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ABSTRACT

Parts I and II of this paper present a comprehensive picture of

longitudinal wave propagation in a warm homogeneous magnetoplasma.

Part I discusses computed dispersion characteristics for propagation

perpendicular to the static magnetic field. For a ring electron

velocity distribution it is found that mode coupling and absolute insta-

bility can occur. Similar effects are predicted for a spherical shell

distribution. The idaxwellian distribution gives rise to stable prop-

agation of undamped waves, and attenuating standing waves. A mixture

of ring and Maxwellian distributions can give absolute instability

with stronger growth and lower instability thresholds than for the

ring distribution alone. Propagation oblique to the static magnetic

field will be dealt with in Part II [SU-IPR Report No. 326].
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1. INTRODUCTION

In 1958, Bernstein published a comprehensive paper :summarizing the

procedure for obtaining the dispersion relation for longitudinal waves in

a warm homogeneous magnetoplasma, and describing some of their properties.

Over the last ten years, well over a hundred papers have appeared, treat-

ing theoretical and experimental aspects of these waves. It is not our

intention to review this material. That has been done elsewhere (Craw-

ford 1968). We wish to present systematically in a single source the

sa ient features emerging from study of the dispersion relation for a

variety of electron velocity distributions. Many of the results are new.

Others are scattered through the literature, and can benefit from inclu-

sion in a coherent picture such as this paper aims to present. We shall

stress numerical solutions of the very complicated expressi^ns involved,

-ather than the mathematical formalism, and will interpret properties of

the predicted propagation characteristics in the light of the refined

stability criteria that have been developed in recent years (Derfler 1961,

1967, 1969; Briggs 1964).

The paper divides naturally into two parts. The first deals with

propagation perpendicular to the magnetic field, for which collisionless

cyclotron and Landau damping elfects do not occur. Part II treats obli-

que propagation, for which they are important. In each case, similar

procedure is followed. The dispersion relation for a given velocity dis-

tribution is first solved for complex frequency and real wavenumber, to

establish whether instability is predicted. If so, stability criteria

are applied to determine whether the instability is convective or abso-

lute (Sturrock 1956). Finally, if absolute instability is absent, the

dispersion relation is solved for real frequency and complex wavenumber.

The plan of Part I is as follows. Section 2 describes first the

procedure for obtaining a dispersion relation, then comments on the con-

ditions under which instabilities may be encountered, and finally pre-

sents the stability criteria used to classify them. Sections ^ to 6 ana-

lyze the propagation for specific electron velocity distributions. Sec-

tion 7 provides a brief discussion of the results.



THEORY

The basic equations from which warm magnotoplasma propagation char-

acteristics are derived in the quasistatic approximation are Poissen's

equation and the linearized Vlasov equation (Stix 1962),

t) E 0 	
- E  J Civ f 1 ( Z'Z7t)	 ,	 (1)

ofl + v
	 0i' -	 v X B	

afl - e E	 I	
(^)at	 —	 ]	 m — . 0	 av	 m	 v

where the plasma is assumed uniform and infinite, with a time invariant

electron velocity distribution, f O(v l ,v ); v l and v	 are the compon-

ents of the electron velocity, v, perpendicular and parallel to the

external magnetic field, B^; f l is the lowest order term in the pertur-

bation expansion of the electron velocity distribution; E is the pertur-

bation electric field; ps is the external charge density representing

the source of the perturbations; -e is the electron charge; m is the

electron	 mass; n0( 
n
eO = n,0) is the average charged particle den-

sity, and E 0 is the permittivity of free space. Ion motions will be

neglected.

To solve (1) and (2), we introduce a Fourier trsiisform in space, and

a Laplace transform in time, defined with their inverse transformation as

00

E(k,W) -	 dt J dr exp i(k•r--Wt)E(r,t)

0

E(r,t) -
f 'n

dk

^.	 exp	 i(Wt-k•r)E(k,W)	 (1;)fL
(2JI) JC

where C is the Laplace contour in the lower half complex W-plane.

