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ASSESSMENT OF RELIABILITY OF METAL-OXIDE-SILICON DEVICES
By

Leon Hamiter and Ben Bagley

George C. Marshall Space Flight Center

SUMMARY

This paper assesses Metal-Oxide-Silicon (MOS) monolithic
microcircuit usability and reliability as they affect possible use for
certain space applications. Predominant failure modes and mechanisms
are identified, failure rates are quantitatively assessed, and quality
standards and test programs to reduce failpres are recommended. User
and manufacturer data presented substantiates a reasonable reliability
and indicates MOS device suitability for high reliability use when

properly controlled.
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ASSESSMENT OF RELIABILITY OF METAL-OXIDE-SILICON DEVICES
By
Leon Hamiter

Ben Bagley

The Metal-Oxide-Silicon (MOS) Monolithic Microcircuit is stimulating
intense interest in thc electronic industry. This device has the potential to
offer many of the same advantages over the conventional diffused bipolar micro-
circuit that the transistor originally had over the vacuum tube--reduced system
size, weight, and power requirements; lower component cost; and improved
reliability. For this reason, here is a tremendous desire to use these devices
in certain space applications where they can offer great advantages. It is the

purpose of this paper to:

Identify predominant failure modes and mechanisms.
Present a quantitative assessment of their reliability (failure rates).

Recommend quality standards and test programs to reduce failures.

There are three types of MOS microcircuits: (1) P-Channel, (2) N-
Channel, and (3) Complementary. This paper covers primarily P-Channel

devices, since most of the available data is on this type.

The primary problems experienced with P-Channel have been drift

and instability caused by ion migration and contamination within the oxide.

The N-Channel has experienced the same oxide problems plus basic P
material and N-P junction deficiencies. The prime advantage offered by an
N-Channel is the use of positive voltage instead of negative as required by the
P-Channel. However, this can be overcome by the application of simple

design practices.



The maximum advantages of MOS microcircuits will only be realized
through Complementary devices (P and N channel on one substrate). A com-
plementary logic configuration does not demand as tight a tolerance on the
electrical parameters of the P-Channel or N-Channel Transistors. Comple-

mentary microcircuits will offer the advantages of:

One supply

Microwatt standby power
Large fan out capability
Good noise immunity
Higher speed operation

Negative or positive going logic

MOS microcircuits employ essentially the same materials and pro-
cesses used in the manufacture of bipolar microcircuits. However, certain
operations and techniques are more critical in MOS. Tolerances on masks
and mask alignment are much more critical due to the reduced size of the
transistors and metal interconnections. MOS microcircuits are subject to
many of the same failure modes as bipolar circuits. Failure modes involving
device leakage and certain parameter changes are common to both structures,
but threshold voltage variations, gate shorts, and most handling features are

unique to MOS structures.

These particular failure modes are generally the result of contami-
nation by absorbed films and loss of integrity of the insulating oxide. Figure 1
lists several failure modes and gives the failure mechanisms and primary

source of each mode.

Packaging failures are common to the entire semiconductor technology.
General contamination, contamination migration during die attach, and gas and
leaks in the final package are among the most common packaging failures.

After the device has been packaged, it is still subject to failures during handling.
4
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The most significant failure in the MOS transistor is rupture of the
input gate insulator by static charge or stray voltages. The static charge
developed on a person can be of sufficient voltage and energy to rupture the
input gate insulator, rendering the entire device useless., Device voltages
are typically in the 10- to 50-volt range and stray voltages of 80 to 120 volts
(as can occur on ungrounded soldering irons, etc.) can rupture the input gate
oxide. This failure mode can be minimized by observing proper handling
precautions. In addition, most MOS manufacturers now incorporate some
input protection scheme in the MOS chip. Gate oxide rupture usually takes
the form of shorting from gate metal to the underlying diffused region, rather

than to the body (see the schematic cross sectionin figure 2).

As illustrated, the metal gate extends beyond the gate region into the
P-regions to insure that the field-effect channel will occur throughout the
entire gate region. Otherwise, if the gate metal mask was misaligned such
that a PN junction was not covered, the conducting channel in the gate region
would terminate before it reached a P-region and the device would not function.
The region of gate metal overlap is the weakest part of the present MOS

structure,

There are several potential sources of oxide defects in the MOS pro-
cessing. Depending upon the mask and etch sequence, the gate oxide under

the gate metal overlap can contain a boundary between SiO_ thermally grown

on N-type silicon and Si.O2 grown on P-type silicon. The I:Z’-region oxide can
have varying amounts of dopant, depending upon the process, and a PN junction
can have passed under the gate oxide during the diffusion step. Uncontrolled
variations of these occurrences can lead to defects in the gate region oxide.
The growth rate of an oxide film already in place is different from that of a
fresh film; consequently, the interface between the oxides must accommodate
the different growth rates. Distribution coefficients for contamination will be

different for SiO_, grown over N- and P-type silicon, and contamination

2
6
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concentration in tiiat boundary or at the PN junction beneath the oxide can also

lead to structures which cannot survive prolonged stress in an electric field.

