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RADAR ALTIMETER AS A SPACEBORNE NAVIGATION AID
 

by
 

F. Kalil
 

ABSTRACT
 

The purpose of this report is to show the feasibility of using a radar 

altimeter as a spaceborne navigation aid, particularly on manned space­

craft by showing, at least in a cursory way: (1) the areas or mission 

phases where it could be advantageous; and (2) that the power, antenna 

size, and other system requirements are both practical and within the 

present state-of-the-art. Although the mission analyses contained herein 

are simplified to permit a cursory evaluation of feasibility, there is suf­

ficient information to permit an engineer, unversed in orbital mechanics 

to make some "quick-look, desk" computations. Furthermore, the ap­

pendices contain some parametric curves for "quick-look" evaluations of 

atmospheric drag effects on near-earth spacecraft. 
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SUMMARY AND CONCLUSIONS 

A radar altimeter could be a valuable navigation aid on-board a manned 

spacecraft, particular whenever the spacecraft is out-of-view of ground support 

facilities, such as 

1. 	 During certain abort trajectories whenever the spacecraft is within the 

useful range of the altimeter (-400 kin). 

2. 	 When the spacecraft is at the backside of the moon or a planet. 

3. 	 Possibly, during the non-blackout periods of reentry. 

4. 	 While approaching the moon or planet. 

5. 	 While in orbit about the Earth, Moon or planet. 

For instance, after one orbit about the central body (earth, moon, or planet), 

the spacecraft can use the altitude measurements in the following stepwise 

manner: 

r =h +R 

r =h . +R 

r =h +R 

a 	 max 

a= 	(r + rP)/2 

e = 	(ra - r)/ (r. + rP) 

vpi i/a4xi 
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va =-r 

~~a 21V p'a 

where r is the distance from the central body'os center, p. is its gravitational 

constant, R is its radius, h is the spacecraft's altitude, "a" is the orbit's semi­

major axis, e is the orbit's eccentricity, r and r are the minimum and maxi­

mum r (in the case of the earth, they are the perigee and apogee radii) and v is 

the spacecraft's speed. 

Assuming altimeter measurement errors of :U0O m (rms, after smoothing), 

normally distributed and uncorrelated, and for an orbit about a spherical central 

body with R = 6367.4 km (the average earth's radius, hP = 200 kin, ha= 400 kim, 

then the corresponding rms errors in the above determined orbital elements 

would be: 
Sr= r = Sr = 8h=100m 

p a 

8 a = 141 m 

s8e = 1.05 x i0 -

Sv a < V< 5v I 0.12msec 

This leads one to conclude that the spaceborne altimeter could be a powerful navi­

gation tool, which could also be used to determine the shape of the central body 

if "a priori" information is available from ground tracking data about the orien­

tation of the orbit plane relative to the central body's axis. This latter use would 

be highly desirable (see ref. 20). ix 



Regarding the altimeter system requirements, for S/N = 14 db, and effective 

antenna area of Im 2 , a pulse width of 1. see, a pulse repetition rate of 500 pps 

(a duty cycle of 5 x 10 -4), an average radar cross-section per unit area of planet 

surface of 0.01, and at an altitude of 300 kin, the required peak power output of 

the transmitter is 270 watts, which corresponds to an average power of 135 

milliwatts. Off-the-shelf magnetrons are available with such capabilities. 

Furthermore, by using CW and phase-lock loop techniques to narrow the effective 

bandwidth, either the average power or antenna diameter may be reduced. Thus, 

it is concluded that the radar altimeter could be a practical and useful navigation 

aid, especially for manned spacecraft, and systems trade-off studies are 

warranted. 
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RADAR ALTIMETER AS A SPACEBORNE NAVIGATION AID 

I. 	 INTRODUCTION 

The purpose of this report is to show the feasibility of using a radar altimeter 

as a useful navigation aid at altitudes of up to about 200 to 400 km. 

Present day jet aircraft successfully use pulse type radar altimeters at alti­

tudes of up to 12 km (40,000 ft). It will be shown that by increasing, within 

practical limits, the transmitter power output and antenna gain over and above 

what is presently used on jet aircraft, such an altimeter could be feasibly and 

successfully used at altitudes of up to about 200 to 400 km. Furthermore, the 

following section on mission analysis will show how such an altimeter could be 

used as a valuable navigation aid. 

If. 	 MISSION ANALYSIS 

A radar altimeter could be a valuable navigation aid onboard a manned space­

craft, particularly during those mission phases of trajectories where the space­

craft is out-of-view of ground support facilities (stations, ships, or aircraft). 

For instance, it could be useful in the following conditions: 

1. 	 During contingencies such as abort trajectories especially when the 

spacecraft altitude is within the useful range of the altimeter, i.e., -400 

km. 



