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FOREWORD 

The research descr ibed h e r e i n  w a s  conducted by Bat te l le  Memorial 

I n s t i t u t e ,  Materials Design and Fabr i ca t ion  Divis ion,  and performed under 

NASA Contract NAS3-11189. The work w a s  done under t h e  management of t h e  NASA 
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Powder metal lurgy techniques were developed t o  f a b r i c a t e  simulated rocke t  

engine components having i n t r i c a t e  i n t e r n a l  f low channels.  To demonstrate these  

techniques,  two simulated components of d i f f e r e n t  and complex des ign  were f a b r i -  

cated.  

cool ing  des ign  concept. 

"shower head" des ign  wi th  f u e l  and ox id ize r  p o r t s  separa ted  a t  the  i n j e c t o r  face.  

One cons i s t ed  of a copper b a f f l e  component of t he  "f i lm and convection" 

The o the r  component was a n i c k e l  i n j e c t o r  having a 

The components were f a b r i c a t e d  by conso l ida t ing  powder around compatible 

and s e l e c t i v e l y  leachable  too l ing  us ing  the  hot-isostatic-compaction process .  The 

dimension, alignments,  and contours of the  too l ing  r ep resen t ing  the  i n t e r n a l  f low 

channels were maintained with high p r e c i s i o n  during powder d e n s i f i c a t i o n  and 

bonding. The too l ing  was removed s o l e l y  by chemical d i s s o l u t i o n ;  no machining 

o the r  than t o  expose the  t o o l i n g  a t  the  su r face  of t he  components was required.  

P res su re  t e s t i n g  of simulated copper b a f f l e s  was accomplished with 

h y d r o s t a t i c  pressures  of 700 p s i  and h igher  f o r  5 min. The copper powder achieved 

d e n s i t i e s  h igher  than 98 percent  of t h e o r e t i c a l  d e n s i t i e s  and mechanical p r o p e r t i e s  

t h a t  were equiva len t  o r  b e t t e r  than commercially pure wrought and annealed copper 

products.  Helium leak  t e s t i n g  of the  simulated n i c k e l  i n j e c t o r s  was accomplished 

wi th  no d e t e c t a b l e  leakage between the  b i p r o p e l l a n t  channel systems. The n i cke l  

powder achieved d e n s i t i e s  h igher  than 97 percent  of t h e o r e t i c a l  dens i ty .  



Powder metal lurgy techniques w e r e  developed to  f a b r i c a t e  rocket  engine 

components conta in ing  i n t r i c a t e  i n t e r n a l  f low channels.  The technique involves  

conso l ida t ing  and bonding powder ma te r i a l s  around s e l e c t i v e l y  removable too l ing  

by the  h o t - i s o s t a t i c  compaction process .  

The too l ing  f o r  each component was se l ec t ed  based on known phys ica l  and 

me ta l lu rg ica l  p r o p e r t i e s ,  thermochemical c a l c u l a t i o n s ,  and compa t ib i l i t y  wi th  

component ma te r i a l s .  The f i n a l  s e l e c t i o n  was made a f t e r  compa t ib i l i t y  and leach- 

a b i l i t y  tests were conducted on f ab r i ca t ed  samples. 

chosen f o r  the  too l ing  i n  the  copper b a f f l e s .  The g l a s s  was compatible with copper 

and was s e l e c t i v e l y  removed with a 67HF-33H20 so lu t ion .  

1018 s t e e l  and 1100 aluminum, were found d e s i r a b l e  f o r  t h e  n i cke l  i n j e c t o r s .  

Aluminum formed N i A l  i n t e r m e t a l l i c s  a t  t he  i n t e r f a c e  dur ing  h o t - i s o s t a t i c  compaction 

and prevented f u r t h e r  r e a c t i o n  between aluminum and n i cke l .  However, the b r i t t l e  

i n t e r m e t a l l i c s  were considered t o  be poss ib l e  sources  of cracks dur ing  i n j e c t o r  

opera t ion .  Therefore ,  the  1018 s t e e l  t oo l ing  m a t e r i a l  was se l ec t ed  over aluminum. 

The s t e e l  was s e l e c t i v e l y  removed wi th  a 25H2S04-75H20 so lu t ion .  The aluminum can 

be quick ly  removed with e i t h e r  a 8 M  NaOH s o l u t i o n  o r  a d i l u t e  HC1 so lu t ion .  

A b o r o s i l i c a t e  g l a s s  was 

Two too l ing  ma te r i a l s ,  

During compa t ib i l i t y  t e s t i n g  and powder process  development, copper 

powder was consol idated around g l a s s  t oo l ing  by hydropressing a t  20,000 p s i  without 

f r a c t u r i n g  o r  d i sp l ac ing  the  too l ing  provided the  t o o l i n g  was loca ted  geometr ica l ly  

on a plane of equal  pressure .  The copper was then d e n s i f i e d  t o  b e t t e r  than 98 

percent  of i t s  t h e o r e t i c a l  d e n s i t y  by h o t - i s o s t a t i c  compaction a t  1000 F and 

10,000 p s i  f o r  3 hr .  Nickel powder was consol idated around s t e e l  t oo l ing  and 

around aluminum too l ing  by hydropressing a t  80,000 p s i  followed by h o t - i s o s t a t i c  

compaction a t  1200 F and 10,000 p s i  f o r  3 h r  t o  b e t t e r  than 98 percent  of t h e o r e t i -  

cal  dens i ty .  

was unnecessary and was e l imina ted .  

Af t e r  modifying the  des ign  of t he  n i c k e l  i n j e c t o r ,  t he  hydropressing 
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F u l l  s c a l e  b a f f l e  components were f a b r i c a t e d  from copper powder using 

the  b o r o s i l i c a t e  g l a s s  too l ing .  Complete d e n s i f i c a t i o n  t o  near  t h e o r e t i c a l  d e n s i t y  

was achieved and the  b a f f l e  was success fu l ly  hydrotested a t  700 p s i g  f o r  5 min. 

The g l a s s  t o o l i n g  maintained dimensions and alignment t o  wi th in  a . 0 1  in .  Surface 

f i n i s h  wi th in  the  channels was smooth, and flow channels were unimpeded. 

p r o p e r t i e s  of the  d e n s i f i e d  copper powder were comparable o r  b e t t e r  than wrought 

and annealed commercial copper products.  

i n i t i a l  powder s i z e  and l imi t ed  g r a i n  growth a t  the  low bonding temperatures.  

Mechanical 

Grain s i z e s  were very f i n e  owing t o  the  

F u l l  s i z e  i n j e c t o r  components were f a b r i c a t e d  from n icke l  powder using 

low carbon s t e e l  f o r  the too l ing .  To maintain the alignment of the  two d i f f e r e n t ,  

b i -p rope l l en t  f low systems wi th in  the  i n j e c t o r ,  one s e t  of too l ing ,  represent ing  

the  ox id ize r  flow channels,  was f i r s t  f i xed  i n  p o s i t i o n  by consol ida t ing  n i c k e l  

powder around t h i s  system of too l ing .  

f u e l  channels,  was then assembled onto the  f i r s t  s e t .  

around the  second t o o l i n g  system while s imultaneously bonding i t  t o  the  n i cke l  

around the  f i r s t  s e t  of t oo l ing .  By t h i s  technique, the  n i c k e l  powder achieved 

d e n s i t i e s  of about 97 pe rcen t  of t h e o r e t i c a l  while maintaining alignment and 

dimensional c o n t r o l  of the  flow channels t o  wi th in  M.01  i n .  of s p e c i f i e d  

to l e rances  except  for  a few too l ing  p ins  near  t he  ou te r  edge. These p ins  were 

The o the r  t oo l ing  system, represent ing  the  

NLckel powder was consol idated 

d i s t o r t e d  out  of t o l e rance  because the  powder was compacted nonuniformly and 

tended t o  flow p r e f e r e n t i a l l y  towards the  edges. Helium leak  t e s t s  of the  

i n j e c t o r  w a s  acconplished wi th  no d e t e c t a b l e  leakage between the  b i -p rope l l an t  

channel systems. 

The success fu l  f a b r i c a t i o n  of t hese  components demonstrated the  f e a s i -  

b i l i t y  of f a b r i c a t i n g  conplex hardware conta in ing  i n t r i c a t e  i n t e r n a l  flow channels 

by h o t  i s o s t a t i c a l l y  compacting powder metals. 
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INTRODUCTION 

Background 

Rocket engine components which conta in  i n t r i c a t e  and complex i n t e r n a l  

f low passages a r e  d i f f i c u l t  and c o s t l y  t o  produce. 

dimensional c o n t r o l  t h a t  n e c e s s i t a t e s  accura te  and u s u a l l y  ex tens ive  machining. 

I n  many cases ,  these  components cannot be made i n  one p iece  and r equ i r e  the  jo in ing  

of two o r  more subassemblies.  The jo in ing  processes  gene ra l ly  used t o  bond var ious  

components, such a s  braz ing ,  so lde r ing ,  fu s ion  welding, or s o l i d - s t a t e  bonding, 

have a number of problems assoc ia ted  wi th  them, inc luding  plugging of i n t e r n a l  

passages,  i n t e r n a l  bu r r s  which can impede flow, and warpage. Many of these  

d i f f i c u l t i e s  can be el iminated and a savings i n  c o s t  r e a l i z e d  by f a b r i c a t i n g  such 

components a s  a s i n g l e  p i ece  from powder. 

The components requi re  c lose  

Scope of Work 

The p resen t  e f f o r t  was i n i t i a t e d  t o  develop powder metal lurgy techniques 

for  f a b r i c a t i n g  s t r u c t u r e s  conta in ing  i n t r i c a t e  i n t e r n a l  f low systems t h a t  r equ i r e  

c lose  dimensional con t ro l .  

The two components s e l ec t ed  f o r  t h i s  program t o  demonstrate these  powder 

metal lurgy techniques were the  copper s t r a i g h t  component t e s t  sample o r  b a f f l e  a s  

redrawn i n  Figure 1-1 from NASA Drawing No. CF620868, and a simulated n i c k e l  

i n j e c t o r  t e s t  p i ece  redrawn i n  Figure 1 - 2  from NASA Drawing CF620867. 

des ign  chosen f o r  t h i s  e f f o r t  i s  of t he  " f i lm  and convectiont'  cool ing  scheme which 

w a s  i d e n t i c a l  t o  b a f f l e s  f ab r i ca t ed  and used f o r  M - 1  engine development. The 

b a f f l e  is  incorporated wi th  the i n j e c t o r  t o  reduce the  p o s s i b i l i t y  of d e l e t e r i o u s  

i n s t a b i l i t y .  

The b a f f l e  

\ 

The s imulated i n j e c t o r  is  t y p i c a l  of a "shower-head" des ign  having 
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separa ted  f u e l  and oxygen systems i n t o  the  f a c e  p l a t e .  

t y p i f y  the  complexity of t he  flow system requi red  i n  many mixing, combustion, 

and cool ing  systems and thus  a r e  w e l l  s u i t e d  t o  demonstrate t he  f e a s i b i l i t y  of 

using powder f a b r i c a t i o n  techniques t o  produce these  and s i m i l a r  s t r u c t u r e s  con- 

t a i n i n g  i n t r i c a t e  i n t e r n a l  f low channels. 

These two components 

Spec ia l  F a c i l i t y  Used i n  Program 

The hot - i sos ta t ic -compact ion  process  was s e l e c t e d  a s  t he  approach f o r  

making components of t hese  complex shapes. The p r i n c i p a l  t echn ica l  requirements 

of the  process ,  which are a l l  met by the  hot- isostat ic-compact ion method are:  

(1) Use of t he  lowest poss ib l e  compaction temperature t o  minimize 

t o o l i n g  compa t ib i l i t y  problems and p e r m i t  the widest  poss ib l e  

s e l e c t i o n  of t oo l ing  mater ia l s .  

Appl ica t ion  of uniform, i s o s t a t i c ,  h igh  p res su re  t o  ob ta in  maximum 

d e n s i f i c a t i o n  i n  a l l  regions of complex shapes and t o  avoid 

too l ing  d i s t o r t i o n  dur ing  d e n s i f i c a t i o n .  

(2) 

The Hot-Isostatic-Compaction Process 

Bas i ca l ly ,  t he  h o t - i s o s t a t i c  compaction technique is  an i d e a l i z e d  hot-  

p re s s ing  ope ra t ion  performed i n  a high-pressure autoclave i n  which a compaction 

fo rce  is appl ied  by a high pressure  of i n e r t  gas a t  e l eva ted  temperatures.  The 

i s o s t a t i c  p re s su r i z ing  medium i s  the  untque cha rac t e r  of t h i s  technique a s  compared 

to  convent ional  methods. 

I n  t h i s  process ,  a l a rge  cold-wall  autoclave conta in ing  a r e s i s t a n c e  

h e a t e r  is used to  a t t a i n  the  h igh  gas pressures  and temperatures requi red  f o r  

compaction o r  bonding. I n s u l a t i n g  m a t e r i a l  i s  loca ted  between the  wire-wound 
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r e s i s t a n c e  h e a t e r  and the  i n s i d e  wa l l  and heads of t he  high-pressure au toc lave  

to  prevent  apprec iab le  hea t ing  of t he  cold-wall  ves se l .  

au toc lave  used i n  the  program i s  shown i n  Figure 1-3. 

processing,  the powders t o  be dens i f i ed  a r e  preformed by v ib ra to ry  packing and/or  

hydropressing, assembled i n t o  a t h i n  metal  conta iner ,  then evacuated and sea l ed .  

The sea led  assemblies  a r e  then placed i n  the  h e a t e r  i n s i d e  the  autoclave and 

the temperature and pressure  requi red  f o r  compaction and bonding are appl ied.  

A s e c t i o n a l  view of t he  

To prepare assemblies  f o r  

A t  temperature,  the  h igh  gas p re s su re  i n  the system i s  uniformly t ransmi t ted  through 

the con ta ine r  wa l l s  from a l l  d i r e c t i o n s  to  the  contained ma te r i a l .  The powder 

p a r t i c l e s  t o  be compacted a r e  deformed, and complete su r face  con tac t  and s o l i d -  

s ta te  bonding of t he  p a r t i c l e s  occurs .  

Se l ec t ion  of t he  metal  t o  be used f o r  the  con ta ine r  i s  based upon the  

fol lowing f a c t o r s :  compa t ib i l i t y  wi th  the  m a t e r i a l  being processed, t he  r e l a t i v e  

thermal expansions of t he  ma te r i a l s ,  forming and welding c h a r a c t e r i s t i c s ,  a b i l i t y  

t o  be removed a f t e r  processing,  and a b i l i t y  t o  deform p l a s t i c a l l y  a t  the  processing 

temperature.  A s l i g h t  r e a c t i o n  of the conta iner  with the  powder m a t e r i a l  i s  

t o l e r a b l e  s i n c e  the  e x t e r i o r  su r face  can be machined a f t e r  h o t - i s o s t a t i c  compaction. 

Purpose of Program 

The ob jec t ives  of t he  program are: 

(1) 

(2) 

(3) 

To develop expendable too l ing  f o r  powder metal  systems 

To i n v e s t i g a t e  process  v a r i a b l e s  and opt imize the f a b r i c a t i o n  process  

To f a b r i c a t e  and test  subscale  components conta in ing  i n t r i c a t e  i n t e r n a l  f low 

channels u s ing  the  optimum powder metal lurgy techniques wi th  the  developed 

tool ing.  
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D e f i n i t i o n  of Task Work 

The program was divided i n t o  three  tasks :  

Task I. Tooling Development, Process  Optimization, and Inspec t ion  Techniques 

Task 11. Fabr i ca t ion  and Tes t ing  of Simulated Copper Baf f l e s  

Task III. Fabr i ca t ion  and Tes t ing  of Simulated Nickel I n j e c t o r s .  

Task I s t u d i e s  involved three  subtasks.  In Subtask A, expendable too l ing  

ma te r i a l s  were s e l e c t e d  by thermochemical c a l c u l a t i o n s ,  compa t ib i l i t y  d a t a  ana lyses ,  

determinat ion of s o l u b i l i t y  r a t e s ,  and ease of f a b r i c a t i o n .  

a b i l i t y  and compa t ib i l i t y  of candidate  too l ing  ma te r i a l s  were conducted. I n  Subtask 

B, powder-fabrication techniques and parameters were developed using powder samples 

of s impl i f i ed  des igns .  Subscale components were f ab r i ca t ed  t o  optimize the  too l ing  

and compaction processes .  I n  Subtask C ,  techniques were e s t ab l i shed  t o  eva lua te  

these  samples nondes t ruc t ive ly  by radiographic  in spec t ion  and flow tests. 

samples were a l s o  examined d e s t r u c t i v e l y  by sec t ion ing .  

Tests t o  v e r i f y  s u i t -  

The 

Task I1 s t u d i e s  were divided i n t o  two subtasks.  I n  Subtask A, b a f f l e  

component t e s t  p i eces  were f ab r i ca t ed  from copper powder u t i l i z i n g  the  i n t e r n a l  

t oo l ing ,  powder metal lurgy techniques,  and processing methods developed i n  Task I. 

The p r i n c i p a l  p a r t s  requi red  t o  f a b r i c a t e  t h i s  rocke t  engine component cons i s t ed  

of the  i n t e r n a l  t oo l ing ,  two s o l i d  copper f i x t u r e s ,  copper powder, and a r i g i d  

e x t e r n a l  frame made of s t e e l .  In Subtask B, the  f a b r i c a t e d  b a f f l e  was evaluated 

by nondes t ruc t ive  tests developed i n  Task I and by a h y d r o s t a t i c  p re s su re  test a t  

700 p s i g  f o r  5 min. 

metal lographic  a n a l y s i s ,  t e n s i l e  tests, and dimensional i n spec t ions .  

The components were then d e s t r u c t i v e l y  examined by sec t ion ing ,  

Task 111 s t u d i e s  involved two subtasks.  Subtask A requi red  the  f a b r i c a t i o n  

of prototype i n j e c t o r  component t e s t  p ieces  by the  methods and processes  developed 

i n  Task I. The p r i n c i p a l  p a r t s  of t h i s  component cons i s t ed  or t he  too l ing ,  a 
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n i c k e l  base support  and n i c k e l  powder. I n  Subtask B, the i n j e c t o r s  were t e s t e d  

nondestruct ively by flow tests and helium l eak  tests t o  v e r i f y  nonleakage 

between the  b i -p rope l l an t  f l o w  systems. Addit ional  nondestruct ive tests were 

made by techniques developed i n  Task I and then the i n j e c t o r s  were inspected 

d e s t r u c t i v e l y  by sect ioning.  



11 

TASK I STUDIES: FABlUCATION AND TESTING OF SUBSCALE PROTOTYPES 

Subtask I - A :  Compatibi l i ty  Tes t inp  and Development 
of Expendable Tooling 

The ob jec t ive  of t h i s  subtask  was t o  s e l e c t  and develop expendable too l ing  

required f o r  the  f a b r i c a t i o n  of copper and n i cke l  components. 

A survey of the  l i t e r a t u r e  on phys ica l ,  me ta l lu rg ica l ,  and thermochemical 

p r o p e r t i e s  of ma te r i a l s  was conducted t o  sc reen  candidate  m a t e r i a l s  from s e v e r a l  

c l a s s e s  of m a t e r i a l s ,  inc luding  meta ls ,  s a l t s ,  so lub le  g l a s ses ,  and composites. 

Candidate ma te r i a l s  were chosen on the  b a s i s  of t h e i r  mel t ing  p o i n t s  and the  temper- 

a t u r e  a t  which adverse r e a c t i o n s  occurred wi th  the base metals .  Candidate too l ing  

ma te r i a l s  considered i n  the metals  c l a s s  a r e  l i s t e d  i n  Table 1-1. Binary and 

t e rna ry  compounds considered f o r  t oo l ing  a p p l i c a t i o n s  a r e  l i s t e d  i n  Table 1-2 

along with a v a i l a b l e  phys i ca l  p rope r t i e s  and r e s u l t s  of thermochemical ca l cu la t ions .  

Those ma te r i a l s  t h a t  were c o s t l y ,  d i f f i c u l t  and expensive to  f a b r i c a t e ,  

and tox ic  were el iminated.  Many of the  t e rna ry  compounds tended t o  absorb o r  

r e a c t  with water  from the  atmosphere and would make the  f a b r i c a t i o n  of sound too l ing  

from these  ma te r i a l s  d i f f i c u l t  and expensive.  

m a t e r i a l s  was examined f o r  adverse r eac t ions  a t  about 1350 F, s l i g h t l y  h igher  

The compa t ib i l i t y  of the  remaining 

than the  maximum temperature t h a t  w a s  used f o r  h o t - i s o s t a t i c  compaction. 

m a t e r i a l s  showing a negat ive  change i n  the f r e e  energy of formation wi th  the base 

metals  were e l imina ted .  Mater ia l s  t h a t  were going t o  be d i f f i c u l t  t o  remove from 

the  components were a l s o  e l imina ted  from f u r t h e r  cons idera t ion .  

Those 

One of the  candidate  ma te r i a l s  t h a t  proved t o  have s u b s t a n t i a l  promise 

was graphi te .  Experiments were conducted l a t e  i n  the  program and the  r e s u l t s  were 

not  a v a i l a b l e  u n t i l  r ecen t ly .  

machined, coated with a t h i n  l aye r  of n i c k e l  by e l e c t r o l e s s  coa t ing  techniques,  

then assembled i n t o  n i cke l  powder and sea led  i n  low carbon s t e e l  conta iners .  

Several  rods and a r i n g  of ATJ g raph i t e  were 
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TABLE I- 1. CANDIDATE TOOLING MATERIALS : mTALS 

Eutect ic  Eutectic 
Reactions with Reactions with 

Metal Copper, C Nickel, C 

Ag 779 960 
A 1  548 640 
Au 889 950 
B 1060 990 
Ba 550 None 
Be 1512 1157 
C None None 
C a  560 -- 
co None None 
C r  1075 1345 
Fe None None (a) 
G e  640 775 
Mg 485 507 
Mn 870 (b) 
Mo -- 1315 
Nb ..- 1175 
N i  None *-  

os None None 
Pt None Nene 
Re 
Rh None 

None None ( c )  
I..- 

‘h 

Ru None (a 
Sb 526 626 
S i  802 964 
Ta None 1360 
Th 881 1000 
Ti 885 942 
U 950 740 
Q None 1203 
W None None 
zn ( e  1 (e 1 
Zr 885 961 

(a) 
(b) 
(c) Re-Ni system alloys easily. 
(d) Ru-Ni system is probably a solid sohtion, but  amounts of 

s o l u b i l i t y  not known. 
(e) Zn melting point of 419 C is too l o w  f o r  tooling use. 

Fe-Ni system has a minimum of 1440 C. 
Mn-Ni system has a minimum at 1018 C. 
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TABLE 1-2.  CANDIDATE TOOLING MATERIALS: COMPOUNDS 

AF of Formation 

(kcallgram-atom) 
Melting or at 1000 K 
Sub1 j. ma t i on 

Compound Point,  C With Cu With N i  

Na20 
CdO 
ZnO 
MgO 
CaO 
A1203 
Sn02 
Si02 
Ti02 
B O 2  

Cr203 
H f 0 2  

N i O  
coo 

Ba 
Liz0  
Moo3 
w03 
h203  

3 0 4  

N a C l  
CaC12 
BaC12 
CrC12 
N i C 1 2  

KF 
NaF 
LiF 

ZnF 
c*2 

MgF2 
C@2 
Aw3 TiF3 

CrF2 
FeF2 

MnF2 

PbF2 

CoF2 

1275 

1975 
2800 
2580 
2045 
1127 
1610 
1825 
2715 
2812 
2435 
1990 
1935 
1538 d* 
1923 
1700 
795 

1473 
1080 

801 
772 
925 Lr. 
824 

1001 

880 
980 
870 

872 
1266 
1360 
1040 
1200 
855 

1100 
> 1000 (?) 

1200 
856 

900 d* 

1040 

+43.0 
+I5 5 
+36 * 5 
+%e5 

+io5 0 
+86.5 
+22 *o 
+60.5 
+68.5 
+85 5 
+97 5 
+46 5 
+14.5 
+14.0 

+88.5 
+87*5 
+17 5 
+25.0 
+34 5 

+25 *O 

+55*0 
+57.0 
4 3 . 0  
+11.5 

42 .0  
6 4 . 0  
+75-0 

+19= 5 
+63.0 
+77 0 
+41 0 
+39*0 
+12 * 0 
+26 5 
+l9* 5 
+14 0 
+30* 5 

+2 5(a) 

+15 0 

+28.5 
+ l o 0  

+22 * 0 
+82.0 
+80.5 

+8.5 
+46.0 

+83.0 
+32.0 

+72 e 0  

+54 0 
+ " l a 0  

-- 
-0*5(4 

+73.0 
~ 3 . 0  
+8.5 

+20*0 

+5% 5 
+59 5 
45.5 
+14*0 

+LO 5 
+74 O 

.... 
+48.5 
+50*5 
+61.5 
+1.5 
+6.0 

+49* 5 
43.5 
+27* 5 
+25*5 
-1*5(4 

+13 * 0 
+6 .O 

+17 - 0 
+0.5 
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TABU 1-2. (Continued) 

Melting or Sublimation 
Compound Point, C 

B a r 2  
N i B 2  

Be C 

LiH 

K2S 

Na2S 
LiB04 

CoSO4 
PbSO4 
Lis04 

CdS04 

w304 
K2C03 
K2Croq 

9 
K ~ M o O ~ * H ~ O  

NaB02 

NaCo? Ma3A F6 
Na2S04 
N a 4 P 2 0 7  
&3B409 

847 
963 

2100 

1239 

840 
825 

1180 
840 

1000 
989 
io00 a. 
860 

891 
968 
823 

1033 
919 
849 
1650 
966 
851 
1000 
884 
880 
980 

1124 d. 

= decomposes 
= trans f oms 
Tentatively eliminated due to possible reaction. 
Thermochemical calculations were not required on the 
following compounds. 
for other reasons. 

These materials were eliminated 
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The r i n g  specimen was s i n t e r e d  a t  2100 F i n  vacuum f o r  approximately 50 h r .  

rod specimens were h o t - i s o s t a r i c a l l y  compacted a t  1300 F and 10,000 p s i  f o r  4 h r .  

The 

The g raph i t e  rods were exposed on each end by c u t t i n g  through t h e  

surrounding dense n i cke l .  

the g raph i t e  from the  n i c k e l  matr ix .  

m u f f l e  furnace,  heated t o  1400 F, and the  g raph i t e  r eces s ion  r a t e  i n  a i r  determined. 

