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Abstract

The one-dimensional Burgers model of turbulence is investigated by com-

puting the functional integral expression for the correlation function ; based on the

Hopf theory of statistical hydromechanics, with. the aid of a high-speed computer.

The initial probability distribution of the velocity is assumed to be normal with

zero mean and with a Gaussian covariance function. The manner in which the

energy decay curve changes under variation of the Reynolds number R implies

the existence of a certain asymptotic curve for R co . Tho values obtained for

the correlation function at some instants indicate that the inverse-square law

for the energy spectrum holds in some wave-number range for high values of R.
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1. Introduction

Our last report' sketched briefly the method for computing the correlation

function of the turbulent velocity in the Burgers fluid model; using a functional

integral expression. Here a full treatment of this method is presented as well as

further results.

It is well known that the statistically considered Burgers equation offers

insight into some of the properties of real turbulence. Our approach is to

investigate the Burgers model on the basis of the Hopf theory of statistical

hydromechanics, with the aid of a high-speed computer where necessary.

According to Hopf, the probability distribution of the velocity field u(x) at time t

is given by the following characteristics functional:

	

(y , t) = 
fn 

exp 1 i 	 y (x) T t u o (x) dx ?SPo (uo),

	

 l	 m	 J
(1.1)

where uo and y are the scalar fields in x (-co < x < +oo); T  u o (x)is the field

which at time t has developed from the field no (x) at time t = 0 according to the

dynamical rule given by the Burgers equation; Po (no ) denotes the probability

distribution of uo at t = 0; and In S Po denotes a Lebesgue integral with the

measure Fo over the whole sei. Q composed of all realizable functions uo(x).

,	 Formula (1.1) is meaningful as a solution to the turbulence problem, once Po is

specified at the initial time and provided that the right-hand side is calculable,
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since (1.1) satisfies the Hopf equation for characteristic functionals and the

Hopf equation is completely equivalent to the well-known hierarchy of coupled

equations for the various-order simultaneous correlation functions of the turbu-

lent velocity field. It is easy to obtain the formula for a correlation function.

from (1.1). For example,

8 2
^5
	 = r Ttco(xl)Txoo(x2)8Po(uo)

i2 Sy(x 1 ) SY(x2 )	 Q
Y.o

= <u (x0 U (x 2 )> t '	 (1.2)

which is the two-point correlation function at time t. Here S 0/6 y(x) denotes

the functional derivative 3, 4 of 0 at X.

The key to making the right-hand side of (1.1) or (1.2) calculable seems to

be to use a properly defined functional integration s to replace the abstract

Lebesgue integral over a function space. Let us formally set

SPo (u o ) = P (u o , 0) Su o .	 (1.3)

Here p can be understood as the probability density for the function u o (x), when

uo (x) is expanded in terms of the real-valued orthonormal function set { sk (x) }

according to

2N

u0N (x ) _ L ak S k (x),	 (1.4)
k.1

and S uo is read as

4



2N	 dak
uo" _	 _^_^_	 (1.5)b 

7T)
k.1	

(2

provided, of course, that

W

P (u2N, 
0 ) SU 2N = 1;	 P 0. (1.6)

The larger the value of 2N, the more variety our function space can include.

The most ideal situation would thus be reached in the limit as 2N- co. This limit-

ing operation cannot be carried out in (1.5), because the infinite-dimensional

volume element is meaningless,' but should be applied either to (1.3) or to the

integral in (1.1). As long as this is kept in mind, we may safely use the symbolic

notations which are obtained by taking the superscript 2N away from both sides

of (1.4) and (1.5). Practically, however, we attempt to approximate (1.1) or (1.2)

with 2N < co ,  as described in the next section. The accuracy of approximation

therefore depends on the rates of convergence to the limit, which may in turn

depend on what orthonormal function, set is used.

