISSION

Transmission
Degradation
Factor( a)

F

(a)
(b)
(c)

0.20/0.41

1.26 (b)

i.26 (c)

Spectral Band (pro)

0.41/0.60 0.60/0.85

1.11 (b) 1.08 (b)

1.13 (c) 1.11 (0)

Ratio of spectral band energy before and after exposure test.
From spectral transmission data (Fig. 6-26).

Total

i. lO(b)

1.13 (c)

From total band energy measurements using thermopile with filters.

As the transmission in the 0.20- to 0.40-pro wavelength region decreased with time,

the specimen was exposed to less total ultraviolet energy than 1 sun for 10,014 hr.

An approximation of the total exposure was made assuming that the film was deposited

at a rate linearly proportional to time, i.e., thickness = a x time.

Using the relationship that transmission is inversely proportional to an exponential

thickness term,

-bt
r = ae

transmission in the 0.20- to 0.40-pro region as a function of time was computed using

the band transmission data at 10,000 hr. On this basis, the total uv exposure was

equivalent to 9200 hr at a 1-sun level.

Electron microprobe (see subsection 6.4) and x-ray diffraction methods were em-

ployed in an attempt to determine the composition of the film, and from these data the

probable source of the contamination. Neither procedure was successful in identifying

the film. The material volatilized in the electron microprobe indicating it is probably

an organic compound. Debye-Scherrer diffraction patterns showed some crystalline-

type structure. The d spacings and intensities were not related to any zinc, titanium,
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or copper compoundsfound in the ASTM Powder Data File. A diffraction pattern of

material from the window "O" ring seal was found to bevery similar to that of the

film on the window. Although no identification was made of the film composition, the

analysis eliminated the source as the specimen (zinc oxide/potassium silicate) or

metals from the vacuum chamber or pumping system. The two suspectedsources of

contamination are the window "O" ring (Viton) and the epoxy-basedblack paint on the

chamber walls. Based uponthe comparison of diffraction patterns it is believed the

"O" ring is the source of the film. For future very long-term exposure tests, it is

recommendedthat chambers incorporate provisions for multiple windows so that

transmission may be monitored during the test, and if a window becomescontaminated

it may be replaced without disruption of vacuum.

The calorimetric data for Sample59are in goodagreement with the data for Sample39

for the length of the exposure test on the latter sample. Changein solar absorptance

for the two specimens as a function of exposure time is shownin Table 6-3. The final

data on changein solar absorptance and total hemispherical emittance for the three

specimens of Z-93 tested at 422°K (300°F) are as follows:

Sample No. (hr)

38 500

39 4,452

59 10,014

Final Final
Exposure Time Aot S _TH

0.05 0.88

0.05 0.88

0.05 0.88

Table 6-3

COMPARISON OF A(_ s FOR SAMPLES 39 AND 59 AS A FUNCTION
OF EXPOSURE TIME AT 422°K (300°F)

Time

(hr)

1000
2000
3000

4000
4500

/XC_ S

Sample 39

0.03
0.04
0.04

0.05
0. O4

Sample 59

0.04
0.04
0.04
0.04
0.05

8O



366°K (200°F) Exposure Test

-8
Sample 56 was exposed for 2024 hr at a 1-sun uv level at a pressure of 2 x 10 Tort.

The results of the calorimetric in situ measurements are given in Table B-16. Solar

absorptance and total hemispherical emittance as a function of time are shown in

Fig. 6-27. Starting with an initial solar absorptance of 0.14, A_ s reached an equi-

librium value of 0.06 at 600 hr and remained at 0.05 to 0.06 to the end of the test.

Total hemispherical emittance of the sample was 0.89 _: 0.01 throughout the test period.

Pre- and post-test room temperature spectral reflectance data are shown in Fig. 6-28.

300°K (80°F) Lxposure Test

The zinc oxide/potassium silicate Sample 42 was exposed to uv irradiation at a 1-sun

level for 2000 hr at 300°K (80°F). The chamber pressure was maintained at less than

2 × 10 -8 Tort. The results of the calorimetric in situ measurements made during the

exposure test on Sample 42 are tabulated in Table B-17. The solar absorptance and

total hemispherical emittance of the sample as a function of exposure time are shown

graphically in Fig. 6-29. These data show that the solar absorptance rises very

slowly but constantly from an initial 0.14 at the start of the test to 0.18 after approxi-

mately 1400 hr and then was constant to the end of the test. Total hemispherical emit-

tance was 0.88 + 0.02 through the test period. Pre- and post-test room temperature

spectral reflectance data for this sample are shown in Fig. 6-30. The spectral band

absorptances were determined from the reflectance curves and are presented in the

data for comparison.

6.2.7 Optical Solar Reflector

The calorimetric absorptance and total hemispherical emittance data for the LMSC

OSR sample at 339°K (150°F) are tabulated in Table B-18 and are presented graphi-

cally in Fig. 6-31. No change in absorptance was observed during this exposure
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period, a s = 0. 061 :_ 0. 003. Total hemispherical emittance is 0.79 +0._0.0202 at this

temperature. Pre- and post-test room temperature spectral reflectance data for the

sample are shown in Fig. 6-32. Pre- and post-test values of o_s from spectral

reflectance measurements show a change in o_ of 0. 006 which is less than the ac-
s

curacy of this measurement. Total hemispherical emittance as a function of tempera-

ture is shown by Fig. 6-33.

6.3 INITIAL OPTICAL PROPERTIES FROM REFLECTANCE MEASUREMENTS

The solar absorptance values for all of the specimens are reported in Appendix A. The

typical value of solar absorptance and total hemispherical emittance, calculated on the

basis of reflectance measurements for each coating, are summarized in Table 6-4.

Total hemispherical emittance values are based upon spectral reflectance data from

2.0 to 25.0 pm integrated over the blackbody distribution function for the temperatures

shown in Table 6-4,

6.4 CRYSTALLOGRAPHIC STUDIES OF ZINC OXIDE/POTASSIUM SILICATE
SAMPLE (Z-93)

The change in absorptance of the Z-93 system as a function of temperature appears to

have a discontinuity in the region of 422 to 450°K (300 to 350°F). In order to deter-

mine ff a gross change in structure was occurring or a zinc silicate compound was

being formed, x-ray and electron diffraction studies were conducted on samples of the

various specimens covering the test temperature range. The x-ray diffraction method

was used initially to determine if any zinc silicate had formed during the prolonged

temperature exposure. Samples from the 534°K (500°F) and 422°K (300°F) tests as

well as a control specimen (unexposed to uv, elevated temperatures, or vacuum) were

examined. In no case was any evidence of the silicate of zinc found. All of the lines

and relative intensities corresponded to ZnO. Lattice parameters were measured for

the specimens (Table 6-5) and within the resolution of the method no change was ob-

served between tested and unexposed coatings.
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Table 6-4

INITIAL OPTICAL PROPERTIES SUMMARY

Coating

Titanium Dioxide/Methyl Silicono
(Thermatrol 2A-100)

Zinc Oxide/Methyl Silicone (S-13)

Of
S

0.17

0.20

0.84
0.84

0.87
0.84

0.84
0.85

Zinc Oxide/Methyl Silicone (S-13G)

Zirconium Silicate/Potassium Silicate

Aluminum Silicate/Potassium Silicate

Zinc Oxide/Potassium Silicate (Z-93)

Optical Solar Reflector

0.20

0.12

0.14

0.15

O. 05

0.86
0.87
0.85

.

O.
O.

O.
O.

O.

O.
O.

86
86
86

87

88
86

8O
8O

<TH

@ 70°F
@ 250°F

@ 70°F

@ 250°F

@ 70._F
@ 250"6F

@
@
@

@
G
@

@
@
@

@
@

70°F
250°F

500°F

70°F
250°F
500°F

70°F
250°F
500°F

70°F
150°F
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Table 6-5

LATTICE PARAMETERS FORSAMPLES 30, 36, 55

Exposure ° °
Sample Temperature a o (A) c o (A)

36 534°K (500°F) 3.2495±0.0005 5.2048 _0. 001

3O 422°K (3 00°F) 3. 2499 _0.0005 5.2048 :_0.001

55 Unexposed 3.2503 ±0.0005 5.2046 _0.001

If any changes in structure or composition did occur, they were in quantities undetect-

able by this method. The slight shift in a° with temperature falls within the un-

certainty assigned to the measurement.

The exposure test specimens were also examined usingan electron diffraction technique.

These were Samples 35 (534°K-vacuum failure), 36 (534°K), 38 (422°K), and 55

(unexpos ed).

A small amount of the surface material was removed by a plastic stripping technique

and the samples prepared for high resolution transmission electron diffraction at 75 kV.

The camera constant was determined to be 18. 841. It was determined that all samples

were zinc oxide and that there were no detectable reaction products. The "d" spacings

were as follows:

X-Ray Electron Diffraction X-Ray_

2.816

2.602

2.476

1.911

1.626

1.477

1.407

1.379

1.359

1.301

1.225

1.1812

1.0929

1.0.639

2.81
2 62
2 47
1 90
1 62
1 47
1 40
1 37
1 35
1.30

1.23
1.16
1.08
1.06

Electron Diffraction

1.0422 1.03
1.0158 1.01
0.9848 O.982
0.9764 0.972
0.9555 0.952

0.9382 0.935
0.9069 0.904
0.8826 0.881

0.8675 0.868
0.8369 0.837
0.8290 0.827
0.8237 0.822
0.8125 0.812
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Section 7

DISCUSSIONAND CONCLUSIONS

The changein solar absorptance, A_ s , of the titanium dioxide/methyl silicone coating

measured by the calorimetric method is in good agreement with that measured by

MacMillan et al. (Ref. 53) using an in situ bidirectional reflectance technique. They

reported avalue of A_ s of 0.11 at 500 equivalent sun hr (ESH) with the sample at approx-

imately 320°K(l15°F). This compares with a Ao_s of 0.14 at 395°K(250°F)as deter-

mined by the calorimetric method. The greater value at the higher temperature is believed

to be due to a rate effect which is temperature dependent. After 1330 ESH, MacMillan's

data showed a As of 0.15 which appears to have reached a saturation level. Data
s

reported by Arvesen et al. (Ref. 62) for a titanium dioxide/methyl silicone coating

show a large spread with temperature, source, and intensity. The reported changes in

solar absorptance are considerably lower than those obtained from the in situ methods.

This is attributed to the fact that they were computed on the basis of post-exposure

reflectance measurements made in air, and the recovery of the TiO 2 in the near infra-

red upon reexposure to air resulted in a lower value of A_ s This recovery has been

demonstrated by both the in situ data (Fig. 6-1) after vacuum failure in the test chamber

and the post-test reflectance measurement (Fig. 6-2) as a function of time after removal

from the chamber. A summary of the properties of this coating system is as follows:

• Initial _ , 0.18 + 0.01 based upon Gier-Dunkle and calorimetric datas

• As at 395°K (250°F), 0.14s
• Total hemispherical emittance, 0.86 =_0.02 at 395°K (250°F)

For both zinc oxide/silicone coatings, S-13 and S-13G, the change in solar absorptance

was 0.06 to 0.10. This agrees with the data of MacMillan et al. (Ref. 53) and Greenberg

(Ref. 63) using the bidirectional in situ method which resulted in a As for S-13 of 0.07s

to 0.08 for 500 ESH. Data reported by Pearson (Ref. 54) on flight-test results for a zinc

oxide/silicone system show a A_ s of approximately 0.05 after 500-hr exposure to 1

extraterrestrial sun. However, the temperature of this flight sample was not reported.
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No in situ data were foundin the literature for comparison on the S-13Gcoating. Both

the post-test spectral reflectance data and the broadbandspectral data show the im-

provement of the S-13Gin the near infrared region as reported by HTRI (Ref. 60).

