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A DESCRIPTION OF POSITION ANGLES FROM THE HODOGRAPH

OF A CENTRAL FIELD MOTION

ABSTRACT

The velocity hodograph, representing a two-body motion, can be used in

the development of analytic relations which are descriptive of this category of

central field trajectories. In this paper a brief vector development is presented

which leads directly to the two principal velocity hodograph representations;

namely, the "classical" hodograph and the "special" hodograph. As an example

of the utility of these representations a geometric description of, and correla-

tion between, the several position angles of reference (true, eccentric and mean

anomalies) is developed, as appropriate.
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NOTATION

d, J describing apocenter and pericenter locations, respectively.

a semimajor axis length

C, R parameters associated with the hodograph (See equation (8))

ei unit vector (i = r, y, z; x, y, z).

E specific energy for a body in motion (E _ (V I /2) - (µ/r)).

eccentric anomaly

F,u hyperbolic analog to the eccentric anomaly.

F, F* occupied, unoccupied foci.

h specific angular momentum

H an angle of reference for a hyperbolic trajectory

M mean anomaly

My the analog for mean anomaly referred to a hyperbolic trajectory

n mean motion, elliptic path

N mean motion, hyperbolic path

P a general position on a trajectory

p focal parameter (p ^ h2 /µ = a 11 - 621 )

Q, J, D, 0 position indicators in the constructions described herein
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r radius to a trajectory position, measured from F

r, y, z polar coordinates, associated with the moving triad

(er+ ef, ed

t time

V, Vi Velocity vector, and speed components (i = r, c), x, y)

V(cp), V(y) speed components defined on Figure 2

x, y, z cartesian coordinates, associated with the trajectory-

fixed triad (eX , C _)

8, y elevation angles referred to the Vx, y and Vr , V. speed

components, respectively.

E, E eccentricity (scalar, vector)

k gravitational constant

kg
T time of pericenter passage.

Subscripts, Superscripts

a limit value

(• ), (• •) orders of differentiation, with respect to time.

vii-



A DESCRIPTION OF POSITION ANGLES FROM THE HODOGRAPH

OF A CENTRAL FIELD MOTION

INTRODUCTION

In recent years there has been a renewed interest in hodograph methods,

particularly where these apply to orbital mechanics and space flight operations.

The works of several authors (1-4)* have contributed materially to this growth

of this method; and have been instrumental in developing useful analytic and

geometric tools for application purposes.

The hodograph method is generally thought of as a novel technique used as

a check on analytic methods; however, the geometry itself can be used to de-

scribe orbital motions and to link orbital parameters, as well as serving in the

development of a variety of analytical expressions. Even though the hodograph

presents a space trajectory as an abstract geometry it can very readily augment

and simplify the physical system once an investigator has become familiar with

its meaning and interpretation. Quite frequently the hodograph will provide a

simplification to aid in the understanding of some particular problem at, hand.

At other times it affords a direct means for representing rather complicated

mathematical expressions in a simple and unique graphical manner.

* Refers to references noted at the end of this paper.
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In this paper the hodograph of a two-body motion will be used to describe

(geometrically) the eccentric anomaly and mean anomaly, as these quantities

relate to the position angle (or, true anomaly) for a space trajectory. In this

regard the investigation will be concerned with the two primary trajectory

types—the elliptic and the hyperbolic.

Basic Development

In this analysis a simple two-body, central field problem is assumed.

The motion will be described in reference to two basic coordinate frames of

reference—one which moves, following the motion about the trajectory; and,

one which is fixed relative to the flight path proper. Let the moving frame be

described by a moving unit triad (e ,, , ii , es ), while the fixed frame will be

related to the fixed unit triad (ex , Fy , e= ); see Figure 1.

In this section the basic developments will be undertaken. These will

lead to a particular description of the velocity vector for the motion. Sib-

sequently, this expression will be utilized to deflae the hodograph(s) and to

obtain other information pertinent to the motion along the flight path.

For a description of the two-body trajectory, and that of the velocity

vector, one may begin with the specific equation of motion

r = - T er	 (1)

where µ is the appropriate gravitational constant and r is the position vector;

= 0 r er ! If equation (1) is veetorally multiplied by 7, then

2



rx t —/I (r x er) s0	 (2)
r

since r̀ and er are parallel vectors. Recognizing that

	

rx r a 
it— 

(rx f),	 (3)

then Equation (2) suggests

	

r x r n h (constant),	 (3)

which is the familiar expression for the (fixed) specific moment of momentum.

