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STATls'rICAL MECHANICS OF SUPERNOVAE

Frank C. Jones

ABSTRACT

In most treatments of the supernova origin theory of cosmic rays, average

values of such observables such as cosmic ray flux, bulk streaming velocity,

total energy, etc., are calculated (or estimated) and compared with observation

to determine the parameters of the theory. Since supernova explosions are es-

sentially statistical events the question arises as to whether or not the observed

values have any simple relationship tv average values; in other words are fluc-

tuations important? To in ,estigate this question I have considered that the

variables describing the supernova injection event (position, time, etc.) are random

variables and that our galaxy is a sample from an ensemble of galaxies. In this

manner one can, in principle, calculate all higher moments of the cosmic ray

observables. It turns out that an important parameter may be derived for any

particular model of cosmic ray transport. If a single supernova event fills an

effective volume V eff \vith cosmic rays for a time 7 ,,, and there are n super-

nova events per unit time per unit volume oil 	 average, the quantity (N)

e c`Veff becomes essentially an inverse "discreteness parameter" in the sense

that when it is large fluctuations are relatively unimportant, but when it is small

fluctuations can dominate the situation. For currently considered models of our

own galaxy the situation appears to be borderline.
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I. Introduction

For some time now supernova explosions have been considered a leading

contender for the role of primary source of galactic cosmic rays. This is based

primarily on the fact that their rate of energy release appears to be sufficient

to meet the requirements of the cosmic ray source 1-5 (ti 10 41 ergs/sec) and

more recently on the possibility that a detailed model of the supernova explosion

might predict the energy spectrum of cosmic rays.6-8

A second major theme in recent cosmic-ray research has been the question

of how cosmic rays propagate through the galaxy once they have been produced

by their source. This question has been approached from two different aspects;

first what combination of source char:?cteristics and average path length in the

galaxy will produce the abundances of she nuclear species observed in the

cosmic-rays. There is, of course, a vast literature on this question and I cite

here only a few of the most recent articles. 9-13 The second approach to this ques-

tion is concerned with the fact that the bulk streaming velocity of cosmic rays in

the vicinity of the earth appears to be very small (ti 500 km/sec). A consid-

erable discussion has appeared in the literature concerning how the structure of

the galactic magnetic field 14,15,16 and various possible types of plasma instabil-

ities 17 , 18 , 19 could be responsible for this fact. A common feature of the

theoretical work that has been done so far in these matters is that for any of the

various models considered average values of observable quantities are calculated

and then compared with observation, in so far as possible. It is the purpose of
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this paper to show that if cosmic rays do originate in supernova explosions the

system we are observing is an essentially noisy one and the values of observable

quantities that we measure may not have a great deal to do NOth the average

values. In other words the probability that we are observing a rather large

fluctuation away from the average may not be negligible.

H. Statistical Method

We begin by considering the general response function for a supernova

explosion. The density of cosmic rays at a point X and at time t due to the i " I

supernova explosion shall be designated by p i (X, t). Since we shall consider

the propagation characteristics of the galaxy to be uniform in time and one

Natial direction we have t ; ( X. t = p(X - X i , t - t , ) where p is some uni-

versal function and X . and t i are the time and position of the i 1h supernova

explosion. The reason for considering only one spatial coordinate % gill be made

clear in Section 111. when we discuss the actual propragatior, model that we will

use.

In a like manner we may discuss the directional streaming velocity of the

particles from the i t h event %• (X - X i , t - t j	 v; (X, t ) where the directional

fhLx of particles is given by j (X. t) = v, (X. t ) p, (X. t ).

I
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At any point in space and time the total density of cosmic ray particles is

given by

P ^ P•u

where the sum is over all supernova events. For reasons of later mathematical

simplicity we shall consider the sum to be over all past and future events and

build all causality requirements into the response function c(X, 0. In a similar

fashion we have

l	 j;

The bull: streaming velocity that would be observed is given by

i4c	 (^ j '/^ Pi)

and since the age of all particles from the i t  event is just t - t , the a—,-rage

of all particles is just

T	 -	 (t-t i) ,/̂ ,

Until now there has been no mention of statistical notions; the coordi'iates

of the supernova events, X i , t , have been considered to have determined values
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and the various observable quantities to be exactly calculable, at least in princi-

ple. In reality, of course, we have no idea of the values of the event coordinates

(with possibly a few exceptions) that would be required to calculate the values of

the observable quantities. Even if they were known to a reasonable degree of

accuracy the subsequent computations would be extremely difficult if not

impossible.