I n  the  second, t he  specimen was placed i n  a gas furnace,  heated t o  1400 F, and the  

g raph i t e  r eces s ion  r a t e  i n  the  gas atmosphere measured. The t h i r d  technique 

involved the  use of a copper nozzle  d i r e c t e d  a t  the  exposed g raph i t e  sur face .  

The specimen was placed i n  a gas furnace heated t o  1400 F,  and superheated 

steam was i n j e c t e d  through the  nozzle  i n t o  the  ho le  channel conta in ing  the  g raph i t e  

rod. The g raph i t e  recess ion  r a t e  was determined t o  be h igher  w i t h  t h i s  t h i r d  

technique than i n  the  o t h e r  experiments. 

s h o m  i n  Figure 1-4. 

Three techniques were attempted t o  s e l e c t i v e l y  remove 

I n  one, the specimen was placed i n  a 

A comparison of r eces s ion  r a t e s  is  

The r i n g  specimen was then placed i n  a gas furnace,  heated t o  1400 F, 

and the  g raph i t e  removed by the  steam i n j e c t i o n  technique. 

the use of demineral ized water  dur ing  steam product ion prevented a bui ldup of s c a l e  

on the  su r faces  t h a t  otherwise re ta rded  the  g raph i t e  r eces s ion  r a t e .  

removing the g raph i t e ,  the  r i n g  specimen was examined by radiography. A radiograph 

of the  specimen i s  shown i n  Figure 1-5. 

the  i d t e r n a l  channels .  

It was noted t h a t  

Af t e r  p a r t i a l l y  

The specimen was sec t ioned  t o  examine 

A photograph of the  sec t ioned  r i n g  specimen is  included 

i n  Figure 1-6. 

Graphi te  can be e a s i l y  machined i n t o  s u i t a b l e  t o o l i n g  conf igu ra t ions ,  

i t  is  compatible with the  base metals a t  high temperatures ,  and i t  can be r a p i d l y  

removed from consol ida ted  powder matr ices .  

removable too l ing  i s  thus shown t o  be very promising. 

The use  of g raph i t e  f o r  s e l e c t i v e l y  
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0- In a i r  muffle furnace 
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FIGURE 1-4. 

/O /5 20 25  50 

T i m e ,  hrs 

GRAPHITE RECESSION RATE AT 1400 F 

Each specimen consisted of a 1/4 i n .  diameter 
ATJ rod i n  h o t - i s o s t a t i c a l l y  compacted n icke l  
powder. 
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FIGURE 1-5. M I O G J U P H  OF GRAPHITE R I N G  SPECIMEN 
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FIGURE 1-6. PHOTOGRAPH OF SECTIONED GRAPHITE RING SPECIMEN 
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Compatibi l i ty  and l e a c h a b i l i t y  tests were conducted on o t h e r  p o t e n t i a l  

t oo l ing  ma te r i a l s .  

t h i n  l a y e r  of chromium, calcium encapsulated i n  a t h i n  i r o n  shea th ,  and th ree  

types of g l a s s  ( b o r o s i l i c a t e ,  l ead ,  and pure s i l i c a ) .  Three metal  oxides ( N i O ,  

ZnO, and MgO) were a l s o  s tud ied  bu t  subsequent ly  dropped because of n e g l i g i b l e  

leaching r a t e s .  Aluminum w a s  coated with a t h i n  l a y e r  of chromium t o  reduce 

r eac t ions  between the base metal  and the  aluminum. Without the p r o t e c t i v e  

These cons is ted  of 1018 s t e e l ,  1100 aluminum coated with a 

coa t ing  on aluminum, gross  a l l o y i n g  and e u t e c t i c  r e a c t i o n s  were expected dur ing  

h o t - i s o s t a t i c  compaction. Likewise, calcium w a s  p ro tec ted  by a t h i n  i r o n  o r  

s t e e l  shea th  t o  prevent  adverse r e a c t i o n s  between the  calcium and base metals.  

Even though calcium and aluminum had t o  be pro tec ted  wi th  b a r r i e r  coa t ings ,  t h e i r  

use a s  t oo l ing  was s t i l l  considered p r a c t i c a l  s ince  both metals  could be quickly 

removed i n  var ious  s o l u t i o n s  o r  could be melted out  a f t e r  consol ida t ion  of the base 

metal  powders around t h e  too l ing .  Both could be 

f ab r i ca t ed  i n t o  the  complex too l ing  shapes by c a s t i n g  techniques or  by machining. 

While n e i t h e r  metal  was subsequent ly  chosen a s  the  t o o l i n g  m a t e r i a l  t o  prepare 

f u l l  s i z e  components i n  Tasks I1 and 111, t hese  i n v e s t i g a t i o n s  showed t h a t  t h e i r  

use was f e a s i b l e .  

Both ma te r i a l s  a r e  inexpensive.  

Compatibi l i ty  t e s t  specimens were prepared by inco rpora t ing  cy l inde r s  

of the  candidate  m a t e r i a l s  i n  specimens of t he  base metal  powders. The 1018 s t e e l  

and the  th ree  g l a s s e s  were machined o r  ground t o  c y l i n d r i c a l  shapes and assembled 

i n  the  base metal  powders by v i b r a t o r y  packing the  powder around the  cy l inde r s .  

Two techniques were attempted to  f a b r i c a t e  calcium i n t o  s u i t a b l e  shapes. The ingo t  

was encapsulated i n  a t h i n  s t e e l  tube and swaged t o  about 1/8 i n .  diameter.  I n  

another  experiment, t he  ingo t  was kept  l ub r i ca t ed  wi th  mineral  o i l  and swaged 

t o  1/8 in .  diameter  without using a s t e e l  conta iner .  Calcium was f a b r i c a t e d  by 

t h i s  l a t t e r  technique i n t o  the  des i r ed  shapes, then fol lowing the swaging of calcium, 
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the metal  was cleaned wi th  acetone and encapsulated i n  a t h i n  s t e e l  tube f o r  

assembly i n t o  compa t ib i l i t y  specimens. 

from 1100 s tock.  Several  d i f f e r e n t  coa t ing  techniques were attempted t o  coa t  

the aluminum with a t h i n  f i l m  on chromium. Two of these  coa t ing  techniques 

proved t o  be s a t i s f a c t o r y  and a r e  summarized i n  Table 1-3. The most s u i t a b l e  

Aluminum cy l inde r s  were c u t  and machined 

technique f o r  c i r c u l a r  p ieces  was found t o  be b a r r e l  tumble p l a t i n g ,  while  f o r  the 

square and i r r e g u l a r  shaped too l ing ,  the z inca te  d i p  technique proved t o  be b e s t .  

The compa t ib i l i t y  specimens were hydropressed and h o t - i s o s t a t i c a l l y  

compacted a t  the  optimum condi t ions  determined during the  powder metal lurgy 

process development subtask ( see  Subtask I-B). Specimens wi th  copper powder 

were hydropressed a t  20,000 p s i  and h o t - i s o s t a t i c a l l y  compacted a t  1000 F and 

10,000 p s i  f o r  3 hr .  

and h o t - i s o s t a t i c a l l y  compacted a t  1200 F and 10,000 p s i  f o r  3 hr .  

were sec t ioned  f o r  meta l lographic  examination and leach  t e s t s .  

Specimens wi th  n i c k e l  powder were hydropressed a t  80,000 p s i  

The specimens 

N o  s i g n i f i c a n t  i n t e r d i f f u s i o n  of t he  s t e e l  t oo l ing  i n t o  copper o r  n i c k e l  

The chromium b a r r i e r  l a y e r  was e f f e c t i v e  i n  prevent ing d i f f u s i o n  was de tec ted .  

of aluminum i n t o  copper a t  1000 F f o r  3 hr .  Above t h a t  temperature,  i n t e r d i f f u s i o n  

and r e a c t i o n  of aluminum i n  copper was observed. 

l ikewise i n e f f e c t i v e  i n  prevent ing d i f f u s i o n  between aluminum and n i cke l .  However, 

The chromium b a r r i e r  l a y e r  was 

gross  r eac t ions  and a l l o y i n g  d id  not  occur i n  t h i s  system because of t he  formation 

of i n t e r m e t a l l i c s  a t  t he  nickel-aluminum i n t e r f a c e .  Although the e u t e c t i c  r e a c t i o n  

f o r  aluminum-nickel occurs a t  about 640 C (1190 F) ,  the  d i f f u s i o n  of aluminum i n t o  

n i cke l  i s  re ta rded  by the formation of hard i n t e r m e t a l l i c  compounds a t  the  

i n t e r f a c e .  These compounds a c t  very e f f e c t i v e l y  a s  d i f f u s i o n  b a r r i e r s  and 

prevent  f u r t h e r  r eac t ions  between aluminum and n i cke l .  No r eac t ions  o r  

s i g n i f i c a n t  d i f f u s i o n  occurred between the 7052 g l a s s  and copper o r  between S i 0  

and copper. 
2 

S i g n i f i c a n t  d i f f u s i o n  d id  occur between the  0120 lead g l a s s  and copper 
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TABLE 1-3. DEPOSITION TECHNIQUES USED TO COAT 1100 ALUMINUM TOOLING 

A l - N i - C r  (Bar re l  Tumble P la t ing )  

1. Degrease A 1  i n  methyl-ethyl-ketone 

2. Rinse i n  e thanol  

3. Rinse i n  w a t e r  

4 .  Chemically po l i sh  1 min. a t  R.T. i n  
750 m l  HNO3-220 m l  HF-720 m l  H20 

5. Rinse i n  water 

6. P l a t e  i n  n i c k e l  sulfamate ba th  a t  
40 ASF f o r  30 min. a t  120 F (a )  

7 .  Rinse i n  water 

8. P l a t e  i n  ac id  chromium bath  a t  
250 ASF f o r  80 min. a t  120 F (b) 

9.  Rinse i n  water 

Al-Zincate dip-Cr (Rack P l a t i n g )  

1. Degrease A 1  i n  methyl-ethyl-ketone 

2.  Rinse i n  e thanol  

3. Rinse i n  water 

4 .  Chemically p o l i s h  1 min. a t  R.T. i n  
750 m l  HNO3-220 m l  HF-720 m l  H20 

5 .  Rinse i n  water 

6. Immerse i n  commercial z i n c a t e  d ip  f o r  
30 sec .  

Dip i n  chemical po l i sh  (Step 4 )  (‘1 7. 

8. Rinse i n  water 

9. Repeat Step 6 

10. .Repeat Steps 7 through 9 u n t i l  a uniform 
coa t ing  i s  achieved 

11. P l a t e  i n  a c i d  chromium ba th  a t  500 ASF 
f o r  20 min. a t  120 F (d) 

1 2 .  Rinse i n  water 

(a )  Produces a n i c k e l  in te rmedia te  l a y e r  about 0.001 i n .  th ick .  
(b) Produces a chromium coat ing  about 0.0005 i n .  t h i ck .  
(c)  Chemically s t r i p s  t h e  z i n c a t e  coat ing.  
(d) Produces a chromium coat ing  about 0.0005 i n .  t h i ck .  
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which r e s u l t e d  i n  a rough, porous su r face  l aye r  i n  the  copper. Calcium w a s  

e f f e c t i v e l y  encapsulated i n  the s t e e l  and no r e a c t i o n  o r  s i g n i f i c a n t  d i f f u s i o n  

was observed with the n i cke l .  

Tes ts  were performed on the ma te r i a l s  t o  determine leach r a t e s ,  e f f e c t s  

of f a b r i c a t i o n  techniques on leaching behavior ,  e f f e c t  of the leaching s o l u t i o n  on 

the  su r face  f i n i s h  of the  base ma te r i a l ,  and t o  determine i f  res idue  products  of 

leaching were l e f t  behind t h a t  would impair the  flow through the i n t e r n a l  channels 

of the  components. The r e s u l t s  of leach t e s t s  on these  ma te r i a l s  a r e  presented i n  

Table 1-4. A t t e m p t s  t o  leach s i n t e r e d  metal  oxides a t  any apprec iab le  r a t e  were 

unsuccessful .  The g l a s s  was leached a t  a s i g n i f i c a n t  r a t e  which was found t o  be 

comparable t o  t h a t  f o r  aluminum and f a s t e r  than the  leach  r a t e  f o r  s t e e l .  Calcium 

metal was removed e a s i l y  and quickly i n  tap water o r  i n  a s l i g h t l y  a c i d i c  aqueous 

s o l u t i o n .  Aluminum l ikewise  was removed quickly i n  var ious  leaching so lu t ions .  

Two leaching s o l u t i o n s  were found t h a t  could remove 1018 s t e e l  a t  a reasonable  

r a t e  from the  powder metal lurgy components wiehout a t t a c k i n g  the base metals  

s i g n i f i c a n t l y ;  these  were concentrated phosphoric ac id  and 25 percent  su lphyr i c  

ac id .  Surface f i n i s h  measurements were taken on consol idated copper and n i cke l  

powder su r faces  before  and a f t e r  leaching.  Estimated leach r a t e s  and the  r e s u l t i n g  

su r face  f i n i s h e s  a r e  summarized i n  Table 1-5. The leach r a t e s  a r e  approximated 

due t o  the  i r r e g u l a r  chemical a t t a c k  of su r faces .  The s e l e c t i o n  of t he  leaching 

s o l u t i o n  f o r  a p a r t i c u l a r  t oo l ing  m a t e r i a l  i s  indica ted  i n  Table 1-6. It was 

found t h a t  the g l a s s  t oo l ing  i n  prel iminary c y l i n d r i c a l  specimens contained 

numerous cracks bu t  remained wel l -a l igned i n  the  s t r u c t u r e .  Cracking i n  the  g l a s s  

occurred dur ing  the room-temperature hydropressing cyc le .  

t hese  cracked reg ions  had a tendency t o  extrude i n t o  the  void space dur ing  hot -  

i s o s t a t i c  conpaction and produce d e f e c t s  wi th in  the leached-out channels t h a t  

The copper powder near 
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TABLE 1-4. RESULTS OF LEACH TESTS ON CANDIDATE TOOLING MATERIALS 

.- - ___- 
Leaching Solution Aver age 

Material Solution Tenipera,ture Leach Rate(b) Remarks 

1018 Steel  25% H C 1  R.T. 0.215 g/hr 
101.8 S tee l  50-7 H C 1  R.T. 0.050 g/hr 
1018 S t e e l  lo& H C l  R.T. 0.130 g/hr 
1018 Steel IO@ H ~ P O ~  R.T. 0.142 g/hr 
1.018 Steel  25% H2S04 R.T. 0.055 g/hr 

1100 Aluminum 50% HC1 LOO c 0.176 g/hr 
1100 Aluminum 50% H2S04 R.T. 0.004 g/hr 
1100 Al.uminw;.l 8 M  NaOH R.T. 0.105 g/hr 
1100 Aluminum FeC13 + HCl(a) R.T. 0.073 g/hr 

Cast Calc iux R.T. r 3  g/hr 
R.T. -- Black layer  on surface H20 

Swaged Calcium H20 + lO$ H C l  
Swaged Calcium %O + looE, mo3 R.T. re also dissolved, but 

leaching was periodi- 
ca l ly  inhibi ted by the 
layer.  

0120 Lead Glass 67% R.T. i ~ 0 . 3  g/hr(c) Formed white layer  which 
retarded leaching r a t e .  

7052 Borosil icate Glass 67% IF R.T* fl0.7 g/hr 
S i l i c a ,  Si02 67% HF R.T. ~0.2 g/hr 

NiO 

ZnO 
NgO 

Generally much slower 
than glasses above. 

I1 Residue powder l e f t  
behind. 

Various acids,  -- -44 
0 . 0  0-(dl -- (dl  

bases, and sal ts  

11 "L 

(a) 
(b) After 29 h r  of leaching on p e l l e t s  about 1/4-in. diameter by 1-in. long. 
(c) 
(d) 

One gallon FeC13 solut ion plus 12 oz of 38 percent HC1. 

Leaching of glasses w a s  conducted f o r  4-112 hr .  
Leach rate could not be determined due t o  dis integrat ion of p e l l e t s  in to  f i n e  powder. 
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TABLE 1-5. RESULTS OF LEACH TESTS ON COMPATIBILITY SPECIMENS 

System 
Base Tooling Leaching Solu t ion(  a )  Average Surf ace F’ini sh  (p- im . , IMS) 
Metal Ma te r i a l  Concentration Leach Rat;e(c) of Ease Metal 

cu 107.8 S t e e l  25% ~ 2 s O 4  0.006 in. /hr  
100% H3P04 0.008 in . /h r  

cu Cr/1100 A 1  lN NaOiI 0.007 in .  /h r  
50% H C l  0.033 in . /hr  

cu Steel/Ca H2O 

cu 7052 Glass 67% Hr’ 

l& HC1 

cu 0120 Glass 67% 

cu Si02 67% 

N i  1018 S t e e l  25% ~ 2 ~ 0 4  
100% ~ ~ ~ 0 4  

N i  1100 A 1  8 M  NaOH 
FeC13 + HCl(b) 

0.008 in . /h r  

0.008 in . /hr  
0 ~ 0 0 6  i n . / h r  

0.046 i n . / h r  
0.011 In./hr 

25 
17 

18 
115 

16 
60 

16 

18 

180 
180 

38 
240 

( a )  
(b) 

(c )  

(d) 
(e) 

Leaching s o l u t i o n s  w e r e  kept  a t  a cons t an t  temperature of 26 C. 
So lu t ion  of FeC13 + H C 1  prepared by mixing 1 2  oz of 38 pe rcen t  H C 1  t o  1 ga l lon  FeC13. 

Leach rates were determined by measuring changes i n  l eng ths  of t he  t o o l i n g  p e r  u n i t  
t i m e  . 
Leaching of calcium w a s  p e r i o d i c a l l y  i n h i b i t e d  by scale formation on t h e  metal, 
Surface roughness of copper w a s  caused by r e a c t i o n  with 0120 g l a s s  during hot- 
i s o s t a t i c  compaction a t  1000 F, 
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TABLE 1-6. SELECTION OF LEACHING SOLUTION FOR FSMOVAL OF 
TOOLING FROM NICKEL AND COPPER COMPONENTS 

Component Mat e r ia  1 Toolinp: Material Leaching Solution 

Copper 1018 S t e e l  100% H3P04 or 25% H2S04 

Cr- Coated Aluminum 50% HC1 

7052 Glass  67% HF 

Fe-Encapsulated Calcium 10% HC1 or H 0 Followed 
by 25% H2S64 

N i  cke 1 1018 Stee l  

Cr-Coa ted Aluminum 

25% H2S04 

8M NaOH 
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impeded f l u i d  flow. 

pressure  t h a t  would s t i l l  g ive  s u f f i c i e n t  green s t r e n g t h ,  i t  was poss ib l e  t o  

e l imina te  the  cracking of t he  g l a s s .  During h o t - i s o s t a t i c  compaction, t he  g l a s s  

becomes s o f t  enough t o  resist f r a c t u r i n g ,  and the flow channels generated from 

g l a s s  t oo l ing  were continuous and r e l a t i v e l y  f r e e  of d e f e c t s .  Calcium metal was 

By performing the hydropressing s t e p  a t  the  lowest poss ib l e  

not  used i n  subsequent f a b r i c a t i o n  experiments f o r  s e v e r a l  reasons. Shaping the 

calcium t o  the  des i r ed  too l ing  conf igura t ions  was complicated by the  need f o r  a 

p ro tec t ive  environment and l i n e r .  By shaping i n  a i r ,  the calcium reac ted  s lowly 

with moisture and with n i t rogen  t o  form a f r i a b l e  b lack  su r face  s c a l e .  While t h e  

calcium can be pro tec ted  i n  an i r o n  shea th  or wi th  an i r o n  coa t ing ,  t h i s  

technology was not  developed f a r  enough t o  s a t i s f y  program requirements.  Also, 

calcium was no t  a v a i l a b l e  i n  s u i t a b l e  shapes t o  make the  des i r ed  too l ing  f o r  t he  

subscale  o r  f u l l - s c a l e  components. 

I n  summary, the  too l ing  ma te r i a l s  t h a t  appeared t o  have the g r e a t e s t  

promise a f t e r  the  screening  process  and these  pre l iminary  tests were: 

For the For the  
Copper Baff le  Nickel I n j e c t o r  

(1) 7052 B o r o s i l i c a t e  g l a s s  (1) 1100-aluminum 

(2) 1018 s t e e l  (2) 1018 s t e e l  

(3) Cr-coated 1100-aluminum (3) Iron-encapsulated calcium. 
(provided rjroce ss temper- 
a t u r e  was  kep t  t o  1000 F 
o r  below). 

Subtask I-B: Powder Metallurgy Process Optimization 

The ob jec t ive  of t h i s  subtask  was t o  i n v e s t i g a t e  powder-metallurgy - 
f a b r i c a t i o n  techniques and condi t ions  t o  develop the  process  which w i l l  be used 

f o r  f a b r i c a t i o n  of rocke t  engine components i n  Tasks I1 and 111. 
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The primary problem area regarding powder compaction w a s  t h e  e s t a b l i s h -  

ment of t h e  optimum condi t ions as d i c t a t e d  by t o o l i n g  material compa t ib i l i t y .  

I n  hot-pressing s t u d i e s  conducted on copper and n i c k e l  powders, d a t a  w a s  

produced showing the  dependence o f  d e n s i f i c a t i o n  on t i m e  a t  constant  temperature 

and va r ious  p re s su res .  These d a t a ,  shown i n  Figures  1-7 through 1-10, were used 

as a guide t o  determine t h e  condi t ions f o r  h o t - i s o s t a t i c  compaction a t  10,000 p s i  

during the  experimental  determinat ion of t h e  o the r  parameters ( t i m e  and temperature).  

From t he  graphs, t h e  d e n s i f i c a t i o n  rates f o r  copper were determined a t  

‘650 p s i  and a t  15,300 p s i .  These curves start  t o  converge as the end-point d e n s i t y  

i s  approached, and the  t i m e  required t o  reach comparable d e n s i t i e s  a t  10,000 p s i  

w a s  averaged between these  two p res su res .  Dens i f i ca t ion  rates f o r  n i c k e l  powder 

were determined a t  10,200 p s i ,  and t h e  t i m e  t o  reach comparable d e n s i t i e s  a t  10,000 

p s i  were c l o s e  enough t o  be taken d i r e c t l y  from t h e  10,200 i s o l a r .  

occurs by bulk p l a s t i c  deformation of copper and n i c k e l  powders during d e n s i f i c a t i o n  

t o  90 percent  d e n s i t y .  Above 90 percent ,  d e n s i f i c a t i o n  rates decrease,  but t h e  

d e n s i t y  continues t o  rise slowly due t o  f u r t h e r  conso l ida t ion  and c losu re  of voids  by 

creep and/or d i f f u s i o n  processes.  

p l a s t i c  deformation, i t  w a s  d e s i r a b l e  t o  achieve d e n s i t i e s  near  o r  above 98 percent  f o r  

several reasons.  High mechanical p r o p e r t i e s  i n  t h e  f a b r i c a t e d  metal powder were 

required,  interconnected po ros i ty  t h a t  could cause leaks through the mic ros t ruc tu re  

had t o  be prevented, and m e t a l l u r g i c a l  bonding of t h e  powder t o  s o l i d  s e c t i o n s  w a s  

des i r ed .  The end-point d e n s i t i e s  achieved during bulk p l a s t i c  deformation by 

both copper and n i c k e l  powders are less than 100 percent  as ind ica t ed  i n  Table 

1-7. To promote d e n s i f i c a t i o n  t o  98 percent  and b e t t e r  i n  copper a 60 minute 

dwell  t i m e  w a s  es t imated as t h e  minimum t o  achieve r e l a t i v e l y  s i g n i f i c a n t  densi-  

f i c a t i o n  by creep and d i f f u s i o n  i n  copper; f o r  n i c k e l ,  a minimum dwell  t i m e  f o r  

30 minutes w a s  assumed. Hot- isopressing condi t ions f o r  t he  i n i t i a l  experiments 

Consolidation 

Although high d e n s i t i e s  can be achieved s o l e l y  by 
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TABLE 1-7. DENSIFICATION OF Gu AND Ni POWDERS 
AS PREDICTED BY HOT-PRESSED DATA 

. (pressure constant at 10,000 p s i )  

/ 
Metal End- Poin t Time to Reach 
Powder Temperature, F Density, ’$ End-Point Density 

cu 1600 98 1.5 hr 

CU 1200 98 40 min 

Ni 

Ni 

1000 

1200 

97 

95 

35 min 

0.5 min 
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were made i n  the range of 1000 t o  1200 F, and 1 t o  3 h r ,  w i t h  p re s su re  of 

10,000 p s i  remaining constant .  

conducted on s o l i d ,  c y l i n d r i c a l  p a r t s  prepared from n i c k e l  and copper powder as 

fol lows : 

The h o t - i s o s t a t i c  p re s s ing  experiments were 

Time  

(1) 10,000 p s i  1000 F 1 h r  

( 2) 10,000 p s i  1200 F 1 h r  

(3) 10,000 p s i  1000 F 3 h r  

(4) 10,000 p s i  1200 F 3 h r  . 

- Cycle Pres  s u r e  Temp e r a t u r  e 

Three d i f f e r e n t  copper powders and th ree  d i f f e r e n t  n i cke l  powders were 

s e l e c t e d  f o r  i n v e s t i g a t i o n s .  A s i m p l e  numbering system was  adopted t o  i d e n t i f y  

specimens. Specimens were numbered and l e t t e r e d  according t o  the  powder t e s t e d  

(copper o r  n i c k e l ) , ’ t y p e  of powder, hydropressing p res su re ,  and the  h o t - i s o s t a t i c  

compaction cycle. Table 1-8 summarizes t h e  specimen i d e n t i f i c a t i o n  system and 

the  p e r t i n e n t  parameters.  Samples of powder were cha rac t e r i zed  f o r  oxygen content ,  

p a r t i c l e  s i z e  d i s t r i b u t i o n ,  p a r t i c l e  shape, and i n t e r n a l  po ros i ty .  I d e n t i f i c a t i o n  

and ana lyses  of the  powders are contained i n  Table 1-9. Particle shapes and 

p o r o s i t y  i n  the  particles as received from the vendors a r e  shown i n  Figures  1-11 

through I- 16. 

The apparent  d e n s i t i e s ,  v i b r a t o r y  pack d e n s i t i e s ,  and hydropress  d e n s i t i e s  

were determined f o r  each powder, and a r e  summarized i n  Figures  1-17 and 1-18. 

The bulk and v i b r a t o r y  packed d e n s i t i e s  of C1-type copper powder was much lower 

than e i t h e r  C2 or C 3  and w a s  due t o  i t s  very f i n e ,  i r r e g u l a r l y  shaped p a r t i c l e s .  