Next, let equation (1) be multiplied (vectorially) by h; that is,

h x r^ = rz (h x er ) n - µat ( e r )	 (4)

wherein, er = r /r. However, since h and µ are constants, then a first integral

from equation (4) would give

	

c x h= µ (e r + 7),	 (5)

wherein plays the role of an integration constant.

When equation (5) is scalar multiplied by r , one obtains

r= h2/^L (sa)
1 +er • E

3



which, when compared to the more familiar form of the conic equation

r =	 p	 (6b)
1 +E Cos (P

leads to the conclusions that: (1) p (the focal parameter) 0 h 2/µ; and, (2) E

is the eccentricity vector. Assuming that y = 0 corresp4:zds to periapsis then

E 
0 

E ex ; and —e r E a E cosy, which indicates that IE I = E , and er ex = Cos cP

(see Figure 1).

A Unique Description of the Velocity Vector

To describe the velocity vector for this motion, equation (5) is multiplied

(vectorially) by R; thus

h x (r x h) = tl [h x (e . + E)^.	 (7)

Since, from equation (3) h = he Z , then it follows that the triple vector product

on the left of equation (7) can be replaced as noted below:

h x (^ x h} R r (h • h) - h (h c) g r (h • h),

since h • 'Ir' =0 ! The vector multiplication of the right of equation (7) can be

carried out directly; this leads to the following description of the velocity

vector,

V = 
µ (e^ 

+
h	

E ey ),	 (R)

4



which will be symbolically written as V= e^ + R eY .

This expression, equation (8), is somewhat unusual in that the two compo-

nent vectors, in the e^ and 6 directions, have fixed magnitudes and are not

generally orthogonal components. In fact the complete velocity vector is

composed of: (1) a vector of fixed magnitude following the motion about the

conic; and (2) , a fixed vector relative to the orbit proper. (To aid in under-

standing this description, Figure 2 has been included). Note that the vector

WO (µ/h) eY changes direction as one moves about the orbit, while the vector

V(y) E (µi'h) eY is fixed in directin ane4 magnitude for all points on the

trajectory. Even though Figure 2 represents an ellipse, equation (8) is general

and refers to any free, two body, central field conic.

The Velocity Components

To obtain the speed components in a given direclion, parallel to the various

coordinate axes, or3 forms the appropriate scalar products, using equation

(8); that is, Vi © V • ei (i = r, y; x, y).

or

VY=0(N +E 6 ) - e =0(1 t E Cos (P).

V^ = 0 (e(, + E EY ) • er = 0 E sin y;

and
	

(9)

V,('E,^ + E 6 ' ex =- 0 sin q),

V = 0(-16 +E@Y) i = 0 (COS (p+ E).

5



Note that Vs = 0 since V • et vanishes, identically.

If equation (8) is squared, one obtains

V2   V	
2

V_.(1+2ecp•eyE+E2)=^` (1 + 2 E cos cp + E 2),	 (10)
h	 p

accounting for the fact that p = 112/µ. An inspection of this last expression leads

to the conclusions that:

(a), for elliptic and hyperbolic motion (1 + 2 E cos y + E 2) > 0; and,

(b) , for parabolic motion	 [ 2 (1 + cos y)] > 0.

Recalling that there is a limit position angle defined for motion on a hyperbolic

path (i.e. as r -. oo, y cplim, where cplim = cos-1

then the corresponding limit speed (squared) is,

Vlim	 P 
(E 2 1) 

8	
(11)

since p = a (t 2 -1) for the hyperbola. This last result is frequently referred to

as the hyperbolic excess speed (squared); note that for a parabolic path (E = 1),

V. _ 0l 

Next, recalling that the eccentric anomaly (FD), for an elliptic path, can be

related to the true anomaly by

hCOS Cp
Coscp =

cosF- E	 or, cos FD 	 (12)
1 - ECOSF	 1 + E COS CP

6	 1 
t_,



then it can be shown that corresponding to equation (10)—making use of equa-

tion (7)—

V2 = V2 (1 +E COS F),	 (13)

wherein V2 µ/r (local circular satellite ,peed (squared)). Here, equations

(10) and (13) relate local speed to the local position angles (cp and F). The

geometric relation between cQ and f will be described subsequently.