This situation is reminiscent of the one encountered in statistical mechanics

and, in fact, we shall treat this problem from a statistical mechanical point of

vie«. We shall consider our galaxy to he just one sample of an arbitrarily

large ensemble of galaxies. In this ensemble the event coordinates X . , t , shall
i

	be considered to be random variables, distributed with some probability distri-	 I

bution P(X 1 , t 1. X 2 , t 2 , • • • X i , t i • • •) . Our observable quantities P, j , v,

etc., are now functions of many random variables and while we will not calculate

these functions themselves we may in principle calculate average values for any

combinat- on of them.

We shall use the method emdloyed by Rice 20 in calculating electrical shot

noise. It makes use of Vie idea of an ensemble average of any function of the

random variables; If F is a function of the X i , t i then we have

(F) 	 ^
I dX i I dt	 P(X i , t i) F(Xi, t J . 	(L)

1 ^l .1	 .1

G

e^



Since we are interested in - o < t. < + m there are an infinite munber of

events and it is not clear what we want as our probability function P(X i , t i ).

Before approaching this question we shall make some simplifying assumptions.

First we shall assume that separate events are statistica l ly independent, second

we shall assume that the probability of an event occurring in an increment of Xi

is L - ' dX , if X. < X < < X b where L - X b - X. and is zero otherwise, and

third we assume that the probability of an event occurring in an increment of

time dt i is µdt i where µ is a constant.

We shall now consider the calculation of averages in three stages. We shall

first consider the contribution to an observable quantity from only those events

occurring in the time interval - T/2 < t i < T/2 where T is a large but

arbitrary finite length of time and further we shall consider only that subset of

the ensemble for which exactly n events take place in this interval.. For this

subset the averaging operation has the form

n	 Xb	 T/2

T= L-n T-n	 f	 dXl r	 dtl	 (2)

i=1 X B	 J T^2

This operator is well defined and is concerned only with finite quantities. It

may therefore be applied directly to any observable quantity in a straightforward

manner.

In the next stage we simply note that the quantity n will have a Poi ,, son

distribution over the entire ensemble so our average may be extended Zc .ne
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full ensemble by suitably averaging over n. Our results will now be functions of

the quantity (0)/T the average number of supernova events in the time interval

T. Passing to the limit is achieved by simply noting that we have assumed

^n)/T to be a constant therefore independent of T. We simply replace it with the

average number of events per unit time n. By this method we readily obtain

fX

'om

n2 ) 	 dX 	 I dt i p ; (X ; , t 
i J-.

fXh	 r

(pl)	 p; pj 	 = (p)2 + (n/L) 	dX f dt i n it ( X i , t j (3)
as J_

etc.

We shall now anticipate a result of the next section. In Section III we will

see that our response function p(X - x i ,  t - t ; ) is actually a function of the

dimensionless parameters (X - ki/ ^L, and (t - t, )/r,, where L , and -r, are a

characteristic length and time respectively. The integrals may therefore be

written as

Xl' L,7 (X/X - X i	 t - t i

J	 \JX./LC

etc. If we write (N) = nL, T c /L and (pi), (p12> etc., as the integrals over

the dimens ionless parameters of p i , p ,2 , etc., we may write equations (3) as 	 ^ --

C p >	 C N > Cpi >' 	 W)	 / N \2(pi\ 2 + (N) i2
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etc. The parameter (N) is the average member of supernova events per unit

characteristic lengt1i, per unit characteristic time, ant] since it is essentially

the average number of events that are sensibly contributing to the state of

cosmic-ray-affairs at any one point in space and time it plays the role of an

inverse "discreteness parameter." As such we should exj)ect that fluctuations

will be important if (N) is small anal the contrary to be true if it is large. We

shall see that, in fact, thus is the case.

One additJonal point should be discussed before leaving the question of the

statistical method. In calculating quantities such as	 and (- ) we face a

problem with having the statistical quantities in the denominator. While the

operator ()'IT 
t  

Equation (2), can be applied in principle it would be prohibitively

difficult to do in practice. The escape fron, this difficulty is effected by defining

Sp = p - ( p ) and writing

(	 (	
n

/	 n 0	 n-0	 C

(4)

We would expect this series, though most likely not a convergent one, to be a

useful asymptotic one if fluctuations are emall, i.e., 	 -	 1. As we might

expect this series turns out to be exprr ,sible, after some rearranging, as a

power series in 1%(N), our "discreteness parameter."
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III. Galactic Propagation :Model

We now turn to the question of what particular form the response function

,c(X - X 1 . t - t J shall have. The form that this function will take is completely

dependent on the model one chooses for the propagation of cosmic rays through

the galaxy. In principle one could choose as complicated a model as one wished

and perform the integrals indicated in Equation (3) numerically.