During hydropressing,  however, t he  C l  type powder achieved h igh  d e n s i t i e s .  

the copper powder types were 60 percent  dense or b e t t e r  a f t e r  hydropressing a t  

10 tsi and had s u f f i c i e n t  green s t r e n g t h  f o r  handl ing and rough machining a f t e r -  

A l l  
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TABLE 1-8. SPECIMEN IDENTIFICATION 

Number or Let t e r  I d e n t i f i c a t i o n  and Meaning 

L e t t e r  Pref ix  
C 
N 

DEtnotes metal powder 
Copper 
Nickel 

F i r s t  Digi t  I d e n t i f i e s  type of powder a s  l i s t e d  i n  Table 1-9 
NL -200 mesh nicke l  poxder 
N2 K-3603C, -200 mesh n icke l  powder 
N3 K-3603B, -200 mesh spher ica l  n i cke l  powder 
c1 Elec t ro ly t i c  f ines ,  -140 mesh copper powder 
c2. E lec t ro ly t i c  f ines ,  -200 mesh copper powder 
c3 K-1433, -100 mesh copper powder 

Second Digi t  

Third Dig i t  

1 
2 
3 
4 

Denotes the  hydropressing pressure used t o  cold compact the  
powder 

10 tsi 
20 t s i  
30 t s i  
40 ts i  
Vibratory packed only, not hydropressed 

Denotes which ho t - i sos t a t i c  compaction cycle the powder was 
processed i n  

F i r s t  cycle: 1000 F, 10,000 psi ,  1 h r  
Second cycle: 1200 F, 10,000 p s i ,  1 h r  
Third cycle: 1000 F, 10,000 ps i ,  3 h r  
Fourth cycle: 1200 F, 10,000 ps i ,  3 hr 
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TABLE 1-9. POWDER IDENTIFICATION AND CHARACTERIZATION 

- 

A. Ident i f ica t ion  and Oxygen Analyses 

Powder: Copper Copper Copper Nickel Nickel Nickel 
Vendor's Ident i f icat ion:  Electrolytic Elec t ro ly t ic  K-1433 ..- K-3603 C K-3603 B 

BMI's  Ident i f ica t ion :  c1 c2 c3 N1 N 2  N 3  
Oxygen Analysis, f :  0.68 0.42 0.18 0.29 0.26 0.28 

Fines -200 Mesh -100 Nesh -200 Mesh -200 Mesh -200 Mesh 

, B e  Vendor's Cert i f ied Typical Elemental Analysis 
of Copper and Nickel Powder, PPI4 

I c3 

At3 30 
Pb 10 
Fe 30 
Xi 20 
Sb 5 
C a  5 
B i  5 
Si 15 
Sn 20 

N 2  and IS3 

co 540 
cu 38 
Fe 20 
S 170 
C 40 

I 

C. Par t ic le  Size Dis t r ibu t ions  (weight percents) 

Cop,per Powder Nickel Powder 
N 1  N 2  __ N 3  - c2 - c3 - - c1 - Mesh - 

+lo0 
-100, +14O 
-140, +170 

-200, +233 
-230, + n o  
-270, +325 

-325 
losses 

-170, +200 

0 
0.96 
5.10 
3.99 
3-72 
4.55 
9.64 

0.83 
71 e 21 

0.04 
5.05 

21.63 
8.85 

11.05 
10.80 
16-93 
25 .oo 
0.65 

0 
3.11 
5.15 
2.45 
3.17 
5.22 

12.89 
67.68 
0.33 

0 
0 
0.1 
0.1 
0.5 
6.6 

19.0 
73.5 
0.2 

0 
0.06 

23 * 19 
28 47 
21.92 
10 77 
LO. 65 
4.77 
0.3.7 

0 
91 * 91 
7.96 
0 
0 
0 
0 
0 
0.13 
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150X 3C588 

FIGURF: 1-11. C1-TYPE COPPER POWDER 
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150X 36589 

FIGURE 1 - 1 2 .  62-TYPE COPPER POWDER 
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150X 0c843 

FIGURE 1-13, C3-TYPE COPPER POWDER \ 



39 

150X 3C590 

FIGURE 1-14. N1-TYPE NICKEL POWDER 
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1 5 0 X  (a) Polished OC837 

1 5 0 X  (b) E t c h e d  3C88 1 

FIGURE 1-15. N2-TYPE NICKEL POWDER 
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150X (a) P o l i s h e d  0c840 

150X (b) Etched 3C88 2 

FIGURE 1-16.  N3-TYPE NICKEL POWDER 
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FIGURE 1 - 1 7 .  D E N S I T I E S  ACHIEVED BY COPPER POWDERS DURING 
VARIOUS PRECOMF'ACTION PROCESS STEPS 
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w 
0 

Hydropressed, tsi 

FIGURE 1-18. DENSITIES ACHIEVED BY NICKEL POWDERS DURING 
VARIOUS PRECOMPACTION PROCESS STEPS 
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wards. The l a rge  inc rease  i n  d e n s i t y  of C 1  powder from v i b r a t o r y  packing t o  hydro- 

p re s s ing  was considered a disadvantage from the  s tandpoin t  of dimensional con t ro l .  

The use of N 1  poxder was a l s o  considered de t r imen ta l  t o  dimensional 

c o n t r o l  due t o  the  l a r g e  amount of shrinkage t h a t  occurred between v i b r a t o r y  

packing and hydropressing.  

s h i p  between hydropressing pressure  and dens i ty .  

N2-type powder had l i t t l e  green s t r e n g t h  

machined. The N3-type s p h e r i c a l  n i cke l  powder achieved the  h ighes t  v i b r a t o r y  

packed d e n s i t i e s  which i s  c h a r a c t e r i s t i c  of v i b r a t o r y  packed spheres  provided the  

po ros i ty  wi th in  the  p a r t i c l e s  i s  neg l ig ib l e .  However, another  c h a r a c t e r i s t i c  of 

these  s p h e r i c a l  p a r t i c l e s  was i t s  i n a b i l i t y  t o  achieve s u i t a b l e  green s t r e n g t h  

unless  very h igh  p res su res  are used. 

s u f f i c i e n t  green s t r e n g t h  even a f t e r  hydropressing a t  p re s su res  up to  50 ts i .  

TheN2-type powder followed a n e a r l y  l i n e a r  r e l a t i o n -  

Below 30 tsi,  however, t he  

and could no t  be handled o r  rough 

The N3-type powder could no t  be given 

Hydropressed p e l l e t s  were h o t  i s o s t a t i c a l l y  compacted a t  the  condi t ions  

ind ica t ed  e a r l i e r .  

a r e  i l l u s t r a t e d  i n  Figure 1-19, Due t o  the  l a r g e  number of process  v a r i a b l e s  

involved, t he  number of specimens s tud ied  f o r  each parameter was n e c e s s a r i l y  small ,  

bu t  s e v e r a l  t r ends  were noted. A s  expected, s l i g h t l y  h ighe r  d e n s i t i e s  of copper 

powder were achieved by h o t  i s o s t a t i c a l l y  compacting f o r  3 hr  r a t h e r  than 1 h r  a t  

Comparison of t he  e f f e c t s  of h o t - i s o s t a t i c  compaction on d e n s i t y  

the  same temperature and s imilar  r e s u l t s  were achieved by compacting a t  1200 F 

compared t o  1000 F i n  au toc lave  cyc les  having the  same hold time. The d e n s i t i e s  

were near  t h e o r e t i c a l  even a f t e r  compacting a t  1000 F, and the lower temperature 

cyc l ing  could be u t i l i z e d  i f  adverse r eac t ions  between the  copper powder and the  

too l ing  m a t e r i a l s  were l i k e l y  t o  occur a t  the h igher  temperature.  Higher d e n s i t i e s  

of n i c k e l  powder appeared to  be achieved a f t e r  hot i s o s t a t i c  compacting when hydro- 

p re s s ing  was  done above 20 ts i .  A l s o ,  use of h igher  temperatures r e s u l t e d  i n  

h igher  d e n s i t i e s  f o r  t he  same cyc l ing  times when the  n i c k e l  powder had been 

precompacted a t  hydropressures of more than 20 t s i .  
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0 -Cl-Type Copper 

0 -C2-Type Copper 

0 -=-Type Copper 

-NI-Type Nickel 

r~ -N2-Type Nickel 

Cycle N o .  T e m p . ,  F T i m e ,  hr P r e s s u r e ,  ksi 

1 1000 1 10 

2 1200 1 10 
3 1000 3 10 
4 1200 3 10 

Cycle Number Cycle Number 

Cycle Number Cycle Number 

FIGURE 1-19. EFFECTS OF HOT-ISOSTATIC COMPACTION 
CONDITIONS ON DENSITIES OF COPPER 
AND NICKEL POWDERS 



Hardness measurements were taken on s e l e c t e d  samples f o r  coinparison 

wi th  the hardness  on commercially pure wrought and annealed copper and n i c k e l  

products  and a r e  shown i n  Figures  1-20 and 1-21. The hardness  measurements on 

consol idated n i c k e l  powders compared wel l  wi th  commercially pure n i c k e l  products .  

Measurements on consol idated copper powders of t he  C3-type were gene ra l ly  h ighe r  

than OFHC copper products ,  and t h i s  i s  a t t r i b u t e d  t o  the  much f i n e r  g r a i n  s i z e  

i n  the  h o t  i s o s t a t i c a l l y  compacted copper powders. Metal lographic  examination 

of t he  compacted copper poxder specimens ind ica t ed  t h a t  t he  average g r a i n  s i z e  

i n  a l l  the  copper specimens was l e s s  than lop. L i t t l e  o r  no gra in  growth 

occurred i n  specimens compacted a t  1000 F; a s l i g h t  amount of g r a i n  growth was 

apparent  i n  copper powder specimens compacted a t  1200 F. The C 1  and C2-type 

copper powders contained a r e l a t i v e l y  wide range of g r a i n  s i z e s ,  b u t  t he  C3-type 

powder maintained a n e a r l y  uniform g r a i n  s i z e .  

d e n s i t i e s ,  had very l i t t l e  interconnected po ros i ty ,  bu t  contained somewhat more 

impuri ty  a r t i f a c t s  than C 2  o r  C3, and the  f i n a l  g r a i n  s i z e  d i s t r i b u t i o n  covered 

The C 1  copper powder achieved h igh  

a wide range. The C 2  powder w a s  no t  much d i f f e r e n t  i n  i t s  micros t ruc ture  than 

C 1 .  The C3 powder achieved the  h ighes t  d e n s i t i e s  and very  l i t t l e  po ros i ty  could 

be de tec ted .  The f i n a l  g r a i n  s i z e  was qu i t e  f i n e ,  and the  s i z e  d i s t r i b u t i o n  was 

r e l a t i v e l y  uniform. Typical  micros t ruc ture  was  shown i n  F igures  1 -22  through 

1-24. Because of i t s  a b i l i t y  t o  dens i fy  nea r ly  completely a t  lower temperatures,  

the  C3-type copper powder was s e l ec t ed  f o r  f a b r i c a t i o n  of t he  subsca le  and f u l l -  

s i z e  b a f f l e s  . 
Typical  micros t ruc tures  of compacted n i c k e l  powders a r e  shown i n  

Figures  1-25 through 1-28. The N 1  n i c k e l  powder achieved h igh  d e n s i t i e s  b u t  no t  

as high,  gene ra l ly ,  as N 2  o r  N3; impur i t i e s  i n  the  micros t ruc ture  were s l i g h t l y  

g r e a t e r  than i n  N 2  o r  N3. The f i n a l  g r a i n  s i z e  and shape i n  N 1  va r i ed  g r e a t l y .  
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200 i I I I I I I I I I I 1 
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Pure Ni - 
t .- 
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Wrought -c c I 

- Copper *- - Nickel - - 

FIGURE 1-20. RESULTS OF IEARDNESS TESTS ON NICKEL AND COPPER POWDERS 
HOT-ISOSTATICALLY COMPACTED IN CYCLES .l AND 2 
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250X E t c h e d  4CO 24 

FIGURE 1-22. MICROSTRUCTURF, OF HOT ISOSTATICALLY 
COMPACTED C1-TYPE COPPER POWDER 
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250X Etched 4C035 

FIGURE I- 23. MICROSTRUCTURE OF HOT ISOSTATICALLY 
COMPACTED C2-TYPE COPPER POWDER 
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25dX E t c h e d  4C513 

FIGURE 1-24. MICROSTRUCTURE OF HOT ISOSTATI(%LLY 
COMPACTED C3-TYPE COPPER POWDER 
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250X E t c h e d  4C07 2 

FIGURE I- 25. MICROSTRUCTURF: OF HOT ISOSTATICALLY 
COMPACTED NI-TYPE NICKEL POWDER 
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250X Etched 4C084 

FIGURF, 1-26, MICROSTRUCTURE OF HOT ISOSTATICALLY 
COMPACTED N2-TYPE NICKEL POWDER 
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250X E t c h e d  4C101 

FIGURE 1-27.  MICROSTRUCTURE OF HOT ISOSTATICALLY COMPACTED 
N3-TYPE NICKEL POWDER 
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750X E t c h e d  4c5 5 3 

FIGURE 1-28. H I G W R  MAGNIFICATION OF HOT ISOSTATICALLY 
COMPACTED NZ-TYPE NICKEL POWDER SHOWING 
HIGH DENSITY AND VERY FINE GRAIN SIZE 
ACHIEVED BY T H I S  MATERIAL 
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The N 2  mic ros t ruc tu res  contained l i t t l e  po ros i ty  o r  i m p u r i t i e s .  

g r a i n  s i z e  w a s  f i n e  and very  uniform i n  s i z e  d i s t r i b u t i o n .  

r e t a ined  the  o r i g i n a l  l ame l l a r  r i n g  conf igura t ion .  These l a y e r s ,  however, were 

broken up i n t o  f i n e r  g ra ins  dur ing  h o t - i s o s t a t i c  compaction, and the  i n t e r f a c e s  

of t he  p a r t i c l e s  t h a t  came i n t o  con tac t  showed a uniform, f i n e  grained s t r u c t u r e .  

The f i n a l  

The N3 mic ros t ruc tu res  

Dens i f i ca t ion  of the  s p h e r i c a l  N3-type powder a t  1200 F and 10,000 p s i  f o r  3 h r  

t o  b e t t e r  than 98 percent  of t h e o r e t i c a l  d e n s i t y  was achieved. I n  a l l  of the  

mic ros t ruc tu res ,  inc luding  those t h a t  d i d  no t  achieve h igh  d e n s i t i e s ,  good bonding 

between p a r t i c l e s  w a s  ev ident  wherever the  su r faces  came i n t o  contac t .  The powder 

chosen i n  t h i s  program f o r  subsca le  and f u l l  s i z e  i n j e c t o r  f a b r i c a t i o n  was the  

N2-type n i c k e l  powder because of i ts  b e t t e r  response t o  hydropressing and i ts  

b e t t e r  d e n s i t y  and mic ros t ruc tu ra l  c h a r a c t e r i s t i c s  a f t e r  h o t - i s o s t a t i c  compaction. 

A f t e r  an eva lua t ion  of the  process  parameters f o r  C3-type copper 

powder, t he  optimum prope r t i e s  appeared t o  be achieved by hydropressing a t  19 t s i ,  

then h o t  i s o s t a t i c a l l y  compacting a t  1000 F and 10,000 p s i  f o r  3 hr .  The N2-type 

n i c k e l  powder appeared t o  achieve opt imal  p r o p e r t i e s  by hydropressing a t  40 tsi  

followed by h o t - i s o s t a t i c  compaction a t  1200 F and 10,000 p s i  f o r  3 hr .  These 

parameters a r e  considered t o  be the  minimum condi t ions  t h a t  w i l l  achieve adequate 

d e n s i f i c a t i o n  and bonding of t he  powders. Higher temperatures and longer  times 

of h o t - i s o s t a t i c  compaction can be used provided the  e f f e c t s  on t o o l i n g  compa t ib i l i t y  

wi th  the  base metals  are minimal. 

Task I1 and Task 111 s t u d i e s .  

Higher temperatures were eventua l ly  used i n  

Addi t iona l  experiments were made w i t h  t he  t o o l i n g  m a t e r i a l s  i n  an  e f f o r t  

t o  prevent  t he  breakage of the g l a s s  t oo l ing  and t o  reduce or e l imina te  bending 

of the too l ing  materials i n  gene ra l  dur ing  the  hydropressing cyc le .  These 

experiments cons i s t ed  of p l ac ing  the  too l ing  rods i n  a s t a i n l e s s  s teel  p i c t u r e  



57 

frame and packing copper powder around and i n t o  t h i s  assembly. 

examination of t he  rods a f t e r  hydropressing showed very  l i t t l e  bending and no 

h-dicat ion of o t h e r  d e f e c t s ;  an x-ray of t he  f a b r i c a t e d  assembly i s  shown i n  

Figure 1-29. Since the  frame assembly c l o s e l y  s imulated the  too l ing  des ign  f o r  

copper b a f f l e  , dimensional c o n t r o l  to  c lose  to l e rances  dur ing  f a b r i c a t i o n  of the 

Radiographic 

b a f f l e s  appeared f e a s i b l e .  

P i c t u r e  frame suppor ts  f o r  t he  subsca le  copper b a f f l e s  were c u t  and 

machined from 304 s t a i n l e s s  s t e e l .  Sec t ions  of the frames were he ld  i n  p l ace  

wi th  screws. 

between t h e  l egs  of t he  separa ted  too l ing .  

through the  p i c t u r e  frame. 

to  powder packing i s  shown i n  Figure 1-30. 

An OFHC copper p l a t e  was machined t o  c l o s e  to l e rances  and i n s e r t e d  

This p l a t e  w a s  he ld  wi th  s i d e  screws 

An assembled b a f f l e  w i t h  t oo l ing  incorpora ted  p r i o r  

The subsca le  copper b a f f l e  assemblies  were placed i n  r ec t angu la r  rubber 

bags, copper powder v i b r a t o r y  packed around the  too l ing ,  and the  bag sea l ed .  

Hydropressing was accomplished a t  10 tsi. 

i n  the  b a f f l e  components showed t h a t  the  t o o l i n g  maintanned i t s  p o s i t i o n  i n  the  

frame wi th  very  l i t t l e  bending. 

are shown i n  Figures  1-31 and 1-32. 

t h i n  s t e e l  s h e e t  formed to  enclose the  b a f f l e  assembly. The edges of t he  s h e e t  

were h e l i a r c  welded, then a 1/8- in . -diameter  304-type s t a i n l e s s  s teel  evacuat ion 

stem welded t o  one end. 

about 4 h r  t o  remove moisture  and adsorbed gases. 

a vacuum of about 10 

compacted a t  1000 F and 10,000 p s i  f o r  3 h r .  

con ta ine r s  around the  components was observed, as shown i n  Figure 1-33. 

Figure 1-34 shows the  th ree  subsca le  b a f f l e  components a f t e r  decanning. 

Radiographic in spec t ion  of t he  too l ing  

Radiographs of two hydropressed b a f f l e  components 

A f t e r  hydropressing,  t he  bags w e r e  removed and 

The assembly was then outgassed i n  vacuum a t  500 F f o r  

The assembly was sea led  under 

- 3  t o r r .  The sea led  b a f f l e  components were h o t  i s o s t a t i c a l l y  

Considerable deformation of the  
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FIGURE 1-29, RADIOGRAPH OF INTERNAL TOOLING IN HYDROPRESSED 
COPPER POWDER 

The dark frame i s  the s t a i n l e s s  s tee l  p i c t u r e  
frame. 
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408 30 

FIGURE 1-30. ASSEMBLY OF SUBSCALE COPPER BAFFLE WITH STEEL TOOLING 
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FIGURF, 1-31. RADIOGRAPH OF SUBSCALE COPPER BAFFLE WITH 
TOOLING AFTER HYDROPRESSING AT 10 TSI 
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FIGUW 1-32. RADIOGRAPH OF SUBSCALE COPPER BAFFLE WITH 
ALUMINUM TOOLING AFTER HYDROPRESSING AT 
10 TSI 
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The components were inspected by x-ray radiography then placed i n  

leaching  s o l u t i o n s  t o  remove the  too l ing .  The s t e e l  t oo l ing  was completely 

removed i n  concentrated H PO s o l u t i o n .  The aluminum t o o l i n g  was p a r t i a l l y  3 4  

removed i n  1 N  NaOH so lu t ion .  The g l a s s  t oo l ing  was completely removed i n  a 

67KF-33H20 s o l u t i o n .  

subsca le  component, i t  became evident  that ex tens ive  a l l o y i n g  had occurred 

between the aluminum and copper dur ing  h o t - i s o s t a t i c  compaction. 

Af t e r  removing a por t ion  of t he  aluminum too l ing  from the  

The aluminum 

could not  be completely removed because of t he  gross  a l l o y i n g  wi th  the  copper. 

These anomalies were s u f f i c i e n t  t o  e l imina te  aluminum a s  a candidate  too l ing  

m a t e r i a l  f o r  the  copper b a f f l e s .  

Nondestructive and d e s t r u c t i v e  eva lua t ions  of t he  o t h e r  two subsca le  

b a f f l e  coaponents were conducted a f t e r  the  t o o l i n g  was removed. These techniques 

are discussed i n  a fol lowing s e c t i o n  (Subtask 1-6) .  

Two types of t oo l ing  were prepared f o r  the subsca le  n i c k e l  i n j e c t o r s .  

One s e t  was prepared from 1018 carbon s t e e l .  The o t h e r  s e t  cons is ted  of 1100- 

aluminum tool ing .  Each set cons i s t ed  of two sepa ra t e  too l ing  p ieces ,  one too l ing  

p i ece  r ep resen t ing  the  f u e l  channels and the  o t h e r  t oo l ing  p iece  r ep resen t ing  the  

ox id ize r  channels.  Drawings of t he  t w o  t oo l ing  p i eces  a r e  shown i n  Figures  1-35 

and 1-36. 

by n i cke l  powder. 

des ign  is sketched i n  Figure 1-37. 

When assembled and consol ida ted ,  t he  t w o  t o o l i n g  p i eces  remain separa ted  

A s e c t i o n a l  view of the  subsca le  n i c k e l  i n j e c t o r  assembly 

The o u t e r  s h e l l  con ta ine r  f o r  t he  subsca le  n i c k e l  i n j e c t o r  w a s  machined 

from 304 s t a i n l e s s  s t e e l .  The inne r  s h e l l  r e t a i n i n g  r i n g  was  machined from pure 

n i c k e l  and was t i g h t - f i t t e d  to  the  I.D. of the  o u t e r  conta iner .  To f i x  the  

t o o l i n g  i n  the  i n j e c t o r  and prevent  movement o r  r o t a t i o n  of the too l ing  dur ing  

processing,  n i c k e l  p i n s  were p r e s s - f i t t e d  t o  the  n i c k e l  base p l a t e  and t o o l i n g  

s h a f t  a t  t he  bottom of the  i n j e c t o r .  Another n i cke l  p i n  was  i n s e r t e d  through the  
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A. 
B. 
C. 

I). Tooling for Fuel Channels I Stainless  Steel Container 
% l i d  Nickel Retaining Ring E.  Tooling for  Oxidizer Channels 
Nickel Powder F .  Nickel Base Plate  

I 

FIGURE: 1-37. SKETCH OF SUJikCALE NICKEL INJECTOR DESIGN 



s t a i n l e s s  s t e e l  con ta ine r  and n i c k e l  r e t a i n i n g  r i n g  t o  f i x  the  p o s i t i o n  of t he  fue l -  

channel too l ing .  I n  one i n j e c t o r  specimen, a s o l i d  n i c k e l  base p l a t e  was f a b r i c a t e d  

to  hold the too l ing  p l a t e  and p i n s  while  i n  the  o the r  i n j e c t o r ,  a 75 percent  dense 

n i c k e l  base p l a t e  w a s  f ab r i ca t ed  from powder by hydropressing and placed below the  

ox id ize r  channel too l ing .  This  was incorporated t o  determine i f  the  n i cke l  powder 

could be f u l l y  dens i f i ed  below as we l l  as above the  too l ing  p a r t s  and to  compare the  

dimensional c o n t r o l  of t he  t o o l i n g  us ing  these  two d i f f e r e n t  designs.  

Af t e r  assembling the  t o o l i n g  i n  the  subsca le  n i c k e l  i n j e c t o r s ,  the  

nic’kel p ins  were placed through t h e  s t a i n l e s s  s t e e l  r e t a i n i n g  s h e l l  t o  f i x  the  

p o s i t i o n s  and prevent  any movement of the  too l ing  dur ing  v i b r a t o r y  packing and 

subsequent f a b r i c a t i o n  s t e p s .  

assembly, and s e v e r a l  c y l i n d r i c a l  rubber bags were used t o  s e a l  the assembly. 

p re s s ing  was accomplished a t  40 + s i .  

i n  the  i n j e c t o r s  a f t e r  hydropressing was not  poss ib l e  due t o  the  l a r g e  th ickness  

of the  i n j e c t o r  and s t a i n l e s s  s t e e l  assembly. Af t e r  t he  bags were removed, t he  hydro- 

pressed p a r t s  were placed i n  s t e e l  conta iners  5 i n .  d iameter  by 1 /8- in . - th ick  w a l l  

1018 steel tubing f o r  t he  s i d e s ,  and 5 i n .  diameter  

s t e e l  p l a t e s  f o r  t he  end l i d s .  The i n j e c t o r  components were vacuum outgassed a t  

500 F f o r  4 h r .  The con ta ine r s  were sea led  i n  a vacuum of about 10 torr. The 

The N2 n icke l  powder was v i b r a t o r y  packed i n t o  the  

Hydro- 

Radiographic examination of t he  t o o l i n g  

by 1/8 i n .  t h i c k  spun s t a i n l e s s  

- 3  

sea led  specimens were ho t  i s o s t a t i c a l l y  compacted a t  1200 F and 10,000 p s i  f o r  

about 4 hr .  The soak time was increased  1 h r  to  ensure t h a t  the  l a r g e  mass of 

m a t e r i a l  i n  the  subsca le  i n j e c t o r  achieved a temperature of 1200 F and w a s  he ld  

a t  1200 F f o r  a t  least 3 hr .  Af t e r  the  compaction cycle ,  t he  i n j e c t o r s  were 

v i s u a l l y  inspec ted ,  then each was decanned by machining. The component wi th  aluminum 

t o o l i n g  was sec t ioned  ac ross  one of t he  t o o l i n g  p i n s  to  examine the  i n t e r f a c e  

as-bonded. 

too l ing .  