It should be mentioned here that equation (8) was derived primarily for the

purpose of defining the hodograph; and, as noted above, it is not stated in a usual

form. Figure 3 shows the various velocity elements, referred to previously,

and some of the geometry relative to these vector elements.

Making use of the speed relations developed as equations (9) it is possible

to establish many interesting analytic and geometric results. For instance;

forming ratios of the various speed components leads to: (a) the trajectory

eccentricity,

	

d IV= I 	 (14)
E _	 ^

I Vx I

and, (b) the eccentric anomaly, corresponding to a point on the trajectory,

described by,

V

	

= COS -1Y	 (15)
-1--) .

i
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Needless to say, it is possible to use these relations, in conjunction with

the familiar definitions and descriptions of the orbital parameters, to derive

useful and interesting analytic relations. However, this iF, not the rurpose of

this investigation; consequently, a different tact will be followed below.

A Description of the Hodograph

The velocity expression developed as equation (8) can be utilized, directly,

to describe a hodograph for the two-body motions considered here. It will be

seen that the development is amenable to either the (fixed) x,y,z - or (moving)

r, T, z - frames of reference noted in the introduction. Because of the similar-

ity in manipulation for these two cases it is advantageous to conduct the develop-

ments in parallel and simultaneously:

The Special Hodograph (referred	 The Classical Hodograph (re-
to the r, y, z triad.) Write the veloc-	 ferred to the x,y,z triad). Write
ity vector expression from equation 	 the velocity vector equation as:
(8) as:

V
	 + E eY ) Vr`er +VCP eC .	 (16a) V = ¢ (ey + E eY ) = V. ex + VY eY . (16b)

Next, rearrange this result into the following form(s):

(VIP - 0) E^ + Vr -1i r = E ey ,	 (17a) (VY - E 0) ey + vx F = O ey ;	 (17b)

and, squaring the above expressions yields,

(VIP - 0) 2 + VI = ( E 0) 2 	 (18a) (VY - E ¢^ 2 + V2 = 02 .	 (18b)

This expression describes a 	 This expression describes a
circle (on the VT , Vr plane). Its	 circle of radius 0 whose center is
center is located at¢ units along	 located at E 0 units on the VY
the VIP axis; it has a radius of E 0(= R), axis.

8



A sketch of the special hodograph,	 A sketch relating the classical
and its relation to an elliptic orbit,	 hodograph to a corresponding el-
is shown as Figure 4a, 4c. 	 lipse is noted on Figure 4b, 4c.

The geometries of Figure 4 have been chosen to represent the elliptic

orbital motion; this selection was made with convenience of representation

being the deciding factor. It should be evident, however, that the descriptions

could have been made for the hyperbolic case just as well.

The cases illustrated on Figure 5 show a comparison of the hodographs,

for several values of eccentricity, as these would appear on the two velocity

planes (V r , Vq) ; Vx , VY ). It should be noted that the circular orbit, on the Vr , VY

plane is the point, 0; while in the V., V. plane the hodograph is a circle of

radius 0 with its center at the origin of coordinates (i.e.; e = 0, hence R = 0).

As the eccentricity increases the figure of the hodograph grows, in size, on the

Vr , V1P plane; while on the classical hodograph plane the center of the figure

moves away from the coordinate origin. When the trajectory is a parabola the

two hodographs appear to be markedly alike (0 = R; E = 1).

For the hyperbola, since e > 1.0, the hodograph (circle) on the V r , V^

plane has a radius (R) which is greater in value than the central position dis-

tance (Z), hence the figure extends into the negativeVY region; this last condi-

tion, of course, is unrealistic. When this case is referred to the V., V Y plane,

the hodograph is a circle whose center lies above the origin. On this hodograph

the inaccessible region is that which is shown cross -hatched on the figure.

This region is bounded by the limit angle radii, where 9), 	 cos -1

9



From the standpoint of geometry it should be apparent that the classical

and special hodographs are most applicable, as motion representations, over

different ranges of the eccentricity (e).