Thus, if Tt uo (x) is known explicitly in terms of u o and if p(u o , to ) is properly

assumed, we find no essential difficulty in proceeding with the calculation in-

volved in (1.1) or (1.2) except that a high-speed computer is generally necessary

to estimate the functional integrals needed. Indeed, for the Burgers model, Hopf 7

5

ens° s	 ..	 '^_t3`	 ',"'$`''^,'.:	 _  

C
y^M^y	 ^v	 y v_	

2	 J	
^^,
G
^
^
}

Wp.R	 ^ b'^''b'4^°''`-'•`i'FtFF +F^u_^'..e v	 ^	 i^	 ^.^.SE^°w. S:1W'!Y£.vY^t^u^ "+3a^S_	 ^+Ya



one, i.e. it makes the information entropy a maximum, if we have no certain

6

and Cole's a general solution can be used as T`u o (x). In the next section, the

method of calculation is developed in detail on the premise that the initial probabil-

ity distribution of the velocity is normal. This premise leads to the following

form of initial characteristic functional:

IM

	

WCb(Yp, 0 ) = exp i
	

U (x)yo(x)dx - 2 	Q(x,x')Yo(x)Yo(x')c(xdx')
mIM fm	 I

(1.7)

where it is easy to know that the functions II and Q are the average and covariance,

respectively, of the stochastic velocity field u o (Cf. (1.2)). We assume further

U(x) = 0 and Q(x,x') =e -( "
_x ' )2
	

(1.8)

i.e, the average velocity vanishes and the initial correlation function is spatially

homogeneous and Gaussian. In order for the condition (1.7) to be consistent with

(1.1) at t = 0, the function p(u o , 0) defined in (1.3) must be

P(uo, 0) = J exp -i IM  ep(x )Yo(x ) dx  O(YO , 0) S Yp•	 (1.9)

(yo and S yo are understood in the same sen,a as described for uo and S uo).

The assumption of normality of the initial probability d'-stribution is made because

it can be proved from information theory 9 that this distribution is the most unbiased
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information other than J and Q. (See Appendix.) Some departure from normality

may conveniently be considered by introducing a functional Gram-Charlier series,

and more general assumptions for U and Q may also be used if necessary. liow-

ever, the present research is confined within the limits set by the above premise,

since our main purpose is to verify the practicability of our fundamental approach.

7
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2, Method of Calculation

i) Diagonalization of tue normal probability density

We first calculate (1.9) in order to obtain a simple explicit form of (1.3).

This can be achieved by a transformation of the coordinate frame of the function

space. To correspond with (1.4), let us start from the expression

2N

YO (X) _ L a l S i (x) 	 (2'1)
i_1

At x = xm (m = 1, ... , 2N), we set

N

YO (Xm) = 1 22	
(7](kj) cos k j xm +^ (k j ) sin k j xm IAk j ,	 (2.2)

j=1

where A k j is die length of the j th interval when the number range (0, co) is

divided to N intorvals, and k j is the representative value of k in the j th interval.

The 2N simultaneous equations obtained by equating the right-hand-sides of (2.1)

and (2.2) for each value of m give a one-to-one correspondence between (a l , ... ,

a2N ) and (77 (kl ) (t kl )1/2 . . . 171 %) 0 kN)1/2 , ^ (kl) (Akl )1/2 , . . . , ^ (kN)

(Alj^) 112 ). ff we multiply these 2N equations on both sides by s. (xm)A x,, , , where

A xm is an interval about the representative point x m of such length that the sum

of all disjoint z ;x M covers the whole x space, and if we then sum over m, we

obtain

:Y
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N	 m

a^ = 1	 ri(kj) f s ,, (x) Cos k j x dx
7T 1/2	

0)jAA

Ca
+^(k j ) f s^(x) sin  xdx1 +e

JCO
(2.3)

by the properties of orthonormal functions. Here E is a quantity which tends to

zero as all 6xm -< 0 (i.e. as 2N- W ). The Jacobian of the transformation is

calculated as follows:

-6a.`

	

k	 1/2	 W

1 2 - ^	 )	 J s ; 
(x) cos k j x dx + 0 (t) ° t lj , (2.4)

a{ 71 (k j )(pk j )	 }	

p

j

aai	 _ /L1kj1 1/2 rW

II
\\
	

11
	 J s i (x) sin k  x dx + 0 (E) = t; N

+j	 (2.5)o {^ (k j ) (Akj)1 /2} 	 ^r	
m 

Hence we have

N	

pp	

m	 m

	

