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ABSTRACT

Stationary cyclotron waves attached to the bow shock are produced

by the current in the shock. Waves upstream from the shock are circularly

polarized electron waves, the polarization being in the sense of a

right-hand screw when the interplanetary field is directed toward the

shock, and left-hand when directed away. The downstream wave field has

two components, one from the electron cyclotron branch and one from the

ion cyclotron branch of the dispersion relation. The latter has a longer

wavelength and a larger amplitude (by the ion/electron mass ratio) than

the electron wave. It is elliptically polarized rather than circularly,

and always in the opposite sense to the upstream electron wave. Therefore,

the sense of polarization should be seen to reverse as the shock is traversed

in either direction. When the ambient magnetic field is not perpendicular

to the shock, there also exists a stationary electrostatic wave with its

electric field normal to the shock. Both up-and downstream the ratio

of the electrostatic wave to the magnetic wave amplitudes is of the order

u/c tan A, where 6 is the angle between tre normal to the shock and the

magnetic field, and u is the plasma flow velocity.
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I. Introduction

A thin current sheet was used in a previous paper [Tidman and Northrop,

1968] as a model for the bow shock and as a source of waves extending

upstream and do g nstream from it. An example of these waves is reproduced

in Fig. (1) from Heppner et al. [1966]. So longs as the wavelengths are

much larger than the thickness of the collisionless shock transition,

it is unnecessary to examine the detailed mechanism of the shock that

results in the sheet current. In Fig. (1) the bo-a shock is crossed at

2 min. 10 sec., where the amplitude and wavelength are seen to change

suddenly.

Observed wavelengths [Fredricks, 1968] do not in fact always satisfy

this condition, and work reported here must then be extended to be applicable.

This present work makes predictions about the numerous shock crossings

where the model does apply.

We use the same calculation method as in Tidman and Northrop [1968]

but carry it further, in that we perform the integrations and obtain

explicit expressions for the wave electric and magnetic fields. There

•	 only wavelengths were estimated and roughly compared to observations.

We can now study the amplitude of these cyclotron waves, their

ellipticity,if any, and the polari-ation sense for comparison rith



observations. In addition we have considered a more general geomet rJ

than there by allowing the upstream and downstream flow vectors u l and u„
ti	 ti

and unperturbed magnetic fields B 1 and B2 to be oblique to the shock.

Thus the model applies everywhere in the ecliptic plane. Out the ecliptic

plane is not covered because the flows and magnetic fields have been
I

taken as coplanar with the normal to the shock. Extension to the most

general case is not difficult, but we believe that the work reported

carries this model as far as is reasonably worthwhile until comparison

with experiment demonstrates its usefulness.

ti

We consider only cases where the current j in the shock front is steady

and normal to the ecliptic plane, as in Figure 2, where the x-axis is

normal to the shock and the y-axis is normal to the ecliptic.

Tidman and Northrop [1968] gave consideration to the case vhere j

is not steady, but we believe that extending the study to such cases 1ith

this model is again more appropriately postponed until comparison with

observation indicates a need. Nevertheless, we give the formulation for

non-steady currents.

In the frame of reference of the flowing plasma, the shock appears

as a current sheet being moved in direction — u1,2 through the plasma.
.	 y

Because the magnetic field of the current j interacts with the plasma

r particles, the shock is an impediment to the plasma flow. Waves can be

expected, just as in the case of a boat moving through the water. We

can find expressions for the plasma waves by standard methods of analysis

applied to the Vlasov-Maxwell systera of equations, this being the valid

set of equations for a collisionless plasma. This set is linearized

about unperturbed values. For example f (upstream) = 1^ 1 4 91(1) where



=	 5

Bi (1) is the wave field. The wave amplitude is often observed to be
y

comparable with B1i so that a lineari-ed treatment may not always be

quantitative. But the qualitative predictions .e can make are likely

3	 to be correct.
=	 r

We do the problem as an initial value problem in time, the sheet
F

current being -ero for t < 0. We also obtain the asymptotic form of the

field as t - -.