The component w a s  then placed i n  a ba th  of 1 N  NaOH to  remove the  
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Subtask 1-(2-1: Inspec t ion  Techniques 

The ob jec t ive  of t h i s  subtask  was t o  develop nondes t ruc t ive  in spec t ion  

techniques and t o  d e s t r u c t i v e l y  in spec t  components f a b r i c a t e d  i n  Task I. 

techniques developed i n  t h i s  t a sk  were subsequent ly  u t i l i z e d  on f u l l  s c a l e  com- 

ponents f a b r i c a t e d  i n  Tasks 11 and 111 t o  determine too l ing  loca t ion ,  completion 

of t he  too l ing  removal process  and c o n t r o l  of dimensions and alignment of the  

i n t e r n a l  f low channels.  

Inspec t ion  

Radiographs examination of components and flow t e s t s  were the  primary 

nondestruct ive tests used. U l t r a son ic  t e s t s  were e l imina ted  a s  a poss ib l e  

in spec t ion  t o o l  due t o  the  th icknesses  and complexity of t he  i n t e r n a l  s t r u c t u r e s  

encountered i n  the  components. 

Subscale copper b a f f l e s  were inspec ted  by x-ray radiography a t  s e v e r a l  

p o i n t s  i n  the  f a b r i c a t i o n  process .  X-ray in spec t ion  was performed a f t e r  hydropressing 

copper powder around the  too l ing  and was descr ibed  e a r l i e r  wi th  r e fe rence  t o  

F igures  1-29, -31, and -32. Simi lar  i n spec t ions  were made of t he  subsca le  b a f f l e  

components a f te r  removing the  too l ing .  The radiographs showed i n  good d e t a i l  

t he  p o s i t i o n  and alignment of  t he  too l ing  i n  the  b a f f l e s .  The too l ing  placed 

ad jacen t  t o  the  s o l i d  OFHC copper p l a t e s  (denoted as  l'lower too l ing  region wi th  

s p l i t  legs" i n  the  next  Eigure) maintained t h e i r  p o s i t i o n  and alignment through 

the  f a b r i c a t i o n  process  as is i l l u s t r a t e d  i n  Figure 1-38. 

upper region was w e l l  pos i t ioned  and s t r a i g h t  i n  the  c e n t e r  s e c t i o n  b u t  near  the  

ends some bending of t he  too l ing  was observed. 

was sec t ioned  a f t e r  leaching  was completed and is  shown i n  Figure 1-39. Density 

measurements and hardness  t e s t s  on l o c a l  s e c t i o n s  of t he  b a f f l e  wi th  steel  

t o o l i n g  were measured. 

percent  of t h e o r e t i c a l  wi th  less than #.4 percent  var iance  i n  any loca l i zed  

The t o o l i n g  i n  the  

The b a f f l e  conta in ing  s t e e l  t oo l ing  

Dens i t i e s  i n  the  subsca le  copper b a f f l e  averaged 98.4 
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U p p e r  too l ing  region 

L o w e r  tool ing region with 
sp L i  t legs 

FIGURE 1-38. RADIOGRAPH OF HOT ISOSTATICALLY 
COMPACTED SUBSCALF, COPPER BAFFLE 
WITH GLASS TOOLING COMPLETELY 
REMOVED 
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sec t ion .  Localized hardness measurements were taken ac ross  n ine  d i f f e r e n t  

copper/ tool ing i n t e r f a c e s ,  and no g rad ien t s  i n  hardness w e r e  de t ec t ed .  The 

hardness values  compared almost i d e n t i c a l l y  with those t dense 

copper powder specimens f ab r i ca t ed  e a r l i e r .  

Because of the  small  s i zed  sec t ions  taken from t h e  subscale  copper 

b a f f l e s ,  i t  was not  poss ib l e  t o  ob ta in  s u i t a b l e  t e n s i l e  test ba r s  

s ec t ions .  Ins tead ,  r ep reeen ta t ive  t e n s i l e  tests were conducted on s o l i d  cy l in-  

d r i c a l  samples t h a t  had been processed from the  63-type copper powder a t  the  

same condi t ions  as the subscale  copper b a f f l e s .  These samples were evaluated f o r  

dens i ty ,  hardness,  and mic ros t ruc tu ra l  c h a r a c t e r i s t i c s  so t h a t  a d i r e c t  comparison 

could be made between the r ep resen ta t ive  samples and the subscale  components. 

The r e s u l t s  of these  t e s t s  a r e  summarized i n  Table 1-10. 

Metallographic examination of t h e  n i cke l  i n  the  subscale  i n j e c t o r s  

ind ica ted  t h a t  a d e n s i t y  v a r i a t i o n  ex i s t ed  from the o u t e r  reg ions  of high 

dens i ty  t o  the c e n t r a l  regions of low dens i ty .  The p a r t i c l e s  were well-bonded 

but  t he  h igh  p o r o s i t y  (about 15 pegcent) i n  the c e n t r a l  regions caused some 

d e t e r i o r a t i o n  of t he  n i cke l  s t r u c t u r e  i n  t h i s  s e c t i o n ,  Also of i n t e r e s t  was 

the  nickel-aluminum i n t e r f a c e  i n  the subscale  i n j e c t o r  conta in ing  aluminum 

tool ing.  The i n t e r f a c e  d i f f u s i o n  zone and i n t e r m e t a l l i a s  formed a t  the  i n t e r f a c e  

during h o t - i s o s t a t i c  compaction a r e  shown i n  Figure 1-40. Microhardness t r ave r ses  

were conducted ac ross  t h i s  i n t e r f a c e  and the r e s u l t s  are tabula ted  i n  Table 1-11. 

A t t e m p t s  were made t o  x-ray the  i n t e r n a l  s t r u c t u r e  of t he  h o t  i s o s t a t i c a l l y  

compacted subscale  n i cke l  i n j e c t o r s  a f t e r  removing the  s teel  conta iner  and th i ck  

r e t a i n i n g  r ings .  Resolution of the s t e e l  t oo l ing  was fuzzy due t o  the  l a r g e  

pene t r a t ion  th ickness  and small  d i f f e rences  i n  d e n s i t i e s  between the s teel  and 

n icke l .  

aluminum tool ing .  

Some d e t a i l  w a s  resolved i n  the  x-rays of t he  i n j e c t o r s  conta in ing  

Radiographs of the  subscale  n i cke l  i n j e c t o r s  a r e  shown i n  
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TABLE 1-10. COMPARISON OF MECHANICAL PROPERTIES 
OF HOT ISOSTATICALLY COMPACTED C3- 
TYPE COPPER POWDER AND COMMERCIAL 
WROUGHT AND ANNEALED PRODUCTS 

c3 Commercial Copper 

0.2% Offset  Yield, p s i  13,700 10,000 

32,000 32,000 

Elongation, % 31 45 

-- Red. i n  Area, % 22 

18.9 17.0 6 E, 10 p s i  

-- Knoop Hardness, lOOg 104 

% Hardness, lOOKg 58 42 

Note: Specimens were tes ted  on Ins t ron  Testing Machine with cross-head 
speed of 0.005 in .  per minute up t o  the 0.2 percent o f f s e t  y ie ld  
poin t ,  then cross-head speed was 0.05 in.  per minute t o  f rac ture .  
A l l  specimens were standard 1/4 in.  gage diameter, 1.0 i n .  gage 
length, threaded end t e n s i l e  bars.  
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N i  

N i  3Al  

V o i d  

N i A l  

A 1  

2D6 24 

FIGURE 1-40. MICROSTRUCTURE OF NICKEL-ALUMINUM INTER- 
FACE AFTER HOT-ISOSTATIC COMPACTION AT 
1200 F AND 10,000 PSI FOR 3 HR 
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TABLE 1-11. RESULTS OF HARDNESS TESTS ON NICKEL- 
ALUMINUM BONDED INTERFACE 

Zone A v e r a g e  KHN, 100 g No,  of Indents 

N i c k e  1 

N i  3Al  

N i A l  

1 4 7  

108 2 

69 2 

57 



76 

Figure 1-41. I n  both specimens, the  fuel-channel  t o o l i n g  appeared t o  be excess ive ly  

deformed. The o x i d i z e r  channel t o o l i n g  could not be adequately resolved i n  the 

radiographs f o r  de te rmina t ions  of p o s i t i o n  and alignment. The s t e e l  t oo l ing  i n  

the  subsca le  i n j e c t o r  w a s  examined d e s t r u c t i v e l y  by sec t ion ing  the  i n j e c t o r .  

Zocalized d e n s i t y  measurements on compacted n i c k e l  powder s e c t i o n s  were taken. 

The d e n s i t y  of t he  n i c k e l  powder above the fuel-channel  t oo l ing  on the o u t e r  

per iphery  was b e t t e r  than 98 percent  dense. Below the  oxidizer-channel  too l ing ,  

the  d e n s i t y  was about 89 t o  90 percent  dense. The low dens i ty ,  i n  t he  reg ion  

between the  too l ing  p ieces ,  was due t o  the  r e s t r i c t e d  motion of t he  powder. This  

anomaly and methods f o r  e l imina t ing  the l o w  d e n s i t y  reg ions  and improving dimensional 

c o n t r o l  are descr ibed  i n  the  fol lowing s e c t i o n  on process  opt imizat ion.  

Despi te  t he  f a c t  t h a t  the  aluminum was molten dur ing  the  h o t - i s o s t a t i c  

compaction cyc le  the  molten metal  d i d  not  ex t rude  or pene t r a t e  i n t o  the  n i c k e l  

matrix. The t o t a l  nickel-aluminum r e a c t i o n  zone w a s  narrow, and the  ho le  en large-  

ment due t o  loss of n i cke l  i n t o  the  aluminum was n e g l i g i b l e ,  l e s s  than 0.002 i n .  

on the  rad ius .  This enlargement could be compensated f o r  by making the  too l ing  

about 2 t o  3 m i l s  unders ize  on t h e  diameter.  A t  l e a s t  two hard b r i t t l e  i n t e r -  

m e t a l l i c  compounds formed a t  the  in t e r f ace .  A p o r t i o n  of t h i s  b r i t t l e  l aye r  was 

removed dur ing  leaching i n  8M NaOH; a tenacious l a y e r  of Ni-rich remained as 

shown i n  Figure 1-42. 

l eaching  the  aluminum i n  8M NaOH, was t e n  times harder  than n i cke l .  I f  t h i s  

b r i t t l e  l a y e r  is  l e f t  on the  su r faces  of t he  i n t e r n a l  channels,  i t  may adverse ly  

a f f e c t  the behavior  of the i n j e c t o r  during i t s  operat ion.  

l a y e r  could propagate i n t o  the  n i cke l  when the  i n j e c t o r  is i n  a s t r e s s e d  condi t ion.  

Also, thermal cyc l ing  from room temperature t o  cryogenic temperatures may loosen 

p a r t i c l e s  of t he  b r i t t l e  l aye r ,  and subsequent flow through the  i n t e r n a l  channels 

may break o f f  p i eces  t h a t  could reduce o r  impede the  flow of ox id i ze r  or f u e l .  

The gray,  Ni-r ich compound, which was r e t a ined  a f t e r  

Cracks 5ormed i n  the 
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(a) Injector with aluminum tooling. 

(b) Injector with steel tooling. 

FIGURE 1-41. RADIOGRAPHS OF HOT ISOSTATICALLY COMPACTED 
SUBSCALE NICKEL INJECTORS 

Distortion of the fuel-channel tooling was 
about the same for both tooling materials. 
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l O O X  No. 3, A s  Polished 
~ 

2D954 

FIGURE 1-42. ALUMINUM-NICKEL INTERFACE AFTER LEACHING 
ALUMINUM I N  8 M  NaOH 
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A t t e m p t s  were thus made to  f i n d  a technique to  s e l e c t i v e l y  remove the  remaining 

b r i t t l e  aluminide l aye r .  

By washing the  channels i n  25 percent  H2S04 s o l u t i o n  f o r  several days, 

t he  N i A l  compound was completely removed as shown i n  Figure 1-43. Microhardness 

tests on the  n i c k e l  near  these su r faces  ind ica t ed  the  n i c k e l  was not  a f f e c t e d  by 

aluminum a l loy ing .  Thus, only one disadvantage of aluminum remains, t h a t  of 

becoming so f t  o r  molten dur ing  h o t - i s o s t a t i c  compaction. A f t e r  completion of 

Task I, i t  appeared t h a t  t o  completely dens i fy  the  n i c k e l  powder throughout t he  

i n j e c t o r ,  a h igh  compaction temperature and long soak time would be needed. Thus, 

f o r  Task I11 s t u d i e s  a t  l e a s t ,  s t e e l  was p re fe r r ed  over  aluminum. 

Due t o  the  low d e n s i t y  regions i n  the  subsca le  n i c k e l  i n j e c t o r s ,  no 

t e n s i l e  tests were conducted on s e c t i o n s  of t he  subsca le  n i c k e l  i n j e c t o r s .  To 

v e r i f y  t h a t  t he  n i c k e l  powder achieves acceptab le  mechanical p r o p e r t i e s  wi th  the  

process  parameters used t o  f a b r i c a t e  the  subsca le  i n j e c t o r s ,  s o l i d  c y l i n d r i c a l  

samples were f a b r i c a t e d  from the  N2-type n i c k e l  powder a t  the  same condi t ions  

used t o  f a b r i c a t e  the subsca le  n i cke l  i n j e c t o r s .  

t h i s  m a t e r i a l  and t e s t ed .  The r e s u l t s  of these  tests a r e  summarized i n  Table 1 -12  

Tens i l e  b a r s  were machined from 

and show that the p r o p e r t i e s  a r e  comparable to  wrought and annealed n i cke l .  

Subtask I-(2-2. Process  Optimizat ion 

I n  the  subsca le  copper b a f f l e s ,  a s o l i d  p l a t e  of OFHC copper i n s e r t e d  

between the  t o o l i n g  prevented the  too l ing  from moving inward, and good dimensional 

c o n t r o l  was  achieved. F i x t u r i n g  was a l s o  success fu l  i n  prevent ing  movement of t he  

too l ing  i n  the  c e n t e r  po r t ion  of the b a f f l e ;  however, near  the  s i d e s  the  t o o l i n g  

was bent  toward the  frame. This  end e f f e c t  was caused by a g rad ien t  i n  p re s su re  

i n  the powder generated dur ing  compaction. Near the  s i d e s ,  the  t h i n  steel  

con ta ine r  was re inforced  by the  p i c t u r e  frame, and the  powder d i r e c t l y  under 
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l O O X  Etched 5D487 

FIGURE 1-43. NIWL-ALUMINUM INTERFACE AFTER LEACHING I N  
8MNaOH FOLLOWED WITH 25H2S04- 75H20 

Both in te rmeta l l ic  layers  were completely 
removed by t h i s  leaching sequence. 
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TABLE 1-12. COMPARISON OF MECHANICAL PROPERTIES OF 
HOT ISOSTATICALLY COMPACTED N’L-TYPE 
NICKEL POWDER AM, COMMERCIAL WROUGHT 
AND ANN.EALED PRODUCTS 

Annealed 
N 2  Nickel Commercial Nickel 

0.2% Offset  Yield, psi 35,600 30 , 000 

(T p s i  64,500 70,000 

Elongation, % 30 40 
v, 

Red. i n  Area, % 24.5 -- 
32.2 32.0 6 E ,  10 p s i  

-- Knoop Hardness, lOOg 140 

% Hardness, lOOKg 63 65 

Note: Specimens were tes ted  on Ins t ron  Testing Machine with cross-head 
speed of 0.005 in.  per minute up t o  the 0 . 2  percent o f f s e t  y ie ld  
point,  then cross-head speed was 0.05 in .  per  minute t o  f rac ture .  
A l l  specimens were standard 1/4 in .  gage diameter, 1.0 in.  gage 
length, threaded end t e n s i l e  bars. 
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t h i s  a r e a  was 

cen te r .  The powder i n  the  c e n t e r  regions thus  had a tendency t o  move toward 

the  s i d e s  where the  d e n s i t y  was s l i g h t l y  less. 

d i s t o r t i o n  t h a t  r e s u l t e d  from i t  w a s  minimized by s l a n t i n g  the  edges of the  

p i c t u r e  frame so t h a t  the  con ta ine r  movement was not  hindered i n  the  a r e a  and 

compressed t o  equiva len t  d e n s i t i e s  l a t e r  than the  powder i n  the  

This end-ef fec t  and the  too l ing  

by inc reas ing  the  d i s t a n c e  between the last p iece  of t o o l i n g  

b a f f l e  so that the  end-effected a rea  could be removed. Thus 

incorporated i n t o  the  process  t o  f a b r i c a t e  f u l l - s i z e d  copper 

descr ibed  i n  d e t a i l  i n  the s e c t i o n  on Task I1 s tud ie s .  

I n  the  subsca le  n i c k e l  i n j e c t o r s ,  t he  fuel-channel  

f u e l  channels w a s  f ixed  with n i c k e l  p ins  with r e spec t  t o  the  

and the  edge of the  

modi f ica t ions  were 

b a f f l e s  and a r e  

t o o l i n g  f o r  the  

axidized channel 

t oo l ing  t o  prevent  r o t a t i o n  dur ing  v i b r a t o r y  packing and subsequent f a b r i c a t i o n  

processes .  The f ixed  p o s i t i o n s  were maintained s a t i s f a c t o r i l y  by pinning;  no 

r o t a t i o n  was observed. The fuel-channel  t oo l ing ,  however, experienced excess ive  

d i s t o r t i o n  dur ing  hydropressing and h o t - i s o s t a t i c  compaction. 

i n  rad iographic  examinations and i n  the  sec t ioned  components. This  d i s t o r t i o n  

was caused by t o o l i n g  following the  gross  movement of powder above the  fue l -  

This  was  ev ident  

channel t oo l ing  p l a t e  toward the  l e s s  dense powder between t h i s  p l a t e  and the 

oxidizer-channel  too l ing .  The f i x t u r i n g  of t he  n i cke l  base p l a t e  and the  o x i d i z e r  

t oo l ing  wi th  r e spec t  t o  the  f u e l  t oo l ing  was designed t o  hold length-wise ( a x i a l )  

dimensions corresponding t o  those i n  the  f u l l  s i zed  i n j e c t o r .  

t h a t  t he  powder above the  f u e l  t oo l ing  p l a t e  dur ing  compaction. 

t he  powder above the  f u e l  t o o l i n g  p l a t e  d e n s i f i e d ,  i t s  a b i l i t y  to  flow through 

t h i s  t o o l i n g  was lessened and the  fuel-channel t oo l ing  simply moved with the  

powder ad jacent  t o  it. 

It w a s  expected 

However, a s  
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The oxidizer-channel  t oo l ing  maintained good dimensional c o n t r o l  and 

alignment dur ing  f a b r i c a t i o n  of the  subscale  i n j e c t o r s ;  t he  process  opt imiza t ion  

cons i s t ed  s o l e l y  of prevent ing d i s t o r t i o n  of the  fuel-channel  too l ing .  Two b a s i c  

changes made i n  the  des ign  of t he  subsca le  i n j e c t o r  t o  prevent  t h i s  d i s t o r t i o n  were: 

(1) El iminat ion of pinning and f i x t u r i n g  of the  ox-channel t oo l ing  

t o  the  s o l i d  n i c k e l  r e t a i n i n g  r i n g ;  

(2)  Removal of edge r e s t r a i n t s  on the  fuel-channel  t oo l ing  by 

making the p e r i p h e r a l  t oo l ing  r i n g  out  of hydropressed i r o n  

powder r a t h e r  than s o l i d  low carbon s t e e l .  

During h o t - i s o s t a t i c  compaction, t he  hydropressed i r o n  r i n g  was expected to  compact 

the  same a s  the  n i c k e l  powder ad jacent  t o  the  i r o n  r ing .  This would a l low the  

fuel-channel  t oo l ing  p iece  t o  move f r e e l y  without  edge r e s t r a i n t s .  This changes 

are incorporated i n  the  des ign  ske tch  o l t h e  sebsca le  i n j e c t o r  shown i n  Figure 1-44. 

The too l ing  f o r  t he  modified subsca le  n i c k e l  i n j e c t o r s  was  prepared from 

low carbon (1018) s t e e l  and from hydropressed i r o n  powder. These pieces and o t h e r  

t oo l ing  p a r t s  a r e  shown i n  Figure 1-45, The only two p a r t s  made from s o l i d  n i c k e l  

w e r e  t h e  n i c k e l  base p l a t e  and the  n i c k e l  i n n e r  r e t a i n i n g  r ing .  The assembled 

modified subsca le  i n j e c t o r  i s  shown f n  Figure 1-46. 

The n i cke l  powder was v i b r a t o r y  packed around the  assembled t o o l i n g  

p i eces ,  and the  subsca le  i n j e c t o r s  were then placed i n  low carbon, t h i n  wal led,  

steel  con ta ine r s .  Hydropressing of t he  n i cke l  powder w a s  unnecessary a f t e r  

t he  above changes i n  the  des ign  were made. 

t o  the  con ta ine r  and sea led  by e l e c t r o n  beam welding. 

checked f o r  leaks  with 200 p s i  helium; no leaks  were de t ec t ed .  

Spun s t a i n l e s s  steel  l i d s  w e r e  welded 

Each con ta ine r  w a s  p ressure  

The subsca le  i n j e c t o r s  were hot  i s o s t a t i c a l l y  compacted a t  1270 F and 

10,000 p s i  f o r  3 h r .  
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r R i n g  

FIGURE 1-44. SKETCH OF MODIFIED NICKEL INJECTOR DESIGN 
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FIGURE 1-46. ASSEMBLY OF MODIFIED SUBSCALE NICKEL INJECTOR 
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After  the compaction cycle ,  the steel  conta iners  were removed and the 

s t e e l  t oo l ing  i n  the i n j e c t o r s  was exposed by machining the n i cke l  sur faces .  

The too l ing  was removed i n  25H2S04-75H20 s o l u t i o n  and the  component was x-ray 

examined. 

was considerably less than before .  A void was de tec ted  a t  the top edge of the 

f u e l  channels and appeared t o  e x i s t  around the pe r iphe ra l  edge of the too l ing .  

The fuel-channel p l a t e  appeared t o  be s l i g h t l y  warped,but the  warpage 

The radiographs a r e  shown i n  Figure 1-47. 

One n i cke l  i n j e c t o r  was sect ioned aad examined v i s u a l l y  and metal lo-  

g raph ica l ly .  A flow test was conducted on the o the r  modified subscale  i n j e c t o r .  

The fue l -hole  channels were found t o  be f r e e  of any impediment t o  flow. The 

flow t e s t  a l s o  showed t h a t  the ox-hole channels were e f f e c t i v e l y  separated from 

the fue l -hole  channels. No in te rchannel  leakage was de tec ted .  Figure 1-48 is  

a macrograph of the sect ioned subscale  i n j e c t o r  showing the dimensional c o n t r o l  

achieved by the too l ing  i n  the compacted n i cke l  powder. 

f u l l y  dense throughout a s  determined by metal lographic  examinations of the 

sect ioned p a r t s .  

and qdjacent  s o l i d  n i cke l  p a r t s .  

The n i cke l  powder was 

Meta l lurg ica l  bonds were achieved between the n i cke l  powder 

A typ ica l  region of the dens i f i ed  n i c k e l  powder 

is shown i n  Figure 1-49. 

ox-hole channels were e f f e c t i v e l y  separated from the fue l -hole  channels.  

i r o n  r i n g  f ab r i ca t ed  from hydropressed i r o n  powder had apparent ly  achieved f u l l  

dens i ty  but  bulged inward s l i g h t l y  during h o t - i s o s t a t i c  compaction. 

channel cav i ty  had a camber of 1/4 i n .  from the edge t o  the cen te r  of the piece.  

I n  the subscale  i n j e c t o r  specimens f ab r i ca t ed  previously,  t h i s  c a v i t y  had a camber 

A l l  passages appeared smooth and unimpeded, and the 

The 

The f u e l  

of more than 1 / 2  i n .  from the edge t o  the cen te r  a f t e r  h o t - i s o s t a t i c  compaction 

of t he  n i cke l  powder. The modified design considerably improved d e n s i f i c a t i o n ,  

bonding, and dimensional con t ro l ,  bu t  i t  was apparent t h a t  t o  keep the  fue l -  
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FIGURE 1-47, RADIOGRAPHIC INSPECTION OF FLOW PASSAGES I N  
MODIFIED SUBSCALE INJECTOR AFTER TOOLING 
REMOVAL 
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43712 

FIGURE 1-48. SECTIONED MODIFIED SUBSCALE 
INJECTOR 
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No. M1, Etched 4 D 9 8 5  5 0 0 X  

FIGURE 1-49. TYPICAL MICROSTRUCTURE OF D E N S I F I E D  NICKEL 
POWDER I N  MODIFIED SUBSCALE INJECTOR AFTER 
HOT- ISOSTATIC COMI?ACTION 



channel t oo l ing  from bending beyond requi red  to l e rances ,  t he  n i c k e l  powder under 

and suppor t ing  t h i s  t oo l ing  p iece  should be as dense as poss ib l e  before  the  

remaining volume of powder and the  fuel-channel  p l a t e  were h o t  i s o s t a t i c a l l y  

compacted. 

Hardness t e s t s  were conducted on the  sec t ioned  component. Rockwell 

B indents  were made on the  var ious  a reas  of dense n i c k e l  powder and the  s o l i d  

n i c k e l  p a r t s .  The r e s u l t s ,  given i n  the ske tch  of Table 2-13, i nd ica t ed  t h a t  

t he  nic'kel powder hardnesses  were comparable t o  wrought and annealed n i c k e l  

hardness ,  except  i n  the  r eg ion  j u s t  above the  ox-channel p l a t e .  

t he  hardness  was about 10 % p o i n t s  lower than the  o t h e r  dense regions.  

of metal lographic  examinations of the  n i cke l  powder i n  t h i s  p a r t i c u l a r  region 

I n  th i s  reg ion ,  

R e s u l t s  

showed t h a t  some smal l  po ros i ty  ex i s t ed  and caused the  lower hardness values  

i n  this  region.  