L (tij ttj + ti,N+j t,^ 
N+j )	 1	 dx dx' Si (x) st(x,)

7r
 m	 m

N

L

(cos k j x cos k j x' + sin k j x sin k j x') ^k j + C (E)

j=1

= aiE + 0 (E) + E,	
(2.6)
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where S i, , is the Kronecker symbol and the quantity e' tends to zero as all

6 k i , 0 (i.e. as N- co ). This indicates that the tr •nsformation of the r presen-

tation of the function space from (a l , ... , a 2N ) to (77 (kJ) (Q ICI ) 1 /2 ,	 (lO

(6k.4 ) 1/2 , ^ (N ) (6, kl ) 1 /2 , ... , ^ (14 N ) (!• k,N 6 '' 2 ) is orthogonal in the limit N w.

Accordingly, S yo may be expressed in our symbolic sense as

dk 1/z
Sy 0 	 d77 (ki) (.

2^
t

dk. 1/2

d^ (ki)	
27r
	 (2.7)

At the same time, (2.2) reduces for almost all x to

Y 0 (x ) = 7r 
1/2	

0 

(71 (k) cos kx + ^ (k) sin kx} dk	 (2.8)

If we introduce the relations

TICk)= z(k) +z(- k) ^Ck)=
i(z(k) z(-k)}

21/2	 21/2
(2.9)

(2.8) may be rewritten as

Y0
fw

(^^ _	 1
(X01/2	 m

i

z (k) e ikx dk, (2.10)

where z*(k) = z (-k), the asterisk denoting the complex conjugate. With the aid of

these relations the quadratic form in (1.7) can be rewritten in a diagonal form

as

10
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100J Q (x -x') y o (x) y o (x') dx dx' =  	 o- (k) z (k) z (-k) dk
 m	 .J m

= 1 f

CO

 Re LT (k) {77 2 (k) + ^ 2 (k)} dk	 (2.11)
2	 0

where Re indicates the real part and a (k) is the Fourier component of Q(x),

which when calculated from (1.8) is found to be

C- (k )	 J Q(x) eckX dx = ,R 1/2 e -k2/a

m

(2.12)

To make possible the calculation of the functional integral in (1.9), we introduce

a modified Fourier expansion of uo(x) as follows:

uo(x)= 7Ti/z

fo
[Reo-(k)]1/2{A(k) coskx +M(k) sinkx}dk.. (2.13)

Hence, we can compute

M y
o (x) u o (x) dx = J mJ	 [Re o-(k)] vz JA (k) 77 (it) + M (k) ^ (k) } dk, (2.14)

o

and finally caa arrive at the formula

P (uo, 0) = exp 

C 2	
' {A2 (k^) +M2(k^)}dkJ 	} Re o- (k.)} . (2.15)L	 ^ 	 l

11



Now S u 0 maybe expressed in the same way &-it S yo is expressed in (2.7). If (2.13)

is compared with (2.8), it is seen that the proper expression is

Su 0 	(Re a (ki)]1/2 dA (k.)	
2^r J	

[Re o (k.) 1 v2 dM (k.) dk /I
i

(2.16)

These last two equations now provide a simple, explicit, direct-product form for

(1.3):

1
P (uo to)Suo = exp 

C 2	
{A2 (k i ) + M 2 (k i )) dki

L	 i

r(	 dk. 1/2	 dk. 1/z

	

^jdA(ki) 
(2^/	

dM(ki) (27r)
	

(2.17)
i	 l

which demonstrates that the stochastic variables { A(ki ) dk! /2 , M(k) dk^/2}

distribute standard-normally, independently of each other. It is worth noting that

(2.17) is just the Gaussian measure on the function set of A(k) cross M(k)

established by Friedrichs, 10 so that (1.1) or (1.2) is just a functional integral

with the Gaussian measure, the integrand of which is a functional of A (k) and

M(k) through. the relation (2.13).
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ii) Monte Carlo quadrature

For the Burgers fluid model, T t uo in (1.1) or (1.2) can be written as

X

fW

 (x - x') exp - 2 J u o (x") dx" - R (x _ XI)	 dx'

Tt uo =—
X-

t	 exp	
R	

u (x") dx" _ R (x - x ' )2 dx'f	
aW	 2 Q	 4t

(2.18)

(the. Hopf-Cole solution7, 8 ); this satisfies the dimensionless Burgers equation,

au _	 aU 1 a2 
at -u ax 

+R 2
ax

(2.19)

where R is the Reynolds number referred to the initial characteristic correlation

length and the root-mean-square value of the initial velocity (Cf. (1.8)).