It is easiest to obtain the oblique flow case (Y / 0) from the normal

flow ('Y = 0) case via a Lorentz transformation to a frame sliding parallel

to the shock. We therefore first obtain the wave fields in the shock

rest frame for Y 1,2 = 0, 8 1 , 2 1 0. It is easiest in turn to get these

by first calculating the fields in the frame flowing with the plasma,

where the plasma is at rest, and then maa_ing a Lorent- transformation to

the shock rest Tame. All of our results are presented in the shock frame,

and are therefore time independent, the current having been assumed steady

and the t - limit used. A spacecraft moving through this stationary,

n on'ime-dependent wave pattern will of course see time-dependent fields,

as in Fig. (1).

II. Upstream fields for flow normal to shock and magnetic field oblicue

*	 (ion mass taken as infinite)

This case is applicable to the subsolar point. By analysis similar

to the Appendix of Tidman and Northrop [1968], we find the magnetic and

electric fields in the shock frame to be:



wnul ' X =

B 1 (1) (x t) _ - 240, iw
nt r dk c lkxx 

^(kx - c2 ) x C	 LI	 w = -w -k u

n	 Go	 w2	
k

K lk,w) -	
c2	 ]T^ I	 - 

n _x0±	
ll

w2 IT 	 ky k Z

	

Co	 =
(w I+k u lxx)	 C

E 1 (1) (x,t) = 211-e iwnt ^^ dk e lkxx r n	 x	 nJ w = -wn-kxul	 (2
2

	

n_	 x	 L w2 I K (k, w) - kw2	 kY_= k 7 = 0

The sheet current has been taken as	 inelwnt6(x) so as to permit
I1=-0D

arbitrary time dependence; K (k, w) is the plasma dielectric tensor;

IT is a unit dyadic perpendicular to k; the vertical bars indicate the

determinant; and C is the transpose of the cofactor of the matrix
k2C2

(K -
w^ 

Ll,); x is a unit vector along the x-axis. The elements of K

are rather complicated, particularly when there is a magnetic field.

k2 c2	 R
(K -	 IT) is the same as (- LL":: ) in Montgomery and Tidman [196+, P. 1391

and is also equal to the matrix given in Eq. (1-20) of Stix [1962, p. 111.

The w, ky,and k„ integrations have already been performed in inverting

the transforms, leaving only the k x integrations in (1) and (2). The k 	 -_

vector of the waves is normal to the shock. The plasma has been assumed
k2c2

stable, so that all zeroes of w2 IK -

	

	 2 IT I are on or below the realW2

axis in the w plane. There will actually be damping due to finite 	 =
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temperature in a stable plasma, so that at large times the damped solutions

k2 c2 =1
of w2 IK - —7- ITI = 0 contribute nothing to the w integration. We

are assuming that the damping time of the least damped pole is much less

than the smallest l/w n, or in other words, that fluctuations in the

sheet current occur in a time scale slow compared to the aamping time.

This assumption could need modification if high enough frequency

fluctuations are present in the current sheet. The only pole that

contributes to the w integral. at large times is an undamped one due to

the plasma flow, it appears as a factor (w + w  + k x u l ) in the denominator

of the w integrand.

To make this paper reasona-I.Ly self-contained, we now reiterate a few

salient points from Tidman and Northrop [1968]. The elements of K for

a cold plasma are algebraic and therefore w2 IK(k,w) -	 2— IT Ik. =k =0n	 ^` z
is of the form f(kx' AT [w - w i (kx )], where f(k x, w) does not vanish

i=1

for real kx and w. The w i (kx )'s are real. Fig. 3 is a sketch of wi(kx).

To simulate damping in this formally undamped plasma, .u i (kx ) is replaced

by w i (kx ) - ie. The ie is essential to determine which poles of the

integrand in the k x plane contribute to upstream anLL which to downstream

waves. Poles of the kx integrand are found by solving - wn-kxul-wi(kx)+ie = 0.

ic
Solutions are kx - kox+ lll+ 	 i where kox is a solution for e = 0.

dkox

The kx .integration for x < 0 - that is, for upstream wares, is performed

by closing the contour at infinity in the lower half k x plane, thus

picking up cont ribuLions from any pole in the lower half plane. From

dw
Fig. 3, dw i

/d-k
ox ` 

0; then because u, + dk l	 must be negative for a
ox
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dw
solution kox to contribute to upstream waves, u l must be < I dk - I to get

ox

upstream waves. This makes sense physically: the group velocity (tihich is

negative and therefore directed upstream) must be fast enough to beat the

i'low and allow energy to propagate upstream from the source. Similarly,

the k  integration contour for downstream waves closes in the upper half k 

dw .
plane and picks up contributions from k ox 's for which u2 > I dk - I.

ox

The flow velocity downstream must be sufficiently large to sweep energy

away from the shock in the downstream direction.