2. 	 During lunar or planetary missions when the spacecraft is on the backside 

of the moon or planet, and the altimeter could be used to give a time 

history of altitude. If the spacecraft gets too close to the lunar or plane­

tary surface, then corrective actions could be taken such as thrusting 

the spacecraft to a higher altitude. 

3. 	 Perhaps during the non-blackout periods of reentry. Although this area 

will not be discussed further in this report, it merits mentioning because 

of the frequent- and large reentry footprints expected in the future with 

those space laboratory type missions which will utilize lifting body space­

craft with high lift-to-drag ratios (L/D) of about 2 or greater as "shuttle 

buses" to earth and back for logistic support. (See refs. 1, 2, 3, 4.) 

4. 	 While in an orbit around the earth, moon, or planets, wherein a time 

history of altitude could be used to determine the three Keplerian orbital 

elements which define the shape of the orbital conic but not its orienta­

tion, via the following basic equationis, wherein first order and higher 

order effects due to gravitational perturbations, atmospheric drag, 

etc., are neglected here for the sake of simplicity. The first order gravi­

tational effects and atmospheric effects are discussed in Appendices A, B. 

Consider the spacecraft to be in an orbit around the earth, for example. Then 

the spacecraft distance (r) from the earth's center is related to spacecraft 

altitude (h) and the Keplerian orbital elements as follows: 

2 



r R+a (I - e2 ) 
1 +ecos. (t) 

where 	as shown in Figure I 

Re = radius of the earth, strictly speaking at the sub-satellite point 

h (t) = altitude above the earth's surface at time t
 

a = semi-major axis of the Keplerian orbit conic
 

e = eccentricity of the Keplerian orbit
 

9 (t) = true anomaly at time t 

The angle 6 is related to time t in the following, somewhat complicated, 

way: 

t-tP = (E - e sin E) (2) 

where t = time at which the spacecraft passes through perigee 

E[a-r] =eccentric anomaly 	 (3) 

sin E r sin 2	 (4)a V -e 

tank= /+e tan-	 (5)
2 1 e 2 

3
 



This latter equation is perhaps the most useful relation between 6, and E, since 

9/2 and E/2 are always in the same quadrant (see Figure 2.4,'page 39, ref. 5). At 

minimum altitude (hmi), 9 = 0 and 

£(t~i = rP = Re + hmin = a (1 - e) = orbital radius at perigee (6) 

At maximum altitude hma x , 0 = 7r radians'and 

r (t)max = ra = Re + hmax = a (1 +e) = orbital radius at .apogee (7) 

The spacebraft speed relative to the earth's center-of-mass can be determined 

from 

*v(t)= (8) 

a1= l(+e] Spacecraft's orbital, (9)
lspeed , 

at uerigee 

V= _t1e\ Spacecraft's orbital (10) 
a L+e speed at apogee 

= earth's gravitational constant
 

4 m 3 /seC2
 
= 3.986 032 X 10 

4
 



Since the earth is not spherical in shape,, and there are mountainous regions, 

a good approximation is obtained by replacing Re with the average radius of the 

earth <Re in the equations above. Using the constants given in reference 6, we 

have 

J0I/2 Req (I - f sin2 6) dO 
<Re> 	 (7T 

2 

where 	here 9 = geocentric latitude 

Req	 = earth's equatorial radius
 

= 6,378.165 km
 

= 3443.934 n. mi.
 

f = 	earth's flattening 

Req - Rpole 1 (12) 
Rq 298.30 
eq 

Rpole 	 = earth's polar radius
 

= 6,356.77 km
 

= 3432.38 n. mi. 

Integrating equation 7, 

<Re> 	=Req 1 -f)=6367.47km=3438.15n.mi. "--(3) 

5 
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Thus, it can be seen from the above discussion that adequate equations exist 

so that a small onboard computer could be used to determine the three Keplerian 

elements a, e, and t . It should be noted that these three elements define the 

conic but not the orientation of the conics plane in space, wherein it is assumed 

that there is no "a-priori" knowledge of the spacecraft's position vector or 

velocity. 

Let us now digress momentarily and examine roughly how the altimeter's 

accuracy affects its capabilities as a spaceborne navigation aid. Performing a 

regression of h on t to get a least squares curve fit for the data and to thence 

get a "band" or "error" for hMi n is beyond the scope of this report. Further­

more, such a sophisticated approach is not warranted at this time because of 

the many simplifying assumptions that are used. Hence, the following simpli­

fied analyses are only cursory, and their only purpose is to show feasibility. 