A Geometric Description of the (Elliptic) Eccentric Anomaly, 6

Figure 6 shows, in schematic, the eccentric anomaly (6) and the correspond-

ing true anomaly (y) for a representative position, P, on an elliptic trajectory.

The point, P', lies on the (so-called) auxiliary circle (of radius, a) and corre-

sponds to the trajectory point, P; the position coordinates for these two points

are (a, &) and (r, y ), respectively. In a subsequent section a geometric method

for determining &, from the hodograph, will be described using both of the

hodograph planes mentioned earlier.

A Geometric Description of the (Hyperbolic) Anomalies (H, &H)

Figure 7 shows a construction to determine the angle H, which is a reference

angle related to the hyperbolic true anomaly (y). This angle (H) is described in

the following manner:

Having drawn the hyperbola, and the auxiliary circle (radius = a); then for

a point (P) on the hyperbola, locate Q directly below it. Through Q draw a

tangent to the auxiliar circle; the point of tangency is denoted as P. The

radius vector locating P' has the coordinates (a,H) as seen on the figure.

It should be evident that the angular ranges of interest (here) for these

two angles are;
0 < I 	 ( < rp1im'

10



where

Cos-, (- 1 );
 E

and

0 _< I H 1 57T/2.

In support of the range given for H, one notes that H - 0 as 	 0; and, that

as P (hence r) moves to infinity, the line QP' tends to the horizontal with H-7r/2.

A development, linking H and FS 
H , 

is found in reference 6, appendix 8B. From

the results given there one finds that the conic equation can be expressed as

r = a e 	 1	 (19)
cos H - )

When this is compared to the more usual expression, involving the hyperbolic

analog to the eccentric anomaly; namely,

r=a(e cosh	 -1)

(See reference 5, pg 98), then it is apparent that

cosh k =sec H.	 (20)

This expression shows the connecting relationship between these two quantities.

In a similar manner the general conic expression

a(e 2 - 1)r=
l+e cost)

11
	 S	
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can be equated to equations (19), (20) to give the following:

cosh	 = sec H =	 E + Cos cp	 (21a)
1 +E COSCP

tan 	 = sin H =	
E2 - 1 sin c^	 (21b)
E+Cos q)

and

tan H.=	 tan ± = tanh 5L	(21c)
2	

E

E+1	 2	 2

These expressions have been obtained to properly align results and to

facilitate an orderly description of the time equation, wherein t 0 t (%) .

Also, the need for the angle H will become evident when a construction to

obtain Sk is undertaken.

The Special Hodograph; Motion on an Ellipse

For the special hodograph the speed components (see equation (9)) are

Vr =e0 since,	 (22)
and

V  = 0 (1 + E Cos cp).

Let this hodograph be modified so that its coordinates are V r /¢ and V,,/O.

This does not alter the basic geometry even though the relative scale of the

figure is changed. As a consequence of this transformation the hodograph is a

12



circle having a radius equal to the trajectory's eccentricity; but, one having its

center at a unit distance from the coordinate origin.

Since the eccentric and true anomalies are related by

COS	
E+CoS9)

1 +ECoSCQ

(see reference 5, page 85) then the following construction, based on this relation,

determines the angle (8). The several steps of the construction are found on

Figure 8, and occur as listed below:

I. General Considerations

Draw a (modified) hodograph on the Vr /Q , VvV plane; this is a circle of

radius equal to the eccentricity, having its center at a unit distance along the

V.Al axis. The center of the hodograph circle is noted by O.

The point (P) is a position of interest on the trajectory; it is located by y

(the true anomaly), and/or by 6, the eccentric anomaly (recall Figure 6).

II. Construction:

1. Ur ing O as a center, draw a unit circle and extend OP to locate Q

(on this unit circle). Note that OP = E (units) while OQ = i (unit).

2. Project P onto the V. /Q` axis locating point D; thus, the distance

PD=00'+OP cos T; or, PD=1 +EcosCP.

3. Project Q onto the VVO axis, locating Ql ; consequently O' Ql = 1 + cos y.

4. Extend the line QPO; then, using 0 as a center, transfer point Q l to QPO

(23)

13



(extended) locating point Q2 . Since OQI = cos cp , then PQ2 = OP + OQ2 = E + cos (P.