Considerable analysis is needed in connection with both the determinant

and the C in Eqn's (1) and (2). The elements of the determinant are given

y
in (4) and (5) in a coordinate system with B along the z-axis, whereas in

Fig. 2,B is oblique to the z-axis. Therefore a rotation_ of the matrix

=3	 k2 2 =:j

(K - ^' IT ) must be made. [See Appendix for details.] A second

complication is that when B and k are oblique, longitudinal and transverse

modes do not separate and factoring the determinant into the form

TF[w-w i (kx )] requires the solution of an algebraic equation of high degree.

Fortunately, if one expands in the ratio S2e
/w

e of gyro to plasma frequencies,

this problem is eliminated. For the solar wind 0e/we 	10- 3 upstream, and

therefore the approximation should be excellent.

By use of Stix's [1962] equations (1-21) and(2-42) we have

2

K - k2 c2	 (k2e2	
2 (1 - 

T. )	 1
'	

w2_ 
`f I - A w2 - 1 + 2w2 w^3 	^l -C2 z	 z	 a2(1-	 -	 sin20+ s l 	 sin4g+ — (1- ^1 cos 29we U)2' wee	 weLwe2	 wet	 w2	 J

2	 (3)
jk2c 2	 2 (1 - e2 )X	 w
l w2	 1 + 2w2	 w 2	 ► 2	 (`	 2	 c

w—^ (1- ^-) - - 2 sin26- ^I	 sin49+ L (1- ^) c2A J
e	 wLwe	

wet	 w2	
os 

_j

•
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where

A= (l-
	 ) - 1(1 - 	 +w C2 ,z cost 9\;	 (4)w?	 I	 wz	 wz	 w4

Q  is the electron gyro frequency and we is the electron plasma frequency.

In Eq.'s (3) and (4) the effect of ion motion on the waves has been

neglected (m
i
 = m ), because, as can be seen in Fig. 3, the upstream *.paves

arise only from intersections with the electron branch when the floti velocity

is greater than the A1fWen velocity. The finite ion mass does have a

small effect on the electron branch, but this we ignore. When we consider

downstream waves, the ion motion must be retained in order to obtain

wavelengths longer than upstream, as in Fig. 2. From Fig. 3, ui(kox ) > fie'
z _ z	 z

so that W2>	 >> 1. Thus in the approximation Cie /we2 « 1
e

A = r we ) (1 - ^ cost A j
	

(5)

fIn the radicals in the curly-bracketed factors of Eq. (3), the first term

2

sin4 A is dropped as small. This approximation is good so long as 8 is
_	 we

not too close to 7 /2, at which angle the second term is identically zero.

However, for the solar wind "too close" is within about 10 	 radians of TI /2,

so that the approximation is excellent in any practical case. To order
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Eq. (3) becomes
e

k2c2 T ^	 w	 2 2
IK - x2 IT	 2-w2 7 L •'C (w-fie COSe )^tlXlle2 X ^k2 C 2 (w+f1e COSe )+wwe2 J,

k2 C2	 C2
where in addition 1 has been dropped compared to w2 , which equals 

u22 .i

For a steady sheet current, j i7 = 0 for n / 0, and wo = 0, so that

j = j o only. The quantity x x C • j  then appearing in the numerator of

Eq. (1) is given in the Appendix. In the ^ « 1 approximation it becomes
e

(with j o = Y j  )

x 
x	 u^e2 

I
^^ k2 c 2 (u,2 -^2 2 cos26) + w 2w2 +	 icu 2 C2 cos 6 i

O w2 L	 w2 w2	 e2)	
s	 w2 - Qe2)	 ^y

where again 1 has been dropped compared to k 2 c21w2 . Similarly in Ea. (2)

(see Appendix)

k 1 xx	 C	
i = x ik u we 2S2 (wr, 2 + k2 c 2 )sin A j

x 1	 c	 w3 w2 - 2e 	 Y

(6

(7

(F

The -erns of the right hand side of (6) are needed, with w set equal

to - kxu l + is, rather than the - kxu l indicated in Equations (1) and (2),
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n
k2C2

	for the following reason:	 IK -IT^ is of the form f(k ,u;)[w-w .(k )]

	

w2	 x i=1	 i x

where )	
11 x

(k ) must be replaced by w. x(k ) - ie to include the damping and

w is to be replaced by - k 
x 
u l . Thus the damping can be equivalently introduced

by writing w as - k U 1 + ie and not modifying the w.( 
x

x )
1x	

. 	 It is then

unnecessary to write the determinant in explicitly factored form.