Assuming for simplicity that the spacecraft has completed one orbital revolu­

tion about a spherical body of radius R, then 

r (t) = h (t) + R 	 (14) 

rp = hmi. +R 	 (15) 

r. =hM.. + R 	 (16) 

+r 
a P (17) 

r a 

2 

e 	 r 
a 

-r 
P (18) 

r + r a p 

6
 



V P (19) 

P rp 

V 
a 

.-
a 

(20)
rarea

v(t)= -2Lt+ (21) 

Neglecting variations in the surface terrain of the central body for simplicity, 

then the errors in r and r arep a 

8r Shm. = ShY the altimeter's'read-out accuracy after smoothing (22)p mn 

Sr a = Shmax = 8h (23) 

Sr = 8h (24) 

Assuming a normal distribution in the altimeter measurement errors and they 

are uncorrelated 

8a a Sra y 8 .) (25) 

8a=V2 8b (26) 
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In a similar manner, we obtain for the error in e, 

8e = Sh Vr2 +r2 	 (27) 
p2a2 a 

8e V/ 8h, for 0 _e < 0.2 	 (28)2a
 

while for the error in v, we get 

V 14 	 (29)V r 16a 4 

Sv 	 I-L hv h, for 0 e 0.2 (30) 
V r2 r 

These latter equations are applicable for any point in the orbit, i.e., they can be 

used to determine v P or 8v, by merely substituting r or r for r, respectively. 

Consider the case where 8h = 100 m (ani assumed rms value after smoothing), 

rp =200 km + R, ra = 400kn + R, and assume that R = 6367.47'kn, which is the 

average earth's radius. Then 

r = 6567.47 km 

r = 6767.47 km 

8 



a = 6667.47 km 

e = 0.015 

Sr= 8r=S = Sh = 100 m (rms)
 

8a = 141 m (rms) 

-
Se = 1.05 x 10 5 (rms) 

Since Svp represents the worst case, i.e., Sv is maximum at perigee for a 

given 8h, we will look at 8v : 
m
 

8v
P 

' 0.12 -- (rms) 
sec
 

Thus, it can be seen from the above example, that the radar altimeter could be 

a very powerful tool as a navigation aid. Furthermore, if the spacecraft had 

some "a-priori" knowledge about the orientation of its orbital plane relative to 

the planet's axis, then the altitude data could be useful in determining the shape 

of the planet. 

The reader is cautioned that the above analyses were simplified to demon­

strate feasibility and hence are only cursory. For instance a spherical central 

body was assumed, whereas the earth is an oblate spheroid to first order and 

not a.smooth spheroid at that because of its mountain ranges, etc. Furthermore, 

atmospheric drag effects were neglected. Appendices A and B show to first 

order how the earth's oblate shape (neglecting the effect of mountain ranges) and 

9
 



atmospheric drag, respectively, affect the spacecraft's altitude. Thus, it can 

readily be seen that further analyses are warranted. However, it is believed that 

such detailed analyses would be so cumbersome that they would detract from 

the intended purpose of this report, and hence should be the subject of a separate 

report. 

III. SYSTEM ANALYSIS 

Let us now examine the altimeter from the viewpoint of transmitter power 

and antenna gain requirements. 

The two-way range equation fori a pulse type radio aitimater is derived as 

follows: 

The incremental signal power (dSgnd) received by the increment of ground 

area dAgnd (see Figure 2) is 

(31)
dSgnd PT GT- (0, 4)

4 r 2 LT 

where PT = transmitter output power 

4 7,AT, .lf 4 ?T 
G T - X2 '47i2 (32) 

T 

GT = transmitter antenna power gain
 

ATeff = effective transmitter antenna area
 

10 



FT (e, ¢) = transmitting antenna radiation pattern 

K = carrier wavelength 

S= antenna radiating efficiency 

= 0.5 for a circular aperture 

0T = transmitted beamwidth at the half power points 

L T = transmitter line losses 

IdA = component of dAgnd in the direction of incident radiation 

VIAl =dAgnd cos a 

h2 tan 6 dO do (33) 
cos 6 

h = altitude of spacecraft altimeter above earth's surface 

r = distance of dA gnd from altimeter antenna 

r = h (34) 
00s 0 

Let a-0 be the radar cross-section (or scatter cross-section) per unit area 

of illuminated ground. By definition the radar cross-section (or scatter cross­

section) of a target is the area intercepting !that amount of power which, when 

scattered equally in all directions, produces an cho at the radar equal to that 

from the target. In other words 

0-= 47Tpower scattered back at the source/unit solid angle (35) 
Power/unit area striking target 

In general, a-0is a function of 0, so that henceforth it will be written as o-0 (6). 