5. At Q2 erect a perpendicular (to POQ 2); and, using P as a center, transfer

D to DI (DI is where the arc, of radius PD, cuts the perpendicular from V.
Since PD = 1 + E cos y, then PD, = i + E cos y.

6. According to equation (30) the angle at P, beiween PQ 2 and PD I , is the

eccentric anomaly for the point on the trajectory.

Basically, this completes the construction; however, before leaving this

discussion note that the line through 0, perpendicular to PD, and locating J,

is the line

OJ = E sin 6,

since OP = E. The significance of this will be noted subsequently.

As a convenience, it is desirable to relocate the eccentric anomaly

(relative to 0); this is easily accomplished by erecting perpendiculars,
}

through 0, to the lines PQ2 and PD,. This last construction is illustrated on

Figure 8b.

On this figure the arc 5, Q corresponds to the position angle (y) while the

arc AA, corresponds to the eccentric anomaly (6); both arcs are comparable

since they relate to the unit circle.

The Classical Hodograph; Motion on an Ellipse

For this hodograph the speed components are

V =-- 0 sin q7

and	 "	 (24)
VY	 (E+ Cos h),

(see equations (9)).

14



As in the previous construction it is best to work with a modified hodograph;

thus, the coordinate axes are chosen as Vx/O and V,/^, respectively. Once

again the construction will be based on equation (23); however, the steps to be

followed are noted below and depicted on Figure 9a.

I. General Considerations

Construction on this plane is much simpler than that for the previous case.

Here the hodograph is a unit circle with its center located at E (units) along the

VY/0 8X1 S.

11. Construction

With P being a point on the (elliptic) orbit located by the position angle.

cp , then:

1. Project P onto the VY/jt axis locating P,. Note that OP w 1 . 0, thus

OPl = CGS y; also, O'P l = 0'0 + OP 1 = e + COS q), since 0'0 s E.

2. Erect a perpendicular to the line OP (extended) through 0'; this will

locate the point Q. With 00 's e , then OQ = ,- cos q7 and PQ = PO + OQ = i + e cos cf.

3. Using O' as a center, and PQ as a radius, swing an arc locating point D

at the intersection of the arc and line PP, .

Now, the eccentric anomaly (f) is noted to be the angle, at O', within the

triangle whose base is O'P, and whose hypotenuse is O'D, as shown.

15



4. Note that the perpendicular erected through O, drawn normal to O'D

(locating point J), describes a line whose length is

OJ = E sin S.

The significance of OJ will be indicated subsequently.

For purposes of comparison, the angle & is transferred to the origin (0)

so that it may be directly related to the corresponding true anomaly (y). Thus,

on Figure 9b, the arc JA describes F, while the arc PP defines y; both of these

angles refer to the point, P, on the ellipse. Similarly, the length OJ has been

transferred to the horizontal on Figure 9b.

The Special Hodograph; Motion along a Hyperbolic Arc

As in the previous cases a modified hodograph is constructed with a

general point P(r, y ) being selected for study. Figure 10a will illustrate the

construction, which is described below; and, in addition it will note the relevant

properties of this geometry.

I. General Conditions

On the plane (V,--/-O, V,/O) draw a unit circle which is tangent to the origin.

The modified hodograph is the circle, centered at O, having a radius of E (units).

The radii to points where this circle cuts the V . /0 axis bound the region of the

hodograph which is inaccessible to this motion; incidentally, this zone corres-

sponds to arcs on the second branch of the hyperbolae.

16



V
Locating P on the hodograph, at rp relative to the	 axis, then the construc-

tion to determine H, according to equation (21a), is outlined below. Note that

cos H = 1 + E C os cp	 (25)

E + COs

H. Construction

1. The radius OQ cuts the unit circle at P. Projecting P and Q onto the
V

axis locates QI and Pi , with OQI = E co s cp, and OP, = co s cp.

2. Projecting Q onto the axis located D; thus, QD = 0' 0 +OQ I = 1 + co s cp,

3. Extend line PO; and, using OP, as a radius, transfer P I to P2 (on PO

extended). Since OP2 = OP, then P2 Q = E + cos 4'.