We th_refore set w = - k xu l + ie in (6) and solve for k x . (The subscript

x on k  will be dropped from here on.) The first square bracket it

Eq. (6) has zeros at k 1 and k2 , the second at k3 and k4i where

\1^2
k _ - f2P cos A + 1 ^2 ; 2cos2A -

	
2 J1	 - ie

1	 2 U1	 \ U12	 c-

i
k	 -	 cos A - 1 !2	 -2 Cos 2 A - 4W 	 '1 2 f ie

2	 2U1	 U12	 C	
(9)

k _C'Cos A +1 /21 2 cos2 A -
	

2 1/2f is
3	 2u1	 \ .	 U12	 C2

k	
Cos A	 .E;2 Cos 2 A _ 4u 2̂ ^l /2 T ie

-	 ^4 - ^ 	1^2
2u1	 U12	 C2

The upper signs on the ie terms apply when - p < 9 < ^, and the lower for
— 2

- < 9<32 .	 Very small regions around n/2 and 3n/2 are excluded by our
L

approximations, as stated previously.	 Some positive definite factors :multiplying

the is terms have been omitted because they do not affect the overall sign

of the term.	 We see that k 1 and k4 give poles of the integrands in (1) and (2)
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contributing to upstream waves, while :i2 and k3 contribute to downstream

(if u l is replaced by u2) for - 2 < 0 < n
	

In other words, u l + dk
0

is negative at k l and k4.

The roots kl and k2 merge and become com plex when 
2e2 Cos 2 0 _ LL goesu 12 	 C2

negative. In Fig. 3 this happens when the line w = - ku l through the

origin becomes tangent to the electron branch. This occurs if the solar

wind velocity u l becomes too great, greater than about 700 km !sec for 0 = 0

(using the "standard" values for the solar wind given in the Appendix). It

can also occur if the u l remains fixed and the angle 0 between B 1 and the shock

normal increases beyond a critical value (about 55 0 by our standard values).

Beyond the critical values the radical is imaginary and the waves are heavily

damped, in just a few kilometers, in fact. Our standard upstream values

make 2IIk = X, = 52 km at 0 = 0.
i

It should be noted that in the Ce/we << 1 expansion, the dispersion

relation for the transverse waves (square brackets in (6)) for 0 X 0

are obtained from those for 0 = 0 by changing Cle to De cos G. One can

imagine in Fig. 3, as 0 is increased from zero, that the electron branch is

reduced by cos 0, so that eventually it becomes tangent to w = - ku l . (It

k2C2	 1is not, however, true that the dements of the matrix -K - 
w2 

IT, for

0	 0 can be obtained from the 0 = 0 case by the same prescription.)

Both factors of A in (4) are independent of k and therefore represent

non-dispersive waves, with zero group velocity, which cannot contribute

to upstream waves.
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We give no details of the k  integrations, which are straightforward and

require evaluation of residues at k l and k4 for - 2 < U < 2 , and at k 2 and k3

for 2 < 9 < 32 . The explicit expressions (9) for k l and k2 must be used

after performing the integrations in order to show that the coefficients

obtained for the y and z magnetic field components are in fact equal,

although they appear quite different. Their equality establishes that

the magnetic field is circularly polarized for all values of 0.

We find the following for the upstream fields:

For- 2<0<2'

B(1) (x) 	4Euw2	 ( sin kx 4- z UOS kx)
(- k^C2 (De 2C2cost 0 -4we2U,2)1/2

E (1) (x) - 4IIu12 (we 2 + k 12 c2 ) 	 tan 0 x sin klx

k1C3 (O e2 c2 cos t 0 - 4Ue2u12)1/2

and for 2< 9 < -2

B(1)(x) = 4IIu w 2 (y sin k2x + z cos k2x)
1rG ,-2 	2r.2 r'OS 9 - 4wy2 U,2)1/2

E (1) (x)	 4nu12(we2 + k22 c2 ),j tan 0 x sin k2x

-k2c C2e2C2 cos t 0 -4weLu12 1 r2

Eq. (9) gives 1;1 and k2 . The ie can now be omitted.