Transforming (1) and (2), and combining, yields

i^ps(k,W)
E( k, 	 -,	 ^^)

E0k^K(WIk)
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where k2 = k2 + k2 and the plasma equivalent permittivity is,

2	 oo	 o0

	

K( w ,k) = 1 + -2 1 r dv	
- kp v (v '̂ ) rte	 (Wi < 0) >

	

k	 n- _ oo _OU	 II	 II II	 c

( )	
/a'	 Iw'c df0

	6f0 ,2 k11
Hn	 vl

l = 2n J dvl v c
	 + k ll rev	 n a	 vl	 (E)

	

0	
1	 1	 II	 C /

where k
1	 II

and k	 are the components of the wavevector, k, perpeadi-

cular and parallel to the applied magnetic field; w p(= n0	
i

e 
2 
A M)', is

the electron plasma frequency; w c(= eB0/m) is the electron cyclotron.

frequency; Jn is the nth order Bessel function of the first kind, and

W 
	 is the imaginary part of (I, (=

 W  
+ ic)i ) .

Equation (j) can be inverted with the aid of (4) to yield!

E(N,t) =J L ex p(iwt)G(W r,)ti
C
d k exp( - ik•r)p (k W)k

	

G(w,^)	
(it)Ok22 J	 E	 K(w,k)	

(7)

Dispersion Relation

The dispersion relation is simply K(CO,-k) = 0, and describes the

propagation of waves varying as exp i(wt-k•r). If we solve for w(k real),

exponential growth and decay are impliedfor W  < 0 and W  > 0, respec-

tively, while W  = 0 indicates undamped propagation. We shall return to

this below, but will first specialize (b) to the case of interest in

Part I, i.e, perpendicular propagation (k
II 
= 0). We obtain

^2

	

- ^	 ncuc

k(w,k ) = 1	 ,^ 	 a (k )	 = 0 ,	 (P)
1	 2	 n	 1	 - Il(J)

cu c n=-^	 c

M2	 U	 k v

	

an(1.1)	
C ,l dv' v ^v0 Jn	 u 1	 (9)

k	 1	 1	 c
1

3



For Computational purposes, an integral representation is useful,

CD2 	 n

K(W,k l ) = 1 + - B
 fdT sin re sin T FO(T + r) 	 (10)

c 0

F0( T ) = FO(T + 2n) = J dv f0(v I ,v ll ) J0 2 7— s	 2	 (11)
c	 1

where Q has been written for WAD c . Note that (8) and (10) are analy-

tic over the entire complex W-plane, except possibly at W = = .
c

Although detailed numerical studies are generally needed to appre-

ciate the implications of (10), consideration of some simple limiting

forms may be helpful. For example, consider the case where W 
2 
AD 2 << 1,

and w ;.-- nwc . We may approximate the infinite series in (8) by the nth

term, so that

w2_nW

K((V,k ) ti 1 - -L a (k )	 c	 = 0	 (12)
1	

CDL [l 1 (U — nwc
c

Solving for the frequency, we find,

w2

	

W(k1 ) ti ruuc 1 + --E a n(k 1 )	 ( 13)
W
c

establishing that there is a mode near each harmonic of the electron

cyclotron frequency. It may be shown more generally that there are always

cutoffs (t = 0) at nwc(InI > 1), and the upper hybrid frequency

`=(WL + O) C_	 and resonances	 oo) at iluuc( In  > 0). For this
P

reason, the waves are often referred to as 'cyclotron harmonic waves'

(CHW). We shall adopt this title in what follows.

Stability Considerations

Two topological forms of a n(k 1 ) will be examined in Sections 34:

first, such that a n 1
	 1

(k ) > 0 for all real k , and second, such that it



1

unduLites about the line a n(k I ) = 0. Baldwin and Rowlands (1966) have

shown that the first case is a sufficient condition for stable CHW propa-

gation. It is satisfied by distributions such as the Maxwellian with

af0/avl < 0 (v I > 0). It follows that a necessary condition for insta-

bility is that af0/av I > 0 for some range of vl.