However, a greater degradation was observed in the 0.2- to 0.85-_n region for the

S-13G system with the net result that the As s of both systems was nearly equal.

Millard (Ref. 61) reported the degradation of the S-13G coating to be approximately

one-half that of S-13 from the OSO-III thermal control coating flight experiment. How-

ever, others (Ref. 64) have reported the degradation of the S-13G system to depend

upon the exact method of coating preparation, so no direct comparison can be made

between flight and laboratory test data. The radiative properties of these two systems

are summarized as follows.

S-13 S-13G

Initial _ 0.20± 0.01 0.20+ 0.01
S

A_ s at 395°K (250°F) 0.08 0.07

Total Hemispherical Emittance 0.87 ± 0.02 0.89 ± 0.02

Of the three coatings tested at 534°K (500°F), the zinc oxide/potassium silicate system

was by far the more stable in regard to solar absorptance. The As was 0.13 forthis
s

system (Z-93), whereas it was greater than 0.25 for the zirconium silicate/potassium

silicate and aluminum silicate/potassium silicate (Hughes) coatings. The emittance at

temperature was consistently higher for the Z-93 system and did not show the wide

variation observed for the other two high-temperature systems. If this degradation of

Z-93 did reach a saturation level before the 500 hr of exposure, the data are inreason-

ably good agreement with those reported by Streed et al. (Ref. 27). They exposed zinc

oxide/potassium silicate and zirconium silicate/potassium silicate coatings to 7000 ESH

at 530°K (495°F) with A_s'S of 0.16 and 0.29, respectively. The radiative properties

of these three coatings at 534°K (500°F) are summarized in the following tabulation.

Zinc Oxide/ Zirconium Silicate/ Aluminum Silicate/

Potassium Silicate (Z-93) Potassium Silicate Potassium Silicate

Initial a s 0.12 0.12 0.15

As s 0.13 0.30 0.35

_TH 0.81 0.71 0.80
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The change in solar absorptance of Z-93 as a function of exposure temperature is

shown in Fig. 7-1. Error bands assigned to the calorimetric data are shown by the

bars on each point. Change in solar absorptance does not appear to be a linear

function of temperature, but rather a discontinuity occurs between 422°K (300°F) and

450°K (350°F). If the degradation process is considered as following some rate

function such as Aa = Ae -B/kT , the discontinuity becomes more pronounced
s

(Fig. 7-2). If one considers interstitial zinc donors at 0.05 eV below the conduction

band (Ref. 14), the data from 422°K (300°F) to 300°K (80°F) are reasonably approxi-

mated by a straight line as shown in Fig. 7-2. The data based upon the post-test

spectral reflectance measurements, as shown by the square points of Fig. 7-2, are

in good agreement in this range.

There is no obvious explanation for the large change in Aa s at 450°K (350°F). The

diffraction studies (subsection 6.4) of the specimen exposed at the various tempera-

tures did not show any differences in composition or structure. No traces of carbon

or titanium, which could indicate contamination in the apparatus, were observed from

the electron microprobe examinations of the surfaces. One possible cause for this

sudden increase in a might be that the zinc oxide is encapsulated with potassium
s

silicate which may fail at the higher temperatures. If the silicate prevents loss of

surf_.ce oxygen and depresses degradation in the near-infrared region, S-13G versus

S-13, this protective coating or surface may be physically broken at the higher tem-

perature with resultant degradation in the spectral region > 1.0 pm. Post-test spectral

reflectance curves for the Z-93 as a function of exposure temperature are shown in

Fig. 7-3. At 450 and 534°K (350 and 500°F) the reflectance at greater than 1.0 pm

is affected significantly, whereas at 422°K (300°F) and below very little change in

reflectance is observed past 1.0 Izn.

The solar absorptance and total hemispherical emittance of the optical solar reflector

(OSR) showed no change during the 2040-hr exposure test at 339°K (150°F). These

results are in agreement with those of Marshall and Breuch (Ref. 2). Also, the

absolute values of solar absorptance, 0.06, and total hemispherical emittance, 0.80

at 150°F, are identical with those given in this reference.
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The zinc oxide/potassium silicate system (Z-93) is the best coating currently avail-

able for use as a moderate temperature space power system radiator surface treat-

ment. Total hemispherical emittance is as high as any of the coatings tested, 0.90,

and the solar absorptance is the lowest of the six paint systems investigated. The

initial o_ is 0.14 (based upon absolute spectral reflectance measurements), and for
s

applications to 422°K (300°F), the solar absorptance after prolonged exposure does

not exceed 0.20. For low temperature space power system radiator applications,

temperature < 365°K (200°F), absorbed solar energy becomes more significant, and

a surface with a much lower (_ is required.
S

The influence of the optical properties of the surface, as exemplified by the Z-93 and

OSR coatings, on radiator area is demonstrated by Fig. 7-4. The ratio of actual

radiator surface area to that of a perfect radiator (ETH = 1.00, a s = 0) are plotted

as a function of surface temperature for a flat plate oriented normal to the solar vec-

tor at i A.U. from the sun (solar constant, Gs = 0. 139 W/cm 2) and radiating to a

0°K sink. For the computations of the OSR surface, a s is 0.06 and CTH is taken

from Fig. 6-33. For the Z-93 surface, a s increases linearly from 0.18 at 300°K

(80°F) to 0.20 at 422°K (300°F) and is constant at 0.26 from 450°K (350°F) to 534°K

(500°F). Total hemispherical emittance as a function of temperature was taken from

the calorimetric data, Fig. 7-5. From Fig. 7-4, the OSR coating provides a more

efficient radiator surface at temperatures below 365°K (200°F). At 339°K (150°F) a

radiator using the OSR has an area 20% less than one using the Z-93 coating with the

degraded value of a s . The reduction in area becomes larger with decreasing tem-

perature, radiator area for the OSR surface is approximately one-half of that for one

using the Z-93 coating at 300°K (80°F). A second advantage of the OSR surface for

the low temperature region is that its c_s is stable, and no adjustments in operation

are required to accommodate the increase in solar absorptance with exposure time

that occurs for the Z-93 system. At 300°K (80°F), for example, the change in a s

of the Z-93 coating (0.14 to 0.18) represents a 45% increase in radiator area.
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Appendix A

DESCRIPTIONOF CANDIDATE COATINGS

A. 1 TITANKUMDIOXIDE/METHYL SILICONE (THERMATROL 2A-100)

Source and Cost - Lockheed Missiles & Space Company; price variable depending

on quantity; nominal price is $60 per gallon.

Starting Composition - Polymethyl-vinyl siloxane elastomer plus TiO 2 pigment,

1:1 by weight.

Vehicle: Dow-Corning F_-oprietary, Q92-009, 33% nonvolatile content by

weight, 24 hr at 70°C

Flash Point

Viscosity, cps

Pigment:

calcined rutile TiO 2 ,

6O° to 65 ° F

15,000

Specific Gravity 0. 835

Diluted with VM and P Naptha

Titanox RA-NC, Titanium Pigment Corp., proprietary;

93% TiO 2 .

Particle Shape and Size - The weighted average particle size is 0.3 p. The

particles are spherical.

Substrate - 2.54 cm diameter disk, 0. 127 cm thick of 6061 T-6 aluminum machined

to a 30 rms finish.

Method of Application - The finish is applied by spray techniques conforming to

MIL-F-18264 specifications. Prior to applying the top coat, the entire surface is

primed with one coat of silicone primer, Dow Coming Corp. A-4094 or equivalent,
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to a thickness of approximately 0.2 mils. The primer is air cured 30 rain minimum

prior to application of top coats. Thickness and cure times for the top coat are as
follows:

Total dry film thickness, including primer, 3.5 to 5.0 mils
Curing time; 24hr minimum after final coat

Coating Thickness - 3.5 to 5.0 mils.

Density - i. 5 gm/cm 3

Weight Loss During Vacuum Testing - Negligible after coating has been fully cured.

A. 2 ZIRCONIUM SILICATE/POTASSIUM SILICATE

Source and Cost - Lockheed Missiles & Space Company; price variable depending

on quantity; nominal price $740 per gallon.

Starting Composition -

• Pigment to binder ratio: 3.5 to 1 by weight

• Pigment: Metals and Thermit Corp., 1000W grade, "Ultrox" zirconium

silicate, acid leached and calcined by LMSC

• Binder: potassium silicate

Particle Shape and Size - Particle shape, angular; particle size, < 1.0 #.

Substrate - 2.54 cm diameter disk, 0. 127 cm thick of 6061 T-6 aluminum machined

to a 30 rms finish.
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Method of Ap_plic_ation-Standard spray gun techniques, base coat reacts with sub-
strate and serves as primer; room temperature cure, approximately 12hr.

Coating Thickness - 3.0 to 5.0 mils .

Density - 4.0 gm/cm 3

Weight Loss Duri__ng Vacuum Testing_- Less than 5.0%.

A. 3 HUGHES INORGANIC WHITE COATING (ALUMINUM SILICATE/

POTASSIUM SILICATE)

Source and Cost - Hughes Aircraft Co. ; cost figures not stated by supplier.

Starting Composition-

• Pigment to binder ratio: 4.4 to 1 by weight

• Pigment: A naturally occurring china clay primarily aluminum silicate;

approximately 3.0% impurity level, namely Fe-0.70%, Ti 0.42%,

Ca 0.05%, Mg 1.28%, Na 0.47%, and K 0.11%; the clay is calcined

at 1275°C, then ball milled for 12 hr with water.

• Binder: Sylvania PS-7 electronic grade potassium silicate

Particle Size- Particle size following milling less than 200 mesh,

Substrate - 2.54 cm diameter disk, 0. 127 cm thick of 6061 T-6 aluminum machined

to 30 rms finish.

Method of Application - The coating is applied in three coats, each coat being baked

for 1 hr at 225°F and the final coating baked for 1 hr at 260°F. An air brush is used

for painting.

Coating_Thickness- 6.0 to 8.0 mils after curing.
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Weight Loss During Vacuum Testing - The procedure is covered by Hughes Materials

and Process Specification, HMS 15-1374 and HP 4-135. A typical weight loss is

0.02% when exposed to vacuum at 250°F; the weight loss is water vapor.

A. 4 ZINC OXIDE/METHYL SILICONE (S-13 Modification I1)

Source and Cost -IIT Research Institute; cost not stated by supplier.

Starting Composition -

Materials

New Jersey Zinc SP500 zinc oxide

General Electric RTV-602 silicone

Toluene

Parts by Weight

24O

100

170

Formulation - The zinc oxide, the RTV-602, and 100 parts by weight of the toluene

are premixed and charged to a porcelain ball mill in a quantity sufficient to just fill

the void space when the mill is one-fourth full of grinding stones 0.5 in. in diameter.