In order to estimate the functional integral (1.2) for any values of xl , x2 , and

t, it is most convenient to use the Monte Carlo quadrature for a multiple integral"

on an approximate basis such that ns k  and N are kept finite in a proper way.

That is, we will use the so-called cylinder fui_ctional approach. Estimation of

(1.2) then reduces to the averaging of many sample values of T t uo (x l ) T t uo (x 2)

(called the estimator") which corresponds to taking many sets of 2N independent

standard-normal random numbers as values foL- the variables {A (k^) dk^ /2 , M(kj )

dk! i2 } .
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Thus, (2.13) may be replaced by

N

u o (x) = 1 {A(k j ) cos k j x
^1 /4

j=1

+M(k j ) sin l: j x) Lk; (2.20)

here (2.12) was substituted for o- (k) and all ^ k were put equal to z^ k so that k i =

(j - 1/2)tsk . The maximum wave-number kc to be considered for u 0(x) is

given by kc = Nink. The value of k c , which is chosen so as to make the error of

(2.20) due to the neglect of higher wave components less than 1%, may be determined

from the equation

fk m

	 W

C 

e-k 2 /8 dk
 JQ

e"k z 
/8 dk = 1/100, (2.21)

which yields kc = 5.17. Once kc is fixed, 4s k depends on N. The question of

how large N should be was discussed in our last report;' results presented herein

are given for values of N as large as 30 and even 45 to insure convergence. The

larger N = kc /A k is, of course, the smaller is the error due to using the rec-

tangle rule as an approximation to the integral expression (2.13). Using (2.20),

the integral over x" in (2.18) may be expressed as

X 1 	 N	 -k^/8

	

u o (x") dx" 1	 e	
{A(kj) sin k j x'

0	 7T'/4	 k 
i 1

-M(k j ) cos k  x' +M(k j )) ^k

14



But, in the case where A k is not necessarily small, the alternative expression

xt 	N 	 -k?l8

	

f	 N
u ° (x") dx" - ^1 a

	

e 
k( A(k j ) sin k j x'

	

°	 j-1

- M(k j ) cos k  x'} sin Okx'/2 + M(k j ) Ak]
	

(2.22)
X 1 /2

is much more efficient. Indeed, the factor sinL k (x'/2)j(v'/2) prevents the

deterioration of the Monte Carlo quadrature caused by a large vibration of sample

values for a large value of x'. The integrals of both the numerator and the de-

nominator of (2.18) were calculated by the Simpson rule, using (2.22). In this

calculation there are two points to be noted. First, the exponential function in

the integrands should be normalized to a value as close to its maximum value

as is possible, because at some times it becomes enormously large and at other

times infinitesimally small. Second, the interval of integration cannot be infinite

in practice, so that integration is stopped at the points where the integrands

decrease to less than 10 -7 times their maximum value, taking account of the

rather rapid, monotonic decrease of the factor exp { -R(x - x') 2 /4t) for ( x'

large. For convenience, a new variable, s -- (R /4t) 1/2 (x - x'), was introduced

in pla:le of x'. The accuracy of our Simpson numerical integration may be

judged by the fact that tb- value of the integral was unchanged except for the

fourth digit when the integration step length was decreased by a factor of 2.

Examples of the calculation of (2.18) are given in Figs. 8 and 9.

15



Our standard-normal random numbers were generated by the simple but

highly reliable method of Kronma1. 12 The number of sample values for the

estimator in our Monte Carlo quadrature was between 300 and 500. The

reliability of this quadrature may be judged from the examples shown in figs.