-	 i

(10

(11

(12

(13



14

Several important conclusions are to be drawn from these expressions:

1. An electrostatic field is present when the magnetic field is oblique to

the shock normal (0 / 0). The ratio of the electric to the magnetic

field amplitude is u l (we 2 + k12 c2 ) tan 0/w e 2c. Because kl2 increases

with 0, the maximum value of the ratio occurs at the maximum 0 ---i.e.,0c.

Our standard values make this maximum ratio about 3 u l/c. Thus the

ratio will always be < 3u l/c upstream.

2. The magnetic field is circularly polarized in a right-hand screw

sense about the component of unperturbed field normal to the shock,

when that component is directed towards the shock. It is left-hand

polarized when the field is directed generally away from the shock.

The B (1) is illustrated in Fig. 4 for both cases.

3. Reversing the unperturbed magnetic field (i.e. changing 0 to II + 0)

reverses the sense of the polarization, as just stated, but the

amplitude remains unchanged.

4. The fields become infinite at either the critical angle or critical

flow velocity - that is, when (Qe 2 c2 cos 20 - 4We 2u 12 ) = 0. The

physical interpretation is that at the critical condition the group

velocity equals the flow velocity so that wave energy radiated by the

bow shock cannot move away from it and therefore builds up in amplitude.

Of course, the result is not to be taken too seriously, because

linearization will become invalid- However, one might expect to see

larger fields when conditions are near critical.

I
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III. Upstream fields for flow and magnetic field both oblique (ion

mass taken infinite)

At a point in the ecliptic plane not at the subsolar point, the plasma

flow and magnetic field are both oblique to the shock, as in Fig. 2. If

•	 there is a current sheet only in the shock frame, there will in general be

both a current sheet and a charge sheet seen in other frames, in particular

in the frame in which the plasma is at rest. This charge is of order ul/c

and is obtained from the charge-current four vector [Jackson, 1962, P. 378.

The entire problem could be redone, including now the test charge sheet, which

one expects will excite electrostatic waves. Fortunately, the order u l/c

charge eventually has only an order u l2/c2 effect on the fields. Because we

are not working to this order, the charge can be ignored. Moreover, for

the case we consider, where j is normal to the ecliptic and therefore

perpendicular to u l , there is no charge to crder u l/c even.

The easiest way to obtain the fields for the oblique flow case is to make

a Lorentz transformation in the ecliptic plane in a direction parallel to the

shock plane; the oblique flow then becomes a normal flow, for which we already

have the fields. Because there is no charge in the shock frame, the current

•	 in any other frame is the same through order u l/c, so that j  can be taken as

unchanged when making the Lorentz transformation. The situation in the two

frames of reference is as in Fig. 5, where the plane of the page is the ecliptic

plane. The magnitude and. angle of the magnetic field to the normal have been

indicated by the primes as being different in the two frames. There are

unperturbed electric fields in Figs. 2 and 5 normal to the ecliptic that
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permit the plasma to flow at an angle to the magnetic field. When there is

an electric field in one frame, the magnetic field in another frame differs

in order u 1/c from that iii the original frame [Jackson, 1962, P. 3801.

However, the electric field E 1 in the shock frame is (u l/c) B 1 sin (0 1 - `Y,_)

into the page. Because it is already of order u4/c, its effect on B1

is of order u 12 /c2 and negligible. So 0 1 ' = 0 1 and B 1 ' = B 1 . (The

electric field E 1 ' _ ( u 1/c)B 1 sin 0 cos $. We will not need to use it,

however.)

Equations (10)-(13) give us the fields in the normal flow frame of

Fig. 5, provided we replace u 1 in those equations by the applicable normal

flow velocity here - namely, u l cos T i . We then make a Lorentz transformation

to a frame moving at u 1 sin `Y1 in the negative z direction, as shown, and the

resulting fields are those seen from the shock frame of Fig. 5. The

transformation is straightforward, the vector form given for example in

Jackson [1962, P. 380] being easy to use. The relations between the wave

fields in the two frames of Fig. 5 are found to be:

-'(1)	 (1)'	 u 1 sin `Y1	 (1)' I
E	 = x I Ex	+	 c	 By

B(1) = B(1 )' T ^ u 1 sin 11 E (1)'
	y 	 c	 x

where the prime means in the normal flow frame and the subscript specifies

the component. From equations (10) and (11) (for - n/2 < 0 < n/2)

(14)

(15)
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^(1)'	 4Tli,,,u12 Cos 2'Y1 (we 2 + k12 c2 )tan 9 1 sin klx
E	

= X k1c3 De2 C2 cost 01 - 4U1e 2u12 CoS2tY1 1 2	
( 16)

-(1)'	 4II,1 u lcos tY1we2 (y sin k lx + z cos klx)
B	 = - k4-2 ire c2 cos2 0 1 -	 e u 12 COS-1y,) 1/2 	(17)

and similarly from (12) and (13) for E/2 < 0 < 311 /2. Note that

E (1 " is of order u l/c smaller than B 1 , so that the second term on the

right hand side of (15) may be dropped and B (1) = B 1	 The wave fields

for the oblique flow case are then:

For- E/2<9<II/2

B (l)	 41Ij u lcos 'Y 1we2 (y sin k lx + z cos klx)	 (18)
- k	 Q,, c cos 0 1 - 4we u1 cos Y' 1 1 /2

E(1) - 4lljyu 12 cos y, [We 2 sin (01-'Y 1 ) + k12C2 cos T1 sin 01Y sin klx

(19)
kl c' cos 91 (De2 C2 cos2 0 1 - 4w e2 ul2 CoS2T1)1/2

and for II12 < 0 < 3n/2

B(1) - 4n j u 1 cos `Y 1 we2 (y sin k^x + z cos k2x)	
(20)

i{2C2 (De 2C2CoS291 - 4We2 u12 cos 2 Y1)1 2



18

E (1)	 4EJ u12 cos `Y1 [u)e 2 sin ( A 1 -Y1)	 k22c2 cos Y1 sin 81]x sin k2x

k+' cos A l (n2e 2c 2 cost A l - 4we 2u 12 cos` 'Y1)1 2	 (21)

11, cos A l	 I/nl 2 cos t A l	 4w 2 X1/2
where k l , 2 _ 2u 1 cos Y1 f 1/2 u l, Cos'

	 - C2 	 , the upper sign

giving k l and the lower k.,.

The magnetic fields (18) and (20) for oblique flow can be obtained from

the normal flow case (10) and (12) by changing u l to u l cos Y. There is no

corresponding simple prescription for the electric fields. The polarization

of the wave remains circular with oblique flow. Indeed if Y 1 = A l or

II + 0 1 , so that the flow and unperturbed field vectors are parallel or

antiparallel, the magnetic wave fields are independent of T and 8; for if

cos Y 1 = cos 8 1 , ( 18) becomes independent of the angles, as does k l . Similarly

fnr (20) if cos Y 1 = - cos 01.

The critical condition for oblique flow is reached when the radical in

the denominators vanishes. As one moves along the bow shock from the subsolar

point towards the dawn or dusk meridian, the angle br;tween the solar wind

and the magnetic field remains fixed (at about 45 0 ) uhil- their angles to the

normal changes. For the standard solar wind parameters, we find that there

should be upstream waves from the subsolar point to the dawn meridian, but

.	 only for about 100 away from the subsolar point towards the dusk meridian.

The magnetic field is not steady at 45 0 to the solar wind, but fluctuates in

magnitude and direction. Therefore the 100 limit is not to be regarded too

rigorously - only the qualitative prediction that upstream stationary waves
}

should be less frequently observed on the dusk side.

'1
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IV. Downstream fields for flow normal to shock and magnetic field oblique

The downstream case is more difficult than the upstream to treat

realistically because the plasma is no longer cold. The kinetic energy of

flow has been converted to ther-:al energy by the shock. The conservation of

mass, momentum, and energy equations relate the downstream conditions to the

upstream. Nevertheless we can analyse the downstream waves independently of

the upstream (realizing that the downstream unperturbed quantities are related

to those upstream) by taking the downstream conditions as'given. We also use

the cold plasma dispersion dielectric tensor downstream with the belief that

the principal qualitative result is valid. A warm plasma approximation could

of course be used, but this again we believe ought to wait until need for more

refined theory should become apparent from experimental observations.