The paint is ground for 3 hr at approximately 70% critical speed. The critical speed

(rpm) is given by Wcs = 54.2/4-R, where R is the radius of the mill in feet. The

basic charge is then removed, and 70 parts of toluene are added to the mill. The

mill residue and the solvent are ground until the contents are uniformly thin, but not

for more than 5 rain. The contents are then added to the main charge, and the whole

charge is mixed thoroughly.

Note: The SRC-05 catalyst is not added until the paint is applied.

Particle Shape and Size - Particle shape not stated by supplier. The weighted

average particle size is 0.9 p.

Substrate - 2.54 cm diameter disk, 0. 127 cm thick of 6061 T-6 aluminum machined

to a 30 rms finish.
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Method of Application

Preparation of Paint for Application - The paint is furnished without the SRC-05

catalyst. Tile catalyst is added as 1 part SIIC-05 in 20 parts of toluene per 670 parts

of S-13 (as formulated). This concentration represents 0.76% catalyst based on

polymer solids. A lower concentration is recommended in order to ensure optimum

stability to uv irradiation in vacuum. A concentration of 0.4% based upon RTV-602

provides optimum stability without greatly sacrificing terminal cure properties,

although a coating prepared at this concentration represents the lower limit without

sacrificing cure and physical properties. Somewhat better physical properties are

obtained with a catalyst concentration of 0.5% based on IRTV-602. A catalyst con-

centration of 0.4% of resin solids corresponds to 1 part SRC-05 per 1275 parts of

S-13; 0.5% catalyst requires 1 part catalyst per 1020 parts of S-13. The catalyst

should be added as a 20:1 reduction in toluene. The catalyst solution is added only

as the paint is used and only to the amount that can be applied in about 30 min. The

bulk paint was furnished in 5-gal epoxy-lined metal pails. The paint should be

thoroughly stirred before transfer to other containers or before addition of catalyst.

Allow the catalyst paint to set for i0 rain before application to the primed surfaces.

i

Preparation of Surfaces for Painting- Standard surface cleaning procedures should

be used to prepare the surface for application of the S-13 paint. S-13 paint can, in

general, be applied to any surface to which the required primer can be applied. The

primer, General Electric's proprietary SS-4044, can be applied to either anodized

or zinc chromate-primed surfaces. It is preferable that it be applied to clean bare

metal or to anodized surfaces, however. Greasy surfaces should be cleaned with

standard detergent and water prior to priming; they should be thoroughly dry.

Application of Paint - The primer can be spray-applied (Binks model 18 or compar-

able gun) at about 30 psi. Only about 0.5 mil of primer is required (just enough to

provide a base for the S-13 paint). The primer should be allowed to air-dry for 1 hr

before application of the S-13 paint.
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The S-13 paint can be spray-applied with a Binks model 18spray gun (or compar-

able gun) at a gas pressure of about 60 psi. Unless clean, dry air is available, pre-

purified nitrogen or prepurified air must be used. The S-13 paint should be allowed

to air cure for 16hr. It is imperative that dust and debris be kept off the surface during

the curing process.

The wet film thickness of the paint canbe measured by either the Pfund or the Inter-

chemical wet-film thickness gage, or a suitable bridge-type gage. Dry film thick-

ness can be measured with a Fischer Permascope nondestructive thickness tester,

type ECTH.

Reapplication - Soiled or damaged areas can be recoated. Soiled areas must be

cleaned thoroughly with detergent and water and dried before application of addi-

tional $13 paint. Damaged or gouged areas can be recoated by making a paste of

S-13 in which the bulk of the solvent is omitted. Such a material can be troweled

or brushed over the damaged areas and cures can be tack-free within a few hours.

Coating Thickness - 3.5 to 5.5 mils.

Weight Loss During Vacuum Testing - Not stated by supplier.

A.5 ZINC OXIDE/METHYL SILICONE (S-13G)

Source and Cost - liT Research Institute; cost not given by supplier.

Starting Composition-

Material

New Jersey Zinc Co., SP 500 zinc oxide,

PS7-treated

General Electric Co., RTV-602 silicone

Toluene, USP

Part By Weight

240

i00

175

515
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Silicate Treated ZnO - The PS7 treated ZnO is used to prepare the S-13G paint.

Approximately 600 g of "as received" SPS00 zinc oxide are thoroughly mixed with

1200 g of PS7 potassium silicate (Sylvania) in a 2-quart capacity ball-mill jar.

Approximately 20 cylindrical grinding stones, 1 × i/2-in, diameter, are added to

the mill, and the slurry is ground at approximately 75% of critical speed for 45 rain.

The ball-jar is removed from the mill, and the ground mixture is allowed to stand

approximately 16 hr. The slurry is then reground for I0 min. The ground slurry is

transferred to a 3-1iter beaker and diluted with 800 ml of distilled water. The mix-

ture is thoroughly stirred and transferred to a large Buchner funnel and filtered at

reduced pressure through a No. 597 filter paper.* The filter cake is washed with

3 liters of distilled water and pumped dry. The filter cake is removed from the

funnel and spread on an aluminum foil tray. The contents are placed in a forced-air

oven and dried for 16 hr at i00 ° C. The dried treated-pigment is then placed in a

completely dry mill jar and dry ground with approximately 20 grinding stones for

15 rain. The resultant treated-pigment is then reheated for 1 hr at I00 °C.

The zinc oxide, the RTV-602, and 100 parts by weight of the toluene are premixed

and charged to a porcelain ball mill in quantity sufficient to lust fill the void space

when the mill is one-half full of grinding stones 0.5 in. in diameter. The paint is

ground for 4 hr at approximately 70% critical speed. The critical speed (rpm) is

given by:

54.2

Wcs -

where R is the radius of the mill in feet. The basic charge is then removed, and

the remaining toluene is added to the mill. The mill residue and the solvent are

ground until the contents are uniformly thin, but not for more than 5 rain. The

contents are then added to the main charge, and the whole charge is mixed thoroughly.

Note: The SRC-05 catalyst is not added until the paint is applied.

*Schleicher and Schuell Analytical Filter Paper.
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Particle Size and Shape - Not stated by supplier.

Substrate - 2.54 cm diameter disk, 0. 127 cm thick of 6061 T-6 aluminum machined

to a 30-rms finish.

Method of Application

Preparation of Paint for Application - The paint is furnished without the SRC-05

catalyst. The catalyst is added as 1 part SRC-05 in i0 parts of toluene: The

catalyst solution is added to the paint with thorough stirring. A low catalyst con-

centration is recommended to ensure optimum stability to ultraviolet irradiation in

vacuum. A concentration of 0.4% based upon RTV-602 provides optimum stability

without greatly sacrificing thermal-cure properties, although a coating prepared at

this concentration represents the lower limit without sacrificing cure and physical

properties. Somewhat better physical properties are obtained with a catalyst con-

centration of 0.5% based on RTV-602 and still better properties are obtained at

0.75% SRC-05. The SRC-05 catalyst-to-paint ratio is 1 part SRC-05 in i0 parts of

toluene to 1030 parts of S-13G (by weight). The catalyst solution is added only as the

paint is used and to only the amount that can be applied in a 30-rain period. Allow

the catalyzed paint to set for i0 to 15 rain before application to the prin]ed surfaces.

The paint should be thoroughly stirred before transfer to other containers or before

addition of catalyst.

Preparation of Surfaces for Painting - Standard surface cleaning procedures should

be used to prepare the surface for application of the S-13G paint. The S-13G paint

can, in general, be applied to any surface to which the required primer can be

applied. The primer, General ElectricVs proprietary SS-4044, can be applied to

either anodized or zinc chromate-primed surfaces. It is preferable that it be applied

to clean bare metal or to anodized surfaces, however. Greasy surfaces should be

cleaned with standard detergent and water prior to priming; they should be thoroughly

dry.
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Application of Paint - The primer can be spray-applied (Binks model 18, Paasche

Autch, or comparable gun) at about 30 psi. Only about 0.5 mil of primer is required

(just enough to provide a base for the S-13 paint). The primer should be allowed to

air-dry for 1 to 2 hr before application of the S-13G paint. The S-13G paint can be

spray-applied with a Binks model 18 spray gun (or comparable gun) at a gas pressure

of about 60 psi. Unless clean, dry air is available, prepurified nitrogenor prepuri-

fied air must be used. The S-13G paint should be allowed to air-cure 16 hr before

handling. It is imperative that dust and debris be kept off the surface during the

curing process.

The wet film thickness of the paint can be measured by either the Pfund or the Inter-

chemical wet-film thickness gage, or a suitable bridge-type gage. Dry film thickness

can be measured with a Fischer Permascope nondestructive thickness tester, type

ECTH.

Reapplication - Soiled or damaged areas can be recoated. Soiled area must be cleaned

thoroughly with detergent and water and dried before application of additional S-13G

paint. Damaged or gouged areas can be recoated by making a paste of S-13G in which

the bulk of the solvent is omitted. Such a material can be troweled or brushed over

the damaged areas and cures tack-free within a few hours.

A.6 ZINC OXIDE/POTASSIUM SILICATE (Z-93)

Source and Cost -IIT Research Institute; cost not stated by supplier.

Starting Composition -

• Pigment to binder ratio: 4.3 to 1 by weight

• Pigment: New Jersey Zinc Co., SP500 zinc oxide; calcined at 600 ° to700°C

for 16 hr (heating and cooling rates are not critical)

• Binder: Sylvania Electric Products Corp., PS7 potassium silicate
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Formulation - The materials are mixed in a PBR of 4.30 and a solids content of

56.9%. A typical batch is 100 g of ZnO, 50 cm 3 of PS7 (35% solution), and 50 cm 3 of

distilled water. The ingredients are ball-milled with porcelain balls in a dense

alumina mill. The volume ratio of balls to materials is 1:3, and the total charge is

<50%. The milling time of 6 hr at 70% critical speed [rpm = 54.2 _/mill radius (ft)]

yields a satisfactory consistency for spraying and is recommended.

The paint is prepared just before it is to be used. Shelf life for this composition is

limited. Actual shelf time should not exceed 24 hr, and the mixture should be shaken

occasionally to maintain the pigment in suspension.

Particle Shape and Size - Particle shape not stated by supplier; mean particle size

N0.6 #.

Substrate - 2.54 cm diameter disk, 0. 127 cm thick of 6061 T6 aluminum machined

to a 30-rms finish.

Method of Application -

Application -The formulation is applied by spray-painting. The carrier gas should

be clean; prepurified nitrogen is a good source. Aluminum or plastic substrates

should be abraded; e.g., with No. 60 Aloxite metal cloth, and thoroughly washed

with detergent and water.

The application technique consists of spraying at a distance of 6 to 12 in. until a

reflection due to the liquid is apparent. This is followed by air-drying until the gloss

is practically gone, at which time the spraying-drying cycle is repeated. A thickness

of about 1 mil is achieved per cycle. Coating dimensions can therefore be predictably

applied. However, hand-spraying is inherently an art and not a science, and experi-

ence must be gained by the individual painter to determine the most satisfactory

technique for him.
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Reapplication - The porous nature of a cured coating necessitates heavy spraying

upon application of a second coat to achieve a satisfactory, finished texture. If the

area to be repainted has been contaminated, it should be scrupulously cleaned with

detergent and water. If desired, the paint can be removed simply by abrasion, since

it is somewhat soft.