It will be noted from(lj) that if a n ( k I ) can undulate, the ampli-

tude of the undulation increases with WpAV2 . Consequently, the loops

above a given harmonic may ultimately intersect those below the next

harmonic. This mode coupling will be shown in Section 3 to produce

instability, but it may be appreciated by making a two-term approximation

to (8),

W2

K(W ) x 1- P an	 c	 an+1(n + 1 c	 v!
k	 = 0	 (	 )

' 1	 w2 W - nu + u - n -r 1
c	 c	 c

This can be rearranged as the quadratic equation,

cot -q(yW+qw2=0
1 c	 2 c

(02

q l = (2n + 1) +-^ Itan + (n + 1)a
w

n+1]
C

W2

q ;2 = n(n + 1) 1 + ^ ( a n + a
n+1 )	(1^)

c

Complex solutions, and hence instability, can occur if there are values

of k
1
 for which qi< 	 4q^. If this turns out to be the case, either

G
within the validity of he approximation leading to (15), or after study

of the full dispersion relation, a more detailed examination is required

to determine the nature of the instability.

Instability Classification

CHW are solutions of our basic linearized differential equations,

varying as exp i(Wt-k.r), with W and k related via the dispersion

5



relation K(w k) = 0. If k is real and w . < 0, the wave amplitude

will increase exponentially with time for any r, no steady state condi-

tions appear pussible. It was pointed out by Sturrock (19`8), however,

that there are two distinct types of instabilities, one of which does

lead to a steady state. The difference becomes apparent only after a spec-

trum of waves is superimposed by carrying out the inversion described by

((), As t	 ^, () may take on one of two forms when instabilities are

present: the amplitude of the fluctuating electric field may grow in

time at every point in space, or the growing disturbance may propagate

away, leaving the plasma in a quiescent condition. The former case is

referred to as 'absolute' instability, and the latter as 'convective'

instability. The importance of making this distinction should now be

clear. If the plasma is convectively unstable, a steady state exists,

and it should be possible to excite sinusoidal oscillations, characteri-

zed by w real and k complex.

The nature of the instability is determined by the analytic proper-

ties of G(w,r) in the lower half complex CO-plane: analyticity there

permits convective instability, while a singularity implies absolute

instability (Derfler 1961, 1967, 1968; Briggs 196 +) . The singularities

occur at frequencies where the contour of integration (or surface of

integration if the integral J.s multidimensional) of G(w,r) is pinched

by zeros of K(w,k). For example, for perpendicular propagation as

exp i(wt-k 
1 
x) we can write,

00 dk
I exp( -ikIx)0S(w,kI

G(w,N)	 X G((O,x)	
f 2n	 E 

0 1
k K w k	 '	 (16)

a_	 1

where R is a unit vector along the x-axis. Figure 1 shows the contour

of integration that uniquely defines G(w,x) over the entire complex

w-plane. As w moves away from the Laplace contour, it may be neces:3ary

to deform the contour into the complex (Mane to avoid an approaching

singularity. This deformation becomes impus--sible if zeros of K(w,k )
1

pinch the contour as illustrated.

It can be readily demonstrated that at the pc , :.nt of pinching

aK/^kl = 0, or equivalently ;wWc,,k l = 0, implying that G(w,x) has a

6
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Fig. 1. DEFORMATION OF CONTOUR OF INTEGRATION OF (16) as w

APPROACHES REAL AXIS FROM THE LAPLACE CONTOUR.



branch point at the same frequency as k (w) has. We may make use of
1

this fact to provide an alternative to Vie pinching-pole criterion just

described. If a mapping of the real k axis into the complex u`-plane
1

traces a loop located entirely in the lower half of the plane, a branch

point of k 
1	

aM must be encircled. This implies that G( , ,x) has a

branch point at the same frequency, and hence that the plasma is abso-

lutely unstable. We shall use this later to show that all of the insta-

bilities described in Part I are absolute.



5. RING DISTRIBUTION

The ring distribution describes monoenergetic electrons, moving

only in the plane perpendicular to the magnetic field, and uniformly

distributed in velocity space on a circle wit!, radius v01 . It may be

written in terms of Dirac 8-function.; as

f^(vl,vii)	 env	 s ( V 1 - vol ) s(V ii )	 (1l)
Ol

With this distribution, integration of (9) and (11) yields

dJ2 (µ )

	

a n ( k l ) = 1	
d 

1	 , Fo(r) = JO (2µ l sin T	 ,	 (l^)

	

µ 1 	 µl

where µ l = k Lv01/W c . Substitution of (18) in (8) and (11), and some

manipulation, gives the following alternative forms for the dispersion

relation,

top oo	
1	 d n(µl) nw

K (W , k 1	 1	 2 1 µ	 dµ	 w-
1	 1

nw
cWC n=-oo

K

C^2
it

= 1 +	 P
J	

dT 
sin	

sin -r JO (2µ l cos 2

c 0

w2

= 1 - —p Sin	 al
(µ	 )