11
 



The signal power received by the altimeter at the receiver input terminals 

from the target dAgnd is 

dS - dSgnd AR (, 9')
4 L (6) (36) 

where L R is the altimeter receiver line loss, and AR(a, q) is the effective receiv­

ing aperture perpendicular to r and is given by 

A, ((, ) XR (37) 

where GR is the receiving antenna power gain, and F. (6, 4P) is its radiation 

pattern. 

Assuming that the altimeter transmitting and receiving apertures are the 

same, then 

dS = pT G2 F 2 (,t9) X2 0a0 (6) cos 6dA (38) 
64 7 3 r 4 LT L 

and the total signal power is 

S PT GCX2 p F 2 (8,4)) 0- (9) cos68 dA gnd (39)
F ' ° 64T 3 LT L R A 4Agnd 

12
 



but, as can be seen from Figure 2, 

r - (40) 

h2dA gnd - tan 0 dOd (41) 
2cos 9 

so that 

PT G2 X2 f 
S - T G2 LL F2 (6, f) oro (6) sin 0 cos 6 dO d (42)364 7T h2 L w L f 

Shown in Figures 3, 4, and 5 (see refs. 7, 8, 9, 10) are some radar cross­

sections for roads, forrest and sea at X-band (10 GHz) as a function of -/, the 

angle of incidence (sometimes called grazing incidence or grazing angle), where 

y is the complement of the angle 6/2 used in the above equations and shown in 

Figure 2, i.e., y = 90 - 6/2. Figure 5 also shows the frequency dependence 

of o-0 . Thus, it can be seen that the evaluation of the above integral can be 

difficult except in some simple cases. The above expression is valid for C-W 

or pulse type altimeters which are beamwidth limited, that is the beamwidth 

is narrow enough that the difference in the two-way time delay between a ray 

along the center of the beam and a ray along the edge (or hali power point) of the 

beam is less than the pulsewidth ('r). Thus the radius (t) of the maximum effective 

ground area illuminated by the beam is from Pythogorean's theorem (see Figure 6) 

13 



t (h + c 7 2 h2 (43) 

Shc-r+(W 

Since 

c << h c - (44) 

But 

h L (45)
2 

and 

(46)SGD 

where 8 is the beamwidth at the half power points of the radiated beam, and GD 

is the directional gain and is related to the power gain G by 

G = T& G (47) 

-rh=radiating effiiency 

"RC -G -C(G)
h (48) 

where here hmX is the maximum altitude for beamwidth limited operation for a 

pulse type altimeter. 

14 



Let us now evaluate the equation 21 for a simple case only to get a feeling 

for the magnitude of the so-called loop loss (S/PT). Assume the beamwidth is 

narrow with a constant intensity, i.e., assume beamwidth limited operation, 

c-0(9) is constant over the narrow beamwidth, and F (0; 95) = 1. The loop loss 

becomes 

0__ 2___ (49) 
PT 32 V2 h 2 2 

where 0./2 is the hal beamwidth for the case being considered. 

By definition the directive gain is 

4 7P 
GD max (50) 

n P (0, 5) dQ 

or in words 

maximum radiation intensity 
average radiation intensity 

= 47 (Maximum power radiated/unit solid angle)
total power radiated 

but
 

P (a,) = F(0, (k) Pmax (51) 

d= sine d~dA 1(52) 

15
 



and F (0, 5) = I for the case considered. Integrating equation 50, we.have 

2 

1 - cos -­

and 

S -Gcos-
j (54) 

Th 2PT 16 2 2 () 

For small beamwidths 

Cos - = (55) 

c o s3j±Lsi 

Using 

G ATff (56) 
2

X

S T, %f-o (57) 
247h15T 

This formula is accurate enough for the purposes of this paper a-d agrees with 

the results obtained in references 10, 11. This equation is valid for the C-W or 
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beamwidth limited pulse type radar altimeters. It is interesting to note that, 

except for the dependence of a-0 on frequency, the so-called loop loss is inde­

pendent of frequency as long as beamwidth limited operation is maintained. 

Let us now examine the transmitter power requirements for a particular 

case. Consider the altimeter to be used on a spacecraft as a navigation aid for 

determining the energy dependent orbital elements, i.e., the in-plane or 

Keplerian elements, as discussed earlier in the paper. Assume or consider 

the following: 

2 
AT,eff =I m 

Tr = l sec 

B = 106 Hz, effective receiver beamwidth (58) 

_=30 = 14.8db, ratio of signal ,power to noise powerN 

f = 10GHz, carrier frequency
 

00 =0.01 = -20 db
 

NR =O.5= -3 db
 

LT = LR =2 = 3 db, to be conservative
 

b = 300 km
 

Now the noise power N is 

N =KTeff B (59) 

17
 



where 

K = 1.38 x 10- 23 watt-sec/deg = Boltzmann's constant, 

Tef f is the effective receiver noise temperature at the receiver input terminals 

and is given by 

Teff =To(F O- 1) +-+ - (60) 
LL k L R 

where To = 2900K, reference temperature 

F0 = receiver noise figure, and for a receiver with a parametric ampli­

fier, a typical value is about 4 db = 2.5 (see ref. 12). 