S i g n i f i c a n t  improvements were achieved i n  f u l l y  dens i fy ing  the  n i c k e l  

powder and i n  c o n t r o l l i n g  and minimizing the d i s t o r t i o n  of t he  f u e l  channe l  

too l ing ,  bu t  t o  e l imina te  o r  reduce t h i s  d i s t o r t i o n  to  wi th in  s p e c i f i e d  to l e rances ,  

t he  n i c k e l  powder surrounding the  oxidizer-channel  t o o l i n g  had t o  be compacted t o  

a s u f f i c i e n t  d e n s i t y  t o  prevent  movement of the  fuel-channel  t oo l ing .  This  was 

accomplished by modifying the f a b r i c a t i o n  procedures.  F i r s t ,  the  n i c k e l  powder 

surrounding the  ox-channel t oo l ing  was t o  be d e n s i f i e d  t o  a t  l e a s t  95 percent  of 

i ts  t h e o r e t i c a l  dens i ty .  The second and f i n a l  s t e p  was t o  dens i fy  the  n i c k e l  

powder surrounding the  fuel-channel  t oo l ing  and s imultaneously bond i t  t o  the  

a l r eady  dense n i c k e l  around the  ox-channel too l ing .  

i n  d e t a i l  i n  t he  s e c t i o n  on Task I11 s t u d i e s .  

This technique is descr ibed  
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T A B U  1-13, RESULTS OF HARDNESS TESTS ON SECTIONED 
SUBSCALE NICKEL INJECTOR 

Rockwell B, 100 Kg Load 
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TASK I1 STUDIES: FABRICATION AND TESTING 
OF COPPER BAFFLE 

The purpose of t h i s  t a s k  w a s  t o  f a b r i c a t e  and tes t  f u l l - s i z e d  b a f f l e s  

from copper powder and hdving t h e  design shown i n  Figure 1-1. 

subs i ze  b a f f l e  test  pieces  were s u c c e s s f u l l y  f a b r i c a t e d  by powder metal lurgy 

techniques using b o r o s i l i c a t e  g l a s s  tool ing.  Copper powder w a s  v i b r a t o r y  packed 

around g l a s s  t o o l i n g  p i eces ,  compacted t o  about 75 percent  of t h e o r e t i c a l  d e n s i t y  

by cold hydropressing a t  20,000 p s i ,  and compacted t o  100 percent of t h e o r e t i c a l  

d e n s i t y  by h o t - i s o s t a t i c a l l y  compacting a t  1000 F and 10,000 p s i  f o r  3 h r .  

t o o l i n g  w a s  removed by selective leaching i n  a s o l u t i o n  of HF a c i d ,  and the  

b a f f l e s  were f in i shed  machined on the  ou t s ide  only and t e s t e d  nondestruct ively 

and d e s t r u c t i v e l y .  Changes i n  the  frame design were r equ i r ed  t o  prevent movement 

of t he  g l a s s  t o o l i n g  du r ing  h o t - i s o s t a t i c  compaction. 

t o o l i n g  w a s  posi t ioned i n  c l o s e  proximity of t h e  frames and s l i g h t  d i s t o r t i o n  of 

t he  t o o l i n g  occurred during compaction due t o  t h e  nonuniform and r e s t r a i n e d  

compaction of powder near  t h e  frames. It w a s  determined t h a t  t h i s  e f f e c t  could 

be el iminated by chamfering t h e  frame edges and by pos i t i on ing  the t o o l i n g  out  

of t he  zone nea r  t h e  frames where t h i s  nonuniform powder compaction occurred. 

I n  Task I s t u d i e s ,  

The 

I n  t h e  subsize b a f f l e s ,  t he  

Subtask 11-A-1. Design of 
Tooling, Frames, F i x t u r e s ,  and Baf f l e s  

Design modif icat ions r e loca ted  the p o s i t i o n s  of the t o o l i n g  with r e spec t  

t o  t h e  frame t o  improve t h e  dimensional c o n t r o l  of t h e  g l a s s  t o o l i n g  during hot- 

i s  os ta t  i c  compact ion.  
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The g l a s s  t oo l ing  p ieces  were prepared from 7052 b o r o s i l i c a t e  g l a s s  

rods having t h e  shape and dimensions shown i n  F igure  11-1. To prevent g l a s s  

breakage of t he  forked pieces  dur ing  hydropressing, t he  void space between the  

l egs  of the fo rk  shaped p ieces  were taken up wi th  a s o l i d  copper cen te r ing  

p iece .  This cen te r ing  f i x t u r e ,  shown i n  Figure 11-2, was made long enough t o  

extend and lock i n t o  steel  p i c t u r e  frames. 

shown i n  Figure 11-3, w a s  prepared t o  maintain alignment of t he  f u e l  en t rance  

holes .  This s o l i d  f i x t u r e  a l s o  assists i n  prevent ing g l a s s  p l a t e  d i s t o r t i o n  

dur ing  compaction. 

t o  be assembled i n  t h e  g l a s s  p l a t e s  and produce a bonded j o i n t  between the  copper 

base p l a t e  and the  copper cen te r ing  f i x t u r e .  The s teel  frames were machined 

from AM355 steel  i n  fou r  s epa ra t e  p ieces  shown i n  Figures  11-4, -5, and -6. 

The AM355 age-hardenable s t a i n l e s s  s teel  w a s  chosen f o r  i t s  s t i f f n e s s  a t  room 

temperature and i t s  y i e l d  s t r e n g t h  and modulus a t  e leva ted  temperatures.  High 

s t i f f n e s s  a t  room temperature w a s  needed t o  reduce the  amount of bending dur ing  

A s o l i d  copper base p l a t e  f i x t u r e ,  

The copper connect ing rods,  a l s o  shown i n  Figure 11-3, were 

hydropressing a t  20,000 p s i  t o  a level t h a t  assured t h a t  t he  g l a s s  would no t  be 

s t r e s s e d  t o  f r a c t u r e .  Then, dur ing  h o t - i s o s t a t i c  compaction a t  temperatures of 

about 1200 F and pressures  of 10,000 p s i ,  t he  AM355 s t ee l  frames had adequate 

s t r e n g t h  and a s u f f i c i e n t l y  high e las t ic  modulus t o  prevent  excessive deformation 

and bending of t h e  too l ing .  The inner  frame lengths  provided about 1-114 i n .  

of excess on each end t o  avoid end e f f e c t s .  This  excess length  maintained t h e  

t o o l i n g  away from regions t h a t  were subjected t o  nonuniform and r e s t r a i n e d  powder 

compaction. As w a s  shown i n  Task I s t u d i e s ,  i f  t h e  t o o l i n g  is  posi t ioned i n  t h i s  

region,  near  t h e  frames, t h e  t o o l i n g  is  d i s t o r t e d  excess ive ly .  
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Subtask 11-A-2. Fabr i ca t ion  of 
Copper Baf f l e  T e s t  Samples 

The forked t o o l i n g  p i eces  were f a b r i c a t e d  from g l a s s  rods by hea t ing  

and bending them over a g r a p h i t e  form block. The g l a s s  p l a t e  pieces  were pre- 

pared from 3/16-in.-thick p l a t e s  6-1/4 in .  square.  Figure 11-7 and Figure 11-8 

show the  g l a s s  t o o l i n g  p a r t s  before  assembly. Wrought and annealed OFHC copper 

p l a t e  and rod were used t o  make t h e  s o l i d  c e n t e r  ba r s ,  t h e  connecting p i n s ,  and 

t h e  base p l a t e s .  The steel  frames were f a b r i c a t e d  from forged AM355 b a r  s tock.  

The copper powder used w a s  the C3-type powder s e l e c t e d  i n  Task I, i d e n t i f i e d  as 

ESP1 grade K-1433, 3N5 pure, -100 mesh. 

The assembled too l ing ,  copper f i x t u r e s ,  and frame f o r  Baf f l e  No. 1 are 

shown i n  Figure 11-9. Baf f l e  No. 2 ,  shown i n  Figure 11-10, i s  b a s i c a l l y  t h e  

same with t h e  except ion t h a t  s m a l l  copper braces  were f i t t e d  over the forked g l a s s  

p a r t s  t o  hold the  s m a l l  0.040-in.-diameter s t e m s  and prevent breakage. 

To f a c i l i t a t e  v i b r a t o r y  packing of copper powder i n t o  the  b a f f l e s  and 

around the  g l a s s  and s o l i d  copper p a r t s ,  t h i c k  (1/2 in.)  rubber p l a t e s  were c u t  

and taped t o  t h e  f aces  of t h e  b a f f l e .  These p l a t e s  tapered out  from t h e  bottom 

t o  t h e  top  of t h e  frames s o  t h a t  a 1/2-in.  gap was  l e f t  a t  t he  top  on both s i d e s  

of t h e  frame t o  permit loading of the copper powder. Af t e r  vibrapacking w a s  

completed, t he  gaps were plugged with t h i c k  rubber wedges, and t h e  assembly was 

taped and sea l ed  with Chem Rubber F i x  Cement. The assembly w a s  i n se r t ed  i n t o  

t h i n  rubber bags (about 1/16 i n .  w a l l  t h i ckness ) ,  s ea l ed ,  double bagged, and again 

sealed.  Ba f f l e  No. 1 w a s  then hydropressed a t  20,000 p s i .  

Af t e r  removing t h e  bags and rubber p l a t e s ,  t h e  copper w a s  v i s u a l l y  

inspected. B a f f l e  No. 1 appeared t o  have s u f f i c i e n t  green s t r e n g t h  and d e n s i t y  

f o r  subsequent handling s t e p s .  The b a f f l e  w a s  then x-ray inspected t o  determine 
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FIGURE 11-7 .  GLASS TOOLING PARTS FOR BAFFLES 
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43346 

FIGURE 11-8. MODIFIED GLASS TOOLING P I E C E S  FOR BAFFLE NO. 2 
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t h e  alignment and soundness of t h e  g l a s s  t o o l i n g .  As shown i n  Figure 11-11, 

e x c e l l e n t  dimensional l o c a t i o n  of t he  g l a s s  t o o l i n g  pieces  i n  the  hydropressed 

specimen w a s  maintained. N o  evidence of cracks i n  t h e  g l a s s  pieces  w a s  found. 

There w a s  evidence t h a t  bags leaked very la te  i n  t h e  hydropressing cyc le ,  but 

contamination w a s  no t  severe. However, s i n c e  any o i l  r e s idue  i n  t h e  copper 

powder would outgas du r ing  h o t - i s o s t a t i c  compaction and prevent complete d e n s i f i -  

c a t i o n  of t he  powder, t he  p a r t  w a s  canned and vacuum outgassed a t  1200 F f o r  6 h r .  

The specimen w a s  then cooled t o  room temperature,  checked f o r  leaks with a helium 

d e t e c t o r ,  evacuated, and sea l ed  by forge welding t h e  evacuat ion s t e m .  

Ba f f l e  No. 2 was modified t o  prevent a recurrence of rubber bag leakage 

during hydropressing. Sharp co rne r s  and edges were f i l e d  and rounded o f f ,  a l l  

holes  i n  t h e  steel  frames were plugged with metal f i l l e r ,  and rubber and f e l t  

pads were taped over t he  c rev ices  of mating su r faces  i n  t h e  steel  frames t o  

prevent ex t rus ion  of t h e  rubber bag i n t o  these  c r e v i c e s .  

The b a f f l e  w a s  then double sea l ed  with rubber bags and hydropressed 

a t  20,000 p s i .  No leaks occurred during hydropressing, and t h e  copper w a s  c l ean  

and b r i g h t  and had s u f f i c i e n t  green s t r e n g t h  f o r  subsequent handling. The 

radiograph i n  Figure 11-12 shows t h a t  e x c e l l e n t  dimensional alignment of t h e  

g l a s s  t o o l i n g  w a s  maintained i n  t h e  second hydropressed b a f f l e  as w e l l .  Ba f f l e  

No. 2 w a s  then canned, evacuated, and outgassed a t  1000 F f o r  4 h r .  The b a f f l e  

w a s  cooled t o  room temperature under vacuum and sealed by forge welding t h e  

evacuation s t e m .  

The two copper b a f f l e s  were h o t - i s o s t a t i c a l l y  compacted by preheat ing 

t o  780 F with minimal p re s su re  followed by d e n s i f i c a t i o n  a t  1200 F and 10,000 p s i  

f o r  3 h r .  

cyc le  are t abu la t ed  i n  Table 11-1. The con ta ine r s  on t h e  b a f f l e s  had shrunk and 

The v a r i a t i o n  of p re s su re  and temperature with t i m e  du r ing  t h e  autoclave 
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TABLE 11-1. PRESSURE-TEMPERATURE-TIME PARAMETERS 
USED TO HOT ISOSTATICALLY COMPACT 
COPPER BAFFLES 

Pressure, psi Temperature, F Time, hr : min 

150 

150 

160 

2100 

8000 

10,000 

10,000 

10,000 

10,000 
Reduced 

RT 

68 3 
778 

901 

11 25 

1209 

1201 

1180 

1180 

0:oo 

1: 15 

1:45 

2: 35 

3: 40 
4: 25 

’’ 25 hoZd 
6:35 period 

7: 25 3’-.; 
Power off, cooled slowly to RT -- 
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compressed onto t h e  copper powder, but  leaks developed du r ing  t h e  compaction cyc le  

t h a t  caused the  con ta ine r s  t o  bulge during t h e  cool ing cycle .  

i n  each con ta ine r  i n  a corner  r eg ion  nea r  the edge of t he  steel  frames. 

A l e a k  w a s  found 

The con ta ine r s  were then removed and t h e  copper was examined. The 

copper i n  B a f f l e  N o .  1 was b r i g h t  and resistant t o  s c r a t c h e s .  A piece of copper 

w a s  sect ioned from t h e  excess on t h e  end of t h e  b a f f l e  and checked f o r  d e n s i t y  

by water submersion techniques.  

No.  1 w a s  8.64 g/cc o r  about 96 

B a f f l e  No. 2 had a d u l l  su r f ace  

end w a s  checked f o r  d e n s i t y  and 

t h e o r e t i c a l  d e n s i t y .  

The d e n s i t y  of t he  sect ioned piece from B a f f l e  

percent  of t h e o r e t i c a l  d e n s i t y .  The copper i n  

and appeared porous. A sect ioned piece o f f  an 

determined t o  be 6.50 g/cc o r  73 percent  of 

It w a s  decided t o  proceed with the  eva lua t ion ,  t e s t i n g ,  and in spec t ion  

of Baf f l e  No. 1 bvt  t o  recan and r ecyc le  B a f f l e  No. 2 t o  inc rease  i t s  d e n s i t y .  

To prevent a recurrence of leaks during the  h o t - i s o s t a t i c  compaction 

cyc le ,  t he  con ta ine r  f o r  Ba f f l e  No. 2 was redesigned t o  reduce l o c a l i z e d  deforma- 

t i o n  a t  t h e  corner  regions of t he  steel  frames. The welded con ta ine r  was checked 

f o r  l eaks ,  outgassed a t  500 F f o r  3 h r ,  and sea l ed .  B a f f l e  No. 2 w a s  then recycled 

by preheat ing t o  800 F and h o t - i s o s t a t i c a l l y  compacting at 1200 F and 10,000 p s i  

f o r  3 h r .  Visual  i n spec t ion  of t h e  con ta ine r  af terwards,  as shown i n  Figure 11-13,  

i nd ica t ed  t h a t  t h e  con ta ine r  remained gas t i g h t  and deformed evenly onto t h e  

copper powder. N o  leaks were de tec t ed  i n  a post-compaction l e a k  check. The 

con ta ine r  w a s  removed and t h e  copper inspected v i s u a l l y  and by radiographic  techniques.  

The copper su r faces  appeared b r i g h t  and dense. The d e n s i t y  w a s  found t o  be 8.81 

g/cc o r  98.3 percent  of t h e o r e t i c a l  dens i ty .  

A f t e r  removing t h e  s teel  frames, t he  b a f f l e s  were machined on t h e  ends 

and s i d e s  t o  remove excess copper and then placed i n  a s o l u t i o n  of 67 percent  HF 

-33  percent  H 0 s e l e c t i v e l y  remove the  g l a s s  t oo l ing .  2 
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Subtask 11-B.  Test ing and Evaluation of 
Copper B a f f l e s  

I n  B a f f l e  No.  1 t h e  copper powder a t  e i t h e r  end of t h e  base of s o l i d  

copper p l a t e  appeared s l i g h t l y  porous. 

bonded t o  the  s o l i d  copper p l a t e .  

s a t i s f a c t o r y .  The copper powder i n  Baff le  No. 2 w a s  completely dense throughout. 

This w a s  confirmed by d e n s i t y  measurements on c u t  segments of t he  b a f f l e .  

A t  t h e s e  ends, t he  powder w a s  no t  s t r o n g l y  

On t h e  s i d e s ,  the d e n s i t y  and bonding was 

X-ray photos of t he  b a f f l e s  a f t e r  h o t - i s o s t a t i c  compaction were taken 

a f t e r  t h e  con ta ine r s  were removed but before t h e  s teel  frames were disconnected. 

These are reproduced i n  Figures  11-14 and 11-15. Good alignment was maintained 

i n  t h e  g l a s s  t o o l i n g  p a r t s  of both b a f f l e s ;  no d i s t o r t i o n  o r  breakage could be 

de t ec t ed  i n  the  t o o l i n g  forks  o r  i n  the  s m a l l  stems a t t ached  t o  t h e  shoulders  

of t h e  forks  i n  Baf f l e  No. 2 .  Extending the  ends of t he  b a f f l e s  s u c c e s s f u l l y  

prevented d i s t o r t i o n  of t he  g l a s s  t o o l i n g  a t  e i t h e r  end of t h e  b a f f l e s .  

p l a t e s  a t  each end of t he  b a f f l e s  were bent s l i g h t l y  due t o  overextension of 

t h e  g l a s s  lengths  beyond the  s o l i d  copper base p l a t e .  This can be co r rec t ed  i n  

The g l a s s  

subsequent b a f f l e  f a b r i c a t i o n s  simply by making t h e  l eng th  of t he  g l a s s  p l a t e  

coincide with t h e  length of t h e  copper base p l a t e .  

To accomplish t h e  700 p s i g  h y d r o s t a t i c  pressure t e s t ,  t o o l i n g  w a s  

designed t o  seal t h e  b a f f l e s  w i t h  gaskets  and clamp p l a t e s  except f o r  one i n l e t  

i n t o  t h e  lower manifold s e c t i o n ,  as shown i n  Figure 11-16. Equipment set up 

f o r  t h e  hydro te s t  i s  shown i n  Figure 11-17. To in su re  t h a t  no a i r  w a s  trapped 

i n  t h e  b a f f l e s ,  t h e  f l u i d  w a s  pumped under a s l i g h t  p re s su re  through t h e  b a f f l e  

with the  top  open. After f l u i d  flowed through each o r i f i c e  a t  the  top,  t h e  f l a t  

p l a t e  and gasket were clamped t o  the  b a f f l e .  

t h e  p re s su re  t o  700 p s i g  and hold a t  700 p s i g  f 10 p s i  f o r  5 min. B a f f l e  No .  1 

generated a l eak  through one s i d e  due t o  interconnected voids  i n  the  copper 

Attempts were made t o  i nc rease  
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powder i n  t h i s  region. 

f o r  5 min and a t  750 p s i g  f o r  s h o r t e r  per iods.  

tests and a t y p i c a l  flow rate tes t  is shown i n  Figure 11-18. Heights of water 

spouts  were measured a t  t h r e e  d i f f e r e n t  flow rates. Angles of d e f l e c t i o n  from 

Baf f l e  No. 2 t e s t e d  s a t i s f a c t o r i l y  a t  700 p s i g  * 10 p s i  

Equipment set up f o r  t h e  flow 

t h e  c e n t e r  axis were measured. The r e s u l t s  of t h e  flow rate tests are t abu la t ed  

i n  Table 11-2. A f t e r  nondestruct ive tests were completed, Ba f f l e  No. 1 w a s  

sect ioned and examined. Macrostructures of t h e  sect ioned p a r t s  are shown i n  

Figures  11-19 and 11-20. Near p e r f e c t  alignment of t h e  channels w a s  maintained. 

A l l  channels r e t a ined  the dimensions, contour,  and p o s i t i o n s  of t he  f a b r i c a t e d  

t o o l i n g  t o  w i t h i n  f 0.01 in .  The o r i f i c e s  (exit holes)  a t  t h e  t o p  contained an 

anomoly t h a t  a f f e c t e d  flow through t h e  channels.  As seen i n  the  f i g u r e s ,  t he  

o r i f i c e s  tended t o  " b e l l  out" nea r  t he  su r face .  This e f f e c t  i s  probably due t o  

a s l i g h t  nonuniform r e a c t i o n  of t he  copper with t h e  leaching s o l u t i o n .  This 

d e f e c t  can be co r rec t ed  by making t h e  b a f f l e  and the  t o o l i n g  i n  t h i s  region about 

1/4 i n .  h ighe r  than t h e  f i n a l  dimension. The " b e l l  e f f e c t "  can then be removed 

a f t e r  leaching is  completed by machining off  t h e  excess 1/4 i n .  from t h e  b a f f l e  

he igh t .  B a f f l e  No. 2 w a s  sect ioned across  one of the channels t h a t  had been 

f a b r i c a t e d  from modified too l ing .  A photograph of the sect ioned piece is  shown 

i n  Figure 11-21, 

is  shown t o  be s t r a i g h t  and adequately con t ro l l ed .  Some misalignment during 

machining of t h e  f aces  and s i d e s  is responsible  f o r  t h e  "off-center" appearance 

of t h e  flow channel i n  t h e  sect ioned f ace .  A t y p i c a l  mic ros t ruc tu re  of t h e  

copper powder i n  Baf f l e  No. 1 s e c t i o n  i s  shown i n  Figure 11-22 and t h a t  i n  Baf f l e  

No. 2 is shown i n  Figure 11-23. Tens i l e  tests were made on standard 1/8-in.- 

diameter  t e n s i l e  ba r s  c u t  from end s e c t i o n s  of each copper b a f f l e ,  and the r e s u l t s  

are given i n  Table 11-3. The copper powder i n  Baff le  No. 1 had i n f e r i o r  mechanical 

p r o p e r t i e s  due t o  i ts  lower d e n s i t y .  The mechanical p r o p e r t i e s  of the copper i n  

Baf f l e  No. 2 are b e t t e r  than commercial products of wrought and annealed OFHC copper. 

The alignment of t h e  flow channels ac ross  the  t o p  of t h e  b a f f l e  
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FIGURE 11-18, FLOW-RATE TESTING OF COPPER BAFFLES 
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FIGURE 11-19. MACROSTRUCTURE OF COPPER BAFFLE NO. 1 ALONG 
SECTION "B- 3" 
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FIGURE 11-20. MACROSTRUCTURE OF COPPER BAFFLE NO. 1 ALONG SECTION '3-D" 
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45265  

FIGURE 11-21 .  MACROSTRUCTURE OF COPPER BAFFLE NO. 2 
ALONG SECTION "B-B" 
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lOOX 5D544 

FIGURE 11-22. TYPICAL MICROSTRUCTURE OF COPPER 
(BAFFLE NO. 1) I N  SECTION "D-D" 
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500X Etched 5D 3 21 

FIGURE 11-23. MICROSTRUCTURE OF COPPER I N  BAFFLE NO. 2 ALONG 
SECTION "B-B" 

This photograph was taken i n  an a rea  where the 
d e n s i t y  was expected t o  be lowest. Even i n  
t h i s  region,  the p o r o s i t y  i n  Baf f l e  No. 2 i s  
very small .  Note a l s o  the f i n e ,  uniform g r a i n  
s i z e  i n  the  microstructure .  
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Dens i t i e s  and hardness were measured on l o c a l i z e d  s e c t i o n s  of t h e  

b a f f l e s .  The r e s u l t s  of d e n s i t y  tests are shown i n  Table 11-4. Hardness 

tests were taken on Baf f l e  No. 2 s e c t i o n s .  These r e s u l t s  are given i n  Table 

11-5. Dimensional analyses  were conducted on sect ioned p a r t s  of t he  b a f f l e s  

and t h e  r e s u l t s  are summarized i n  Table 11-6. 
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TABLE 11-4. RESULTS OF DENSITY MEASUREMeNTS 
ON LOCALIZED SECTIONS OF BAFFLES 

End-Sections la) 
Percent  of 

Baf f l e  No. Sect ion No. Density,  p/ cc  Theore t i ca l  

E- 1- L 
E-1-S 
E-1-L 
E- 1- S 
E- 2-L 
E- 2-5 

7 .12  
7.77 
8.89 
8.84 
8.80 
8.87 

79.5 
86.7 
99 ,2  
98.7 
98.2 
99.0 

Mid-Sections (bl- 
Percent  of 

Ba f f l e  No. Section No. (c) Densi ty ,  g /  cc Theore t i ca l  

M- 1-A 
M- 1- B 
M-1-C 
M- 1-D 
M- 2- A 
M- 2-B 
M- 2-C 
M- 2-1) 

7.45 
8.24 
8 . 1 2  
8.10 
7.50 
8.05 
8,lO 
8.21 

83.1 
92.0 
90.8(d) 
90.2(d) 
83.4 
90.0 

91.9(d) 
go. 2(a) 

(a )  Each s e c t i o n  w a s  about 1-1/2 i n .  long, l/4 i n .  wide, and 1 / 4  i n .  t h i ck .  
The d e n s i t i e s  exclude the  s o l i d  OFHC copper brace.  

(b) Each s e c t i o n  w a s  about 3 / 4  in .  long, 3/8 i n .  wide, and 1/4 i n ,  t h i c k ,  

( e )  Numbers of s e c t i o n s  are l i s t e d  A through D according t o  t h e i r  p o s i t i o n  
from the "top" of t h e  b a f f l e  i n  s e c t i o n  B-B of NASA Drawing N o .  CF20868. 

The d e n s i t i e s  of t h e  C and D mid-sections excluded t h e  s o l i d  OFHC copper 
brace.  

(d) 
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T A B U  11-5. RESULTS OF HARDNESS TESTS ON SECTIONS 
OF BAFFLF, NO. 2 (100 Kg R8> 

33 32  

35 

36 

77 (OFHC Copper) 

48 37 34 32 4 3  
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TABLE 11-6. ANALYSIS OF DIMENSIONAL CONTROL AND ALIGNMENT 
OF INTERNAL FLOW CHANNELS I N  COPPER BAFFLES 

Sect ion BB 

Top o r i f i c e  diameter  var ied  w i t h  l ength  from 0.060 in .  t o  0.040 in.  froin 
the  su r face  t o  about 0 . 2  i n .  below surfact?.  This  was apparent ly  the 
cause f o r  d e f l e c t i o n  of t he  spouts  dur ing  the flow tests. 

Except f o r  (1) above, t he  diameter  of the  channels were maintained t o  
wi th in  a . 0 1  in .  