LJ
J	 (µ	 )

J	
= 0	 (19)2 sin CZr aµ	 1 1

c

Dis persion Characteristics

Figure 2 shows numerical solutions to (19) for several values of

w2/0)2. We note that for w2/ 12 < 6.62 the branches undulate about suc-
P c	 p c

cessive cyclotron harmonics. It is easy to see from the final form of

(19) that if	 = n. then J n( µ' )^Jn(µl) /^ul = 0 1 implying that the

modes cut the cyclotron harmonic lines at the zeros of J n (µ l ) and its

9
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wP/w2 = I

	

5 40J,(µ1)=0	
_-
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3

2

0

wP/wc = 5
5

4
w/wc

3

2

I

Iwp/wc=10	 — —^ wp /w2 = 20

5

4
w /wc

3

2

I

0	 2	 4	 6	 8

k 1T)L wC

Fig. 2. DISPERSION CHARACTERISTICS OF PERPENDICULARLY PROPAGATING

CYCLOTRON HARMONIC WAVES; RING DISTRIBUTION.
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derivative.

As w`/w	 increases, the loops above a given harmonic approach the
P c

loops below the harmonic immediately following it. The points at which

the loops can couple must always lie between 
CzTIM 

and 
u(n+1lm. 

where

CV represents the mth zero of J^^(µ 1 ). The values of w /wc at which

the first few modes ,just touch are given in Table 1.

Distribution	 Frequency Band

0<W /CD <1	 t<W/cu <2	 2<CUAV <,;	 3<W/W <4

	

c	 c	 c	 c

Ring	 17.02	 6.81	 6.62	 6.94

Spherical Shell	 --	 215.38	 57.05	 47.91

TABLE 1. Instability threshold values of w2/w`
V c

After coupling has occurred, there are ranges of µ
1 

in which

purely real solutions for w do not exist. The real parts r /r	 of
the complex conjugate roots for frequenr_y are indicated in figure 2 by

fine lines, and the corresponding imaginary parts w i/r	 are shown
dotted. Note that these growth rates can become very strong indeed.

For example, when W	
ci 

/cu	 1, growth rates of the order of 50 dB per

cyclotron period (= 2n/w 
c ) 

are implied.

An interesting feature of figure 2 is the occurrence of an insta-

bility with (D /w = 0^ implying that plasma fluctuations will grow in
r c

time without propagation. The threshold conditions for this are obtained

by setting w = 0 in (1), and expressing the result in the form

	

1	 JO(µ) J1 (µ 1)
_	 —	 (20)

2^wp
/0)e) -	

µ 1
c

Since µ	 is real, this equation can be satisfied only if the line
0 1

-1/2(w^^/w^) lies above a minimum of J0(µ
1 ) 

J 1 (µ 1 )1µ1. When this occurs

there exist purely imaginary roots of the dispersion relation. This can

occur only ii µ	 lies between succeeding pairs of zeros of JO and J1.
1

12
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Stabilitv Analvsis

Since complex w solutions occur with w.
1 
< 0 for k 

1 
real, we must

apply the instability criteria summarized in Section 2. Figure 3a indi-

cates the use of the pinching pole criterion for the particular case of
'^	 2u`` /a) = 20 and 1 < w /w < 2, When contours A, B, C and D ere mapped
P c	 r c

into the complex x -plane via (19), a saddle point is found at
1

µ10 
= (k 

1 Q1 C
v /w )

0 
= 4.46 + i 0,18. The corresponding frequency is

(w/wc ) 0 = 1.29 - i 0,47. Since the saddle point is formed by the merg-

ing of two roots of the dispersion relation that originate on opposite

sides of the real axis, and hence the contour of integration, pinching

occurs, and G(W I x) is singular in the lower half complex w-plane at

w0 , Hence, the plasma is absolutely unstable.