Curing - Satisfactory physical properties are obtained by an air-drying cure. Improved

hardness is obtained by heat-curing at 140 ° C. Strict adherence to cleanliness should

be observed during this step as in all the other steps. The presence of impurities

can greatly decrease the stability of paints to the space environment.

Coating Thickness - 4.5 to 6.0 mils.

Weight Loss During Vacuum Testing -Not stated by supplier.

A. 7 OPTICAL SOLAR REFLECTOR (LMSC)

Source and Cost - Optical Coatings Laboratory, Inc. ; present large quantity price of

$2.20/in. 2

C_om__position -Metallic silver, vacuum deposited on one surface of fused silica, silver

overcoated by a vacuum-deposited layer of Inconel.

• Fused Silica: Corning Glass Works No. 7940, 8 x 10-3-in. thick by 1-in.

square

• Coatings: Approximately 1000 A of silver plus 500 A Inconel overcoat. Both

depositions made in same chamber without breaking vacuum

Optical Properties - Solar absorptance from 0.27 to i. 80 #m = 0.05 ± 0. 005, total

hemispherical emittance at 300°K (80°F) = 0.81 _: 0.02. Spectral reflectance data

shown by Fig. A -7, minimum reflectance of 0.87 and 0. 380 ± 0. 001 pro, 0.95 at

0.475± 0.005_m and 0.98 at 1.00 + 0.02#m. The very high reflectance to solar
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energy results from the silver secondsurface as the fused silica is transparent to

4 #m. The high emittance is achieved by the opacity of the fused silica in the spectral

region beyond 4.5 pm.

Substrate - 2.54-in. diameter disk, 0. 127-in. thick of 6061-T6 aluminum machined

to a 30 rms finish.

Method of Application - The OSR is attached to the substrate with an adhesive or a

double-coated layer of plastic tape. The test specimen was attached to the aluminum

disk with approximately 1-mil thickness of General Electric Co. RTV 615 silicone

adhesive (GE No. SS 4120 primer). The adhesive is allowed to air cure for 5 days.

Density --2.2 gm/cm 3, OSR plus adhesive weight per unit area of 0.49 kg/m 2

(0. i0 Ib/ft2).

Weight Loss During Vacuum Testing -Negligible after adhesive is fully cured.

A.8 INITIAL OPTICAL PROPERTIES

The initial optical properties, the solar absorptance (as) and the infrared emittance

(_), have been determined and are tabulated in Table A-I. Spectral reflectance

curves for each coating type are presented in Figs. A-I through A-7. Data obtained

by use of the Cary spectrophotometer and the Gier-Dunkle integrating sphere are

presented for comparison. The emittance values reported were obtained by use of

the Lion Research Corp. Optical Surface Comparator.
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Table A-1

INITIAL ROOMTEMPERATUE OPTICAL PROPERTIES

Sample

9
i0
ii
12
13
14
15
16

19
20
21
22
23
24
25
26

27
28
29
30
31
32
33
34

Source

LMSC

LMSC

Hughes

IITRI

Coating

Titanium Dioxide/

Methyl Silicone
(LMSC Thermatrol
2A-100)

Zirconium Silicate/
Potassium Silicate

(LMSC)

Aluminum Silicate/
Potassium Silicate

(Hughes)

Zinc Oxide/

Methyl Silicone
(S- 13, IITRI)

Solar Absorptance

Cary

0.15_0.02
0.15_0.02
0.15 _-0.02
0.18 • 0.02(a)

0.15 :_0.02
0.15_-0.02
O. 15 -_0.02
O. 15 _0.02

0.11_0.02
0.11 _:0.02
0.14 _-0.02
0.11_: 0.02
0.13_0.02
0.11_0.02
0.14_0.02
O. 10 _: O. 02

0.14:_ 0.02
0.14 :_ 0.02
0.14:L 0.02
0.14_0.02

0.14±0.02
0.14=L 0.02
0.14_0.02
0.13_0.02

0.19i0.02
0.19_0.02
0.19_0.02
0.19 _0.02
0.19_0.02
0.19 _:0.02
0.18_0.02
0.19_0.02

Gier-Dunkle

O. 17_0.01
O. 16 _0. Ol

0.19:E0.01

O. ii_0.01

O.15_0.01

O. ii±0.01

O.14_0.01

O.14_0. Ol

0.20_0.01

0.2010.01

Emittance

(Optical Surface
Comparator)

0.88_0.03

0.82±0.03

0.91±0.03

0.85_0.03

0.85_0.03

0.85:L0.03
0.87±0.03
O. 86 • O. 03

0.91+ 0.03
0.87±0.03
0.90 :_ 0.03
0.90_0.03

0.91_0.03
0.90_:0.03
0.90_0.03
0.90_0.03

0.90:_0.03
O. 88 _:0.03
O. 90:_0.03
O. 90_:0.03
0.89_:0.03
0.88_0.03
0.90_0.03
0.90_0.03

0.79 _:0.03
0.79_0.03

0.81_0.03
0.80_0.03

0.81_0.03

0.87_0.03

O. 85_:0.03
0.80_0.03
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Table A-1 (Cont.)

Sample

35
36
37
38
39
40
41
42

43
44
45
46
47
48
49
5O

Source

IITRI

IITRI

Coating

Zinc Oxide/
Potassium Silicate
(Z-93, HTRI)

Go

O.
O.
O.
O.
O.
O.
O.

Zinc Oxide/ 0.

Methyl Silicone 0.
(S- 13G, IITRI) 0.

0.
0.
0.
0.
0.

Solar Absorptance

Cary

14 :LO. 02

14_-0.02

14 _-O. 02

14_0.02

14 :_O.02

14_0.02

14 • O.02

14 • O.02

19 • O.02

20*0.02

20*0.02

20+0.02

19 • O.02

16_0.02

20_0.02

19 • O.02

Gie r -Dunkl e

0.15±0.01

O.14_0. Ol

0.20:_0.01
0.20±0.01
0.20:_0.01

Emittance

(Optical Surface
Comparator)

O. 92=_0.03
0.96_0.03

O.96 • O.03

0.91 _0.03

O.96 • O.03

0.96_0.03

0.97 _:0.03

0.95:_0.03

0.85_-0.03
0.85_0.03
0.85_0.03
0.85:_0.03
0.85_=0.03
0.86_0.03
0.84 • 0.03

0.86 ± 0.03

(a) Coating not of proper thickness (< 5 mil).
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Fig. A-1 Typical Spectral Reflectance of Titanium Dioxide/Methyl Silicone Coating (Thermatrol 2A-100)
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Fig. A-2 Typical Spectral Reflectance of Zinc Oxide/Methyl Silicone Coating (S-13)
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Fig. A-3 Typical Room Temperature Normal Spectral Reflectance of Zinc Oxide/Methyl Silicone (S-13G)
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Fig. A-4 Typical Spectral Reflectance of Zirconium Silicate/Potassium Silicate Coating (LMSC)
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Fig. A-5 Typical Spectral Reflectance of Aluminum Silicate/Potassium Silicate Coating (Hughes)
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Fig. A-6 Typical Spectral Reflectance of Zinc Oxide/Potassium Silicate Coating (Z-93)
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Appendix B

CALORIMETRIC ABSORPTANCE
AND

EMITTANCE DATA
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Table B-I

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE ANDIN SITUABSORPTANCE

Tim_e
(hr)

DATA FOR TITANIUM DIOXIDE/METHYL SILICONE COATING

1/4
5

69

117

168
250(c)

360

410

457

486

55O
BeforeExposure(_t)

After Exposure(d)

(THERMATROL 2A-100), SAMPLE 1, AT 395°K(250°F)

Temp. eTH
(°K) (°F) Total

395 250 0.87 0.18

395 250 0.87 0.21

395 250 0.87 0.29

395 250 0.85 0.30

395 250 0.88 0.31

395 250 0.88 0.29

395 250 0.87 0.29

395 250 0.85 0.30

395 250 0.86! 0.30

395 250 0.85 0.31

395 250 0.85 0.31

0.14

0.24

a) Absorptance for xenon

O. 20/0.41

0.7O

0.7O

0.85

0.85

0.85

0.85

0.8O

0.85

0.85

0.90

0.90

0.69

0.79

source.

0.41/0.60 0.60/0.85 0.85/-

0.12

0.17

0.25

0.24

0.25

0.25

0.24

0.25

0.24

0.25

0.25

0.08

0.27

0.07

0.07

0.16

0.18

0.18

0.17

0.17

0.18

0.18

0.18

0.19

0.06

0.15

0.13

0.19

0.22

0.26

0.28

0.24

0.27

0.26

0.26

0.27

0.27

0.07

0.13

S

0.18

0.21

0.29

0.31

0.32

0.30

0.31

0.31

0.31

0.32

0.32

0.15

0.26

(b) Absorptance for solar source.
(c) Vacuum failure at 245 hr; pressure reestablished at 6 × 10 -8 Tort at 250 hr;

data taken at this time.

(d) From Cary room temperature reflectance measurements.
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Table B-2

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU ABSORPTANCE

DATA FOR ZINC OXIDE/METHYL SILICONE (S-13) COATING, SAMPLE 27,
AT 395°K (250°F)

Hour Cycle

0 1

0 1

0 2

4 3

53 15

61 27

113 42

158 52

230 82

280 94

330 105

402 125

450 136

5OO 147

Temp.

(°K) (oF)

294 80

339 150

395 250

395 250

395 250

395 250!

395 250

395 250

395 250

395 250

395 250

395 250

395 250

395 250

£TH

0.86

• 87

.86

.85

.86

.86

.85

.86

.86

.86

• 87

.87

.87

.86

Before Exposure (c)

After Exposure (c)

O_H(a)

Total 0.2-0•41 0.41-0•6 0.6-0•85 0.85-

0.21

.21

.21

.21

•23

•24

•27

•26

•27

•27

•26

•27

•27

.27

O. 65

• 65

.65

.70

.70

.75

.75

.70

• 65

• 65

.70

m

O. 08 0.06

• 18 .65

• 26 .76

• I0 .06

• 15 .06

• 15 .08

.19 .08

• 21 .09

• 25 .08

• 26 . i0

• 26 .08

• 27 .08

• 27 . i0

• 08 . i0

• 31 .15

(a) Absorptance for xenon source•
(b) Absorptance for solar source.