The channel th ickness  a t  t he  junc t ion  was about 0 .12  in .  r a t h e r  than the  
s p e c i f i e d  0.07 i n .  s ince  the g l a s s  t o o l i n g  was f a b r i c a t e d  with t h i s  
dimension of 0.12 in .  The contour of the  c ros s - sec t ion  was a curved 
passage with smooth t r a n s i t i o n s  t o  the  l e g s  r a t h e r  than a sharp corner  
passage with abrupt  t r a n s i t i o n  t o  the  l egs  a s  given i n  NASA Drawing No. 
CF620868. 
on flow, 

These changes a r e  considered t o  have a n e g l i g i b l e  e f f e c t  

Overa l l  l engths  and th ickness  were he ld  t o  wi th in  M.01 in. 

The channels maintained nea r ly  p e r f e c t  a l ignnen t  i n t e r n a l l y .  
bending, or  s h i f t i n g  of the  too l ing  p ieces  was ev ident .  

N o  d i s t o r t i o n ,  

Sec t ion  DD 

(1) 

(2) Channel alignment ( i n  v e r t i c a l  d i r e c t i o n )  va r i ed  less than 1 degree f o r  
One channel was very  s l i g h t l y  d i s t o r t e d  

Top channels were spaced uniformly a t  0.39  i n .  f 0.01 in.  

7 ou t  of 8 channels inspected.  
near  t he  top and d e f l e c t e d  f r o a  cen te r  by l e s s  than 3 degrees.  

(3) The su r faces  of the  flow channels i n  both b a f f l e s  were gene ra l ly  very 
smooth. In t h ree  channels of Baf f le  No. 1, a s m s l l ' p r o t r u s i o n  of co?per 
occurred about 1 i n .  f r o s  the top su r face  where the  g l a s s  t oo l ing  apparent ly  
cracked and allowed a small  amount of copper potJder t o  extrude i n t o  the  
d e f e c t .  The e f f e c t  of the  p ro t rus ion  i n t o  the  channel was minor. N o  such 
p ro t rus ions  o r  o t h e r  d e f e c t s  a f f e c t i n g  the su r face  roughness were observed 
i n  the  channels of Ba f f l e  No. 2. 
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TASK 111 STUDIES: FABRICATION AND TESTING OF 
SIMULATED NICKEL INJECTOR TEST PIECES 

In Task I s t u d i e s ,  several subscale  n i cke l  i n j e c t o r s  were f ab r i ca t ed  

t o  develop the  techniques,  process parameters,  t e s t i n g  methods, and t h e  optimum 

too l ing  material f o r  f u l l  s i z e  i n j e c t o r s  t o  be f ab r i ca t ed  i n  Task 111. Two 

d i f f e r e n t  t oo l ing  materials were se l ec t ed  f o r  t hese  experiments but low carbon 

(1018) steel w a s  p re fe r r ed  over 1100-aluminum. During h o t - i s o s t a t i c  compaction, 

t he  aluminum formed a nickel-aluminide compound which was found t o  prevent 

i n t e r d i f f u s i o n  between n i c k e l  and aluminum. However, t h e  aluminum becomes s o f t  

dur ing  h o t - i s o s t a t i c  compaction and could produce d i s t o r t e d  shapes i n  

the  too l ing .  Because of t h i s  disadvantage i n  using aluminum too l ing ,  it was 

recommended t h a t  s teel  be the  primary too l ing  material f o r  t h e  n i cke l  i n j e c t o r s  

and t h a t  aluminum be a secondary choice.  For o the r  app l i ca t ions  i n  which dimensional 

c o n t r o l  i s  less r i g i d  o r  i n  which h igher  compaction temperatures are no t  needed, 

aluminum too l ing  is  t o  be p re fe r r ed  because of i t s  much f a s t e r  removal rate. 

Di s to r t ion  of t h e  fuel-channel  t oo l ing  i n  t h e  subsca le  n i c k e l  i n j e c t o r s  

required a d d i t i o n a l  s t u d i e s  t o  be undertaken. These experiments were descr ibed 

i n  Subtask 1-6-2, Process Optimization. Subscale n i c k e l  i n j e c t o r s  were f ab r i ca t ed  

and t e s t e d  dur ing  t h i s  period using a modified too l ing  des ign .  D i s t o r t i o n  of 

t h e  fuel-channel t oo l ing  w a s  g r e a t l y  reduced, and, by a s l i g h t  change i n  f ab r i ca -  

t i o n  techniques,  i t  w a s  expected t h a t  t h e  d i s t o r t i o n  could be el iminated completely. 

Flow tes ts  showed t h a t  no in te rchannel  leaks ex i s t ed  between the  ox-hole and fue l -  

ho le  channels of t h e  subsca le  components. Des t ruc t ive  tes ts  ind ica ted  t h a t  t h e  

n i c k e l  powder w a s  compacted t o  t h e o r e t i c a l  d e n s i t y  throughout t he  s t r u c t u r e ,  

t h a t  t h e  mechanical p rope r t i e s  were equiva len t  t o  wrought and annealed s o l i d  

n i c k e l  products ,  and t h a t  t h e  dimensions of t h e  t o o l i n g  were reproducib le .  
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Subtask 111-A-1. Design of Tooling, 
P l a t e s ,  Containers,  and I n j e c t o r s  

The t o o l i n g  f o r  t h e  n i c k e l  i n j e c t o r s  w a s  prepared from 1018 carbon 

steel p l a t e  and rod. Only t o o l i n g  f o r  one quadrant and a s i n g l e  row ac ross  t h e  

diameter  were provided i n  place of t oo l ing  f o r  t he  f u l l  s e c t i o n .  It was agreed 

t h a t  t h e  q u a r t e r  s e c t i o n  and s i n g l e  row design would provide e s s e n t i a l l y  the  

same information as a f u l l  design i n s o f a r  as meeting t h e  program ob jec t ives ,  

t h a t  i s ,  t o  demonstrate t h a t  engine hardware of t h i s  type could be f a b r i c a t e d  

from powder. The ox id ize r  channel t o o l i n g  is  shown i n  p a r t  i n  Figure 111-1. 

The t o o l i n g  p ins  and i n s e r t s  shown i n  Figures  111-2 and 111-3 complete t h e  

t o o l i n g  f o r  t h e  ox id ize r  channels.  The pins  were p r e s s - f i t  i n t o  the  bored 

ho le s  i n  t h e  t o o l i n g  p l a t e .  A f t e r  t h e  i n i t i a l  conso l ida t ion  of n i c k e l  powder 

around t h e  t o o l i n g  p ins  and p l a t e ,  t he  pins  had s m a l l  placement ho le s  0.068 i n .  

diameter by 0.030 i n .  deep d r i l l e d  i n t o  the t o p  of each f o r  i n s e r t i o n  of t h e  

ox id ize r  channel t o o l i n g  i n s e r t s .  

The f u e l  channel t o o l i n g  p l a t e s  were a l s o  designed with j u s t  a 

q u a r t e r  s e c t i o n  and a l i n e  incorporat ing t h e  t o o l i n g  p i n s .  This  t o o l i n g  piece 

is shown i n  Figure 111-4. 

spacing through which t h e  ox id ize r  channel t o o l i n g  p ins  p ro jec t ed .  Fue l  channel 

p i n s ,  shown i n  Figure 111-5, were p r e s s - f i t t e d  i n t o  t h e  ho le  spacings provided 

i n  t h e  p l a t e .  The pe r iphe ra l ly - loca ted  f u e l  channel t o o l i n g  r i n g  w a s  produced 

with a steel r i n g  shown i n  Figure 111-6. This r i n g  w a s  welded t o  t h e  p l a t e  

and completed the  t o o l i n g  f o r  t h e  fuel-channels.  

The 37 0.687 in .  diameter through-holes provided 

Since two conso l ida t ion  cyc le s  were planned f o r  each i n j e c t o r  test  

p i ece ,  two d l f f e r e n t  s i z e d  h o t - i s o s t a t i c  compaction con ta ine r s  were required.  

The con ta ine r  f o r  t he  f i r s t  cyc le  cons i s t ed  of a 1018 steel. seamless pipe 5.75 i n .  

long and having a 12.5 in .  OD and a 0.5 i n .  w a l l .  The l i d s  were c u t  and spun 
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FIGURE 111-2. OXIDIZER CHANNEL PIN 
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FIGURE 111-3. OXIDIZER CHANNEL PIN I N S E R T  
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FIGURE 111-5. FUEL CHANNEL PIN INSERT 
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FIGURE 111-6. FUEL CHANNEL TOOLING RING 
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from 0.050-in.-thick 304-type s t a i n l e s s  steel  s h e e t  t o  f i t  t h e  con ta ine r s .  

The con ta ine r  f o r  t h e  second cyc le  w a s  f a b r i c a t e d  from 1018 s teel  pipe t o  a 

length of 5.25 i n .  and an OD of 16.2 i n .  and a w a l l  of 0.25 in .  The l i d s  f o r  

each end were c u t  and spun from 0.050-in.-thick 304 s t a i n l e s s  steel  s h e e t  t o  

f i t  t he  con ta ine r .  

S o l i d  n i c k e l  base p l a t e s  having the  dimensions i n  Figure 111-7 were 

machined from Nickel 200 c a s t i n g s .  

are given i n  the  vendor 's  tes t  r e p o r t ,  Figure 111-8. The base p l a t e  provided 

dimensional r e fe rence  f o r  subsequent machining of t h e  test pieces  and a l s o  

loca ted  the  f i x t u r i n g  and cen te r ing  of t h e  va r ious  t o o l i n g  p a r t s .  

The chemical a n a l y s i s  and mechanical p r o p e r t i e s  

The n i c k e l  powder used f o r  Task 111 s t u d i e s  w a s  similar t o  t h e  N2-type 

The vendor 's  c h a r a c t e r i z a t i o n  powder which w a s  judged t o  be optimum i n  Task I s t u d i e s .  

of t h e  powder,denoted h e r e a f t e r  as SF-grade. powder, i s  given i n  Table 111-1. 

comparison of packing d e n s i t y ,  p a r t i c l e  shape, and mic ros t ruc tu re  of t h e  SF powder 

and t h e  N2 powder showed t h a t  t h e  SF grade v i b r a t o r y  packed t o  57 percent  of 

A 

, t h e o r e t i c a l  while  t h e  N2 grade v i b r a t o r y  packed t o  65 percent  of t h e o r e t i c a l .  

\ The SF grade contained a coa r se r  c l a s s i f i c a t i o n  of s izes  with few f i n e s  compared 
t 

\ t o  t h e  N2 grade and i s  the  apparent cause f o r  d i f f e r e n c e s  i n  vibratory-packed 

\ 
; dens i t i e s .  P a r t i c l e  shapes and mic ros t ruc tu re  are compared i n  Figures  111-9, -10, 

and -11. 

tbe SF grade relative t o  the  N2 grade, t he  two materials are equ iva len t .  

I 

Other than the  coaqser c l a s s i f i c a t i o n  and lesser su r face  roughness of 

Subtask 111-A-2. Fabr i ca t ion  of 
Simulated Nickel I n j e c t o r  Test Pieces  

_ -  t 
t '  
! .  

\ *  The fuel-channel t o o l i n g  p l a t e  shown i n  Figure 111-12 i s  p a r t i a l l y  
\ .  I_  

completed. The edges of t h e  through ho le s  were subsequently rounded t o  about 
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TABLE 111-1. CHARACTERIZATION OF NICKEL POWDER 

Vendor: S h e r r i t t  Gordon Mines Limited 

Grade: SS 150 x 325 

Lot: No. 2 

Apparent Density: 

Flow Rate: 

4;28 g/cc or 48 percent of theore t ica l  

21.8 sec  f o r  50 g 

co cu Fe S c P - - - - - -  N i  
99.9(a) 0.106 0.010 0.006 0.025 0.008 n i l  Chemistry: 

(a) Includes cobalt  

Mesh Screen Analysis: - 
+150 - 150+170 - 170+200 - 200+250 - 250+270 - 270+325 - 325 

Percent 

3.1 
12.2 
21.6 
17.7 
30.4 
11.2 

3.8 



142 

1 5 0 X  SF G r a d e  8 D  246 

l 5 0 X  N2 G r a d e  8 D  247 

FIGURE 111-9. COMPARISON OF SURFACE AND PARTICLE S I Z E  I N  TWO 
G W E S  OF NICKEL POWDER 
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150X SF Grade 8D 240 

8D241 150X N2 Grade 

FIGURE 111-10. COMPARISON OF INTERPARTICLE POROSITY 
IN TWO GRADES OF NICKEL POWDER 
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4 0 0 X  SF G r a d e  8 D 2 4 3  

4 0 0 X  N 2  G r a d e  8 D  244 

FIGURE 111-11. COMPARISON OF ETCHED MICROSTRUCTURES 
I N  TWO GRADES OF NICKEL POWDER 
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FIGURE 111-12. PARTIALLY COMPLETED FUEL CHANNEL TOOLING PLATE 
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1/16-in.  r ad ius  t o  s imulate  t h e  ho le  channel shape i n  t h e  f i n a l  p a r t .  This 

machining s t e p  does not  seem necessary,  however, and could be el iminated 

without  a f f e c t i n g  t h e  performance of t h e  i n j e c t o r .  

i n  F igu re  111-13 w a s  welded t o  t h e  fuel-channel t oo l ing  p l a t e  t o  f i x  the  p o s i t i o n  

The steel  r i n g  shown f a b r i c a t e d  

of t h e  p l a t e  and prevent s l i ppage  o r  r o t a t i o n  of t he  p l a t e  during compaction 

processes.  The fuel-channel t o o l i n g  p ins  were pressed i n  the  ho le s  a l l o t t e d  

f o r  t h e  p ins ,  and the  completed fuel-channel t o o l i n g  p i ece  is  shown i n  Figure 111-14. 

The ox-hole channel t o o l i n g  p l a t e  i s  shown assembled with the  t o o l i n g  

pins  i n  Figure 111-15. The t o o l i n g  p l a t e  s h a f t  on t h e  back s i d e  was s l i p  

f i t t e d  i n t o  the  n i c k e l  base p l a t e  ho le  shown i n  Figure 111-16. For t h e  f i r s t  

compaction cyc le ,  t he  ox-channel t o o l i n g  and n i c k e l  base p l a t e  were assembled 

i n  steel con ta ine r s  descr ibed i n  Subtask 111-A-1. A 1/4- in .  304 s t a i n l e s s  s teel  

tube was welded t o  the top l i d s  t o  f a c i l i t a t e  l e a k  checking and outgassing. The 

con ta ine r s  were then loaded and v i b r a t o r y  packed with about 45 l b  of n i c k e l  

powder and the l i d s  were welded t o  the  con ta ine r .  The con ta ine r ,  t o o l i n g ,  and 

powder weighed about 100 l b ,  and t o  handle the  specimen, eye b o l t  p l a t e s  were 

welded t o  the  s i d e s  of t he  con ta ine r .  The con ta ine r s  were checked f o r  leaks with 

a helium l e a k  d e t e c t o r .  The con ta ine r s  were evacuated and heated t o  600 F f o r  1 h r .  

- 3  The con ta ine r s  were sealed a t  less than 10 t o r r  by forge welding t h e  evacuat ion 

stems . 
Two specimens were h o t - i s o s t a t i c a l l y  compacted a t  about 1250 F and 

Af te r  t h e  compaction cycle  t h e  con ta ine r s  were checked 10,000 p s i  f o r  3 h r .  

f o r  l eaks .  One con ta ine r ,  i d e n t i f i e d  as I n j e c t o r  Specimen N o .  2 ,  contained a 

l e a k  i n  the  top  l i d .  The leak w a s  caused by a d e f e c t  i n  t h e  l i d  before  t h e  cyc le  

s t a r t e d .  The d e f e c t  appeared t o  be a s m a l l  i nden ta t ion  gouge i n  t h e  l i d  su r face  

o r i g i n a t i n g  probably from h i t t i n g  o r  s c u f f i n g  t h e  su r face  wi th  a ha rd ,  sha rp  

instrument during handl ing,  The d e f e c t  was not  de t ec t ed  be fo re  the cyc le  on t h e  
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FIGURF, 111-13. STEEL R I N G  FOR FUEL CHAJWEL TOOLING 
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FIGURE 111-16. NICKEL BASE PLATE 
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helium l e a k  d e t e c t o r  s i n c e  i t  d i d  not  pene t r a t e  through t h e  l i d .  The o the r  

con ta ine r ,  I n j e c t o r  Specimen No. 1, remained gas - t igh t  du r ing  the  compaction 

cyc le ,  and is shown i n  Figure 111-17. The de fec t ed  l i d  on I n j e c t o r  No. 2 w a s  

machined o f f  and a new l i d  welded t o  t h e  con ta ine r .  The con ta ine r  w a s  leaked 

checked, outgassed, s ea l ed ,  and h o t - i s o s t a t i c a l l y  compacted at 1250 F and 10,000 

p s i  f o r  3 h r .  I n  t h i s  r ecyc le  t h e  con ta ine r  remained g a s - t i g h t  and t h e  n i c k e l  

powder in the con ta ine r  was subsequently found t o  be d e n s i f i e d .  

The con ta ine r s  on both i n j e c t o r  specimens were then machined o f f  and 

t h e  top  su r faces  faced down t o  t h e  ox-channel t o o l i n g  pins .  This w a s  necessary 

s o  t h a t  t h e s e  p ins  might be loca t ed  f o r  the proper assembly and alignment of 

t he  fuel-channel t o o l i n g  and a l s o  f o r  i n s e r t i o n  of t h e  ox-channel p in  extensions.  

The s i d e s  were turned down t o  11.45 i n .  diameter,  then a s t e p  c u t  made 0.375 i n .  

deep and 1.15 i n .  long from t h e  top  su r face .  This s t e p  c u t  provided a seat f o r  

t h e  fuel-channel t o o l i n g  r i n g .  The i n j e c t o r  thus machined is shown i n  Figure 

111-18. The ox-channel p in  extensions were i n s e r t e d  and extended 5/8 in .  abqve 

t h e  su r face .  The f u e l  channel t o o l i n g  was then assembled by p res s  f i t t i n g  ovgr t h e  

machined su r faces .  One of t h e  i n j e c t o r s  with t o o l i n g  assembled f o r  t h e  second 

compaction process cyc le  i s  shown i n  Figure 111-19. 

The assembled i n j e c t o r s  were placed i n  the  steel  con ta ine r  prepared f o r  

t h e  second compaction process cyc le ,  n i c k e l  powder loaded i n t o  con ta ine r s  as 

shown i n  Figure 111-20, and t h e  con ta ine r s  welded with spun end l i d s .  The con ta ine r s  

were checked f o r  l eaks  with a helium l e a k  d e t e c t o r ,  evacuated and outgassed a t  

600 F f o r  3 hr .  The evacuation stems were forge welded t o  seal the con ta ine r  a t  

less than ~ x I O - ~  t o r r .  

compacted a t  about 1300 F and 10,000 p s i  f o r  3 h r .  

The two canned i n j e c t o r  components were h o t - i s o s t a t i c a l l y  
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448 10 

FIGURE: 111-17. INJECTOR NO. 1 I N  CONTAINER AFTER F I R S T  
HOT-ISOSTATIC COMPACTION PROCESS CYCLE 
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FIGURE 111-19. INJECTOR ASSEMBLED WITH FUEL-CHANNEL TOOLING 
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Af ter  completion of t h e  cyc le ,  t he  conta iners  on t h e  two n i c k e l  i n j e c t o r s  

Both conta iners  had deformed s i g n i f i c a n t l y ,  were examined and inspected f o r  leaks .  

and the  conta iner  on Specimen No. 1 showed a l a rge  amount of shrinkage i n  t h e  s i d e  

wal l s  as ind ica ted  i n  Figure 111-21. However, shr inkage w a s  less than a n t i c i p a t e d  

on the  conta iner  f o r  Specimen No. 2 .  I n e r t  gas inspec t ion  w a s  accomplished by 

c u t t i n g  of f  p a r t  of t h e  s t a i n l e s s  steel  evacuat ion s t e m ,  p re s su r i z ing  t h e  conta iner  

i n t e r n a l l y  with about 5 p s i  of argon gas,  then soaking the  con ta ine r  in  a soapy 

water s o l u t i o n .  A s m a l l  l e ak  w a s  de tec ted  i n  t h e  con ta ine r  l i d  on Specimen No. 1. 

It apparent ly  occurred e i t h e r  l a t e  i n  the  press ing  cycle  o r  by con t r ac t ion  of 

t he  l i d s  dur ing  the  cool ing cyc le .  Severa l  c racks  were found by t h e  same l eak  

tes t  method i n  the  l i d  of Specimen No. 2 ,  and these  appeared t o  have formed e a r l y  

i n  t h e  cyc le  s ince  the  n i c k e l  i n  the  con ta ine r  w a s  subsequently found t o  be 

porous and only p a r t i a l l y  dens i f i ed .  The top  l i d  of Specimen No. 2 w a s  removed 

by machining, and a new, t h i c k e r  l i d  was welded t o  t h e  con ta ine r .  The specimen 

was h o t - i s o s t a t i c a l l y  compacted a t  1400 F and 10,000 p s i  f o r  3 h r .  The use of 

1400 F r a t h e r  than 1300 F w a s  requi red  i n  t h i s  recyc le  of Specimen No. 2 because 

i n  t h e  p a s t ,  when at tempts  were made t o  recyc le  a powder material  a t  t h e  same 

temperature as the  i n i t i a l  hot-compaction cyc le ,  t he  powder would not  dens i fy  

s a t i s f a c t o r y .  But by compacting a t  a h igher  recyc le  temperature,  t he  dens i ty  

could be brought t o  t h e  des i r ed  level. Af te r  t h e  recyc le ,  t he  con ta ine r  was 

examined both v i s u a l l y  and by i n e r t  gas l eak  checks. The con ta ine r  was s i g n i f i c a n t l y  

deformed and no leaks  were de tec t ed .  

The conta iners  on both i n j e c t o r  specimens were removed by machining. 

The top  su r faces  were machined t o  expose the  too l ing  p i n s ,  and leach holes  were 

d r i l l e d  i n t o  t h e  s i d e s  t o  expose the  f u e l  channel t oo l ing  r i n g .  The ox-channel 

t oo l ing  was a l s o  exposed i n  the  back face by v i r t u e  of t he  s h a f t  on t h e  back of 

t he  ox-channel t oo l ing  p l a t e .  A s e c t i o n a l  view of i n j e c t o r  specimen showing 
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relative l o c a t i o n s  of t he  d i f f e r e n t  pieces  a f t e r  the compaction processes are 

i l l u s t r a t e d  i n  t h e  drawing of Figure 111-22. 

Removal of t h e  s tee l  t o o l i n g  w a s  accomplished by chemical leaching 

0. The p o r t  ho le s  on the  s i d e s  and i n  a s o l u t i o n  of 25 v/o H2S04 - 7 5  v/ 

bottom were f i t t e d  with threaded pipe lengths ,  and these  lengths  were connected 

t o  p l a s t i c  t ub ing ,  Seve ra l  hundred ga l lons  of t he  leaching s o l u t i o n  were force-  

pumped and recycled i n t o  the t o o l i n g  channels f o r  a t o t a l  of about 12 weeks. The 

f u e l  channel t o o l i n g  w a s  completely removed from both i n j e c t o r s  i n  about 6 weeks. 

The ox-channel t oo l ing ,  on t h e  o the r  hand, was more d i f f i c u l t  t o  remove. An 

examination of Figure 111-22 i l l u s t r a t e s  the problem. The fuel-channel t o o l i n g  

d i s so lved  from t h e  o u t e r  s teel  r i n g  t o  the fuel-channel p l a t e  from four  d i r e c t i o n s  

o r i g i n a t i n g  a t  t he  s i d e s .  Also,  t h e  removal of t he  fuel-channel t o o l i n g  pins  

i n  the  f ace  w a s  achieved quickly s i n c e  these  were only 114 i n .  long. The ox- 

channel t oo l ing ,  however, was removed from j u s t  one d i r e c t i o n ,  s t a r t i n g  a t  t h e  

bottom face through t h e  1-47/64-in.-diameter p o r t  ho le  t o  the  ox-channel t o o l i n g  

p l a t e .  The ox-channel p i n s  were slowly removed because of t h e i r  longer length.  

Also, as por t ions  of the t o o l i n g  were removed, i t  became inc reas ing ly  d i f f i c u l t  

t o  fo rce  f r e s h  ac id  i n t o  t h e  channels and d i s p l a c e  the used a c i d .  

The s teel  t o o l i n g  w a s  completely removed from I n j e c t o r  Specimen No. 1 

i n  a l l  p a r t s  except f o r  a few ox-channel pins  on t h e  s i d e s  and a s m a l l  r e s idue  

i n  t h e  ox-channel p l a t e .  A s i g n i f i c a n t  amount of s teel  w i t h i n  the  ox-channels 

remained i n  Specimen No. 2. Due t o  t i m e  l i m i t a t i o n s ,  i t  w a s  decided t o  terminate  

the  leaching process and proceed with nondestruct ive and d e s t r u c t i v e  t e s t i n g  and 

eva lua t ions .  These tests are descr ibed i n  the following s e c t i o n .  The i n j e c t o r  

component face a f t e r  leaching i s  shown i n  Figure 111-23. 
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Subtask 111-B .  Test ing and Evaluation of 
Simulated Nickel I n j e c t o r  Test Pieces  

Nondestructive tests cons i s t ed  of x-ray radiography, flow tes ts  with 

water a t  t h r e e  d i f f e r e n t  flow rates, and helium l e a k  t e s t i n g  f o r  i n t e rchanne l  

l eaks .  

The i n j e c t o r s  were inspected p e r i o d i c a l l y  du r ing  the  leaching operat ion 

t o  check on the progress  of t o o l i n g  removal. 

I n j e c t o r  No. 2 showing how leaching progressed i n  t h e  e a r l y  s t a g e s  of t o o l i n g  

Figure 111-24 is a radiograph of 

removal. 

worked on t h e  f r e s h l y  exposed t o o l i n g  from t h e  c e n t e r  regions toward t h e  periphery.  

The f u e l  channel t o o l i n g  w a s  removed from t h e  s i d e s ,  s t a r t i n g  with t h e  t o o l i n g  

r ing ,  and t h e  a c i d  worked inward on t h e  fuel-channel p l a t e  c e n t e r  regions.  

Figure 111-25 shows I n j e c t o r  No. 1 a f t e r  leaching had progressed about 4 weeks. 

Most of t h e  fuel-channel t o o l i n g  had been removed at t h i s  s t a g e  and many of t h e  

fuel-channel ho le s  i n  t h e  f a c e  were open. 

had no t  been removed a t  t h i s  s t a g e  i n  t h e  leaching ope ra t ion  although about 12 o r  

13 ox-channel ho le s  (out of a t o t a l  of 37) were open t o  t h e  i n j e c t o r  face.  