To illustrate the loop criterion, figure 3b shows the type of locus

followed in figure 3a by the complex w roots of the CHW dispersion rela-

tion as k l increases along the real axis (k Li= 0). All the instabili-

ties covered in Part I are of the mode coupling type, and exhibit similar

behavior. To separate the two branches in figure 3b, a second locus has

been drawn along which k 	 = S, where 6 is small and positive. The
li

equation describing this locus is obtainable by expanding the frequency

(1)(k
lr 

+ ib), in a Taylor series,

^w(klr)
w(k lr 

r 
ib) 5:t^ w(k ll ) + ib 

ak	
(21)

tr

where w(k tr ) and the sign of its derivative are evident from dispersion

diagrams such as figure 2. A loop in the lower half w-plane is invaria-

bly indicated. This leads to the conclusion that when CHW instabilities

occur for perpendicular propagation, they are absolute.

13
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(a) Pinching pole criterion
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(b) Frequency loop criterion

Fig. 3, APPLICATION OF INSTABILITY CRITERIA TO PERPENDICULARLY
PROPAGATING CYCLOTRON HARMONIC NAVES.

14



4. SPHERICAL SHELL DISTRIBUTION

Even if a pure ring distribution could be set up instantaneously,

it would diffuse in velocity space due to collisions, and nonlinear wave/

particle and wave/wave interactions. In this section, we shall consider

as a relevant standard form the spherical shell distribution,

fO (v l ,v 11 ) = 	 1	 8(v - vO )	 ,	 (22)
) . ]TV 0

1
where v = (v2 + v` )T . This describes a plasma in which all electrons

1	 ^^

have the same speed, vO , and are isotropically distributed in velocity

space on a sphere of radius vO' The ring distribution would, in princi-

ple, relax to this case after the electrons have undergone collisions in

which only momentum is transferred. If energy is also transferred during

the collisions, the distribution will evolve toward the Maxwellian, which

we shall study in Section 5.

With (22), integration of (9) and (11) yields

	

J2n(2t 1 )	 sin 2^ sin 2a n(k l ) =	 2 -	 FO(T) =	 T	 (23)
^l	 2^ sin 2

where RR = 1 ^
k v Az C

. Substitution of (23) in (8) and (11), and use of
yl 

some Bessel function identities gives the following alternative forms

for the dispersion relation.

	

2	 00
	w p 	J2n(2^^)	

^'c

	

K (cu, k l ) - 1 - 2	 L..	 2	 0-` - n<ti
a>c n=-o	 g l	 c

	

cu2	 7C 	 OT sin T sin(2E cos T )

	

p	 ^	 1	 G

	

1 + W2
	

dT	
gl sin Stn

C 0

	

W2	 2
= 1	

)

	

+ 1,J	 I + 4 
w2 S -	 (2g 1 ) - 0 ,	 (24)

	

E ` CU
	

W
2 	 GC2

	

"1	 c	 c

where the final form is expressed in terms of Lommel's function,
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n/2

	

S-1 ^C1( 2g 1 ) - 2f2 
sinC2n f dT cos2OT cos(2E COST)	 (. )

0

Dispersion Characteristics

Figure 4 shows numerical solutions of (24) for values of w2/w`
p c

similar to those used for figure L. The modes cut the cyclotron liar-

monic lines at the zeros of 
J2n(2g1). This may be seen most easily from

(25), in which the integral reduces to nJ 	
1

^n (2P, )12 at n = n. The

undulations are less violent, and the instability thresholds may be com-

parcd in Table 1 with those for the ring distribution. They are much

higher, and we note that no zero-frequency instability occurs. This

last point may be proved as follows.

	

To determine the threshold for instability, we put 	 0. The first

form of (24) then reduces to

w21-J(2^ 

	

1 + -Y	 1	 -L ) = 0	 (26)

	

C	 ^l

Since the left-hand side of this expression is positive definite for real

and nonzero lr l , instability can never set in.