(c) From Cary room temperature reflectance measurements•

m

0.24

• 27

• 28

.30

• 28

• 28

• 29

• 28

• 28

.30

• 28

• 14

.17

Total

0.21

• 23

• 24

• 26

• 26

• 27

• 28

• 28

• 28

• 28

• 28

• 18

.28
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Table B-3

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE ANDIN SITUABSORPTANCE
DATA FOR ZINC OXIDE/METHYL SILICONE (S-13) COATING, SAMPLE 28,

AT 395°K (250°F)

Hour

0

0

0

4

50

146

196

246

296
328 (c)

346

396

468

516

564

636

Cycle Temp.
(°K) (°F)

0 290 62

0 342 155

1 395 250

2 395 250

12 395 250

33 395 250

45 395 250

57 395 250

69 395 250

75 395 250

81 395 25O

93 395 '250

111 395 '250

123 395 '250

135 395 '250

153 395 '250

6TH

0.85

.88

.85

.86

.87

.86

•87

.87

• 87

•86

.86

.87

• 86

.87

• 87

.87

0.2-0.41Total

0.21

.20

.21

.22

.23

.26

.27

.30

.29

.25

.27

.28

.27

.27

.27

.27

.19

.28

w

0.70

.70

.65

.65

.65

.70

.70

.70

.70

.70

.70

.70

.70

.70

Before Exposure (d) .65

After Exposure (d) .78

(a)
ozH

0.41-0.6

0.10

• 10

• 12

• 18

• 23

• 28

• 26

.21

• 22

.22

• 24

• 23

.24

• 24

• 08

.32

(a) Absorptance for xenon source.
(b) Absorptance for solar source.
(c) Electronic pump off, pressure increase to > 50/_.
(d) From Cary room temperature reflectance measurements•

O. 6-0• 85 O. 85-

0.10 0

.10

.10

• 10

.08

• 08

• 09

• 10

.10

.10

.11

• 14

• 14

• 14

• 10

.17

.19

• 23

• 26

.28

.32

.32

.31

• 26

.29

.31

.30

• 30

.30

.30

• 14

.21

(b)
S

Total

F

i

0.20

• 21

• 23

• 26

• 28

.30

.30

• 26

• 27

• 28

• 28

• 28

• 28

• 28

•19

.31
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Table B-4

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU ABSORPTANCE
DATA FOR ZINC OXIDE/METHYL SILICONE (S-13G)COATING, SAMPLE 43,

AT 395°K (250°F)

(a)
a H

Temp.

Hour Cycle (OK) (OF) ¢TH Total 0.41-0.6 0.6-0.85 0.85-

0

4

51

149

195

248

296

344

392

500

0

0

1

1

1

13

46

58

70

81

92

104

125

294 70 0.86

339 150 • 89

395 250 .90

395 250 .90

395 250 .93

395 250 • 92

395 250 .92

395 250 .92

395 250 .90

395 250 .92

395 250 .92

395 250 .90

395 250 .91

Before Exposure( c )

After Exposure (c)

0.23

.21

.21

.20

.21

• 23

• 24

• 26

• 26

• 26

• 26

.26

.26

• 19

• 28

0.2-0.41

0.85 0

.90

.90

.90

.92

.90

.90

.85

.85

.85

.70

.82

m

u

.12

. 12

. 17

.21

.27

• 28

.32

.35

.35

.35

M

0.05

• 05

• 08

• 09

.10

.10

• 09

.11

.11

.10

.10

.20

(a) Absorptance for xenon source•
(b) Absorptance for solar source.
(c) From Cary room temperature reflectance measurements.

0.15

.16

.17

• 17

• 17

• 17

• 17

• 17

• 17

. 18

.13

. 15

a (b)
S

Total

m

m

i

O.20

.21

• 24

• 25

• 27

• 27

• 28

.28

• 28

• 28

• 19

.31
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Table B-5

CALORIMETRIC TOTAL HEMISPHF.RICALEMITTANCE AND IN SITUABSORPTANCE
DATA FOR ZINC OXIDE/METHYL SILICONE (S-13G)COATING, SAMPLE 44,

AT 395°K(250°F)

Hour

0
0

0

5

75

123

172

227

274

327

423

471

520

Temp.
Cycle (OK)(°F)

0 294 70

0 339 150
1 395 250

1 395 250

17 395 250

29 395 250

41 395 250

53 395 250

65 395 250

77 395 250

100 395 250

112 395 250

125 395 250

eTH

0.90

.93

.91

.91

.91

.91

•91

.92

.92

.91

.91

.90

.91

Before Exposure (c)

After Exposure (c)

(a) (b)
°_H _s

Total 0.2-0.41 0.41-0.6 0.6-0.85 0.85-

0.24

.22

• 19

•20

.20

.21

.21

• 22

.22

.22

.22

.22

.22

• 18

• 23

0.80

.80

.80

.80

.80

•75

.75

.75

.75

.75

.75

• 65

.75

0.10

.10

• 16

• 16

.21

• 27

.27

• 27

• 27

• 27

• 28

• 10

• 29

0•08

• 08

• 09

• 08

.08

• O8

• 08

.10

.10

• 10

•10

.I0

.12

0.14

• 14

.15

• 16

• 16

• 16

• 16

• 16

.17

• 17

• 18

• 13

• 15

Total

0.19

.20

.21

• 22

• 22

• 23

• 23

• 24

• 24

• 24

• 25

.20

• 27

(a) Absorptance for xenon source•

(b) Absorptance for solar source•
(c) From Cary room temperature reflectance measurements•
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Table B-6

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU ABSORPTANCE
DATA FOR ZIRCONIUM SILICATE/POTASSIUM SILICATE COATING, SAMPLE 9,

AT 534°K(500°F)

Hour

0

0

0

0
1

3

50

100

Temp.
Cycle (OK) (°F)

0 294 80

0 339 150

0 395 250

0 534 500

1 534 500

2 534 50O

14 534 500

25 534 500

Before Exposure (c)

After Exposure (c)

CTH

(a)
a H

Total 0.2-0.41 0.41-0.6

0.87 0.13

• 86 .16

.82 .17 -

.80 -

.70 .13 0.30

.70 .17 .35

.69 .26 .40

.71 .33 .50

• 12

.38

i

m

0.12

• 19

• 29

.39

a (b)
S

0.6-0.85 0.85- Total

0. i0 0. Ii 0.13

.19 .13 .18

• 30 .24 .27

• 36 .30 .36

• 09 .10 .12

• 37 .25 .36

(a) Absorptance for xenon source•
(b) Absorptance for solar source.

(c) From Cary room temperature reflectance measurements.
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Table B-7

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU ABSORPTANCE
DATA FOR ZIRCONIUM SILICATE/POTASSIUM SILICATE COATING, SAMPLE 14,

AT 534°K (500°F)

Hour Cycle

0 0

0 0

0 0

1 1

12 5

24 I0

75 22

127 33

171 44

196 49

267 65

315 77

380 92

432 104

500 120

Temp ETH
(°K) (°F)

294 70 0.87

339 150 .87

395 250 .87

534 500 .71

534 500 .71

534 5OO .71

534 500 .71

534 5O0 .71

534 5O0 .70

534 500 .71

534 500 .72

534 50O .72

534 500 .72

534 500 .70

534 500 .71

Before Exposure (c)

After Exposure (c)

Total

0.16

.15

• 14

• 12

• 23

.31

.38

.39

• 39

• 38

.38

.40

• 40

• 42

.41

.ii

• 48

(a) (b)
_H

S

0.2-0.41 0.41-0.6 0.6-0.85 0.85-

O. 30

.50

.50

.50

.50

.50

.50

.50

.55

.55

.55

.55

.23

.61

0.12

.30

.31

.39

• 45

• 46

.39

.38

.39

.37

.40

• 45

0.10

• 23

.35

• 43

• 48

• 46

.45

.50

.50

• 49

• 47

• 48

• 09

.55

0.08

.15

• 23

.29

.33

• 34

• 34

• 34

.37

.39

• 40

• 43

• i0

• 40

Total

0.12

.25

.31

.37

• 40

.41

• 40

• 40

.41

.41

• 43

• 42

• 12

• 51

(a) Absorptance for xenon source•
(b) Absorptance for solar source•

(c) From Cary room temperature reflectance measurements.
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Table B-8

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITUABSORPTANCE
DATA FOR ALUMINUM SILICATE/POTASSIUM SILICATE COATING,

SAMPLE 19, AT 534°K (500°F)

Hours Cycle Temp. _ H(a)6TH
(°K) (°F) 0.2-0.41 0.41-0.60 0.60-0.85 0.85-Total

0 0 290 62 0.90 0.14 -

0 0 342 115 .89 .15 -

0 0 395 250 .92 .18 -

0 0 534 500 .72 - --

0 1 534 500 .72 .18 0.35

24 7 534 500 .72 .30 .41

75 19 534 500 .72 .44 .65

122 (c) 31 534 500 .72 .46 .60

Before Exposure(d) .14 .32

ARer Exposure(d) .42 .60

0.22

.36

.50

• 55

.ii

• 54

w

0.13

.35

•48

.50

.i0

.40

(a) Absorptance for xenon source.
(b) Absorptance for solar source.

(c) Test terminated due to thermocouple failure•
(d) From Cary room temperature reflectance measurements.

0.13

.18

.32

.38

.12

.33

(b)
O_

S

Total

0.20

.31

• 44

• 46

• 14

.41
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Table B-9

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITUABSORPTANCE
DATA FORALUMINUM SILICATE/POTASSIUM SILICATE COATING,

SAMPLE 21, AT 534°K(500°F)

(a)
Hours Cycle Temp. _ H

¢TH

(°K) (°F) 0.2-0.41 0.41-0.6 0.6-0.85 0.85-Total

0 0 290 62 0.94 0.15

0 0 342 115 .96 .15

0 0 395 250 .93 .15

0 0 534 500 .82 .16

24 3 534 500 .80 .25

72 13 534 500 .80 .37

168 39 534 500 .79 •43

218 52 534 500 .79 .44

290 68 534 500 .80 .48

338 72 534 500 .80 .46

386 82 534 500 .78 .47

458 97 534 500 ,80 .51

530 112 534 500 .81 .50

Before Exposure( c ) .13

ARer Exposure(c) .46

(a)
(b)
(c)

Absorptance_r xenon source•
Absorptancefor solar source•

0.47 0.Ii 0.10

• 49

.61

• 58

.60

.64

.61

• 59

.60

.63

• 40

.65

.35 .18

.38 .38

• 38 .38

• 44 .38

• 48 .41

• 44 .43

•47 .43

• 51 .45

.54 .47

• ii .09

• 55 .46

From Cary room temperature reflectance measurements.

0.10

.17

.19

.33

.35

.39

.41

•40

•42

.45

.11

.38

(b)
O_

S

Total

0.15

.15

.15

.16

.25

.37

.43

.44

.48

•46

•47

.50

•50

.14

.45
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Table B-10

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITUABSORPTANCE
DATA FOR ZINC OXIDE/POTASSIUMSILICATE (Z-93) COATING, SAMPLE 35,

AT 534°K (500°F)

Hour

0

0

0

0

0

12

60

140

181

256

304

356

404

426

502

Cycle

0

0

0

1

1

5

16

33

43

61

72

83

94

99

120

I

Temp. ¢TH
(°K) (°F)

294 70 0.93

339 113 .94

395 252 .91

534 500 .81

534 500 .81

534 500 .80

534 500 .80

534 500 .80

534 500 .82

534 500 .82

534 500 .82

534 50O .81

534 500 .81

534 500 .82

534 500 .81

Before Exposure(c)

After Exposure (c)

Total 0.2- 0.41

O. 12

• 12

.ii

.ii

• ii

• 16

.20

.21

• 22

.23

• 23

.23

.24

• 24

• 24

0.60

.55

.55

.55

.55

.55

.55

.50

.50

.55

.55

(a)
aH

• 13 .64

• 25 .70

0.41-0.6

m

p

i

0.03

• 20

.27

.28

• 27

.25

.25

.25

• 25

• 26

• 26

• 05

• 28

0.6-0.85

w

0.05

• 08

.i0

• 13

• 15

.20

.20

.20

.23

.22

• 23

.05

• 19

0.85-

O. 08

• 09

• 12

• 16

• 17

• 16

• 18

• 18

• 19

• 19

• 19

.07

• 16

(b)
OZ

S

Total

m

0.12

• 16

• 20

• 22

• 23

• 24

• 24

• 24

• 25

.25

• 25

• 14

.26

(a) Absorptance for xenon source.
(b) Absorptance for solar source•
(c) From Cary room temperature reflectance measurements•
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Table B-11

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU ABSORPTANCE
DATA FOR ZINC OXIDE/POTASSIUMSILICATE (Z-93) COATING,

SAMPLE 36, AT 534°K (500°F)

Hours Cycle Temp. all(a)
eTH

(°K) (°F) 0.2-0.41 0.41-0.6Total

0 0 290 62 0193 0.13 -

0 0 342 156 .91 .13 -

0 0 534 500 .82 .11 -

0 0 534 500 .81 .10 0.50

15 12 534 500 .79 .15 .50

87 30 534 500 .81 .23 .55

187 54 534 500 .79 .25 .65

235 66 534 500 .79 .24 .65

282 78 534 500 .79 .24 .65

331 (c) 90 534 500 .81 .31 .75

Before Exposure(d) .13 .60

After Exposure(d) .42

m

O. O5

• 08

.20

.22

.22

.22

.32

.05

0.6-0.85

m

0.07

.II

.20

.20

•22

•22

.26

.05

0.85-

0.05

.10

.19

.19

.20

.20

.25

.06

(a) Absorptance for xenon source.
(b) Absorptance for solar source.

