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SOLUTION OF I.AMBERT'S PROBLEM

FOR SHORT ARCS

E. R. Lancaster

ABSTRACT

Approximation formulas are found for x(0) and c(1) , where
x(t) satisfies z = f(x, t), x(0) = x o , x(1) = x l. The results
are applied to an example of two-body motion.
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SOLUTION OF LAMBERT'S PROBTZM
FOR SHORT ARCS

1. INTRODUCTION

ConAider the following boundary-value problem:

z = f(x, t) ,	 x(0) = x o 	x(1) = x 1 ,	 (1)

where t is a scalar, x and f(x, t) are column matrices, and the over-dots in-
dicate differentiation'with respect to t.

Formulas will be found for z o and z 1 such that

zo = c^(0)	 z1 = (1) ,

where 0(t) satisfies

q5(0) = x(0)	 z(0),	 ^(0) = z(0),

0(1) = x(1),	 00) = z(1)	 0(1) = x(1).

It will not be necessary to find ch(t) but only to make certain assumptions as
to its form.

The problem defined by (1) has an interesting history in celestial mechanics,.
going back to Euler, Lambert, Lagrange, and Gauss. Recent books by Battin [l]
and Escobal [2] decribe a total of eight methods for its solution in the case of
an inverse-square, central force field. All the methods, however, are iterative,
requiring considerable computation to obtain a solution. The method developed
in this paper, while limited to cases of moderate time-span, offers a concise,
explicit formula with no need for iteration. Within this time-span limitation,
the method has the further advantage of allowing for completely general velocity-
independent force functions.
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The author has found the method useful in the calculation of short arc in-
tercept trajectories for space vehicles, in preliminary orbit determination from
observations of the position of a spacecraft at two times, and for ephemeris
interpolation.

2. AN APPROXIMATE SOLUTION

Let a be any component of x, a(0) = a o , a(1) = a 1 , and assume approxi-
mations of the form

[t o =	 a o a o + b o a l +	 a 2 a o 	 'I• b2 a l + a 3 a o + b 3 a l , (2)

p'I	 = C o a o + d o a l + c 2 CL 0 + d 2 Cc l +	
c3•a'0 + d3 a'1 (3)

The scalars a o , b o , a 2 , 6 2, a 3 , and b 3 are determined by assuming (2) to be
exact when a = (k i ( t), i = 0, ... , 5, where the 0 i ' s are linearly independent
over the interval [0,1] with derivatives through the third order at It = 0 and
t = 1. The coefficients in (3) are determined in a similar way. If we use the
same set of (k i 's for each component of x, we can write

Xo =	 a o X p + b o X l + a-2 XO + 6 2 x l + a 3 X O + 6 3 x l (4)

X 1 =	 c o X o •+ d o X 1 + c 2 X o + d 2 X 1 + C3•X0 + d3•X1 (5)

We eliminate the third derivatives in (4) and (5) by using

X = Pk + W ,	 (6)

obtained from (1), where P is a matrix with element in the ith row and j th column
equal to the value of d f 1 /19x' , and w is a column matrix with ith element equal to
the value of af'/aIt, f' and x' being respectively the ith component of f and the
jth component of x. Substituting (6) into (4) and (5), we obtain

(I a 3 Po) xo - b 3 P  x 1 - )8
	

(7)
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a o + bo = 0 , b o = 1 ,

3

-c 3 P o z o + (I-d 3 P J/ I = y .	 (8)

where I is the unit matrix and

/3 = a o x o + b
o

x 1 + a 2 ;(o + b 2 X 1 + a 3 Wo + b3 W1

y = c o x o + d o x I + c 2 iio + d 2 z 1 •+ c 3 wo .I d3 w1

i o and z 1 being computed from z = f(x, t). Solving (7) and (8) we obtain

(B+bP 1 P o ) xo - 8 + P1 \ b 3 y-d3M ,	 (g)

(B+b P o Pj z 1 = y + Po (c 3 8-a 3 y )	 (10)

B = I- a3Po--d3P1,

b = a 3 d 3 - b3 c 3 .

Note that B + b P o P 1 is the transpose of B + b P 1 P o if P is symmetric, as is the
case for a central force field.

3. A POLYNOMIAL APPROXIMATION

Substituting successively

.	 1

d = 'ki (t) = ti , i = 0, 1, 2, 3, 4, 5

into Equation (2), we obtain



b y + 2a 2 + 2b2 7 0,

bo + 6b 2 + 6a 3 + 6b 3 = 0 ,

11 0 + 121) 2 + 241) 3 = 0 ,

b o + 20b 2 + 601:, 3 = 0 .

The solution of this set of equations is

	

a o = - 1	 1) o = 1	 a	
7	 3	 1	 1

2	 - 20	 1) 2 = - 20 a3 = - 20 1) 3 = 30 (11)

In a similar way we find

3	 7	 1	 1

	

c o = - 1	 d o = 1	 c2 = 20, d2 = 20	 c 3 = 30 , d3 = - 20 (12)

4. NUMERICAL EXAMPLE

Far a particle moving in an inverse-square central force field, (1) becomes

	

X=	
/'L(TI -Tp)2 I I 3 r	 X(0) = X 0 ,	 X(1) = X 1 , (13)

where x is the position vector of the particle, µ is a constant, the real time •r and
the pserado-time t being related by t (T i - T Q ) = T - T o with x (T o ) = x o , x 

(T 1 
) = X 1,

As a numerical example take two vectors from a circular orbit separated by
an angle of 15°. We can let T o = 0, T 1 = R/12 F, and      
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.00000022

X0

1261799360

-.06775845

252878819

Substituting these values and (11), (12), (13) into (9) and (10) gives

The true values are

0

Xo
	

1261799388]
X1
	 1

.06775861

25287879 0

5. REMARKS

The method developed above can be carried through when (1) has the more
general form

X = f(x, t) + A(t) X ,	 x(0) = x o ,	 x(1) = xl

where A(t) is a matrix function of t.

The time-span restriction may be less severe when x in (1) represents a
small deviation from a reference trajectory, where the solution of the boundary
problem for the reference trajectory has been found by other means. For such
problems it.,P have x  = x l = 0. For example, we might obtain a reference
trajectory by solving a two-body problem with the given boundary conditions by
one of the standard methods [1,2]. Then we could apply the method developed
above to Encke's formulation [1] of the differential equation for the deviation of
the position vector from the reference trajectory.

If we attempt to approximate X 
U 

and X 1 in such a way that X 
U 

= ^(0) and
X 1 = c (1) , where 0(t) satisfies 0 (4) (0) = x <4> (0) and 0( 4) (1) = x (4) (1) as
well as the other relations specified in the introduction, we are forced to solve
a set of iionlinear equations unless (1) is linear in x.
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