4. Using Q as a center, swing an arc (radius P 2Q), transferring P 2 to P3.

Point P3 is at the intersection of this arc and the v` axis; note that P3 Q = E +cos cp.

It is evident, now, that the angle H, at Q, is formed by the lines QD and P3Q,

according to the relations given by equation (25).

To transfer the angle H, from Q to O as a central position, erect perpendi-

culars (through O) to lines QD and P 3Q. Then, the arc AAI will correspond to

H while the are J P corresponds to y -

Unfortunately H is not the angle describing the analog to the eccentric

anomaly. To find &H , the analogous anomaly, it is necessary to do the computa-

tion indicated by equations (20). One advantage here, however, is that one knows

(a priori) the extent of H for the admissible range of y. That is, H will vary

from 0 to 7r/2 while rf varies from 0 to co s -1 (- 1 /E).

17



The Classical Hodograph; Motion along a Hyperbolic Arc

The construction for this case is analogous to that carried out above, but

differing according to the conceptual geometry associated with this representa-

tion. The basic difference stems from the fact that the hodograph circle

(of unit radius) is centered at E (units) above the origin, O' (see Figure 10b).

The inaccessible arc on this mapping is between the radii positioned at ± 
cp1:m;

this positioning is described by the lines tangent to the hodograph drawn

through the origin O'. In order to determine the angle (H), corresponding co a

general point (P), one can develop a construction based on the use of equation

(25), as before. Such a procedure follows below:

I. General Considerations

The modified hodograph is drawn on the \ V , V / plane as a unit circle

-al-  center (0) located at E on the V Af axis. 1 Using O as a center draw a

concentric circle of radius E. Locate the test point (P) on the hodograph at its

proper position,y .

II. Construction

1. Project point P on the ly-
 
axis, locating point P i . Note that OP, = cos cp,

since Or' = 1.0.

2. Extend the line PO, downward, and erect a perpendicular to this -.-

tension through O'. With 0'0 :s E, then OQ = E cos cp and PQ = 1 +E cos cp.

3. Transfer the line PQ parallel to itself until the line O'P' (_ QP) is

described.

is

;,



4. Since 0'0 = E and OP: = co scp then line O' P 1 = E + cos cp . Usin this as

a radius, and O' as a center, find the intersection of this arc with the line from

P to P'. This intersection is denoted as P2 ; thus O'P2 = E + cos'rp and the angle

H is determined.

According to the description above, H is the angle at O' between the lines

01P 
2 and O' P' , for the triangle O' P' P2

To transfer H to the center, O, draw perpendiculars to O'P' and 0'P

passing through O. As before the arc AA, corresponds to the angle H, while

arc 9P corresponds to y.

The Time Equation

It can be shown (see reference 5, pg. 86) that the time of flight, from peri-

center along an elliptic path, expressed in terms of the eccentric anomaly, is

n(t - ,r) = F - E sin &,	 (26)

where n is the mean motion and -r is the time of pericenter passage.

Referring to the construction for the eccentric anomaly, it is evident that

all information needed to evaluate this time expression has been determined.

The are defining F, and the line OJ ( = E sin 6), have been constructed; hence,

by subtracting the two numbers - one describing the arc for F , the other being

OJ - the time function, n (t -- T) is determined.

As an alternate description, the length OJ can be converted to an equivalent

angle (since the basic hodograph geometry has been referred to a unit circle)
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so that the difference between & and this equivalent angle represents n(t -T).

It is usual to refer to this angle difference as the Mean Anomaly, M.

In connection with these statements a modified hodograph diagram, showing

relative sizes of the angles (M, F, fl, is presented as Figure 11a. On the figure

are several (corresponding) angular combinations; these are provided to indicate

the relative extent of the various angles and the corresponding relative variations

of these as points are followed about the elliptic orbit. These sets of angles are

denoted as cp i , ^i , Mi (i being the indicator for points p i along the trajectory).

To solve the time equation for motion along a hyperbolic path, with time

measured from pericenter, the analog to Kepler's equation (see reference 5,

page 98),

nH(t - T) = E sinh ^, - ^11	 (27)

could be employed. Herein n H is analogous to the elliptic mean motion, and T

is the time of pericenter passage; for reference, nH = Jaa , where a is the

semimajor axis length for the hyperbolic path (also, see equation (11)).