The ox-channel t o o l i n g  was removed from the  c e n t e r  f i r s t ,  and t h e  a c i d  

Most of t h e  ox-channel t o o l i n g ,  however, 

The radiographs ind ica t ed  t h a t  t he  t o o l i n g  p ins  remained s t r a i g h t  

du r ing  the  compaction processes and t h a t  t he  alignment of t he  fuel-channels with 

t h e  ox-channels showed no change from the  assembled alignment. 

A f t e r  leaching w a s  terminated, t he  f a c e  of each i n j e c t o r  w a s  ground 

f l a t  and smooth t o  provide a s u i t a b l e  su r face  on which t o  place s e a l i n g  f i x t u r e s  

f o r  t h e  helium l e a k  t e s t .  The s e a l i n g  f lange shown i n  Figure 111-26 w a s  f i t t e d  

with a 1/8- in . - thick neoprene p l a t e  then clamped t o  t h e  i n j e c t o r  f ace  p l a t e  t o  

seal off  t h e  flow ho le s  i n  t h e  f ace .  Both channel systems were then evacuated 

t o  e f f e c t  and test t h e  seal. One system, t h e  fuel-channel system, w a s  then 

back- f i l l ed  with helium while  t h e  o the r  system, t h e  ox-channel system, was 
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FIGURE 111-24. RADIOGRAPH SHOWING PROGRESS OF LEACHING 
I N  INJECTOR NO. 2 AT EARLY STAGE 
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FIGURE 111-25. RADIOGRAPH SHOWING PROGRESS OF LEACHING I N  INJECTOR 
NO. 1 AT LATE STAGE 
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FIGURE 111-26. LEAK TESTING FLANGE 
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evacuated through a helium l e a k  d e t e c t o r .  

system i n  I n j e c t o r  No. 1 which w a s  n o t  f u l l y  dense. No leaks could be de tec t ed  

i n  I n j e c t o r  No. 2. The n i c k e l  i n  t h i s  specimen achieved f u l l  d e n s i f i c a t i o n  t o  

a t  least 97 percent  of t h e o r e t i c a l  dens i ty .  

H e l i u m  penetrated i n t o  the  ox-channel 

Flow tests were conducted on I n j e c t o r  No. 1 with water a t  t h r e e  d i f f e r e n t  

flow rates. 

water without c o n s t r i c t i o n  through a l l  62 ho le s  and a t  uniform he igh t s  above 

t h e  i n j e c t o r  f ace .  The flow w a s  perpendicular  t o  the  f a c e  i n  a l l  ca ses .  The 

flaw channels and ho le s  r ep resen t ing  t h e  ox id ize r  system e j e c t e d  water without 

c o n s t r i c t i o n  i n  31 of t h e  37 ho le s ;  t h e  streams i n  t h e  31 nonconstr ic ted holes  

were e j e c t e d  e x a c t l y  perpendicular  t o  t h e  f a c e  and a t  r e l a t i v e l y  uniform he igh t s  

above t h e  f a c e  of t h e  i n j e c t o r .  The c o n s t r i c t i o n  i n  6 ho le s  located a t  t h e  

edge of t he  i n j e c t o r  was due t o  r e s idue  steel i n  the  passageways. Flow tests 

were no t  conducted on I n j e c t o r  Specimen N o ,  2 because of obvious impediments t o  

flow by r e s i d u a l  t o o l i n g  i n  s e c t i o n s  of t h e  flow channels.  

The flow channels and holes  r ep resen t ing  t h e  f u e l  system e j e c t e d  

Des t ruc t ive  t e s t i n g  w a s  conducted on I n j e c t o r  No. 1 by c u t t i n g  through 

s e c t i o n s  "B-B" and "E-E" de f ined  i n  Figure 1-3. Density measurements on loca l i zed  

s e c t i o n s  were conducted and t h e s e  resu l t s  are summarized i n  Table 111-2. The 

mic ros t ruc tu re  i n  s e l e c t e d  regions w a s  examined t o  show t h e  gene ra l  s t r u c t u r e .  

A t y p i c a l  mic ros t ruc tu re  is shown i n  Figure 111-27. Hardness tests were conducted 

by traverses a c r o s s  s u r f a c e s  of t h e  sect ioned pieces .  The hardness test r e s u l t s  

are t abu la t ed  i n  Table 111-3. Tens i l e  ba r s  were not  f a b r i c a t e d  from I n j e c t o r  

No. 1 s e c t i o n s  because of t he  obvious low d e n s i t y  i n  t h e  s t r u c t u r e .  

In spec t ion  of t he  sect ioned pieces  f o r  dimensional c o n t r o l  and a1ig;nment 

of t h e  i n t e r n a l  flow channels provided t h e  d a t a  t abu la t ed  i n  Table 111-4. 

Macrographs of t h e  sect ioned pieces  of I n j e c t o r  No. 1 are shown i n  Figures  

111-28 and -29. 
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TABLE 111-2.  DENSITY DETERMINATIONS I N  NICKEL 
INJECTOR NO. 1 1  . 

P o s i t i o n  
- 

Average Density Percent  of Theore t i ca l  

Center Region 8.13 91.3 

Quadrant Containing Fuel 
Holes 7.80 87.7 

Quadrant Away From Fuel Hole 7.57 

Along Rim , 8.14 

85.0 
91.5 
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150X Etched 2E009 

FIGURE 111-27. MICROSTRUCTURE OF DENSIFIED NICKEL 
POWDER I N  INJECTOR NO. 1 

The n i c k e l  w a s  about 90 percent  i n  
t h i s  specimen because of a l e a k  
t h a t  developed i n  the  con ta ine r  during 
hot- i s o s t a t i c  compact ion.  
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TABLE 111-3. HARDNESS TEST RESULTS ON SECTIONS 
FROM INJECTOR NO. 1 

RB (100 Kg load) ,  

P o s i t i o n  Average of 5 Readings 

Center Region 

Quandrant with Fuel Holes 

Along R i m  

Overall Average 

13 

12 

17 

14.5 

Low hardness va lues  are a r e s u l t  of low d e n s i t y  of 
compacted n i c k e l  powder i n  I n j e c t o r  No. 1. I n  components 
with adequately d e n s i f i e d  n i c k e l  powder, t he  R hardness 
i s  about 65. B 
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TABLE 111-4. SUMMARY OF DIMENSIONAL ANALYSES AND 
ALIGNMENT INSPECTION OF INTERNAL CHANNELS 
I N  INJECTOR NO. 1 

(1) Spacing of 0.82 in .  between ox-hole channels was  maintained t o  w i t h i n  

k0.02 i n .  except a t  s i d e s .  

due t o  p re s su re  g rad ien t  i n  t h i s  area during h o t - i s o s t a t i c  compaction. 

Ox-hole channels a t  s i d e s  were bent  excess ive ly  

(2) The low d e n s i t y  i n  I n j e c t o r  Specimen No. 1 r e s u l t e d  i n  e ros ion  of channels 

during t o o l i n g  removal and vapor spray c l ean ing  of su r faces  f o r  macro- 

photographs. 

were 0.068 t o  0.071 in .  d i a  a t  t h e  f ace .  The f u e l  ho le  channels a t  t h e  f a c e  

were 0.047 t o  0.049 i n .  i n  d i a .  Otherwise, channel dimensions i n t e r n a l l y  

were held t o  w i t h i n  kQ.015 i n .  

The fuel-channel p l a t e  remained s t r a i g h t  t o  w i t h i n  k0.005 i n .  The ox- 

channel p l a t e  was s t r a i g h t  with no d e t e c t a b l e  camber. 

Thickness of ox-hole channels measured on an ad jacen t  s e c t i o n  

(3) 

(4) Close alignment t o  w i t h i n  kO.01 i n .  of the ox-hole channels with r e spec t  

t o  t h e  fuel-hole  channels w a s  maintained i n  t h e  c e n t e r  regions.  On the  

o u t e r  regions,  t h e  d i s t o r t i o n  of t h e  ox-hole channels caused a misalignment 

from the  s p e c i f i e d  l o c a t i o n  of about 0.2 i n .  

Radial  dimensions of t h e  fuel-channel r i n g  and o v e r a l l  diameter were held 

t o  w i t h i n  k0.02 i n .  

e x t e r i o r  s u r f a c e s  w a s  under s p e c i f i e d  dimensions by 0.2 in .  

(5) 
The o v e r a l l  h e i g h t  of t h e  i n j e c t o r  a f t e r  machining the  

The he igh t  

of t h e  i n j e c t o r s  as-bonded was 3.12 t o  3.18 i n .  b u t  had t o  be reduced t o  

expose the  d i s t o r t e d  ox-channel t o o l i n g  p ins  on t h e  s i d e s .  

(6) Surfaces  of t h e  channel cavit ies were smooth and showed no d e t e c t a b l e  

impediments t o  flow except i n  several ho le  channels where t h e  steel  t o o l i n g  

i n  the small diameter ho le s  was no t  completely leached out .  
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FIGURE 111-29. MACROSTRUCTURE OF SECTIONED NICKEL 
INJECTOR NO. 1 ALONG SECTION PLANE 
"E-E", 
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DISCUSSION OF RESULTS 

B o r o s i l i c a t e  g l a s s  w a s  s e l e c t e d  f o r  t h e  copp r b a f f l  t 01 i g material 

because it  had t h e  b e s t  combination of p r o p e r t i e s  f o r  t h i s  a p p l i c a t i o n .  S i l i c a  

g l a s s  could not  be s e l e c t i v e l y  removed as quickly as b o r o s i l i c a t e  g l a s s .  The 

lead g l a s s  r eac t ed  with copper a t  1000 F and l e f t  a rough s u r f a c e  i n  t h e  flow 

channels.  The b o r o s i l i c a t e  g l a s s  was s t a b l e  a t  1000 F and h ighe r ,  d i d  not  react 

o r  i n t e r d i f f u s e  with copper, and it  l e f t  a smooth su r face  on t h e  flow channels.  

Commercially pure aluminum required a d i f f u s i o n  b a r r i e r  t o  prevent i t s  a l l o y i n g  

with copper; however,even with t h e  chromium p r o t e c t i v e  c o a t i n g  i ts  use w a s  l imi t ed  

t o  1000 F. Above t h a t  temperature,  t he  b a r r i e r  d e t e r i o r a t e d  and r e s u l t e d  i n  

ex tens ive  i n t e r a c t i o n  between t h e  copper and aluminum t o o l i n g .  The b o r o s i l i c a t e  

g l a s s  required no p r o t e c t i v e  b a r r i e r  and was useable t o  a t  least  1200 F. Low 

carbon s tee l  w a s  s e l e c t e d  as a back-up t o o l i n g  material f o r  t he  copper b a f f l e s .  

While s t ee l  m e t  a l l  t o o l i n g  requirements,  it could not  be removed from copper as 

quickly as t h e  b o r o s i l i c a t e  g l a s s .  

Seve ra l  o the r  f a c t o r s  entered i n t o  t h e  s e l e c t i o n  of t h e  b o r o s i l i c a t e  

g l a s s  as t h e  optimum t o o l i n g  material f o r  t h e  copper b a f f l e s .  The g l a s s  could 

be formed and shaped t o  any d e s i r e d  conf igu ra t ion ,  and, f o r  production purposes, 

c a s t i n g  of t h e  t o o l i n g  shapes i n t o  one o r  two i n t e g r a l  p i eces  would be more 

economical than machining many sepa ra t e  pieces .  S t e e l  t o o l i n g  had t h e  advantage 

of maintaining p r e c i s e  dimensions during h o t - i s o s t a t i c  compaction, but  although 

t h e  g l a s s  became s o f t  a t  the compaction temperatures and could not r e t a i n  i t s  

p r e c i s e  shape, t h e  loss  i n  p r e c i s i o n  w a s  n e g l i g i b l e .  The only t i m e  t h a t  l o s s  of 

t o o l i n g  shape w a s  s i g n i f i c a n t  w a s  when the  t o o l i n g  r eac t ed  o r  a l loyed excessively 

wi th  t h e  copper as d i d ,  f o r  example, t he  lead g l a s s  and the  chromium-coated aluminum 

t o o l i n g .  Another f a c t o r  t h a t  l ed  t o  t h e  choice of g l a s s  f o r  t he  t o o l i n g  w a s  the 
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absence of r e s idue  products a f t e r  leaching. 

e l iminated because they l e f t  a r e s idue  of t he  products of chemical leaching. These 

Many p o t e n t i a l  t o o l i n g  materials were 

products would have accumulated i n  the  channels and poss ib ly  r e s t r i c t e d  o r  c u t  

o f f  t h e  flow through t h e  channels.  The g l a s s  and steel  materials could be 

removed from t h e  b a f f l e  channels without any such accumulation. 

Commercially pure aluminum, low carbon s teel ,  and calcium were t h r e e  

materials t h a t  were s e l e c t e d  f o r  t o o l i n g  i n  the n i c k e l  i n j e c t o r s .  Low carbon 

steel w a s  s e l e c t e d  t o  make t h e  t o o l i n g  f o r  f u l l - s c a l e  simulated i n j e c t o r s ,  but  

t h e  long times required t o  completely remove t h e  steel from these  components 

proved t o  be imprac t i ca l .  Otherwise, t h e  steel  w a s  a s a t i s f a c t o r y  t o o l i n g  materia'f. 

It w a s  compatible with n i c k e l ,  l e f t  smooth s u r f a c e s  on t h e  flow channels,  and 

could be s e l e c t i v e l y  removed from t h e  n i c k e l .  Aluminum w a s  i n i t i a l l y  used with 

a chrome-coating f o r  a d i f f u s i o n  b a r r i e r .  Th i s  'barrier coa t ing  was subsequently 

e l imina ted  a f t e r  i t  was determined t h a t  t he  nickel-aluminide i n t e r m e t a l l i c s  

formed a t  t h e  i n t e r f a c e  were e f f e c t i v e  i n  prevent ing g ross  r e a c t i o n s  between 

t h e  aluminum and n i c k e l .  The aluminum would have been used as the  i n j e c t o r  

t o o l i n g  material except f o r  two f a c t o r s .  Dens i f i ca t ion  of the n i c k e l  powder 

required t h a t  h o t - i s o s t a t i c  compaction be conducted nea r  t h e  melt ing point  of 

aluminum. Secondly, t h e  b r i t t l e  i n t e r m e t a l l i c s  formed a t  the  n i c k e l  s u r f a c e s  

were considered poss ib l e  sources  of cracks during i n j e c t o r  operat ion.  

I n  the  subscale  i n j e c t o r  specimens, t h e  aluminum t o o l i n g  deformed no 

more than steel t o o l i n g  i n  corresponding p a r t s  of t h e  specimens even though t h e  

aluminum was  p a r t i a l l y  molten. The shape of t h e  aluminum t o o l i n g  was n e g l i g i b l y  

d i s t o r t e d .  The s h e l l  of i n t e r m e t a l l i c  compounds confined the  aluminum and 

apparent ly  con t r ibu ted  t o  maintaining i t s  shape. However, t h e  aluminum t o o l i n g  

w a s  t r i e d  i n  only one subsca le  i n j e c t o r ,  and t h e r e f o r e  t h e r e  was no g r e a t  assurance 

t h a t  t h e  t o o l i n g  shapes could be s i m i l a r l y  reproduced. However, i f  t h i s  had been 
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t h e  only ob jec t ion  t o  aluminum, a s t r o n g  recommendation t o  make a t  least  one f u l l  

s c a l e  i n j e c t o r  with aluminum t o o l i n g  would have been j u s t i f i e d .  

The second ob jec t ion  t o  t h e  use of aluminum t o o l i n g  was the  b r i t t l e  

bluminide l aye r s  r e t a i n e d  on t h e  chann urfaces  a f t e r  t he  aluminum was removed 

by leaching i n  1 N  NaOH. Attempts were made t o  remove t h e  aluminide l a y e r s  but 

were no t  success fu l  u n t i l  a f t e r  Task 111 was committed t o  t h e  f a b r i c a t i o n  of 

f u l l  s i z e d  i n j e c t o r s  with the  s tee l  too l ing .  The aluminum-rich aluminide l a y e r  

was removed i n  8 N  NaOH s o l u t i o n ,  and the  n i c k e l - r i c h  aluminide l a y e r  w a s  then 

removed i n  a 25 percent  H2S04 s o l u t i o n .  

t he  i n t e r f a c e  showed no d e t e c t a b l e  change i n  hardness due t o  aluminum i n  s o l i d  

s o l u t i o n  with n i c k e l .  The amount of aluminum t h a t  i s  i n  s o l u t i o n  with n i c k e l  

Microhardness tests i n  the  n i c k e l  near  

is no more than 10 a / o  (- 5 w/o), and the whole Ni -A1  s o l i d  s o l u t i o n  r eg ion  is 

contained wi th in  0.001 i n .  of t he  i n t e r f a c e .  Thus, t h e  only ob jec t ions  t o  t h e  

use of aluminum are: (1) it has  n o t  been used i n  a f u l l  s c a l e  i n j e c t o r  and (2) a 

s m a l l  amount of aluminum is i n  t h e  s o l u t i o n  with n i c k e l  nea r  t h e  i n t e r f a c e .  

Calcium was the t h i r d  ranking too l ing  material f o r  t h e  n i c k e l  i n j e c t o r s .  

I ts  use w a s  considered p r imar i ly  because of t he  very f a s t  r e a c t i o n  rates with t a p  

water. The most s e r i o u s  ob jec t ions  t o  calcium were (1) t h e  calcium had t o  be 

coated o r  encapsulated with a b a r r i e r  l a y e r  t o  prevent r e a c t i o n  with.  

during h o t - i s o s t a t i c  compaction, and (2) calcium ingots  were not  a v a i l a b l e  i n  

s u i t a b l e  shapes t o  f a b r i c a t e  the  too l ing  d i r e c t l y  from the  c a s t  ingots .  An i r o n  

or low carbon steel sheath proved t o  be an e f f e c t i v e  b a r r i e r .  The rea l  promise 

of calcium i s  i n  i t s  use  i n  t h e  t h i c k e r  p a r t s  of the t o o l i n g  p i eces ,  such as the  

t o o l i n g  p l a t e s  and the  fuel-channel t o o l i n g  r i n g .  These p a r t s  could be f a b r i c a t e d  

from calcium metal, placed i n  a t h i n  sheath of i r o n  o r  s t e e l ,  then assembled with 

o the r  t o o l i n g  p a r t s  f a b r i c a t e d  from s t ee l  o r  aluminum. A f t e r  compacting the  
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n i c k e l  powder around the  t o o l i n g ,  t h e  l a r g e r  s e c t i o n s  of t he  t o o l i n g  can be removed 

very r a p i d l y  by exposing t h e  calcium and removing it i n  water. This would c u t  

down t h e  leaching t i m e  t o  one-tenth compared t o  s tee l  removal times and t o  one-half 

compared t o  aluminum removal t i m e s  

Dimensional c o n t r o l  and alignment were f a c t o r s  t h a t  a t  f i r s ' t  appeared 

t o  be dependent on t h e  e l eva ted  temperature mechanical p r o p e r t i e s  of t he  t o o l i n g  

material. 

on t h e  f i x t u r i n g  and con ta ine r  design and independent of t h e  t o o l i n g  material 

These f a c t o r s  were subsequently found t o  be almost completely dependent 

p r o p e r t i e s .  For example, t he  amount of bending observed i n  t o o l i n g  p i eces  of 

t h r e e  d i f f e r e n t  materials w i t h i n  subscale  b a f f l e  specimens w a s  t h e  same, r ega rd le s s  

of t h e  m a t e r i a l .  The bending i n  t h e s e  specimens w a s  due t o  anomalies i n  t h e .  

powder flow during compaction, and n o t  because any one t o o l i n g  material had less 

r e s i s t a n c e  t o  deformation than t h e  o the r s .  To keep t h e  t o o l i n g  i n  p o s i t i o n  and' 

maintain s a t i s f a c t o r y  alignment w i t h i n  t h e  powder during compaction, it w a s  

necessary t o  change only process procedures, t h e  design of t he  f i x t u r e ,  t h e  

l o c a t i o n  of t o o l i n g  with r e spec t  t o  t h e  frames, o r  t he  con ta ine r  design,  but  no t  

t h e  t o o l i n g  material. A t y p i c a l  case w a s  t he  compaction of copper powder around 

t h e  t o o l i n g  i n  b a f f l e  components. 

p r imar i ly  t o  prevent f r a c t u r e  of the g l a s s  t o o l i n g ,  but  the s t e e l - a n d  aluminum 

t o o l i n g  deformed as much as t h e  g l a s s  t o o l i n g  during t h i s  compaction process.  

The g l a s s  simply cracked when i t  was deformed beyond i t s  f r a c t u r e  s t r e n g t h  while  

Hydropressing w a s  conducted a t  20,000 p s i  

t h e  aluminum and s teel  t o o l i n g  p i eces  underwent permanent s t r a i n  when deformed 

beyond the  e las t ic  l i m i t .  The amount of deformation w a s  p r a c t i c a l l y  t h e  same i n  

each t o o l i n g  material. Prevent ing t h i s  d i s t o r t i o n ,  o r  a t  least reducing it t o  

t o l e r a b l e  l i m i t s ,  required design changes t h a t  were common t o  a l l  b a f f l e  components, 

r ega rd le s s  of t o o l i n g  material. The p o s i t i o n  of t h e  t o o l i n g  w i t h i n  t h e  powder had 
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t o  be al igned along a cen te r  plane t h a t  w a s  symmetrical t o  t h e  compaction d i r e c t i o n .  

If t h e  too l ing  w a s  not  placed wi th in  about 0.03 in .  of t h i s  cen te r  plane,  the  

t o o l i n g  became warped dur ing  powder compaction. The too l ing  pieces  near the  

frames were subjec ted  t o  nonuniform powder flow from high dens i ty  regions t o  

low dens i ty  regions.  This nonuniform flow could not  be e l imina ted ,  but  t h e  

p o s i t i o n  of t he  too l ing  p ieces  could be moved out of and away from these  r e g i w s .  

This  w a s ,  i n  f a c t ,  the  way d i s t o r t i o n  of t oo l ing  p ieces  i n  the  f u l l - s c a l e  b a f f l e  

components w a s  e l imina ted .  A change i n  the  too l ing  material would have accomplished 

l i t t l e  i n  t h i s  regard.  

The s e l e c t i o n  of s u i t a b l e  temperatures,  p ressures ,  and t i m e s  f o r  ho t  

i s o s t a t i c  Compaction were i n i t i a l l y  based on r e s u l t s  of h o t  p re s s ing  experiments 

conducted on copper and n i c k e l  powders. To reduce t h e  number of experimental  

parameters,  t he  pressure  was f ixed  a t  10,000 p s i .  Higher pressures  could have 

been used i f  they had been requi red ;  the  c a p a b i l i t y  f o r  higher  pressures  up t o  

15,000 p s i  ex is t s  s o  f a r  as the  f a b r i c a t i o n  of f u l l - s c a l e  b a f f l e s  and i n j e c t o r s  

i s  concerned. The lower temperature l i m i t  w a s  t h a t  needed t o  produce a dense,  

m e t a l l u r g i c a l l y  bonded s t r u c t u r e .  To dens i fy  and bond copper powder, a temperature 

of 1000 F w a s  regarded as t h e  lower l i m i t  with corresponding pressures  of 10,000 

p s i  and press ing  t i m e s  of a t  least 1 h r .  Copper b a f f l e s  conta in ing  g l a s s  t oo l ing  

l 

were a c t u a l l y  compacted a t  1200 F and 10,000 p s i  f o r  3 h r  a f t e r  determining t h a t  

no adverse r eac t ions  occurred between the  too l ing  and copper a t  these condi t ions .  

To dens i fy  and bond t h e  n i c k e l  powder, a temperature of 1200 F w a s  regarded as 

the  lower l i m i t  wi th  corresponding pressrtres of 10,000 p s i  and t i m e s  of 3 h r .  

Subscale n i c k e l  i n j e c t o r s  conta in ing  aluminum too l ing  were f ab r i ca t ed  i n t o  dense,  

well-bonded s t r u c t u r e s  a t  these  cond i t ions ,  and f u l l  s ize  i n j e c t o r  components wi th  

I 

steel  too l ing  were f ab r i ca t ed  a t  1300 F and 10,000 p s i  f o r  4 h r  t o  dense,  w e l l -  

bonded s t r u c t u r e s .  The temperature and t i m e  of compaction f o r  t h e  f u l l  s i zed  
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i n j e c t o r s  were r a i s e d  t o  in su re  t h a t  a l l  p a r t s  of t h e  massive s t r u c t u r e  were 

heated t o  a t  least t h e  minimum condi t ions.  The higher  temperature l i m i t s  were 

set by t h e  tooling-base m e t a l  compa t ib i l i t y  and t h e  melt ing p o i n t  of t h e  t o o l i n g  

material. These higher  temperatures were approached o r  s l i g h t l y  exceeded i n  

t h e  case of g l a s s ,  which s o f t e n s  around 1200 F, of aluminum, which melts a t  

about 1220 F, and calcium, which melts a t  about 1540 F bu t  reacts with t h e  

base metals a t  lower temperatures.  

The s e l e c t i o n  of t h e  base metal powders f o r  t he  copper b a f f l e s  and 

n i c k e l  i n j e c t o r s  w a s  made a f t e r  a l a r g e  number of experiments had been performed 

r e l a t i n g  powder p r o p e r t i e s  t o  green s t r e n g t h ,  f i n a l  d e n s i t y ,  f i n a l  mechanical 

p r o p e r t i e s  and m i c r o s t r u c t u r a l  c h a r a c t e r i s t i c s .  It w a s  apparent a f t e r  t hese  

tests t h a t  t he  most s u i t a b l e  powders f o r  t h e  f a b r i c a t i o n  of t hese  components 

by h o t - i s o s t a t i c  compaction techniques had t h e  following comon c h a r a c t e r i s t i c s  : 

(1) a high s p e c i f i c  s u r f a c e  area, (2) a f i n e  p a r t i c l e  s i z e ,  (3) s m a l l  scatter 

i n  p a r t i c l e  s ize  d i s t r i b u t i o n ,  and ( 4 )  low i n t e r p a r t i c l e  po ros i ty .  The f irst  

two p r o p e r t i e s  produce hydropressed compacts with high green s t r e n g t h  and enhance 

t h e  rate of d e n s i f i c a t i o n  during h o t - i s o s t a t i c  compaction. The la t te r  two 

p r o p e r t i e s  produce mic ros t ruc tu res  t h a t  have a uniform g r a i n  s i z e  with l i t t l e  

o r  no po ros i ty .  I n t e r p a r t i c l e  po ros i ty  i n  t h e  loose p a r t i c l e s  is gene ra l ly  more 

d i f f i c u l t  t o  remove than i n t e r g r a n u l a r  po ros i ty ,  and while  i n t e r p a r t i c l e  po ros i ty  

would not r e s u l t  i n  i n t e rchanne l  leakage , such po ros i ty  does weaken t h e  s t r u c t u r e  

mechanically. 