In Fig. 3, the electron and ion branches are tangent at the origin

when A = 0, their common slope being the Alfven velocity. In the infinite ion

mass approximation of Sections II and III, the Alfven velocity is zero, so that

the ion branch disappears into the horizontal axis, and the slope of the electron

branch becomes zero at the origin. The downstream intersection with the

electron branch will clearly give a shorter wavelength than the upstream, because

I k^l > Ik l l. This is at variance with Fig. 1. Indeed for our standard

downstream conditions, the downstream wavelength would be 0.3 km, while the

upstream wavelength is 52 km. The downstream electron wave is (for

Ii	 II
2
	

0 < 2 and ion mass = ^).
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(1)	 477 u2uw 2 (y sin k2x + z cos k2x)
2	

^- k2k 2 (i2e 2cz cos 20 2 - 4we `u22 ) 1 2
	

(22)

where k2 is as in (9), but with downstream parameters, such as the downstream

plasma frequency, etc. This downstream wave may be present, but clearly

is not being seen in magnetometer records such as Fig. 1. The only way to

get a longer wavelength downstream is from the ion branch. In order for the

line w = - ku2 to intersect the ion branch, u 2 must be less than the

downstream Alfven velocity (when 0 2 = 0), or as we will see, u 2 must be

< v A lcos 01 in general, where v  = Oic/wi.

Expressions (1) and (2) remain valid for downstream fields, if downstream

quantities are used. We again find that approximating the elements of the

N k2 L.2 ^
matrix (K . -	 IT) is essential to make the algebra tractable. We take

the limit me — 0. This limit does not eliminate the electrons from the

picture; they still carry current. What it does is move the horizontal

asymptote of the electron branch at De to infinity in Fig. 3, so that the

line w = - ku2 would never intersect the electron branch.

The oblique i2 necessitates rotation of the matrix again, ,just as in

Section II, in order to evaluate the numerator of (1). We make the

approximations that De/we and ili/w i are small, being about 10-2 and 10-3

73	 k2c2 =3
respectively downstream. The determinant l K --72- ITl becomes
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^K - ku2z IT ^ _ - w
s w22CZ	

^k4c4(w2-^i2 1cos202+k2c2w2wi2(1+cos282)- 
w^w24 j 	

(23)i	 i

If we set (23) equal to 7.ero, with w - - ku 2 4- 	 we find k = ko + ieiE

where

2 - 2s 2 	LL) U2 	 wit ( 1 + coS2 02 )

ko	 u2 + C2i2 c' cos' 02	 c2 coS2 A2	 (24)

c4ai 4 COS2 02 - wi 4 u24

ke	 u?P i2 c k02 coS2 02

ke is always > 0 when cost 02 is such that ko2 > 0; ko > 0 when u22 < vA2 COS202.

This means that ko always gives a downstream wave. The square bracket in

(23) gives the ion and electron branches in the present. approximations

(See Fig. 6). When 0 2 ^ 0, the ion and electron branches are no longer

tangent.

Evaluation of the integral is again straig'itforward, there being two

poles, at ko and - ko . The downstream wave from the ion branch is
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411 Ui2 	 u2
B	 (x = ko c 3 w 2 cost 8 2 `rwe2 (2 + cos2 6 2- ,A )

e	
lL

,r 2	 2
+ wi2 (LA! sine @2 - tare 0^ (1 - A2 )] z cos kox

	

kou2 cos p (uUe2 1 2 k n 2 ^2 sir.2̂ 	 I
+ y	 sin kox	 (25)

Eq. (25) is valid for all 8 2 . The coefficient of cos kox can be shown

to be Positive for all 0 2 such that cost 82 > u22/V2A that is, whenever there

is downstream wave. The polarization about the x-axis is that of a left-hand

screw when - 7/2 < C < n/2 and right-hand otherwise. Therefore the rule of

thumb for both upstream and downstream waves is: when the magnetic field is

pointed generally away from the shock, the polarization is left hand about the

x-axis, and when toward the shock, the polarization is right hand. Because

H
the normal component of B is conserved across the shock, the upstream and

downstream waves should always be oppositely polarized.

The wave in (25) is elliptically polarized. For 8 2 = 0, the ratio of the

z component to the y component is (3 - uVv2A )/(1 - u2/r'A ). The polarization

is thus very large for u2 close to v A, and very sensitive to u2/'' A. The

downstream waves thus should show rather large ellipticity.