2 and 4.
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3. Results and Discussion

i) Features of the energy decay

In Fig. 1, twice the calculated dimensionless energy of turbulence, <[u(0)12> t,

is plotted against the dimensionless time (normalized with the initial characteris-

tic correlation length divided by the root-mean-square of the initial velocity field)

for various Reynolds numbers. The Monte Carlo quadrature was done with N =

30, and the number of samples is 300. The solid lines show the corresponding

results from the linear theory, <[ u(0)] 2> t = 1/(1 + 8t/R)1 /2 , where the non-linear

term in the Burgers equation is neglected. The dotted line gives the correspond-

ing results from the approximate theory of Meecham and Siegal" for R = 100.

The reliability (or stability) of our Monte Carlo quadrature is indicated by Fig. 2,

which shows how the value of the integral depends on the number of samples taken

in the case R = 100.

Considering the approximate nature of Monte Carlo quadrature, the agreement

between our results and the linear theory for R = 0.1 and 1 is excellent at the

initial time; but after the energy has decayed to one-tenth of its initial value, our

results begin to deviate from those of the linear theory, giving rise to a little

more rapid decay. This seems to be due to a nonlinear effect which transfers

energy from the small wave-number components to larger wave-number com-

ponents, where viscous dissipation is stronger.

For R greater than 10, the character of the energy decay is quite different

from that expected on the basis of the linear theory. Even more interesting,

17
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the plotted points suggest the existence of an asymptotic curve for R w . Indeed,

the points plotted for R = 100 sr.,em already to represent the features of the

asymptotic curve to good accuracy. (Cf. those for R = 1000.) As can lie seen,

the theoretical curve of Neecham and Siegal deviates considerably from this

expected asymptotic curve. Their approach is based on the Wiener-Hermite

expansion of the random field u(x), but with some drastic assumptions in order

to avoid an open hierarchy of unknown functions and other complexities involved

with the calculation, whose validity was questioned by Orszag and Bisson-nette, 14

In Fig. 3, the manner in which the result depends on N is shown for the case

of R = 100. The data for N = 15 were also presented in our last report; there,

on the basis of a comparison with the data for N = 10, it was argued that the N =

15 data accurately represent the solution in terms of the functional integral (1.2).

This comparison, however, was not satisfactory because the values of k c for the

two cases werz considerably different. As can be seen in Fig. 3, the data for

N=15 are still rather far from the expected limiting values for N -, co with the fixed value

of k given by (2.21). It appears that the data for N = 30 are much nearer the

limiting values. This indicates that the accuracy of the present calculation is

higher than before.

There are some arguments to the effect that the energy of the (spatially

periodic) Burgers' model turbulence should decay like t- 2 in the limit R - co

if t is large enough. 15 Our results for large N include no symptom of decay like

t -2 , at least up to t = 100. However, we do see symptoms of such a rapid decay

18
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w

for small values of N. (See Fig. 3.) The smallness of N means that the initial

velocity fields are restricted to a considerably small class of the function space

Q, as is known from (2.20). For the ensemble of such a relatively simple class

of initial velocity fields, the saw-tooth wave argument' s appears to be easily

realizable, because (2.20) ;hen has the nature of a velocity field which is strongly

spatially periodic (relative to the initial characteristic length of correlation).

But the larger N is, the larger the class of initial velocity fields involved is, and

the more difficult it is to realize the so-called saw-tooth wave argument, in a

short time, at least. Isere it is worth recalling that there exists a similarity

solution of the Burgers equation which has the shape of a solitary wedge with the

hinge point fixed on the x axis, and that the energy of this velocity field decays

not like t _ 2 but rather like t-112.2 If bid; s type of velocity field comes into the

ensemble, obviously the rapid decay based on the saw-tooth wave argument should

be reconsidered. There might be various other solutions with different decay

patterns. In the limit as N co the ensemble should include all these solutions.

This fact seems to give theoretical support to the present result of a rather slow

decay of the energy. It is most interesting to note that in the later period of

decay (t > 3) our result is close to Burgers' prediction, 2 based on a statistical

assumption, of a t -213 dependence. Burgers assumes that during the intermediate

period of the decay, the velocity field over the infinite domain may be approxi-

mated for large R by a series of discontinuous straight-line segments of positive 	 r:

slope which decreases with time but of random length and random magnitude

19
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of drop from one segment to another. He also takes into account frequent

coalescence of discontinuous points, i.e. shocks.