Two copper b a f f l e s  were f a b r i c a t e d  from powder having a l l  of t h e  fou r  

p r o p e r t i e s  l i s t e d  above. Although one b a f f l e  f a i r e d  poorly i n  nondestruct ive 

and d e s t r u c t i v e  t e s t i n g  because of high po ros i ty ,  t h e  cause of t he  low d e n s i t y  

(less than 90 percent of t h e o r e t i c a l  dens i ty )  w a s  no t  a t t r i b u t a b l e  t o  t h e  powder 

bu t  due t o  f a i l u r e  of t h e  con ta ine r  enclosing t h e  powder du r ing  t h e  compaction 
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e second b a f f l e  f ab r i ca t ed  from the  same powder was success fu l ly  t e s t e d  

nondes t ruc t ive ly  and d e s t r u c t i v e l y .  

p rope r t i e s  t h a t  exceeded commercial wrought and annealed products .  

w a s  determined t o  be 98.8 f 0.6 of t h e o r e t i c a l .  It is noted t h a t  t h i s  d e n s i t y  

agrees  weill with the  pred ic ted  end-point d e n s i t i e s  ca l cu la t ed  from the  pressure' 

The copper i n  t h i s  b a f f l e  had mechanical 

I ts  d e n s i t y  

d e n s i t y  curves f o r  hot-pressed copper powder. 

Two n i c k e l  i n j e c t o r s  were f ab r i ca t ed  from powder having j u s t  two of 

t he  fou r  p rope r t i e s  s t i p u l a t e d  above. The s p e c i f i c  su r face  area of t he  s e l e c t e d  

n i c k e l  powder w a s  r e l a t i v e l y  low compared with o the r  powders s tud ied  i n  t h e  . 

program, and i t s  p a r t i c l e  s i z e  w a s  no t  as f i n e  a grade as w a s  ava i l ab le .  

i t s  impurity conten t  w a s  much lower, the  s i z e  d i s t r i b u t i o n  w a s  more uniform, t h e .  

i n t e r p a r t i c l e  po ros i ty  w a s  p r a c t i c a l l y  n i l ,  and the  f i n a l  micros t ruc ture  and 

Howevkr, 

d e n s i t y  i n  experimental  f a b r i c a t i o n  cyc les  were b e t t e r  than those achieved with 

o the r  n i c k e l  powders. Because of t he  l a r g e r  p a r t i c l e  s i z e  and low s p e c i f i c  

su r face  area, the  s e l e c t e d  n i c k e l  powder had l i t t l e  o r  no green s t r e n g t h  a f t e r  

hydropressing a t  o r  below 30,000 p s i .  This proved t o  be no disadvantage because 

the  hydropressing s t e p  w a s  even tua l ly  e l imina ted  completely. Hydropressing only 

cont r ibu ted  t o  t o o l i n g  d i s t o r t i o n ,  and the  process f o r  f a b r i c a t i n g  the  i n j e c t o r  

had t o  be modified t o  e l imina te  t h e  hydropressing cyc le .  

around t h e  too l ing ,  v i b r a t o r y  packed t o  about 57 percent  of i t s  t h e o r e t i c a l  

The powder w a s  loaded 
t 

d e n s i t y ,  then h o t - i s o s t a t i c a l l y  compacted. The r e s u l t a n t  dens i ty  using t h e  

powder descr ibed  above w a s  b e t t e r  than 98 percent .  

Severa l  des ign  changes were incorporated i n  the  f i x t u r i n g  of t oo l ing  i n  

t h e  copper b a f f l e s  t o  e l imina te  d i s t o r t i o n  and bending of t h e  too l ing .  A modifica- 

t i o n  i n  the  process  procedures w a s  necessary t o  maintain dimensional c o n t r o l  of 
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t h e  too l ing  p l a t e s  i n  t h e  n i c k e l  i n j e c t o r s .  I n  both cases ,  t he  changes were 

brought about by anomalies i n  t h e  symmetrical loading of t o o l i n g  i n  t h e  powder 

and i n  t h e  powder flow dur ing  compaction processes .  Tooling d i s t o r t i o n  i n  

t h e  subsca le  copper b a f f l e s  w a s  due t o  r e s t r i c t i o n s  i n  powder flow near  t h e  

p i c t u r e  frames enc los ing  and f i x i n g  the  t o o l i n g  p ieces .  Tooling p ieces  loca ted  

i n  t h i s  region tended t o  be pushed outward from the  c e n t e r  regions as the  powder 

i n  the  c e n t r a l  region d e n s i f i e d  and flowed i n t o  the  less dense s i d e  regions.  

Also, i f  t he  powder around the  t o o l i n g  was loaded unequally on e i t h e r  s i d e  of 

t h e  t o o l i n g  dur ing  compaction the  t o o l i n g  tended t o  r e l o c a t e  a long a plane t h a t  

was syrmnetrical t o  t he  compacted powder su r faces  but away from i t s  proper  loca t ion  

i n  the  s t r u c t u r e .  Unequal loading of powder around the  t o o l i n g  could occur 

from several sources  : (1) non-uniform v i b r a t o r y  packing d e n s i t i e s ;  (2) unsymmetrical 

loading of powder ad jacent  t o  the  too l ing ;  and (3) d i s l o c a t i o n  of t h e  t o o l i n g  

from its f i x t u r i n g  dur ing  loading  o r  hydropressing. 

The fuel-channel  t o o l i n g  p l a t e s  i n  t h e  subsca le  n i c k e l  i n j e c t o r s  

d i s t o r t e d  because the  p l a t e  w a s  not syrrnnetrically loca ted  with r e spec t  t o  the  

d i r e c t i o n  of powder flow. I n  t h e  f i r s t  a t tempt  with subsca le  components, t he  

fuel-channel  t o o l i n g  was f ixed  on its edge. Powder was  loaded above and below 

t h i s  p l a t e ,  and dur ing  compaction it was  expected t h a t  t he  powder would flow through 

*the void spaces i n  t h i s  p l a t e  and dens i fy  below as w e l l  as above the  too l ing  p l a t e .  

I n  f a c t ,  t h e  powder d i d  not  flow through t h e  voids .  The too l ing  p l a t e  simply 

followed t h e  flow p a t t e r n  of t h e  compacting powder. 

d i s t o r t  t he  p l a t e .  What con t r ibu ted  t o  the  gross  d i s t o r t i o n  was  t h e  edge 

f i x t u r i n g  of t he  t o o l i n g  p l a t e  on the  r i n g  of low carbon steel. It w a s  then 

reasoned t h a t  i f  t he  edge r e s t r a i n t s  were removed, t h e  e n t i r e  t o o l i n g  p l a t e  would 

be f r e e  t o  move along with the  powder dur ing  compaction. The t o o l i n g  p l a t e  w a s  

thus  placed on a r i n g  of hydropressed i r o n  powder. Some improvement was r e a l i z e d  

by t h i s  technique i n  the  modified subscale  n i cke l  i n j e c t o r s ,  bu t  t he  d i s t o r t i o n  

- 9  

This  i n  i t s e l f  d i d  not  
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i n  t o o l i n g  p l a t e  was s t i l l  beyond t o l e r a b l e  l i m i t s .  

i n  the fuel-channel t o o l i n g  p l a t e s ,  t he  powder below t h e  p l a t e  i n i t i a l l y  had 

To e l i m i n a t e  the  d i s t o r t i o n  

t o  be compacted t o  a high d e n s i t y  t o  provide an immoveable base upon which t o  

assemble the fuel-channel t o o l i n g  p l a t e .  The p l a t e  thus could not  move any more 

than t h e  dense powder below i t .  This procedure w a s  adopted i n  Task 111, and 

t h e  fuel-channel l oca t ions  i n  t h e  f u l l  s c a l e  i n j e c t o r s  were held t o  with f O . O 1  i n .  

of t h e  s p e c i f i e d  dimensions. 

D i s t o r t i o n  of t h e  ox-channel t o o l i n g  p ins  w a s  n o t  encountered i n  t h e  

subsca le  n i c k e l  i n j e c t o r s  but  w a s  de t ec t ed  du r ing  d e s t r u c t i v e  t e s t i n g  of t h e  

f u l l  scale i n j e c t o r  pieces .  Seve ra l  ox-channel t o o l i n g  pieces  near  t he  r i m  of 

t he  i n j e c t o r  bent outward, t h a t  i s ,  away from the  cen te r .  The cause of t h i s  

d i s t o r t i o n  w a s  s i m i l a r  t o  t h e  t o o l i n g  d i s t o r t i o n  i n  the  subscale  b a f f l e  components. 

Thick walled con ta ine r s  were used t o  enclose and seal t h e  n i c k e l  powder. By 

comparison, t h e  l i d s  on the  con ta ine r  were t h i n .  During h o t - i s o s t a t i c  compaction, 

t h e  l i d s  col lapsed f i r s t  and d e n s i f i e d  the  powder adjacent  t o  the  l i d s .  The 

t h i c k e r  w a l l s  of t he  con ta ine r  d i d  not  c o l l a p s e  u n t i l  la ter  i n  t h e  cycle .  For a given 

p res su re  and temperature of compaction, t he  powder ad jacen t  t o  the 

t h i c k  walls w a s  less dense than t h e  powder ad jacen t  t o  t h e  l i d s .  This d e n s i t y  

g rad ien t  l ed  t o  powder flow from the  h ighe r  d e n s i t y  regions t o  the  lower d e n s i t y  

regions,  and the ox-channel t o o l i n g  p ins  located i n  the  low d e n s i t y  regions near  

t h e  con ta ine r  w a l l  tended t o  move along with the  powder flow and bend outward. 

I n  regions away from t h e  c o n t a i n e r  w a l l ,  t h e  powder flow was d i r e c t e d  p a r a l l e l  

t o  t he  ox-tooling p ins  and the  p ins  remained s t r a i g h t .  To prevent t h e  p ins  nea r  

t h e  con ta ine r  from bending, i t  is necessary only t o  reduce fhe  w a l l  t h i ckness  

of t he  con ta ine r .  As shrinkage proceeds du r ing  h o t - i s o s t a t i c  compaction, t h e  

powder adjacent  t o  t h e  w a l l  w i l l  then compact t o  d e n s i t i e s  t h a t  are equ iva len t  
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t o  t h e  d e n s i t i e s  of t he  powder ad jacen t  t o  t h e  l i d s .  This w i l l  e l i m i n a t e  

d e n s i t y  g r a d i e n t s  nea r  t h e  w a l l  and w i l l  prevent t o o l i n g  d i s t o r t i o n .  

Maintaining a g a s - t i g h t  con ta ine r  around t h e  l a r g e  scale components 

du r ing  h o t - i s o s t a t i c  compaction proved t o  be one of t h e  problem areas t h a t  pre- 

cluded success fu l  f a b r i c a t i o n  and t e s t i n g  of two of t h e  four  component test  

pieces .  Although t h e  con ta ine r s  were c a r e f u l l y  checked f o r  pin-hole leaks and 

o t h e r  d e f e c t s  i n  the  welds and c o n t a i n e r  materials, l eaks  developed during hot-  

i s o s t a t i c  compaction.in several in s t ances ,  bu t  not from t h e  same causes.  I n  

t h e  f i r s t  cyc le  with t h e  b a f f l e  components, leaks developed i n  the  corners  of 

both con ta ine r s  where l a r g e  loca l i zed  deformation had occurred. One b a f f l e  

w a s  t e s t e d  a f t e r  t h i s  cyc le  bu t  had more than 10 percent  i n t e r g r a n u l a r  po ros i ty  

i n  t h e  copper matr ix ,  and test  r e s u l t s  were unfavorable. 

recanned i n  a con ta ine r  t h a t  was designed t o  reduce l o c a l i z e d  deformation a t  t h e  

co rne r s .  This  con ta ine r  remained g a s - t i g h t  during t h e  r ecyc le ,  t he  copper powder 

compacted t o  very high d e n s i t i e s ,  and t h e  b a f f l e  responded very favorable  during 

nondestruct ive and d e s t r u c t i v e  t e s t i n g .  

The o the r  b a f f l e  was 

The con ta ine r s  on t h e  f u l l  s c a l e  i n j e c t o r s  developed l eaks  from 

several sources .  An inden ta t ion  d e f e c t  i n  the  l i d  s u r f a c e  developed a l e a k  in  

one con ta ine r  during t h e  f i r s t  compaction cyc le .  Large and loca l i zed  deformation 

of t h e  t h i n  l i d  i n t o  a low d e n s i t y  region near  t h e  con ta ine r  w a l l .  caused leaks 

t o  develop i n  t h e  o t h e r  con ta ine r .  I n  a subsequent cyc le ,  a c rack  developed i n  

t h e  weld between t h e  con ta ine r  w a l l  and t h e  l i d .  In spec t ion  of t he  weld showed 

t h e  weld bead i n  t h i s  area w a s  put  down without s u f f i c i e n t  pene t r a t ion .  One 

of t h e  i n j e c t o r  components w a s  t e s t e d  even though a s m a l l  l e a k  had developed 

during t h e  compaction cyc le .  It w a s  f e l t  t h e  l e a k  had developed la te  i n  the  

c y c l e  a f t e r  t h e  n i c k e l  powder had achieved a s u f f i c i e n t l y  high d e n s i t y .  

t h i s  i n j e c t o r  subsequently w a s  found t o  have d e n s i t i e s  less than 92 percent  of 

t h e o r e t i c a l .  The helium l e a k  test f o r  i n t e rchanne l  leakage de tec t ed  apparent 

However, 
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leakage between the  b i -p rope l l an t  channels.  

i n j e c t o r  component remained g a s - t i g h t  during t h e  r ecyc le  and was s u c c e s s f u l l y  

f a b r i c a t e d  t o  d e n s i t i e s  of about 97 t o  98 percent of t h e o r e t i c a l .  During t h e  

helium l e a k  tes t ,  no in t e rchanne l  leaks were de tec t ed  i n  t h i s  i n j e c t o r  component. 

The con ta ine r  around t h e  second 

S e l e c t i v e  removal of t he  i n t e r n a l  t o o l i n g  from f a b r i c a t e d  components 

was no t  a problem t h a t  a f f e c t e d  t h e  performance o r  behavior of t h e  components 

du r ing  nondestruct ive t e s t i n g ,  bu t  i t  d i d  cause concern because of t he  long 

times required t o  completely remove a l l  t h e  too l ing ,  p a r t i c u l a r l y  i n  the f u l l  

s c a l e  i n j e c t o r s ,  and t o  a lesser e x t e n t  i n  the  f u l l  s c a l e  b a f f l e s .  Leach tests 

showed t h a t  t he  g l a s s  i n  t h e  b a f f l e s  w a s  removable a t  a rate of 0.019 in .  per  

h r .  The longest  e f f e c t i v e  length of t o o l i n g  i n  the  b a f f l e s  was s l i g h t l y  over 

4 i n .  By leaching from both ends simultaneously,  i t  was expected t h a t  t he  t o o l i n g  

could be completely removed i n  about 200 h r  o r  less than 10 days.  I n  one b a f f l e ,  

t h e  g l a s s  w a s  completely removed i n  about 1 7  days. I n  t h e  second b a f f l e ,  

complete removal of t h e  g l a s s  took t h r e e  times as long. The slow leaching rate 

of g l a s s  i n  t h e  second b a f f l e  w a s  caused by p a r t i a l  c losu re  of t he  channels ,  

F i r s t ,  a number of t h e  s m a l l  d iameter  channels a t  the  t o p  of t h e  ba'ffle had been 

s l i g h t l y ,  but f u r t h e r ,  reduced i n  diameter du r ing  h o t  i s o s t a t i c  compaction. This  

l e f t  an a l r eady  s m a l l  entrance even smaller f o r  t h e  leaching s o l u t i o n  t o  pene t r a t e ,  

d i s p l a c e ,  and expe l  spen t  s o l u t i o n .  

en t r ances  t o  the  i n t e r n a l  b a f f l e  channeling. Some of t h e  copper powder had 

extruded i n t o  t h e  s m a l l  c l ea rance  gaps between assembled g l a s s  t o o l i n g  pieces  

and p a r t i a l l y  c losed o f f  t h e  flow channel. The c o n s t r i c t i o n  i n  t h e  upper channels 

The same problem occurred near  t h e  bottom 

and t h e  copper f l a s h i n g  p a r t i a l l y  c l o s i n g  off t he  lower channels were removed by 

i n j e c t i n g  an e t c h  s o l u t i o n  f o r  copper i n t o  the  channels.  The e t chan t  opened up 
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t h e  channels s a t i s f a c t o r i l y  and removed 0.001 i n .  from t h e  channel su r f aces  

i n  the  process .  The removal of t he  remaining g l a s s  t o o l i n g  was then completed 

w i t h i n  3 a d d i t i o n a l  days. 

When it came t o  s e l e c t i v e l y  removing t h e  s teel  from f a b r i c a t e d  

components, t he  low carbon steel  t o o l i n g  i n  t h e  n i c k e l  i n j e c t o r s  presented a 

d i f f e r e n t  problem. The removal rate f o r  s t ee l  with 25 percent  su lphur i c  a c i d  

s o l u t i o n  w a s  determined t o  be 0.008 in .  pe r  h r .  The longes t  e f f e c t i v e  t o o l i n g  

length i n  t h e  i n j e c t o r  w a s  es t imated t o  be s l i g h t l y  g r e a t e r  than 5-5/8 i n .  

f o r  t h e  ox-channel t o o l i n g  system. The longest  e f f e c t i v e  length of t o o l i n g  

i n  the  fuel-channel t o o l i n g  system was  similar,  about 5-7/8 i n .  However, t h e  

much s h o r t e r  (1/4 i n . )  p in  length i n  the  f u e l  channels w a s  removed r a p i d l y ,  

and c e n t r a l  po r t ions  of t h i s  t o o l i n g  p l a t e  were p a r t i a l l y  dissolved by t h e  

a c i d  pene t r a t ing  through t h e  channel openings i n  t h e  f a c e .  This reduced t h e  

e f f e c t i v e  fuel-channel t o o l i n g  length t o  about 2 i n .  Due t o  t h e  longer lengths  

of t he  p ins  i n  t h e  ox-channel t o o l i n g  (1-5/8 in . )  t h e  opening up of t h e s e  

ho le s  through t h e  f a c e  con t r ibu ted  l i t t l e  t o  reducing the  e f f e c t i v e  t o o l i n g  

length t o  be leached. A t  b e s t ,  t h i s  length could be reduced t o  4 i n .  Thus, 

t h e  f u e l  channel t o o l i n g  w a s  expected t o  be leached out  w i t h i n  250 h r  o r  11 days,  

wh i l e  t h e  ox-channel t o o l i n g  was expected t o  t ake  500 h r  o r  21  days. 

With t h e  leaching apparatus  used i n  the  program, c o n s i s t i n g  of a r o t a r y  

pump and c e n t r i f u g e  pump t o  r e c i r c u l a t e  t he  a c i d  and f o r c e  f r e s h  a c i d  s o l u t i o n  

i n t o  the channels,  s a f e t y  procedures d i c t a t e d  t h a t  t h e  pumps be i n  operat ion only 

when at tended by capable personnel.  

operat ion w a s  thus l imi t ed  t o  a maximum of 10 h r  per  day. This provided an 

average of 180 h r  of leaching t i m e  pe r  month not  including the  t i m e  required t o  

Because of c o s t  cons ide ra t ions ,  t h e  pumping 

change and recharge t h e  ba th  with f r e s h  s o l u t i o n .  

was est imated t h a t  t he  f u e l  channel t o o l i n g  could be removed i n  about 1-1 /2  months 

Under t h e s e  cond i t ions ,  it 

while  t he  ox-channel t o o l i n g  would probably t ake  about 2-3/4 months. I n  a c t u a l i t y ,  
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t h e  fuel-channel t o o l i n g  was removed i n  about 2-1/2 months; t he  ox-channel t o o l i n g  

was t ak ing  about 3 - 1 / 2  months t o  remove completely, bu t  leaching w a s  terminated 

due t o  t i m e  l i m i t a t i o n s  and i n  o rde r  t o  proceed t o  nondestruct ive and d e s t r u c t i v e  

t e s t i n g  . 
With a s u i t a b l e  leaching apparatus  t h a t  can be s a f e l y  and economically 

operated 24 h r  a day, t h e  s teel  t o o l i n g  i n  t h e  n i c k e l  i n j e c t o r s  can be completely 

removed i n  less than a month. This leaching t i m e  can be reduced considerably 

by (1) using aluminum t o o l i n g  and removing it  with 8 N NaOH s o l u t i o n ,  o r  ( 2 )  

using calcium t o o l i n g  enclosed i n  a s teel  s h e l l  f o r  t h e  l a r g e r  s e c t i o n s  of 

t o o l i n g  and removing t h e  calcium rap id ly  i n  t a p  water followed by removal of 

t he  remaining s teel  t o o l i n g  s h e l l  and p ins  with t h e  25 percent  H 2 S 0 4  s o l u t i o n .  
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(1) F u l l  scale simulated rocke t  engine components conta in ing  i n t r i c a t e  i n t e r n a l  

f law channels were s u c c e s s f u l l y  f a b r i c a t e d  from powder around s e l e c t i v e l y  

removable t o o l i n g  wi th  c l o s e  dimensional c o n t r o l .  Nondestructive and 

d e s t r u c t i v e  tests and eva lua t ions  gave ve ry  favorable  resul ts .  

(a) Pressure  tests of t h e  s imulated copper b a f f l e  was s u c c e s s f u l l y  

accomplished a t  h y d r o s t a t i c  pressures  of 700 p s i  and h igher  f o r  5 

min. The copper powder achieved d e n s i t i e s  h ighe r  than 98 percent  

of t h e o r e t i c a l  d e n s i t i e s  and mechanical p r o p e r t i e s  t h a t  were equiva len t  

o r  b e t t e r  than commercially pure wrought and annealed copper products.  

H e l i u m  l e a k  tests of t h e  simulated n i c k e l  i n j e c t o r  was accomplished (b) 

with no d e t e c t a b l e  leakage between t h e  b ip rope l l an t  channel systems. 

The n i c k e l  powder achieved d e n s i t i e s  h igher  than  97 percent  of t h e o r e t i c a l  

d e n s i t y  . 
(2) B o r o s i l i c a t e  g l a s s  had t h e  b e s t  combination of p r o p e r t i e s  f o r  t h e  t o o l i n g  

material used i n  simulated copper b a f f l e s .  Low carbon steel can be used 

as an a l t e r n a t e  t o o l i n g  material. 

Low carbon steel  had a reasonably good combination of p r o p e r t i e s  f o r  t o o l i n g  

i n  t h e  n i c k e l  i n j e c t o r  except  f o r  t he  slow leaching rate. The a l t e r n a t e  

t o o l i n g  materials f o r  t he  s imulated n i c k e l  i n j e c t o r  are (a) commercially 

pure aluminum, and (b) calcium. Aluminum and calcium can be s e l e c t i v e l y  

removed much f a s t e r  than t h e  steel t o o l i n g  but  are l imi t ed  t o  the  lower 

processing temperatures because of t h e i r  mel t ing  p o i n t s  o r  adverse r eac t ions  

wi th  n i cke l .  

(3) 
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( 4 )  Dimensional c o n t r o l  and alignment were found t o  be dependent only on t h e  

f i x t u r i n g ,  t he  t o o l i n g  l o c a t i o n  wi th in  t h e  powder, and con ta ine r  design 

and independent of the mechanical p r o p e r t i e s  of t h e  t o o l i n g  material. 

The most s u i t a b l e  powders f o r  t he  f a b r i c a t i o n  of rocke t  engine components 

by h o t - i s o s t a t i c  compaction had the  following p r o p e r t i e s :  

(a) a high s p e c i f i c  s u r f a c e  area, 

(b) a f i n e  p a r t i c l e  s i z e ,  

(c) s m a l l  s c a t t e r  i n  the  p a r t i c l e  s i z e  d i s t r i b u t i o n ,  and 

(d)  low i n t e r p a r t i c l e  po ros i ty .  

(5) 

( 6 )  Copper powder w a s  compacted around t h e  b a f f l e  t o o l i n g  t o  98.8 f 0.6 percent  

of t h e o r e t i c a l  d e n s i t y  by hydropressing a t  20,000 p s i  followed by hot-  

i s o s t a t i c  compaction a t  1200 F and 10,000 p s i  f o r  3 h r .  The g l a s s  t o o l i n g  

remained dimensionally s t r a i g h t  w i t h i n  f 0.01 i n .  and r e t a i n e d  adequate 

shape during t h e  compaction processes .  

(7) Nickel powder w a s  compacted around t h e  i n j e c t o r  t o o l i n g  t o  b e t t e r  than 97 

percent  of t h e o r e t i c a l  d e n s i t y  by h o t - i s o s t a t i c  compaction a t  1300 F and 

10,000 p s i  f o r  4 h r .  The steel  t o o l i n g  f o r  t he  fuel-channels remained 

dimensional s t r a i g h t  t o  w i t h i n  k 0.01 i n .  during t h e  compaction processes .  

The steel  t o o l i n g  f o r  t h e  ox-channels remained s t r a i g h t  except f o r  a few 

t o o l i n g  p ins  on t h e  ou te r  edge. 

(8) Maintaining a g a s - t i g h t  con ta ine r  around t h e  simulated rocket engine 

components and prevent ing l eaks  from developing du r ing  h o t - i s o s t a t i c  

compaction of t he  powder caused unexpected d i f f i c u l t i e s ,  bu t  t h e  causes 

of leaks w e r e  found and co r rec t ed .  Preventive measures include (a) helium 

l e a k  checking of con ta ine r s  f o r  s m a l l  l e aks ,  (b) i n spec t ing  t h e  con ta ine r  

and l i d s  f o r  s u r f a c e  d e f e c t s  and flaws, (c) redesigning of the con ta ine r  

o r  loading scheme t o  prevent void spaces and p r e f e r e n t i a l l y  low d e n s i t y  

regions ad jacen t  t o  t h e  con ta ine r  wal l s ,  and (d) c o n t r o l l i n g  t h e  welding 
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opera t ion  t o  ensure proper  pene t r a t ion  and coverage of t he  weld along 

t h e  con ta ine r  r i m .  
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