The T is the antenna noise temperature, sometimes called the sky noise tem­

perature, and is due to the background radiation, side lobe noise, spillover, and 

atmospheric attenuation. For a receiver looking at the earth with a beamwidth 

equal to or less than the earth's diameter, iT 300'K (see ref. 13). The TL is 

the actual temperature of the receiver input terminals and will be assumed to 

be 2900 K for a spaceborne receiver. 

Thus, Teff reduces to
 

Te f f To F O (61) 

2 7250 K 

and the required peak transmitter power is from equation 37 

18
 



(S/N) 4v7-h 2 K Tef B LT LR 

SATeff 0-0 

30 (47T) (300 km) 2 (1.38 x 10- 23 W (725 *K) (106 Hz) (2) (2)
"K / (62) 

0.5 (1 M2) (10-6 Kin2/m 2 ) (10-2) 

= 271 watts, peak power 

See also Table 1 which gives the above analysis in logarithmic form. 

Table I 

Analysis of Altimeter Transmitter Peak Power Requirements for h = 300 km 

Signal-to-Noise Power Ratio S/N= 30 14.8 db
 

4nlh2 = 1.13 X 106 (km)2 60.5 db (km) 2

l/Spreading loss 

2 0 System Noise Temperature KTef f = 10 - W -200.0 dbW/Hz 

Noise bandwidth B = 10 6 -Hz 60 dbHz 

Altimeter transmission loss LT = 2 3 db 

Altimeter reception loss LR = 2 3 db 

1/(radiating efficiency) 1=2 3dbNR
 

- 21/(effective aperture) 1 - 106 (km) 60 db/km2 

Aeff 

1/(ground scatter cross- = 102 20 db
 
section per unit area) 0
 

Trshsmitter Peak Power* PT = 271 W 24.3 dbW 
required 

*At a duty cycle of 5 x i0 - t this corresponds to an average power of 135 milliwatts (see following 

analysis and Table 2). 
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To check if this example is beamwidth limited, we now compute the maxi­

mum altitude for bearbwidth limited operation from 

h CTG 

max 
 4
 

where 

G4 7TAef f 

X2 

X_=C 3 108 m/sec =3x 10-2 m 
f 1010 cps 

%G = 4nT (1 m2) 1.4 x 104 = 41.4 db 
(3 x '10-2 M)2 

x 104 
h 3 x 105 ki!/sec (10-6 sec) 1. 4 

max 4 

=1.05x 103km 

Hence for operational altitudes below 1,000 km this system is beamwidth limited. 

Let us now examine roughly the pointing requirements, because they would 

affect the attitude control requirements. Since 

A 0. 50.5 d2 

4 

eff T / 

d 8 = 1.6rm 
2T 
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then .'_- 3 × 10-2 M = 1.87xlO 2 rad 
= 1.8 x 1OE& ­d 1.6m 

B = 1.7 deg 

This means that the altimeter must be pointed in the direction of the vertical axis 

towards the ground (i.e. in the direction of the negative zenith axis) with an 

accuracy of about =h,/2 or -+0.85 deg. which is well within the state-of-the-art 

even for manned spacecraft. Otherwise the systems gain would be significantly 

reduced whenever the return signal with the minimum time delay, i.e. the signal 

along the altitude axis, would be outside the half power beamwidth because of 

improper antenna orientation. 

Perhaps it should also be pointed out here that as the altitude varies, then the 

Doppler information could also be utilized for navigation purposes, i.e. the 

two-way Doppler shift Af = 2 /X, where lx is the time rate of altitude change, 

and X is the wavelength. 

Regarding the problems which may be encountered with uneven terrain, 

particularly on close approaches, both a wide beam and narrow beam could be 

advantageously used. The wide beam would provide information regarding the 

average terrain while the narrow beam would correlate the target being approached 

with the average terrain. 

It is interesting to note that the Apollo, lunar module, landing radar'uses 

the principles discussed, i.e. it has one altitude sensor beam used also as a 

velocity sensor and three velocity sensor beams. Also, the Surveyor landing 

radar used the above principles. 
21 



The maximum pulse repetition rate for resolving altitude (range) ambiguities 

without having to resort to coding the pulses is derived as follows: 

At altitude (h) of 300 kin, the two-way propagation time (2 tprop) 

2 t 2h = 2 x 10' sec (63)
prop c 

To avoid the necessity of coding the pulses in order to resolve altitude ambiguities, 

this two-way'propagation time must be equal to or less than the pulse repetition 

period (Trd i.e., 

-2tprop 2 x 10 3 sec Tr (64) 

The pulse repetition rate (fr) is' 

fr 1 500 pps. (65) 

and the duly cycle is T fr = 5 X 10-4. 