Aluminum is the common interconnect metal, and the reaction of
aluminum with Si(.z is known to occur at reasonable rates near 400° to 500°C.
Although stress-temperature tests are not conducted in this temperature range,
MOS devices are sometimes processed in this range and the reaction could be
initiated there. Furthermore, leakage currents through small defects in the
oxide can produce lo .1 heating which could raise the temperature to where
the Al-SiO2 reaction can proceed at a rapid rate, resulting in rupture of the
oxide film. This problem is aggravated by the presence of dopants in the SiOZ.

In order to reduce the threshold voltage, the gate oxide is grown and
processed under conditions to minimize the surface charge and to have a
minimum useful gate oxide thickness, typically 1000 to 2000 A. Structural and
topological defects in the silicon surface, electrical junctions, and contami-
nation in electrical junctions will all contribute to irregularities in the oxide
thickness and variations in its insulating properties. Furthermore, the
severity of these irregularities can be significantly increased during etching

steps.

From the presently available information, it is indicated that oxide
failures in MOS devices are the result of defects in the oxide having a spectrum
of sizes from a critical size large enough to cause device failure at first test
to smaller defects which grow under stress to cause failure after prolonged
testing, Further, it is proposed that these defects are the result of electrical,

chemical, or physical irregularities in the silicon substrate.

Figure 3 is a graphical comparison by general categories of the failure
mechanisms experienced in bipolar and MOS microcircuits. The figures for

bipolar are the averag: by category of three major manufacturers. The

8
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figures for MOS are an average of the two major suppliers. These figures show
that the problems at the chip level are about the same for both techniques.

The problems with the die mounting and bonding are not significantly different
from bipolar. There is some difference in package problems which can be
attributed to the more complex MOS microcircuits that are being put in packages
with many more leads. The additionzl leads require mov™<= bonds per package,
additional area to be sealed with less distance between leads, and smaller cross-

sectional area per lead. These conditions tend to make the package more fragile.

The following photographs are examples of the failure mechanisms we
have discussed. Figure 4A is a good example of what conducting particles
can do to an MOS microcircuit. The spacing between the closest metal stripes
is 0.3 mil. The largest burned spot is 2. 8 mils long. This photograph
iilustrates how critical conducting particles can be in rnicrocircuits, especially
MOS. In bipolar circuits we have attempted to keep conducting particles to less
than 0.5 mil in major dimension. This will not be adequate for MOS where
spacing between metallization is 0.3 mil or less. This situation is being con-

trolled with a glass coating of the complete chip.

Figure 4B shows the damage that can result from an overstress static
voltage. In this case the rupture occurred at the oxide step and resulted in
melting away of gate metal. The gate self-healed twice in this device before
the third joit permanently shorted the gate. The electrical symptom is a 1000
to 2000 ohm linear resistance appearing on the gate lead. This type failure

can be prevented by proper handling and zener diode protection.

Figure 4C is an excellent illustration of a static or transient power
pulse beyond the handling capability of the protective zener network. This
failure showed up as a soft reverse diode breakdown of five to seven volits.

This type failure is usually the result of gross mishandling or misapplication.

10
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Figure 4A. Results of Conducting Particles

Figure 4B. Rupture of Gate Oxide
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Figure 4D shows an improperly mounted die to header. This same
problem was encountered with bipolar circuits. It illustrates the need for

centrifuge testing as part of screening.

Figure 4E is an example of what occurs when there are partial holes
in the oxide and rated voltage is applied. The reduced oxide thickness in the
hole area of the P-region is ruptured when exposed to less than rated voltage.

Faults such as this can be found with proper electrical testing.

The failure causes observed to date have now been examined. Next a
quantitative assessment of data available on MOS Microcircuits is presented

in an attempt to quantify how good or bad they are.

Figure 5 contains user data that shows a failure rate which ranges from
very high to as low as 0.018 percent/1000 hours. The failure rates for the
MSFC tests, in an absolute sense, are not good enough for space applications,
bu’ it is very limited data and the group of devices represented by this data
were built only to prove feasibility. The devices of manufacturer A were also
fabricated while the manufactvrer was rebuilding the clean room facilities and
are not representative of products built under clean room conditions. Also a
mistake has been found in the diffusion mask that would cause failure under
high temperature stress. The failure of these devices gives an insight for
detection of bad devices. The devices tested with no failures represent

products built under clean conditions.