(c) Vacuum failure pressure > 100 Torr.
(d) From Cary room temperature reflectance measurements.

a (b)
S

Total

0.14

• 14

.12

.11

.15

.24

.25

•24

.24

.32

.14

.42
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Table B-12

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU
ABSORPTANCEDATA FOR ZINC OXIDE/POTASSIUMSILICATE

(Z-93) COATING, SAMPLE 40, AT 450°K (350°F)

(a)
Hour Temp. ETH a H

(°K) (°F) Total 0.2-0• 41

0 450 350 0.87 0.12

20 450 350 .87 .16

58 450 350 .86 .18

106 450 350 .87 .18

154 450 350 .87 .19

226 450 350 .87 .20

274 450 350 .87 .21

322 450 350 .87 .21

394 450 350 .87 .20

488 450 350 .87 .22

560 450 350 .87 .20

608 450 350 .88 .22

656 450 350 .88 .22

728 450 350 .87 .24

776 450 350 .87 .25

824 450 350 .87 .25

896 450 350 .87 .25

944 450 350 .87 .25

1004 450 350 .87 .25

Before Exposure (c)

After Exposure (c)

•12

.21

0.50

.75

.80

.84

.85

.91

.90

.94

•95

.87

.87

.85

•88

.85

.80

.75

.80

.80

.85

(b)
S

0.41-0.6 0.6-0. Total

0. I0

•15

•17

•23

•23

.23

•23

•29

•27

•28

•24

.30

.28

.31

.31

.35

.30

.30

.30

0.04

•07

•08

.09

.I0

•12

.Ii

.i0

.i0

•13

•14

•14

.18

•16

•16

.20

.20

•19

.20

•05

.15

85 0.85_'-

0.08

.08

.08

.09

.I0

.i0

.ii

.ii

.ii

.ii

• 12

• 13

• 13

.13

.14

• 14

• 14

.14

.14

.07

.i0

.05

.25

0.12

•16

•18

.20

°20

.22

.22

•24

•24

•24

.23

.24

•24

.26

.25

.26

.26

.25

.26

•14

.23

(a) Absorptance for xenon source•
(b) Absorptance for solar source.

(c) From Cary room temperature reflectance measurements.
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Table B-13

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU
ABSORPTANCEDATA FOR ZINC OXIDE/POTASSIUMSILICATE

(Z-93) COATING, SAMPLE 38, AT 422°K (300°F)

Hour Temp.

(°K) (°F) Total

(a)
CTH _H

0 422 300 0•87 0•14

19 422 300 .87 .15

95 422 300 .87 .16

145 422 300 .87 .16

193 422 300 .87 .16

265 422 300 .86 .17

313 422 300 .87 .16

361 422 300 .87 .16

433 422 300 .87 .16

500 422 300 .88 .17

0.2-0•

0.63

• 64

.62

.62

• 57

.61

.63

• 58

.60

.57

41 0.41-0.6

O. 12

.20

.24

.23

•23

•23

•23

•24

.26

.30

0.6-0•85

O.06

.06

.09

.08

.08

.i0

•09

.09

.08

•08

O.85 _'-

0.08

• i0

. i0

• I0

•ii

• i0

• i0

• i0

.ii

.ii

(b)
S

Total

0.14

• 16

.18

.18

• 18

• 19

• 18

• 18

.18

• 19

Before Exposure (e)

After Exposure (c)

• 12

• 18

.05

.i0

.07

• 08

•14

.20

(a) Absorptance for xenon source•
(b) Absorptance for solar source.
(c) From Cal_y room temperature reflectance measurements•
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Hour

Table B-14

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU

ABSORPTANCE DATA FOR ZINC OXIDE/POTASSIUM SILICATE (Z-93)
COATING, SAMPLE 39, AT 422°K (300°F)

Total 0.2-0.41

0 0 294 70 0.92 0.12 -

0 0 348 162 .91 .ii --

0 0 422 300 .91 .ii -

0 1 422 300 .91 .ii 0.70

0 4 422 300 .91 .i0 .70

24 8 422 300 .90 .i0 •70

48 13 422 300 .89 .I0 .70

98 25 422 300 .90 .i0 .75

148 37 422 300 .89 .I0 .75

198 50 422 300 .85 .ii .75

248 62 422 300 .89 •i0 •75

298 74 422 300 .89 .12 .85

322 80 422 300 .89 .13 .85

400 95 422 300 .89 .13 .90

450 107 422 300 .89 .14 .90

475 113 422 300 .89 .13 .90

550 128 422 300 .89 .13 .90

625 422 300 .87 .14 .90

700 422 300 .90 .13 .90

750 422 300 .88 .13 .90

846 422 300 .89 .12 .90

921 422 300 .89 .13 .90

1017 422 300 .88 •14 .90

1089 422 300 .88 .13 .90

1161 422 300 .88 .13 .90

(a)
Cycle Temp. eTH _H

(°K) (°F) 0.41-0.6

m

0.06

0.6-0.85

m

0.06

.06 .06

• 07 .07

• 07 .07

• 07 .08

.07 .07

.08 .09

• 08 .08

.08 .08

• 08 .07

• 07 .07

.09 .07

. O8 . O7

• 09 .07

• 09 .07

• 09 .08

• i0 .07

• 09 .09

. i0

. I0

• I0

• 09

• 09

• 09

• 09

• 09

0.85""

0.06

• 06

• 08

• 07

• 09

• 08

• 10

• 09

• 10

• 09

.09

• 08

.09

.08

.09

• 10

• 10

• 10

.10

• 10

• 10

.10

(b)
S

Total

0.12

.ii

.ii

• 12

.ii

.Ii

.Ii

.Ii

.Ii

• 12

.ii

.13

• 14

.14

.15

• 14

• 14

.15

.14

• 14

.13

• 14

• 15

• 14

• 14
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Table B-14 (Cont.)

Hour

1210

1260

1332

1404
1524

1596

1668

1710

1764

1836

1890

1932

2004

2100

2172

2268

2340

2436

2556

2604

2676

2772

2844

2892

2940

3012

3060

Cycle
TemD.

(°K) (°F)

CTH

422 300 0.88

422 300 .89

422 300 .88

422 300 .88

422 300 .89

422 3OO .88

422 300 .87

422 300 .87

422 300 .87

422 300 .88

422 300 .88

422 300 .88

422 300 .88

422 300 .88

422 3OO .87

422 300 .87

422 300 .87

422 300 •87

422 300 •86

422 300 .86

422 300 .87

422 300 .87

422 300 •86

422 3O0 .86

422 300 .86

422 300 .86

422 3OO .87

Total

0.13 0.90

.13 .90

.13 .90

.13 .90

.13 .90

.14 .90

•14 .90

•14 .90

.14 .90

•14 .90

•14 .90

.14 .90

•14 .90

•15 .90

•14 .90

•14 .90

•14 .90

•14 .90

• 13 .90

.13 .90

• 14 .90

• 14 .90

• 13 .90

• 13 .90

.13 .90

.13 .90

• 13 .90

(a)
o_H

0.2-0.41 0.41--0.6 0.6--0.85

0. i0

•i0

.ii

.i0

•i0

.ii

.ii

.ii

0.09

.09

.08

• 09

• 08

.09

• 08

• 09

•i0 .i0

•ii .i0

•ii .09

•ii .09

•12 .09

•12 .09

.II .09

•12 .10

•11 .10

•10 .09

.11 .09

•10 .09

.12 .09

.11 .09

•11 .09

•11 .i0

.10 .09

•10 .09

•09 .09

0.85_"

0.i0

.I0

.i0

.i0

.i0

.i0

.i0

•i0

.i0

.i0

.i0

.i0

.10

.10

.10

.11

.10

.10

.10

.10

.10

.i0

.10

.10

.11

.09

.10

a (b)
S

Total

0.14

.14

.14

.14

.14

.15

.15

.15

.15

.15

.15

.15

.15

• 16

.15

.15

.15

.15

.14

.15

.15

.15

.15

.14

.14

.15

.15
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Table B-14 (Cont.)

Hour

3108

3180

3228

3276

3348

3444

3516

3516

3564

3612

3684

3732

3780

3852

3900

3948

4020

4068

4116

4188

4236

4284

4356

4404

4452

Cycle Temp. ETH

!(°k9 (°F)

422 300 0.87

422 300 •88

422 300 •88

422 300 .87

422 300 .87

422 300 •88

422 300 .88

422 3OO •88

422 300 .88

422 300 •86

422 3O0 .87

422 300 •87

422 300 .87

422 300 .87

422 300 .87

422 300 .88

422 3OO .88

422 300 .88

422 300 .87

422 300 •87

422 300 .88

422 300 .88

422 300 .88

422 300 .88

422 300 •88

Total

0• 13 0.90

• 13 .90

• 14 •90

• 13 .90

.13 .90

• 14 .90

• 13 .90

.13 .76

• 13 .79

• 13 .73

• 12 .67

.12 .65

• 12 .65

• 12 .70

• 13 .66

• 12 .66

.12 .67

• 12 .67

• 12 .60

• 12 .65

• 12 .65

• 12 .63

• 12 .65

• 12 .67

• 12 .65

(a)
ozH

0.2-0.41 0.41-0.6 0.6-0.85

0.09

• i0

• i0

• i0

• I0

.ii

• i0

• i0

0.10

.09

.10

.09

• 10

• 10

.10

.07

0.85_"

0. I0

• i0

.I0

• i0

• i0

. i0

.ii

.04

. 12

• 12

.ii

.ii

.ii

• i0

• i0

.ii

. i0

. I0

• i0

• I0

.ii

. i0

• i0

• i0

• i0

• O8

• I0

.09

.13

.08

• 08

. i0

.08

• i0

.i0

. I0

.Ii

.ii

. i0

• 08

• i0

. i0

.09

.08

.05

. i0

.06

• 08

• i0

• 06

. i0

• i0

.05

.05

.05

.07

.09

.06

.07

(b)
S

Total

0.15

.15

• 16

• 15

• 15

• 16

• 16

• 15

.15

.15

• 14

• 16

• 15

• 15

. 16

• 15

• 16

• 16

• 14

• 15

• 15

.15

• 15

• 15

.15
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Table B-14 (Cont.)