Shown in Table 2 are some beacon magnetrons which can more than ade­

quately meet the peak power requirement of 270 W and the duty cycle of 5 x 10 ­

which corresponds to an average power of only 135 milliwatts. Thus, it may 

be concluded that using an altimeter onboard a spacecraft as a navigation aid 

is feasible. 
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Table 2
 

Beacon Magnetrons
 

FIXED FREQUENCY
 
All units positive-pulsed except those indicated by an asterisk.
 

model Min. Peak Peak 
Number Freq. Peak Duty Pulse Anode Anode Weight 
(ref. 14) GHz Power Cycle Width Volt. Cur.Aoz.iY Wegh

w u s kV A 

MA-259 7.0-7.5 1kw 0.005 0.5 2.00 2.00 21 
MA-221B 8.0-8.8 1.5 CW - 0.45 0.02 11 
MA-231B 8.0-8.8 20 CW - 0.93 0.06 11 

VIA-221A 8.0-8.8 10 0.01 1.0 0.50 0.15 11 
MA-221C 8.0-8.8 10 0.01 5.0 0.50 0.15 11 
MA-221D 8.0-8.8 20 0.005 1.0 0.53 0.30 11 

MA-231A 8.0-8.8 200 0.05 1.0 1.00 0.75 11 
MA-250 8.5-9.6 4kw 0.005 0.5 3.75 4.00 21 
MA-212B 8.8-9.6 1.5 CW - 0.46 0.02 11 

,MA-212A 8.8-9.6 10 ,0.01 1.0 0.52 0.15 11 
MA-232B 8.8-9.6 15 CW - 0.93 0.06 11 
MA-212C 8.8-9.6 10 0.01 15.0 I 0.52 1 0.15 11 

MA-212D 8.8-9.6 20 0.005 1.0 0.56 0.30 11 
MA-232A 8.8-9.6 150 0.05 1.0 1.00 0.75 11 
MA-252A 8.8-9.6 250 0.005 0.5 1.15 0.65 11 

MA-222* 9.3-9.4 7kw 0.002 1.0 5.50 4.50 48 
MA-239 13.28-13.37 40 0.25 2.5 0.85 0.24 23 
JVA-239B, 13.0-13.6 10 CW - 0.95 0.06 23 

MA-240 13.7-14.6 500 0.013 1.0 1.70 1.40 16 
MA-240A 13.7-14.6 700 0.013 1.0 1.75 1.80 16 
MA-245 15.4-15.6 20 0.50 5.0 1.00 0.14 23 

MA-257 16.0-16.5 lkw 0.002 0.5 2.50 1.1.80 16 
MA-256* 16.4-16.6 10kw 0.001 0,2 9.00 5.25 22. 
MA-246A 16.5-16.8 100 0.005 0.5 1.15 0.45 16 

Negative pulsed 
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Table 2 (Continued) 

TUNABLE
 
All units positive-pulsed except those indicated by an asterisk.
 

Min. Pulse Peak Peak 
Model Freq. Peak Duty Width Anode Anode Approx. 

Number GIlz Power Cycle /t Volt. Cur. Weight 
w kV A 

MA-219F 8.5-9.0 3 CW - 0.63 0.02 13
 
MA-219B 8.5-9.6 1 CW - 0.47 0.02 13
 
MA-214H 9.0-9.5 3 CW - 0.65 0.02 13
 

MA-214B 9.0-10.0 1 CW - 0.47 0.02, 13
 
MA-249 9.25-9.45 17 CW - 1.00 0.05 13
 
MA-219A 8.5-9.6. 10 0.005 1.0 0.53 0.15 13
 

MA-219C 8.5-9.6 20 0.01 1.0 0.56 0.30 13
 
MA-261 8.5-9.6 50 0.003 1.0 0.82 0.45 13
 

8.9-9.4 400 0.0005 0.25 4.00 0.5 24
 

8.9-9.4 900 0.003 1.0 4.30 0.8 24
 
8.9-9.4 800 0.001 0.2 4.30 0.9 24
 

MA-214C 9.0-10.0 8 0.005 1.0 0.54 0.15 13
 

MA-214D 9.0-10.0 16 '0.005 1.0 0.57 0.30 13
 
MA-241 9.1-9.4 150 0.001 1.0 2.75 1.0 24
 
MA-218* 9.3-10.0 7kw 0.002 1.0 5.90 4.5 48
 

MA-232T 9.5-9.8 150 0.002 1.0 1.00 0.7 13 
MA-260 16.0-16.5 lkw 0.001 0.5 3.00 1.6 18 