When there is mode coupling and instability in the higher passbands,

a similar analysis to that of Section 3 shows the instability to be abso-

lute. The generally weaker growth rates are attributable to the spread

in transverse energies associated with the spherical shell distribution.
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MAXWELLIAN DISTRIBU MN

The final basic distribution to be considered is the Maxwellian,

j/2	 v2 + v

f0(vl,v(_

2TC1V2

1 	 Pll ) = 	 exp -	
2

t 	2vt

i
whe y, v

0
t= (, Te/me ) ? 1 is the electron thermal velocity. The now famil-

iar procedure gives

exp(	 n( a, )	 2

an( kl) 	 F0(-r) = exp(-2X sin 2 / , 	 ( 28)

where X = (k 
1 t C
v /G ) 2 . The dispersion relation may be expressed in the

alternative forms,

m
W2

1	 2(llc n=-Oo

exp( -a.) I n( ?. )	 ntllc

r1w
c

	

CD ra
n
	IT

	

rs in1 + ^2	 dT	 sin Tn sinT exp(-2X cos2 2 ) = 0 	 (29)

c 0	 /

Dis persion Characteristics

Figure	 shows numerical solutions W(k real) of (29) for several
1

values of u 2AD2 . Since a n(k l ) > 0 for all k lreal^ no mode coupling

czcurs, and the propagation is stable. Experimental observations of CHW

propagation show that these theoretical dispersion characteristics are

approached closely in the laboratory (Crawford et al 1967).

Since a Maxwellian plasma is free of absolute instabilities, steady

state solutions of (29) can exist for W real, and most generally k
1 

com-

plex. Figure 6 illustrates this: In addition to the W real, k 
1 
real

branches already shown in figure 4 1 there are the w real, k 1 
complex

branches numbered 1-6. In reality there are an infinite number of them,

and a detailed study has been made by Buckley (1968). In general, their
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3

spatial decay rates are so high as to make them uninteresting.

These solutions of (29) pose a minor paradox, since they suggest

that damped waves can propagate in a lossless plasma. Similar situations

occur for other modes of propagation, e.g, surface waves on a bounded

plasma column (Ristic et al, 1969), so it is worth pointing out the cor-

rect interpretation of this curious result.

Consider (16). If the integration is carried out, defining the con-

tour as in figure 1, we obtain the following representation of G(W,x),

exp( -iknx)os(u^,kn)

	

G(W,x^ - L
	 k	 /^k

	n 	

( x > 0)	 ( 30)iE	 aKW
O n	 ' 

k 
n	 1

where kn(W) is a root of K(W,k n ) = 0, and the summation extends over

all k
n 

that have a negative imaginary part when W is on the Laplace

contour. When u1 is real, the terms in this series with complex k
n

can be put in pairs, since the symmetry of K(CU,k 	 implies that if k
1	 n

is a root with a negative imaginary part, then so is -k11, where

denotes complex conjugate. Thus, the series is constructed of paired

expressions

exp( -ik11x)os(W,kn^

ic 0kncK W,k n /akI

exp(iknx)os(W,-kn)

iEOkn K(W _kn^ /dkl

exp( -ik nx)p s (W,k n ^	 exp( -iknx)os(W,kn^

iE O k t^aK W,k n /dk l 	 iE0kncK W,kn /c kl

- 2Gn0 (W ' kd 
exp(knix) sin(k nrX-E) ,	 (31)

where 
GnO 

(CD 
' k n

) and 0 are defined by,

pS(W,kn)

Gn0(W ' k n ) eXp(i0)	 E 0knaK W,kn /akn 	 (32)

and the source function, 0 s (W 1 k 1
), is real and symmetric in k I . Since

x > 0 and k tti < 0'	 1
the implication of (31) is that the W real, k com-

plex solutions of (29) are associated with the excitation of standing
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waves that decay exponentially away from the source. Damped propagating

waves will not be excited.

Collisional Effects

For isotropic distributions such as the Maxwellian, momentum trans-

fer collisions may be taken into account approximately by suitably modi-

fying the dispersion relation. To do so (Tataronis and Crawford, 19u,'),

first replace W by (w-jv), and then cup by W p(1  - jv/w ), where v

iG the effective momentum transfer collision frequency and is assumed

independent of speed. With these substitutions in (29), the four most

lightly damped curves of figure 6 become as shown in figure 7. Two qua-

drants have been drawn for k Lrv t /ar c , to demonstrate clearly how the

real parts of the curves join. The imaginary parts indicate strongest

damping where the group velocity (dci:Vdk) of the real branches is low

or zero for v = 0. It should be noted that the attenuation is increas-

ingly heavy in the higher passbands, and may easily be of the order of

tens of dB/wavelength for the value of v/w c chosen.
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C. MIXED DISTRIBUTION

It is frequently the case experimentally that a group of energetic

electrons interacts with a stable background plasma. Since the ring and

Maxwellian distributions represent extremes of instability and quiescence,

it is natural to investigate a situation in which proportions of these

two distributions are mixed. We shall do so in this section with the

aims of determining the parameter ranges over which instability will

occur, and the strengths and nature of these instabilities. We combine

(19) and (29) to obtain

exp( -^) I 'p )	 nwc

W
c	 n=- oo	 c

+( 1 -a)	
µ	 cgµ 1 w- nw	

0	 ('>3)
n =— 1	 1	 c

where a defines the proportion of the total electron density that is

Maxwellian.