The final result obtained of course would depend on what enscnible of

velocity fields is taken initially, i.e. what is prescribed as ^b(yo , 0). Our choice

is indicated by (1.7)-(1.8); and, as we have already said on an information-

theoretical basis, this ensemble is the one most often realizable, unless we have

other peculiar information. If N is too small, it is obvious t'-,at the calculation

cannot give an exact result for this initial ensemble, since in that case the

functional integration has been carried out imperfectly.

ii) Correlation function and energy spectrum

The correlation function <u(0)u(x)> t was calculated at t - 1 for R = 1000, at

t = 1 and 3 for R = 100 and at t = 1 for R = 1, as is shown in Fig. 4. The solid

2
line is the curve at t = 0, i.e. Q(x) = e- " . The dotted lines are the theoretical

results of Meecham and Siege1 13 at t = 1 and 3 for R = 100. The reliability of

our Monte Carlo quadrature is observed in Fig. 5, where the number of samples

was taken up to 500.

Fig. 4 shows the general trend of the correlation function to become flatter

and flatter as time goes on. As expected from the observation in the preceding

subsection, there is so little difference between the correlation functions at the

same instant t = 1 for R = 100 and R = 1000 that they are considered to represent

the asymptotic curve of the correlation function for R co. However, the
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correlation function at the same t for R = 1 is very different from that for a

higher Reynolds number; it becomes flat faster than the latter, because of the

stronger viscous dissipation. It may be seen from the figure that the correlation

function at t = 1 for R = 1 is quite similar to that at t = 3 for R = 100, which con-

tains a comparable amount of turbulence energy. But the fact that these two

curves cross each oth,;r somewhere between x = 1.0 and x = 2.0 with different

curvatures seems to suggest some delicate structural difference between them.

This may be clarified by comparing their energy spectrums.

The energy spectrum corresponding to each correlation function can be

calculated from the equation

CO

E(k, t) = 1 
fo

cos kr • Q(r, t) dr,	 (3.1)

where Q(r, t) = <u(0) u(r)> t . The curve of Q(r, t) was made by connecting the

plotted points in as smooth a way as possible, but the result of numerical calcu-

lation for E(k, t) (using Filon's method t6 ) predicted not a smooth curve but a

somewhat rugged curve, as shown in Fig. 6. This seems to be an unavoidable

effect caused by the error inherent in Monte Carlo quadrature. Nevertheless,

it is interesting to note that there is an appreciable region of the energy spectrum

in which `he slope is very nearly k- 2 for R = 100 at both t = 1 and t = 3. It is

evident from the figure that this well-discussed feature of the energy spectrum

21



a

of the Burgers' model turbulence 2,13,15,17 appears in a very short time and is

kept pretty long for R = 100, while the same feature is barely observabl}

at t = 1 for R = 1. This contrast between the energy spectrums at t = 3 for R = 100

and that at t = 1 for R = 1 explains to some degree the above-described structural

difference i.;etween the correlation functions for these two cases. We may under-

stand this fac.` from the nonlinear effect of the Burgers equation; indeed, without

the strong nonlinear interaction. the energy in high wave-number regions would

decay almost according to e-2k2t/R, while if the energy transfer from lower to

highor wave-number regions of the spectrum occurs through the nonlinear inter-

action, the ef.oct of the relatively strong energy decay of the high wave-number

components will be considerably mitigated so that the k- 2 spectrum law may be

recovered in some range of k, which may be calked the inertial range.