There is an electrostatic downstream field when 0 2 ^ 0, given by

E (1) _ 4R J.,, u2'
 Sill  82 (We2 + k02C2) X sin kox

koC^ c4 cos2 02	
(26 )
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The ratio of this electric field amplitude to the y component (which is

tan 9^
the smaller component) of the magnetic field is of the order 

u2 
c

Finally, the relative amplitude of the downstream electron wave (22) to

the downstream ion wave can be compared. The electron wave is about 0i/ne

smaller than BZ(1) in (25).

i
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Appendix I - Evaluation of C

k2c2
The elements of the tensor (K -	

w2	
IT ) are given in Montgomery and

Tidman [1964] in a coordinate system with the magnetic field along the 7-axis.

We have the field at an angle (11 /2 - 0) to the	 z-axis. Our tensor C is

.	 related to the transposed cofactor of Montgomery and Tidman's tensor, by

C ij = ami anj Mij , where Mij is Montgomery and Tidman's transposed cofactor;

a is the rotation matrix -bout the y-axis:

sin 6	 0	 cos e

a =	 0	 1	 0

cos A	 0	 sin A

The numerators of the integrands in (1) and (2) are easily shown to be:

x x C • j  = z (jny 
Cyy + jnz Cyz) - y (jny C zy + jnz Czz)

(wnI + kxu l is R) - C - j  = x (wn + kxul)Qny Cxy + jnz Cxz)

y W  ( Cyy Jny + Cyz jnz)

+ z wn (C zy jny + C zz inz)

Because we take w  = 0, and because we consider only the case of sheet

currents normal to the ecliptic, j riz all vanish and
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X x C	 10 = 1y ( z Cyy - y C Zy )

kxU, RR • C • 1 0 = 1y kxU. x Cxy

Therefore only the three elements of Cxy , Cyy , and C Zy are needed.

We find them to be

C	 =M sin 0+M cos 0
XY	 XY	 7y

C = M
yy YY

C	 =- M Cos 0+M sin 0.
Zy	 XY	 Zy

Thus in to r n we need only MXY , Myy.9 and MZy , which are easily obtained by

taking the cofactor transposed of - R/w2 in Montgomery and Tillman.

We find

im 2 n 	
we2	

k2c2	 2
1fiXY 	 w w2 - C2 2	

(1 - w2
	

- w2 s in o)
e

/	 w,, 2	 k2c2	 w 2	 k2e2	 w 2	 2	 2
Myy = l 1 w2 / (1 - w2 - W^ 2/ + 

=
w2 w2	

2 sin 0

2	 2c2
MZy = w2 _^^ 2 kw2 cos 0 sin 0w e

1
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and finally

W 2	 ^,-	 k2^•2
_e2 \	 S C 2 w 2 2 sing A

•	 x X c . J o = ^1 - ^ / 1Z! ̂ l ^^	 e) + w2 u, w2-^2 1-wee W2

iw'-n cosAl i
Y w w2 - nee	 f VY

wet k2 c2

ikY u l we
2 De 

sin A (1 -	 - ^,^ )

kxu l x x	 c . j e =- x	
w ( w2 -C2 2 i

e

t
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Upstream

•	 IB1I =3x1o5gauss

n1 = 4 cm 3

u 1 = 400 km/sec

We = 1.1 x 10e sec -1

wi = 2.6 x 103 sec-"

Pe = 5.3 x 102 sec -1

Qi = 2.9 x 10-1 sec -1

v = 33 km/sec

Downstream

I B2I = 12 x 10-5 gauss

n2 =9 cm- 3

U2 = 100 km/sec

cue = 1.7 x 10` sec 1

cui = 3.9x103 sec7l

Q = 2.1 x 103 sec-1
e

Qi = 1.1 sec -1

v = 88 km/sec

wry:
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Figure Captions

Figure 1	 The bow shock with coherent waves of frequencies near 1 cps,

observed on November 25, 1964. Scales both uncorrected (the

farthest left) and corrected for the spacecraft field are

given. The 12-second periodicity is the satellite spin.

Figure 2	 Geometry of the problem

H	 ^
Figure 3	 Dispersion diagram (schematic) for k parallel to B

Figure 4	 Polarization of the upstream wave

Figure 5	 Fremes of reference for the oblique flow case

Figure 6	 Downstream dispersion diagram (schematic) in the approximation

where m - 0
e
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