(per ref. 14) 

If C-W operation is desired because a transistorized transmitter can be used 

without the need for filament power, then the average power output required is 

Pave = PT fr = 270 (10-6) (500) = 135 mW 

for the example being considered. 
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However, the bandwidth must also be reduced by an equivalent amount in order 

for the sample system being considered to operate at 300 km altitude and S/N = 

= 14.8 db. That is 

Bcw = Bpulse T fr = 500 Hz (67) 

Using phase7 lock loop techniques, this bandwidth is not only feasible but can be 

reduced an order of magnitude, in which case the above corresponding average 

power requirement can also be reduced an order of magnitude. However, it may 

be more desirable to reduce the antenna aperture instead of the average power. 

In any event, system trade-offs are possible, and the altimeter is a feasible navi­

gation aid for use on spacecraft. Furthermore, as earlier analyses in this paper 

indicates, the altimeter's measurements could be useful in determining the 

shape of the moon or planet, if "a-priori" knowledge is available from ground 

,tracking data about the orientation of the spacecraft's orbital plane relative to 

the axis of the central body. Determining the shape of the moon and planets is 

one of the significant goals of the scientific community (see ref. 20). 
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APPENDIX A 

Earth Gravitational Perturbations to First Order 

A near-earth satellite experiences altitude variations because of gravitational 

perturbations due to the non-spherical shape of the earth; i.e., the satellite orbit 

is not a true ellipse. The satellite orbit to first order is given by (ref. 16) 

2Re 


r =F0 L e cos (-co) +1 sin2 i cos 2 (A-1)\r0 

whenever the eccentricity e is of the order of J, where F0 is a constant of 

integration and has the physical significance of being essentially the mean semi­

major axis of a perturbed orbit, J = 1.6235 x i0 - is the coupling coefficient 

of the second harmonic in the earth's gravitational potential (J = 3/2 J 2 ), Req 

6, 378.165 km (3,433.934 n. mi.) is the earth's equatorial radius, i 0 is the mean 

orbital inclination about which the instantaneous inclination varies, w is the 

angle of perigee, and 8Bis the central angle. (See Figure A-I which depicts the 

orbital geometry.) 

The satellite altitude h is 

h = r - R (A-2) 

where the earth's local radius Re is given by, to first order 

Re = Req (1 - f sin' O) (A-3) 
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and 

f 1 earth's flattening 
298.30 

0 = geocentric latitude 

sin O = sin i 0 sin 8 (A-4) 

For the case of e 0, TO = Req + 185.2 km (i.e. h = 100 n. rin. at the equator), 

and i o = 90' (a polar orbit where the altitude variation are maximum; see 

equation A-i), the altitude varies sinusoidally about an average (h) of - 200 km 

with an amplitude of 0.8 km as shown in Figure A-2. It is interesting to note 

that the earth's radius varies by 21.50 km from equator to pole, see Figure A-3. 

Hence, it may be concluded that in this example, the, satellite is closely following 

the oblate shape of the earth. 
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APPENDIX B
 

Atmospheric Drag
 

A near earth satellite experiences a dissipative drag force as it goes through 

the earth's atmosphere. The drag force per unit satellite mass is 

F- B p v v (B-1) 

where B is the satellites ballistic coefficient defined by 

B =- (B-2)
2m 

CD is the drag coefficient which depends on the satellite shape, its orientation as 

it moves through the air, the molecular density of the atmosphere, and the 

satellite's air speed (v). (See ref. 16). For massive, near-earth satellites such 

as Apollo, for instance, the Cn = 2.0 +L0.2 (see ref. 6). The A is the satellite 

cross-sectional area normal to the satellite air velocity ?, and m is the satellite 

mass. 

This drag force is called a dissipative force because it reduces the total 

energy of the satellite via the air friction. To illustrate this, consider first for 

simplicity the case of a near-earth satellite in a circular orbit. Assume for this 

illustration that the earth's atmosphere is spherical in shape and is not rotating 

31
 



(the more general case is discussed below later on). The satellite's kinetic 

energy (T) per unit mass is v2 /2, and its potential energy (U) per unit 'mass is 

-M./r, whereg- is the gravitational constant ofthe earth (,, = 3.986 032 X t0 4 

m3/sec 2 ; ref. 6). The satellite's total energy (E) per unit mass is 

E =T + U (B3) 

In a Keplerian orbit 

v2= t 21(134) 

where 

a = semimajor axis of the elliptic orbit 

Substituting from Equation B4 into Equation 1B3, the satellite's total energy 

per unit mass becomes 

E = , elliptic orbit (B5)
2a 

In the case of a circular orbit (a = r), 

E -__ 2r , circular orbit (B6) 