As shown in Fig. 4, Meecham and Siegel's theoretical results are different

from our results at t = 1 and 3 for R = 100; but from the viewpoint of the energy

spectrum, shown in Fig. 6, both have a somewhat similar slope, except that

their theory predicts a smaller energy of turbulence at t = 1. The same tendency

is also seen in the numerical experiment performed by Jeng et al,1 8 although their

result is not plotted in the figure in order to avoid complication. It may be noted,

however, that their experiment is very similar to the present calculation, in

that both deal with the operator T t in (1.2) exactly and both try to compute

an average property for an ensemble of initial velocity fields by sampling. But

Jeng et al. limited the ensemble to one special type , made up from n independent
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unif,-rm random numbers (n seems to be 50, judging from an illustration in their

paper), so that 9^ (yo , 0) in their case has a form quite different from that of (1.7).

Furthermore, in order to calculate the statistical properties of the velocity field,

they appealed to the operation of space averaging (assuming statistical homogenity

and the so-called ergodic hypothesis) rather than averaging over a large number

of members of the ensemble. These facts give their experiment a flavor quite

different from our approach. If they had simply proceeded with the latter

averaging operation, they would not have needed any hypothesis beforehand

but, after making sure of the reliability of their samplings, shoidd have been

able to prove it. In spite of these rather great differences between their method

and ours, it is notable that the k -2 spectrum law is qualitatively recovered by

both. It would be even more interesting if it were known what result they had

for the feature of energy decay, because a comparison with Fig. 1 would then

show how the result is affected by the initial condition on 0.

It is worth noting that all energy spectrums in Fig. 6 tend to almost the

same value as k -a 0, regardless of t and R. This value may be estimated from

the theoretical curve at t = 0, giving

fo 2E(0, 0) = 1	 e`r dr = ^ /2 /2.	 (3.2)

This fact is consistent with the existence of the so-called Loitsianski constant

for Burgers' model of turbulence. 2,13 We have verified that at k = 0 our results
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for different t and R ,recover the value (3.2) with a relative error of less than

5%. This may be considered as another measure of the order of accuracy of our

Monte Carlo quadrature.

iii) Deviation from normality

It is hard to make a decisive quantitative statement on the extent to which

our probability distribution functional of the velocity field deviates from normality,

because we must always take. into account the error intrinsic to Monte Carlo

quadrature. To determine this deviation, we must deal with a correlation whose

order is higher than two, and the higher the order of correlation dealt with, the

larger would the value of N be needed in order to keep enough accuracy. Fig. 7

shows the result of calculating, at N = 30, the curtosis for many values of R and t.

In our case, the curtosis at t = 0 should be exactly 3, since we have started from

a normal distribution. The only plausible conclusion, therefore, is that there is a

tendency for the curtosis to decrease very slightly with increasing time, Le. for

the distribution to become slightly flatter, at least for R greater than or equal to

1. Calculated values of the skewness factor are distributed almost randomly about

zero; hence it may be concluded that there is no significant deviation from the

zero value.

iv) Time-development of an individual velocity field

Finally it is worthwhile to look into the behavior of a typical individual

velocity field. Fig. 8 shows the time development, for R = 100 and N = 30, of the
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particular velocity field which at the initial time was made up froln a certain set

of sta:idard normal random numbers, plotted over the interval [-2.5, 2.51.

(Actually, the random numbers in this case are taken between the 61st and the

120th of those generated by Kronmal's method. 12 The general feature of

an individual velocity field was unchanged even if another set of random numbers

was taken.) At t = 1 a shock-like sharp discontinuity can already be observed; it

moves along according to. its own dynamics,2 but diminishes gradually because

of the relatively predominating (with decay) viscous effect. What Burgers  calls

the hinge point around which the curve of u(x) rotates in a clockwise fashion with

time, can be seen at x = 2.3. Another hinge point at x = -3.6 is predicted.

The slope of u(x) appears to be almost (t + t o ) - 1 near the hinge point and, for t ti 1

to be so everywhere except near a rounded sho:.k-like region. (In this

example to = 1.)

For high Reynolds number, these features identify the reality of Burgers'

conception of the development of an individual velocity field pretty well. The

period with t > 1 seems to be suitable for application of his simplified statistical

assumption except for the rounded shock-like regions. For comparison, the

calculated time development for R = 1 of the same initial velocity field is

show&, in Fig. 9. In this case the diffusive action due to viscosity predominates

for all periods of time. The contrast with the former case is very remarkable.