Dispersion Characteristics

We shall not attempt a detailed review of dispersion characteristics

in the w - kl form, since we now have not only wp/w
c
 but also (Aand

v0i/v t as variable parameters. We know the limiting forms for a = 0

and 1 (figures 2 and 5), and can deduce that reducing a from unity will

cause undulations, due to the ring component (1-a), to appear on the basic

Maxwellian curves. The "wavelength" of these undulations along the k
1

axis will depend on v0i/v t . We will return to a specific example shortly,

but will investigate first the threshold values of 
w2/w2 

at which mode
p c

coupling due to the undulations will occur. Computations based on (33)

yield the data shown in figure P for the first four passbands.

When a = 0 (ring group alone), we retrieve the instability thres-

hold values of table 1. As cc increases, the threshold conditions

become strongly dependent on v0i/v t . In the first passband, w 
B/
w2
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increases monotonically with v01/v t . The remaining three bands have a

more complicated structure, however. For a giv:n Ct, note that the

instability threshold may be lowered if v01/vt is sufficientl }1 large,

i.e, instabilities are predicted for values of W2/W2 that correspond
p c

to stability when the electrons are exclusively in the ring group. A

concomitant of this is that the maximum growth rate associated with the

ring distribution alone is increased by addition of sonic Maxwellian

plasma. This is illustrated for the passband 1 sca r/W c 5 2 in figure ^.

Study of figure P indicates that for v01/vt - 00 there is instabil-

ity, even for a vanishingly small population in the ring distribution

(Ct — 1). The threshold values corresponding to this limit are

W2 /W^ 	 ^ ( 1 5 COW 5 2), 8 (2 5 u>/ao c 5 ^), 15 (j 5 W/W C 5 4), which

we recognize as the values for which the upper hybrid frequency equals

c . 
Near these frequencies, propagating branches of the Maxwellian

plasma can easily be coupled together by the undulations caused by the

presence of some electrons in a ring distribution. This point is made

explicit by figure 10 for the case W2
P 
/Wc =
	

v 	 = 25, which is

relevant to the diagram for 1 5 W/W
c 
5 2 in figure F. As R decreases

from u. 96 to 0.90, we sep from figure 10 that mode coupling takes place,

and there is absolute instability. The growth rate will maximize with

decreasing Ct, then decrease again. The final sequence shows how the

modes finally become uncoupled as u decreases from a = 0.40 to 0.30.
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7, DISCUSSION

In Part I of the paper, we have explored the dispersion character-

istics of perpendicularly propagating CiIW for a set of basic electron

velocity distributions, and it is convenient to .summarize here the

principal results. The salient features of the ring distribution are

its undulatory propagation branches, and the mode coupling leading to

very strong absolute instability. The spherical shell distribution

shows weaker versions of the same phenomena, but is not subject to a

zero-frequency instability, The Maxwellian distribution is associated

with stable propagation, and leads to either purely real propagation,

or attenuating standing waves. There is no eollisionless clamping.

Finally, our study of a mixture of ring and Maxwellian distributions

indicates that the presence of a Maxwellian background may cause abso-

lute instability with higher growth rates, and at lower thresholds

2
p
 2(,,^a,c )	 than for the ring distribution alone.

We may speculate on the results to be obt.;ined for other basic

velocity distributions and mixtures. If the shape is given in analytic

form, it ma y be possible to determine immediately from the form of

a
tt 1(k ) whether there should be instability or not. If so, its strength

might be inferred crudely by considering the transverse velocity spread

relative to those of the distributions stuOied here. It would be

academic to push this too far, however, as we shall show in Part II

that the instability picture becomes much more complicated when oblique

propagation is considered. In particular, growth rates may be higher

and instabilit y thresholds lower.
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