Since, howe%er, we are interested primarily in determiiung how the overall

results are affected by certain general parameters of a model we shall consider

here a model that is relatively simple and amenable to calculation. Further-

more, it is my belief that this model is not without a physical basis. It is in

fact suggested by the picture of galactic cosmic ray propagation prof,: sed by

Parker 14 , 15 , 16 in %NEch the cosmic rays are relatively free to stream along the

galactic spiral field all the while leaking out of the surface of the galactic disk.

This leakage is accomplished by means of the "bubble blowing" instability also

discussed by Parker.14

We shall therefore adopt the following picture of cosmic ray propagation in

the galaxy. When a supernova explodes it suddenly fills a bubble of volume Lo

;zth a hot cosmic ray gas where L o is of the order of the galactic disk thick-

ness. This bubble is threaded by spiral (on the average) magnetic field of the

galactic disk and is thus able to expand only along the field lines. (This is why

we have considered response functions of only one variable.) This bubble

expands in both directions along the field direction behind a "; runt" *.hat' moves

10
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with velocity V while behind the front the density and pressure are uniform.

While the expansion is taking place the total number of particles is decaying

exponentially with a time constant rc due to leakage out of the sides. This

picture can be thought of as propagation down a leaky pipe. From these con-

siderations we may write the density or response function as

K e
-(t-ti)/"^	

/	 1	 /P(X - X i , t - ti)
	 [LO I V (t - t i )] U`t-t.) U(V(t - t j +Lo- 

X - Xil ^ (5)

where U ( X) is the Heaviside step function and K is a normalizing coefficient.

From considerations of continuity we have

V(X - XJ

LL ° +V(t -t^IJ

and

i i	 -	 V i Pi

These formulae hold true for any point in the galaxy that is on a field line

that treads the initial bubble, for any other point there will be no effect at all.

There are, of course, many other possibilities for models and response

functions; diffusive models, or models with more detailed hydrodynamic

expansions for example. However, I believe that the model described above

exhibits certain features that would have to be present in any model. The

minimum length L o has no effect on the average density (o) , however, (0 2 ) and 2

11



higher order moments diverge as L o ' 0. This simply means that the proba-

hility of a supernova exploding arbitrarily near the point of observation has an

overwhelming effect on all fluctuation phenomena. A diffusion model would have

to have a built in maximum velocity of propagation otherwise the well known

infinite propagation speed at t - 0 characteristic of pure diffusion solutions

causes	 z ) and higher terms to diverge. Finally, I believe that leakage out of

side of the "pipe" is physically called for by the arguments of Parker.

IV. Calculations

I have used Equations (5) and (6) in evaluating* the integrals of Equation (3).

The series expansion of Equation (4) has been carried out through all terms of

order I (N). In the calculations the free expansion velocity V has been consid-

ered a variable parameter and the dependence of (T), (T) - —67), (-)

J(7-2—). (v), (v) + j(-Tv72 , and (v) - (cO) upon this parameter are shown

in Figures 1 and 2.

If we consider the RMS deviations to be a measure of the uncertainty of any

prediction of an observable from a particular model we see that the results for

the mean lifetime of cosmic ray particles is not too spectacular. (In this model

lifetime is identical with lifetime in the disk since halo storage is not consid-

ered.) We see that the best one can do is about 6% accuracy but this is

insibnificant con:i ." ed to present uncertainties.

`tiara used for the galactic configuration were: Length of spiral flux tube (arm) — 92 Kpc, Earth

36 Kpc from inner end, L. = 0. 1 Kpc, event rate ti 0.2 per year for our galaxy, galactic radius

12.5 Kpc, c = 10 6 years.
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Ilowever, when we come to the bull: streaming velocity we find a different

matter entirely. We see that the presently observed limit for the streaming

velc city of < 500 kri/sec is compatible with a range of inherent streaming11

velocities from one fourth t,:e speed of light on clown. From tli^ we can wee

that the observations of this streaming velocity may not tell us too much about

the relevant parameters of a particular propagation model.
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FIGURE CAPTIONS

Figure 1. Mean particle age (T) and ^T) plus and minus the R.M.S. deviation

^oT 2 ) as a function of the expansion velocity V.

Figure 2. Bull: stre caning velocity (v) and (V) plus and minus the R.M.S.

deviation (ov = ) as a function of the expansion velocity V.
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