An analog to the mean motion (M), as would be applied to hyperbolic

paths, can be expressed by

MH= nH(t-T)
	 (28)

Finally, as an aid to correlating the results from this section, a plot showing

typical set of values of y, H, EH , MH , for an assumed E ( > 1.0) has been prepared.

These data are presented on Figure 11b; however, it should be recalled that
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only cp and H are available from the construction; the values , M H are obtained

from appropriate arithmetic operations.

CONCLUSIONS

The developments carried out in this paper were aimed at illustrating the

utility of the hodograph as a tool for obtaining useful information regarding

certain aspects of a two-body central field motion. If the usual hodographic

representation is altered, so that a modified form of the hodograph is described,

then a graphical means for determining the eccentric anomaly, and its hyper-

bolic analog, is obtained. Also, from this construction one is able to obtain

information, geometrically, which either directly, or indirectly, describes the

time of motion (from pericenter) to a point on the trajectory.

These are but a few examples which illustrate the utility of the hodograph;

not simply as a geometric adjunct to analytic results, but as a means for the

development and simplification of analytic relations. Once this technique has

been mastered it should prove to be a useful added device to the more usual

tools employed in trajectory design and analysis.
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X

I

X

Z

(d)	 b

Figure 1—Basic geometry for a two-body (elliptic) trajectory,
showing the two representative frames of reference. In sketch
(a) the a vector is normal to the orbital plane. Sketch (b)
shows theplane of motion; P is ageneral point on the ellipse;
F and F* are the occupied and unoccupied foci, respectively;
the line B B' is the minor axis.
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Figure 2—A sketch of the velocity vector, for central field conical
motion, where

V = h + E èY ) = V((P) + V (Y)

with

	

V(Y) = h 
eIp
	 eY

and 	 _

V(Y) 
=E^1 

e y ^R y
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V	 =Vr er +V060

W—	 P	 PT=V
VX	

Yd r
/ \	 PQ=0 =V (44

1	
QT=R=V(Y)

tan y = V r	 F	 WT=Vy

^tan Q = V Y

\	 -VX

Figure 3—Velocity Components and Velocity Elements. Also, the eleva-
tion ongles(y, 8), used to locate the velocity vector relative to the triads
(er, e,^, e=) and ex, oy, i` ), are described.
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Figure 4—sketch of the hodograph(s), corresponding to an ellipse of motion, on the
special Hodogroph plane and on the Classical Hodograph plane. The positions (T, (1)
represent pericenter and apocenter, respectively. On both hodographs the v :*city
components and reference ang:es are noted.

(a) The spacial Hodogroph
(b) Tha Classical Hodogroph
(c) The Ellipse of motion (F, F* are the occupied, unoccupied foci;

P is a general point).
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aux. circle

ellipse

^I

F"	 -F

P

Figure 6—Sketch showing an elliptic trajectory, the cor-
responding auxiliary circle, and the anomalies (cp and F)

of a point P.

ASYMPTOTE

AUX.CIRCLE	 HYPERODLA
(RADIUS = O)	 P

P'

i
i	 I

^	 H

0 
	 F	 0

Figure 7—Sketch of the hyperbolic trajectory, the auxiliary
circle and t:w position angles (y and H) locating a point P.
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V+	 circle, radius=1
circle, radius

of E

P^^
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^	 / 1
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I

V r

	

0'	 D	 f

Figure 8a—The modified hodograph and a graphical description of
eccentric anomaly, 6.
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000
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A

i
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Figure 8b—Relocation of the eccentric anomaly, relative to the circular
origin, 0. The arc AA, defines &(P), while the arc from 51, to Q de-
scribes Y(P).
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Vx

V_x

0

Figure 9a—A construction for the eccentric anomaly, 8, on
the Classical Hodograph plane (modified).

VY

Figure 9b—The Relocation of &(P) relative to the hodograph
origin, 0.
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Figure 1la—A graphical representation of the angles rp F, M on a modified
Classical Hodograph plane. The indices are used to correlate the various

angle sets.
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Figure 11b—A correlation for q1 H, M H on the modified Special Hodograph
for atypical hyperbolic trajectory. Indices are used to identify correspond.
ing angles.
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