Hour Cycle Temp. eTH _H (a)

(°K ) (°F ) 0.2-0.41 0.41-0.6 0.6-0.85

4524 422 300 0.88

4574 422 300 .88

Total

0.12 0.65

•12 .67

After Vacuum
Failure(c) .26

O. i0

.10

0.07

.05

.75 .45 .25

0.85""

0.10

.11

• 13

(b)
S

Total

0.15

.15

• 14

(a) Absorptance for xenon source.
(b) Absorptance for solar source.
(c) From Cary room temperature reflectance measurements.
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Table B-15

CALORIMETRIC IN SITU SOLARABSORPTANCEAND TOTAL HEMISPHERICAL
EMITTANCE OF ZINC OXIDE/POTASSIUM SILICATE (Z-93) COATING,

SAMPLE 59, AT 422°K (300°F)

Hour Temp. ETH _H
(°K) (°F)

0 422 300 0.88

22 422 300 .89

96 422 300 .87

144 422 300 .88

192 422 300 .88

264 422 300 .88

312 422 300 .88

360 422 300 .89

432 422 300 .88

480 422 300 .89

528 422 300 .90

600 422 300 .89

648 422 300 .90

768 422 300 .88

816 422 300 .88

864 422 300 .88

936 422 300 .88

984 422 300 .90

1032 422 300 .89

1152 422 300 .88

1200 422 300 •88

1272 422 300 .89

1320 422 300 .88

1488 422 300 .90

1536 422 300 .88

Total

0. 126

• 15

.17

• 16

• 16

• 16

• 16

.16

.16

• 16

.16

• 16

• 16

• 15

• 15

.14

• 14

• 15

.14

.14

• 15

• 14

• 14

.14

;15

0.2-0.41

0.75

.90

.92

.87

.80

.80

.78

.80

.76

.76

.76

.80

.80

• 77

.80

.75

.78

.78

.78

.70

.72

.73

.72

.70

.68

OL
S

0.41-0.6 0.6-0.85 0.85-_ Total

0.05

.05

.07

.07

.07

.10

.07

• 08

.07

.09

.08

. i0

• 09

.07

.08

• 07

.08

• 08

.08

• 08

.09

.08

.08

• 08

• 09

0.05

.05

.07

.07

.07

.07

• 08

• 09

.08

• 08

• 08

.08

.08

• 08

.08

.08

.08

.08

• 08

.08

• 08

.08

.08

• 08

.09

0. ii

• 16

• 16

.17

.20

• 18

.20

.17

.19

• 20

.19

.17

.19

• 18

• 17

.18

• 16

.18

.18

.16

• 17

• 17

• 18

• 19

.21

0. 137

.16

• 18

• 18

• 18

• 19

.18

• 18

• 18

• 18

• 18

• 19

.19

• 18

• 19

• 17

• 17

• 18

• 18

• 17

.17

.17

.17

• 17

• 18
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Table B-15 (Cont.)

Hour Temp.
(°K) (°F)

eTH

1608 422 300 0.87

1656 422 300 .88

1704 422 300 .88

1776 422 300 .88

1824 422 300 .89

1872 422 300 .88

1944 422 300 •90

2016 422 300 .88

2256 422 300 .88

2424 422 300 .87

2472 422 300 .88

2560 422 300 .88

2644 422 300 .85

2736 422 300 .88

2784 422 300 •88

3336 422 300 .88

3408 422 300 .87

3508 422 300 .88

3580 422 300 •88

3678 422 300 .88

3676 422 300 .89

3798 422 300 •88

3866 422 300 .87

3914 422 300 .87

3962 422 300 .87

4034 422 300 .87

4082 422 300 .87

Total

0.15

.15

•15

•15

•16

•16

.16

.16

•16

•15

•15

•15

•15

.15

.15

Xenon

• 16

.15

• 15

• 15

• 16

• 16

• 16

.16

.16

.16

.17

.17

olH o_S

0.2--0.41 0.41--0.6 0.6--0.85 0.85_"- Total

0.66

.65

•67

•68

.70

.70

.70

•68

•69

•69

.66

.68

.67

•68

.68

lamp off

•66

.64

.64

•64

.62

.64

.63

.66

•64

.61

.65

•66

2832

0.18

• 18

• 18

.20

• 18

• 19

• 18

. 19

.19

• 17

• 19

• 17

• 18

• 18

• 18

to 3335 hr

• 17

• 16

• 18

• 18

• 16

.20

• 17

• 17

.20

.17

.20

.21

0.09

• 10

• 10

• 09

.11

• 09

.09

• 10

• 09

.11

.10

.11

.10

• 10

.11

•i0

.Ii

•i0

.ii

•12

.ii

•12

.ii

•12

•13

•12

.12

0.09

.08

.08

.08

• 08

• 09

• 09

• 08

• 08

• 08

.08

• 08

• 09

.08

• 09

.09

• 09

• 09

• 09

.09

• 09

• 09

• 09

• 09

• 09

• 09

• 09

O. 17

•17

•17

•18

.18

•18

•18

•18

•17

•17

•17

•18

•17

.17

•18

•17

•17

•17

•17

.17

.18

.18

.18

•18

.17

•18

•18

146



Hour Temp.
(°K) (°F)

_TH

4202 422 300 0.86

4298 422 300 .87

4370 422 300 .87

4466 422 300 .88

4530 422 300 .89

4634 422 300 .87

4706 422 300 .88

4754 422 300 .88

4802 422 300 .88

4874 422 300 .88

4921 422 300 .86

4969 422 300 .87

5089 422 300 .88

5137 422 300 .88

5209 422 300 .89

5329 422 300 .88

5401 422 300 .88

5449 422 300 .88

5497 422 300 .89

5617 422 300 .86

5665 422 300 .87

5737 422 300 .88

5785 422 300 .88

5833 422 300 .88

5905 422 300 .87

5953 422 300 .89

6001 422 300 .88

Total

0.16

• 17

.17

.17

• 17

.17

.17

• 17

• 17

• 17

.17

.17

.17

.17

.17

.17

• 17

.17

• 17

• 18

• 17

.17

.17

• 17

.17

.17

• 17

Table B-15 (Cont.)

_H
C_

S

0.2-0•41 0.41-0.6 0.6-0.85 0.85- Total

0.20

.20

.20

.20

.21

.20

0.13

.12

.12

• 13

• 13

. 13

0.09

.09

• 09

.09

• 09

.10

0.65

.66

.65

.63

.62

.61

• 12 .09

• 12 .09

.12 .09

• 12 . i0

• ii . i0

.ii .i0

• i0 . ii

• ii .09

• i0 . i0

• ii . i0

• Ii . ii

• 13 .09

.12 .09

• 12 . i0

.ii .i0

• 12 .09

• 14 .09

.Ii .i0

• 14 .i0

• ii . i0

. ii . i0

.61 .25

• 66 .22

.65 .23

.62 .21

.63 .22

• 66 .2O

• 62 .22

• 59 .24

• 63 .24

• 60 .25

.61 .25

• 64 .25

• 59 .26

• 62 .25

• 58 .25

• 59 .26

• 58 .26

• 59 .25

• 58 .22

.58 .25

• 61 .25

0.19

• 19

• 18

• 18

• 19

• 19

• 19

• 19

• 19

.20

• 19

• 19

.18

• 18

• 19

• 19

• 19

.20

.20

.20

• 19

• 19

.20

• 19

• 19

• 19

• 19
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Table B-15 {Cont.)

Hour Temp. _TH

(°K) l (°F)

6073 422 300 0.87

6121 422 300 .86

6169 422 300 .88

6241 422 300 .88

6289 422 300 .87

6457 422 300 .88

6505 422 300 .86

6577 422 300 .88

6625 422 300 .86

6673 422 300 .89

6745 422 300 .88

6793 422 300 .88

6913 422 300 .88

6961 422 300 .88

7009 422 300 .87

7081 422 300 •88

7129 422 300 .87

7177 422 300 .88

7249 422 300 .89

7345 422 300 .89

7417 422 300 .88

7465 422 300 .87

7513 422 300 .88

7585 422 300 .88

7633 422 300 .87

7681 422 300 .88

7753 422 300 .87

_H

Total 0.2-0.41 0.41-0.6 0.6-0•85 0.85-

0.17

.17

.17

.17

.16

.17

.17

.17

.17

.17

•16

.16

.17

.16

.16

.16

.16

.16

.16

.16

.16

.16

.16

.16

.17

•16

.16

0.62

.60

.63

.64

• 64

.68

• 64

• 63

.65

.62

.62

• 62

• 62

.62

• 62

• 66

• 63

•65

• 65

•60

.62

•63

.65

.62

• 65

.63

.64

0.22

.26

.22

• 23

.22

.20

.23

.22

.20

• 24

.22

.22

.23

.23

.20

.19

• 19

.21

.18

.18

.18

• 19

.20

• 22

.20

.17

• 18

0.Ii

.09

.ii

•09

•08

.I0

.08

•ii

.Ii

.I0

.ii

.I0

.I0

.10

.10

.10

.09

.09

.i0

.11

.10

•09

.11

.I0

.10

•10

.72

0.10

• 10

• 09

• 10

.10

.10

.10

.09

.10

• 09

.10

• 09

• 09

.10

.10

.10

.10

.10

.10

.10

.10

.10

• 10

• i0

.10

.10

.10

O/
S

Total

0.19

.19

.19

• 19

• 19

• 19

.19

• 19

• 19

• 19

.19

.19

.19

• 19

.19

.18

.19

.18

.18

.18

.18

.18

• 19

.19

.19

.18

.18
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Table B-15 (Cont.)

=_

Hour Temp.
(°K) (°F)

_TH

Total

7801 422 300 0.87 0.16

7849 422 300 .86 .17

7921 422 300 .88 .17

8017 422 300 .88 .16

8029 422 300 .88 .16

8125 422 300 .88 .16

8251 422 300 .88 .16

8301 422 300 .88 .16

8349 422 300 .88 .16

8421 422 300 .88 .16

8517 422 300 ,87 .16

8589 422 300 .88 .16

8781 422 300 .87 .16

9021 422 300 ,90 .17

9093 422 300 .86 •16

9189 422 300 .88 .15

9285 422 300 .86 .16

9357 422 300 .87 .17

9424 422 300 .86 .17

9501 422 300 .88 .16

9597 422 300 .86 .16

9645 422 300 .87 .15

9693 422 300 .87 .16

9789 422 300 .88 .16

9861 422 300 .87 .15

9885 422 300 .86 .15

9975 422 300 .86 .16

C_H

0.2-0.41 0.41-0.6

0.60

•62

.63

.62

.62

• 62

.57

• 56

• 57

.55

.54

• 57

• 59

• 54

.57

• 50

•53

• 54

.54

• 52

• 54

• 52

.52

.59

.50

• 53

• 50

0.19

.20

.20

.21

.20

•20

•17

•17

•18

•17

.17

•17

.19

.21

•19

.20

.21

.23

.21

.20

•19

.21

•19

.19

•19

.20

•18

0•6-0•85

0.10

.11

•09

.09

.10

.10

•12

.12

.11

•13

.12

.12

.13

.11

.11

•09

.11

•14

•12

•09

.13

.11

.11

•09

.11

.12

.11

O_
S

0.85- Total

0. i0 0.18

.09 .18

•09 .18

.i0 .18

.i0 .18

.10 .18

•10 .18

.10 .18

• 10 .18

.I0 .18

•10 .18

•10 .18

.10 .18

.11 .i8

• 10 .17

• 10 .17

• 10 .18

•i0 .19

•i0 .18

.10 .17

.10 .18

•10 .18

.10 .18

•11 .18

.11 .17

•10 .18

.11 .17
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Table B-15 (Cont.)