The atmospheric drag changes the satellite's total energy by an amount WD, the 

work done by the drag force, i.e. 
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dE = d W = FD " dr (B7)D 

The amount of change in total energy in one orbital revolution is 

A6SE AW C 
= ) f_ FD dr (B8)

rev rev Jrev 

and also, from Equation B6 

AE g Ar = (B9) 
2
rev 2r rev 

Since FD is antiparallel to dr, and is essentially constant over one orbital revolu­

tion for a circular orbit in a spherical atmosphere 

fF dr -FD {dr =-27rBpv (BIO) 
ev rev 

where vC is the circular orbit speed and is given by 

vC =7 (Bll) 

so that 

AE

A - - 27rBpg (B12) 
rev
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The minus sign here shows that the dissipative drag force decreases the total 

energy of the satellite. Combining Equations B9 and B12, and solving for th/rev 

which is equal to Ar/rev, 

2Ah - 47T-B p r , for circular orbit, and a circular (B13) 
rev non-rotating atmosphere
 

The minus sign merely indicates that the altitude is decreasing due to atmospheric 

drag.
 

The case for an elliptic orbit in an oblate rotating atmosphere has been 

< < >treated for the cases of 0 e 0.01 (ref. 17), and e 0.01 (ref. 18), and will 

not be treated here except to make the following observations. It is interesting 

to note that both the rotation of the atmosphere and its oblate spheroidal shape 

contribute significantly to the orbital decay. For instance, for a circular orbit 

in the earthYs oblate, rotating atmosphere 

2 _ _ 47 B r (1 - d)2 10 (q/2) p, q/2re 
6 (B14)

rev 

where 10 (q/2) is the Modified Bessel function of the first kind; 10 (q/2) C-q/2 

accounts for the atmosphere's oblateness; (1 -d) 2 accounts for the atmosphere's 

rotation; 

Pr = atmosphere density at the minimum altitude (hmi) of the,satellite. 

q = K Req f sin 2 i 0 (B15) 
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p = p,W-X, atmosphere density at altitude h
 

K = - (d/dz) Fn p, lapse rate of the atmosphere (see ref. 19) (B16)
 

e = base of the natural logarithms
 

z = height above the minimum altitude (hml.)
 

f = 1/298.30, earth's flattening
 

R 
eq 

= 6,378.165 kin, earth's equatorial radius
 

1 / 2 
d =Q42/n (I -e2) cos i o (BI7) 

e = orbital eccentricity; and is zero in the case for the circular orbit 

being considered. 

Q 4.178 07416x10-3 deg/seo,.earth's rotational speed about its axis 

n = 2r/T, satellite's mean motion (BI8) 

r = anomalistic period, i.e. the time in orbit from perigee to perigee 

1o = orbital inclination 

For near-earth orbits and e _ 0.01, 

d 1 I (BI9) 
15 

From the above equations, it can be seen that: the effect of the atmosphere's 

rotation on the satellite's altitude decay (Ah/r ev), due to the (I - d )2 term, 

could be as large as ± 13% per orbital revolution and is greatest when cos i 0 = 1; 

while the effect of the atmosphere's oblateness on the satellite's altitude decay 

(Ah/rev), due to the 10 (q/2)E-q/2 term, could be as large as -255% at satellite 

altitudes of 200 km and is greatest when sin i o 1. Hence, both the oblate shape 

and the rotation of the atmosphere are significant contributors to the satellite's 

altitude decay. 
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If we define an effective ballistic coefficient as 

Beff - Bactual (1 - d)2 T0 (q/2) e-q/ 2 (B20) 

where the actual ballistic coefficient is 

%DA
 
Bactual 2m (B21) 

then
 

=-_- 47Bef f p r 2 (B22) 
rev 

For-circular earth orbits and a nominal atmosphere, Figure B1 shows the 

ratio Ah/r ev/Bff as a function of satellite altitude, while Figure B2 shows the 

ratio Beff /Bactua as a function of both altitude and incliuation angle. To use 

these figures, one must know the satellites actual ballistic coefficient, i.e. 

CnA/2, the circular orbital altitude, and the orbital inclination. Then one may 

obtain: 

(a) the Bef f from the B ff actual given in Figure B2. 

(b) the Ah/rev from the Ah/r ev/Beff given in Figure 33. 

It should be pointed out that in the above analysis and considerations, a 

Keplerian type orbit was assumed. What needs to be considered further ,is both 
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the gravitational perturbations (at least to first order) and the oblate, rotating 

atmosphere simultaneously acting on the satellite's motion in order to derive 

a closed form solution of the type given above. 
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Figure 1-Orbital Geometry Depicting the Keplerian Orbital Elements. 
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