The microcircuits represented by the IBM data are from the same
manufacturer before modification of the clean room. The available user data
is totally insufficient for assessing the device reliability (negative as well as
positive) but does indicate the need for tight process controls and inspections,.

Quality standards must be imposed and enforced at all times.

12



Figure 4C. Damage of Protective Zener Network

Figure 4D. Improper Die Mounting

13
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The Goddard Space Flight Center (GSFC) data is from orbital space-
craft operation. These devices were used in three separate spacecraft and

the two failures did not occur until after one year of operation.

Figure 6 shows failure rates (FR) calculated from data generated by
two manufacturers. Manufacturer A has proven an average microcircuit FR
equal to or better than 0. 33 percent/1000 hours at 60 percent confidence while
manufacturer B has shown 0.038 percent/1000 hours at 60 percent confidence.
For comparison and information purposes, MOS microcircuit failure rates
have been converted to MOS transistor failure rates and these are shown on
the right side of figure 7. The only value of these figures is to show that the
failure rates are as good as, if not better than, any experienced with discrete

bipolar devices.

For purposes of comparison figures 7A and 7B show failure rates
experienced in mid-1966 with bipolar microcircuits by users and manufacturers,
respectively. With the proper controls and standards, MOS circuits can equal,
if not better, these failure rates today. Figure 8 shows failures encountered
during environmental testing. The findings indicate that screening will be

necessary for MOS devices as it has been for bipolar.

A comparison of failure rates between bipolar circuits and complex
MOS circuits (units which this data represent) does not represent the entire
picture. A few complex MOS microcircuits can make a complete component
or system which would require many bipolar circuits. Therefore, the failure
rates for a few do not have to be as low as the failure rates for many to yield

an end item of equal or better reliability.

Figure 9 shows the excellent savings made in total devices for a small
serial computer. There is a 60.7 savings factor in total circuits packages plu:

significant savings in interconnections, crossovers, leads, and areas that

16
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STRESS

SAMPLES

FAILURES

THERMAL SHOCK

TEMPERATURE CYCLING

MECHANICAL SHOCK

CONSTANT ACCELERATION

VIBRATION

HIGH TEMPERATURE

TOTALS

12

12

11

10

™|

DEFECTIVE = 3,5%

Figure 8, Environmental Data
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decrease reliability. This inforn.ation was supplied by a manufacturer that

builds bipolar and MOS microcircuits, but its accuracy has not been verified.

All this information and data indicates that MOS microcircuits can be
obtained and applied in 2 manner in which they will reliably perform, but

quality standards must be established and certain precautions taken.

When the use of a different manufacturer, process, or circuit design
is being considered, a series of evaluation or qualification tests should be

performed to determine the suitability of the design and device stability.

Once a device has been accepted for an application all products delivered
by the manufacturer should be 100 percent screened. Based on the data and
information that has been collected and analyzed, the most effective screens

and their sequence are as recommended in Figure 10.

The cost of screening of complex MOS microcircuits is approximately
the same per circuit as bipolar microcircuits. Because of the reduced quantity
of MOS microcircuits required to perform the same functions as bipolar, the

net screening cost per end item should be less.

22



Die inspection - 200X min.
Precap inspection - 40X min.
Temperature cycle - 20 cycles, - 65° to 125°C
Temperature storage - max. rating - 168 hours
Constant acceleration - 20kg - Y1 axis
Hermetic seal (optional)
Electrical tests - +25°C - read & record - critical parameters
High temperature & backbias - max temp - 24 hrs
Electrical tests - +25°C - read & record or go-no go
Burn in - max temp - 240 hrs
Electrical tests
- Read and record critical parameters
- Reject devices which exhibit parameter drift greater than:
1. Logic levels +10%
2, Leakage current
(a) Low levels +10 times initial
(b)  High levels +20%
Hermetic seal - fine and gross

Radiographic inspection

Figure 10. 100 Percent Screening for MOS Microcircuits
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CONCLUSION

o MOS microcircuits offer tremendous power and space reductions.
For complementary MOS a power saving factor of 6 is not unlikely

and a great increase in complexity per package is possible over bipolar.

) Circuits should be evaluated to assure suitability of design and

stability for intended application.

o Circuits should be produced to high quality standards and 100 percent

screened to eliminate potential failures.
o The user an® manufacturer data substantiates a reasonable reliability

and indicates these devices are suitable for high reliability use when

properly controlled.
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