1. .
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4. Conclusion

This work verified that the functional integral expression for the correlation

function of the turbulent velocity field, derived from the IIopf formalism for

turbulence,3 is directly calculable through the introduction of the functional

integration technique given by (1.3)-(1.6) and the use of Monte Carlo quadrature.

The present numerical result for the Burgers' model turbulence in the infinite

domain of x is accurate enough to reveal a reasonable transition in the features

of energy decay as R changes. For R less than 1 the turbulence energy decays

just as the linear theory predicts over a considerable period of time, while

for R greater than 1, the decay pattern changes rapidly with R so that even for

R = 10 it is almost in accord with the predicted asymptotic (R oo ) pattern (at

least until t = 100). Although the time-dependence of the asymptotic decay

pattern is not in accord with the results of other approximate theories, except

for Burgers', the energy spectrum at some instants in some wave-number

regions has a tendency to behave at least qualitatively according to the k -2

spectrum law, which is well predicted by all these theories including Burgers'.

When the operator T t is not known explicitly, as is the case with the

Navier-Stokes turbulence, we seem to face some difficulty in extending this

functional approach. But it can still be used if T t u is developed as

u(x, t) = 7, bk (t) S k (X)
k
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(Cf. (2.1)), where both x and u are vectors, provided that the time-development

of { bk (t)) can be computed. This means that the Tt is giver. numerically.

Thus it may be expected that the present method of computation on the ex vot

ensemble-mechanical basis will further contribute to the checking of the validity

of approximate theories and will give typical data for engineering purposes.
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Appendix

The average velocity field U(x) and the covariance function Q(x, x') are

defined by the following equations:

U(X) = f
f

 U(X)P(U) Su,	 (Al)

Q(X, X' ) = f {U (X) - U (X) i {U (X' ) - U (X ' )) p (U ) Su,	 (A2)

where p(u) is the probability density for u in the symbolic sense. We altio have

1 = J p(u) Su .
2

Under the conditions (Al)-(A3), let us try to make the information entropy a

maximum, where the information entropy is defined by the limit of

S2N = - J p (
U21) log p(u21 ) Su e"/2N as 2N ^ co,	 (A4)

f2

according to Shannon. 19 The Lagrange multiplier method for the variational

problem leads to the equation

(M)
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0 = - J Su [{log p(u) + 1) + f a(x) U(x) dx

nr(r̂ 	 l
+

JJ

b(x, x') {U(x) - u(x)) {U(x') - u(x')) dx dx' - CJ. 	 (A5)

Here a(x), b(x, x') and c are the undetermined multipliers. As a result,

p(u) = e`-1 • exp r- J a(x) U(x.) dx
L

	

- ffb(x,  x') {U(x) - u(x)) {U(x') - u(x')) dx dx'
1 ,
	 (A6)

where b(x, x') is assumed to be positive definite. The Fourier transformation

of this is, in general,

	

0(y) = C exp If A(x) y(x) dx - ff B(x, x') y(x) y(x') dx dx'
I ,
	 (A7)

where A(x), B(x, x') and C are related to a(x), b(x, x') and c, and should be de-

termined in such a way that q5 and p are consistent with the conditions (Al)-(A3).

Remembering the properties of the characteristic functional 0, we can obtain

A(x) = i U(x)	 1

B (x, x') = (1/2) Q (x , x ')	 (A8)

C=1.
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Figure Captions

Fig. 1. Features of the energy decay

Fig. 2. Average values for <[u.(0)) 2\ t versus the number of samples at various

instants, with R = 100, N = 30.

Fig. 3. Dependence of the energy decay on N, with R = 100.

Fig. 4. Correlation function <u(0) u(x)^ t for various values of R and t, with

N = 30.

Fig. 5. Average values for <u(0) u(x)> at t = 1 «ersus the number of samples

at various distances, with R = 100, N = 30.

Fig. 6. Energy spectrums E(k, t) for various values of R and t, with N = 30.

Fig. 7. Curtosis as a function of time for various R.

Fig. 8. Time development of a ^nj-V. alar velocity field for R = 100.

Fig. 9. Time deve7	 nt Of	 velocity field for R = 1.
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