Hour

10071

10143

10239

10431

10454

10517

10517

Temp. eTH
(°K) (°F)

422 300 0.88

422 300 • 86

422 300 .88

422 300 • 88

422 300 .88

422 300 • 87

corrected for
window
transmission

Before Exposure (c)

After Exposure (c)

c_H a s

Total 0.41-0•6 0.6-0.85 0.85- Total

0.15

•14

.15

.15

•14

.15

.17

• 13

.20

0.2-0.41

0.48 O.

.50

.49

.49

.49

.45

.62

.60

.66

19

17

19

21

19

.19

• 22

• O6

.23

0. i0

.13

. 12

.ii

• 12

• 13

• 14

. O6

• 14

0.11

.10

• 10

.10

.10

• 10

.12

•07

.I0

(a) Absorptance for xenon source.

(b) Absorptance for solar source.
(c) From Cary room temperature reflectance measurements•

0.17

.17

.17

• 17

• 17

• 17

.19
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Table B-16

CALORIMETRIC IN SITU SOLAR ABSORPTANCE AND TOTAL HEMISPHERICAL

EMITTANCE OF ZINC OXIDE/POTASSIUM SILICATE COATING (Z-93),

SAMPLE 56, AT 366°K (200°F)

Hour Temp. ETH

(°K) (°F)

0 366 200 0.89 0.14

17 366 200 .89 .16

70 366 200 .89 .17

93 366 200 .89 .17

161 366 200 .90 .17

233 366 200 .89 .18

329 366 200 .69 .18

377 366 200 .89 .18

425 366 200 .89 .18

497 366 200 .89 .18

545 366 200 .89 .17

593 366 200 .89 .18

665 366 200 .89 .18

713 366 200 .90 .19

761 366 200 .89 .19

833 366 200 •89 .18

881 366 200 .89 .18

939 366 200 .88 .19

1011 366 200 .88 .17

1059 366 200 .89 .18

1179 366 200 .88 .17

1227 366 200 .88 .19

1275 366 200 . 88 . 181

1347 366 200 . 88 . 183

_H (a) ots (b)

Total 0.2-0.41 0.41-0.6 0.6-0.85 0.85_D- Total

0.04 0.080.84

.88

.89

.89

.90

•90

.91

0.05

•i0

.14

.16

.14

.16

•16

.06

.08

•06

•09

.07

.I0

.08

.08

•08

.08

.08

.08

.90

.90

.89

.85

.85

.82

.87

.87

.85

.85

.80

.80

.83

.84

.85

.82

.84

•16

•16

•16

.17

.20

.18

•18

•19

.19

.18

.20

.19

.19

•18

.19

.21

.21

•i0

.09

.09

.i0

.09

•08

.10

•10

.ii

.ii

•12

.i0

.i0

.09

.13

•12

.11

•08

•08

.09

.09

.09

.09

•09

•09

.09

.09

.09

.09

•09

.09

.09

.08

.09

O.14

•16

.18

•18

•18

•18

•19

•19

•19

•19

•19

.20

.18

.20

.20

.20

•19

.20

.20

•19

.19

•20

.19

.20
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Hour Temp. ETH

(°K) (°F)

Table B-16 (Cont.)

(a) (b)
°ZH _s

Total 0•2-0.41 0.41-0.6 0.6-0.85 0.85-_- Total

1395 366 200 0.89 0.187

1443 366 200 .90 .173

1575 366 200 .88 .173

1621 366 200 .88 .183

1693 366 200 .89 .183

1741 366 200 .88 .187

1909 366 200 .88 •183

1957 366 200 .88 •183

2024 366 200 •88 .185

ARer Exposure (c) .18

0.84

.85

.85

.82

.82

.81

.80

.80

.80

.75

0.19

.18

.18

.19

• 19

• 22

.22

• 22

.22

.25

0.13

.ii

.i0

.12

.12

.ii

.ii

• 12

.ii

• 12

0.09

.09

.09

.09

.09

.09

.09

.085

.085

.10

0.20

.19

• 19

• 20

.20

.20

.20

.20

.20

.21

(a) Absorptance for xenon source•
(b) Absorptance for solar source•
(c) From Cary room temperature reflectance measurements.
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Table B-17

CALORIMETRIC IN SITU SOLARABSORPTANCEAND TOTAL HEMISPHERICAL
EMITTANCE OF ZINC OXIDE/POTASSIUMSILICATE COATING(Z-93),

SAMPLE 42, AT 300°K (80°F)

Hour Temp. CTH _H(a) Ols(b)

(°K ) ( °F ) Total 0.2-0.41 0.41-0.6 0.6-0.85 0.85-_ Total

0 300 80 0.90

43 3OO 8O .88

293 3O0 8O .89

365 300 80 .87

461 3O0 8O .88

509 3O0 80 .88

605 300 80 .89

701 300 80 .90

773 3OO 8O .9O

821 300 80 .88

869 300 80 .89

941 300 80 .89

989 300 80 .88

1039 300 80 .88

1109 300 80 .89

1157 300 80 .87

1205 300 80 .89

1277 300 80 .88

1325 300 80 .88

1373 300 80 .87

1445 300 80 .90

1545 300 80 .88

1617 300 80 .88

1665 300 80 .87

0.14

• 14

.15

.14

.15

.15

• 15

.15

• 16

.15

.16

.15

.16

.15

.16

.16

.16

• 16

.16

.16

.16

.16

• 16

.16

0.72

.70

.67

0. i0

.09

.ii

0.05

.05

• 06

0.08

.09

.08

.67 .15

• 66 .15

.65 .14

• 69 .14

.70 .16

.67 .19

.71 .18

.70 .19

.65 .19

• 70 .15

• 65 .19

• 66 .20

.73 .19

.69 .20

• 68 .20

.63 .23

.65 .22

• 66 .23

.65 .22

.68 .22

.67 .24

.04 .09

• 05 .09

.06 .09

.06 .09

.07 . O9

.09 .08

.05 .09

• 08 .09

• 08 .09

• 09 .08

• 09 .08

• 08 .08

. I0 .08

• 09 .08

• 07 .09

.07 .09

. i0 .08

• i0 .08

• 08 • 09

• i0 .08

• 08 .08

0.14

.14

• 14

.15

• 15

.15

• 16

• 16

• 16

• 17

• 17

• 17

.17

• 17

• 17

.17

• 18

• 17

• 18

• 17

.18

• 13

• 19

• 18
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Table B-17 (Cont.)

Hour Temp.

(°K) (°F)

1713 300 80

1785 300 80

1953 300 80

2001 300 80

After Exposure (c)

CTH
(a) (b)

_H C_s

Total 0.2-0.41 0.41-0.6 0.6-0.85 0.85-_- Total

0.87 0.16

.88 .17

.85 .17

• 88 .17

.16

0.67

• 69

.69

.68

.75

0.22

.22

.21

.21

.17

0.08

.09

.09

• 09

. O6

0.09

• 09

• 08

• 09

• O8

(a) Absorptance for xenon source•
(b) Absorptance for solar source•

(c) From Cary room temperature reflectance measurements.

0.18

• 18

.18

.18

.17
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Table B-18

CALORIMETRIC TOTAL HEMISPHERICAL EMITTANCE AND IN SITU
ABSORPTANCEDATA FOROPTICAL SOLARREFLECTOR,

SAMPLE 60, AT 339°K(150°F)

Hour Temp.
(°K) (°F)

0 339 150

122 339 150

170 339 150

242 339 150

338 339 150

410 339 150

458 339 150

528 339 150

648 339 150

696 339 150

768 339 150

816 339 150

864 339 150

936 339 150

984 339 150

1032 339 150

eT H

0.80

.80

• 78

.79

.80

.80

.80

.80

• 78

• 79

• 78

.80

.81

• 79

.80

.80

(a)
o_H

(b)
S

Total 0.2-0.41 0.41-0.6 0.6-0•85 0.85- Total

0.26 0.050. 056

• 054

• 057

• 057

• 055

• 056

• 055

.057

• 057

• 055

• 057

• 056

• 057

• 058

• O57

• 056

• 23

.25

• 26

.23

.25

.25

.26

.26

.23

.27

.25

.25

• 24

.25

.25

.05

.05

.05

• 07

• 06

.06

.05

• 06

.07

.05

.05

.05

.05

.05

.05

0•03

• 02

• 03

• 04

• 03

• 04

.02

• 02

• 04

• 03

.03

• 03

• 04

• 04

.05

• 04

0.03

• 04

• 03

• 03

• 03

.03

• 03

• 04

• 03

• 03

• 03

.03

.03

• 03

• 03

• 03

(a) Absorptance for xenon source•

(b) Absorptance for solar source•

0. 061

• 058

• 060

• 062

• 062

• 062

• 059

• 059

• 063

• 061

• 061

.059

• 061

• 058

• 063

• 061
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Table B-18 {Cont.)

Temp.
CTH

(°K) (°F) Total

110_ 339 150 0.78 0.057

1152 339 150 .77 .055

1200 339 150 .79 .056

1272 339 150 .80 .056

1320 339 150 .78 .056

1468 339 150 .80 .054

1536 339 150 .80 .052

1608 339 150 .80 .054

1656 339 150 .78 .056

1704 339 150 .77 .057

1776 339 150 .78 .056

1824 339 150 .79 .057

1944 339 150 .78 .058

1994 339 150 .79 .056

2040 339 150 .78 .059

-- 387 232 .74 -

- 354 177 .76 -

-- 326 122 .79 --

- 307 93 .79 -

Before Exposure (c)

After Exposure (c)

•052

•055

o_H(a)

0.2-0.41

0.26

.23

.26

.24

•23

.22

.20

0.41-0.6

0.04

•07

•05

.06

•08

•08

•07

0.6-0.85

0.04

•03

.03

•03

•03

•02

.02

0.85-

0.03

• 03

.03

• 03

• 03

• 03

.03

.22

.25

.25

•24

•23

•24

.25

.24

•O8

.05

.06

•07

.07

•06

•04

•06

•O5

•06

•03

•03

•03

•03

.05

•05

•04

•05

•03

•03

•03

•03

•03

.03

•03

•03

.03

.03

.01

•01

(b)
ol

s

Total

0. 059

•062

•059

•060

•064

•061

•060

•063

•059

•061

•063

•057

•063

•058

.063

.055

•061

(a) Absorptance for xenon source•

(b) Absorptance for solar energy.

(c) From Cary room temperature reflectance measurements•

156 NASA-Langley, 1969 -- 17 "_--5088


