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On Ignoring the Singularity in Numerical Quadrature.

By

R.K. Duller

1.	 Introduction

Davis and Ra.binswitz [1] recently studied the question

of "ignoring the singi,larity" in nurerical quadrature.

That is, if f(t) becomes singular at a point ^ where

a < E < b then one defines f(^) = 0 (or any other

finite value) and then a	 gapproximates the integral.

I = faf(t)dt

by a usual numerical quadrature rule. They show that

this procedure is not valid in general. However if

E = a (or some other rational point of [a,b]), then

compound quadrature rules do approximate I when f is

monotone near. Certain of the positive results in

[l] where generalizied by Rabinswitz [2] . Gautschi

[3) has applied a result in [2] to two other quadratures

of interpolatory type.

The purpose of this paper is to generalize some of the

convergence theorems in [1] and [2]. We shall replace

the assumption of monotonicity of f(t) near t = E by the

more general condition that f(t) can be dominated by a

monotone, integrable function. We shall also establish
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some theorems on error bounds and convergence rates which

are similar to those; obtained in [4].

2. General Qu-dratures

Let M be the set

M = {fEC(O,T]n L 1 (O,T) : f is nonnegative and non-

increasing on 0 < t 5 T}.

Define M  to be the set of all functions f(-= C(O,T]

such that f can be majorizied Yy a function in M,

M  = {f E C(O,T] : 3 FEM with I f (t ) 15F(t ) on 0 <

t5 T}.

For any function f(=- M assign the arbitrary value
d

f(t) = 0 when t = 0.

Given any numerical quadrature rule

Q(f) = En =O	W(j) f(T(j)), f E C[O,T]

let Q(f,S) be the modified quadrature rule obtained from

Q by redefining f(0) = 0,

Q( f , $ ) = E j=O	 W (j)f(T(j)), f(0): = 0
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Then Q(f,S) ignores possible singularities at t = 0

and is well defined for all functions f E M d . In general

Q(f,S) ^ Q (f) for all functions fEC[O,T]. With these

preliLlinaries we are ready to generalize the lemma [2].

First consider rule s which are open at t = 0.

Lemma 1.	 Consider a seouence of rules

Q n ( f ) = E ^=O Wn ( j ) f(TnW)

where

0 < T 	 (0) < T 	 (1) < ... < T n (m n ) < T

and Wn (j)>O for all. j.	 Define 
T 
	 (-1) = 0.

Suppose there exist positive constants C and A such

that uniformly for all positive integers n, if

j = 0(1)m n and if IT n (j)I < A then

( 2.1 )	W n ( j ) < C { T n ( j ) - Tn(j-1)}•

(j = 0(1)mn means j = 0,1,2,..., m 
n')



Suppose for each function g E C[O,T] one has

(2-2)	 lim Q n (g) = fOL^(t)dt,n->-.

Then for any function fCvld

(2-3)	 lim Qn(f,S)	 T0 f(t)dt,

In particular if O<B<A, if one defines

f B (t) = f(t) on B < t < T; = f(E) or 0 < t < B,

and if

b (t) = sup {If(s) - f B (s)I : t < s < T},

then the error

E s (f,Q n ) = fT f(t)dt - Qn(f,S)

satisfies the estimate

4

( 2 - 4 )	 IEs(f,Qn)I < I E ( f B lQ n ), + If B ff(t) -

f(B) }dtl + CfB d(t)dt.
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Proof.	 W.L'ite E = E s (f,Q ) in the form

m
E = I T {f(t) - f13(t))dt + E(f B ,fJ, n ) + E^ nO 4Tn(J)

{f B ( ì' n ( j ) ) - f(T n ( J ) )

= I B {f(t) - f(B)}dt + E(f
B' Q n ) + En.

Then for any n

III

(E n d ^ E^nO w n (J) ^f(T n (J)) - f B (T n W) l

m< Ejl 
FI n (J) d (T n (^)) _ @ Il (b^ S)

Since fCMd , there exists a ma,jorizing function FCi;.

Then for s in the range b<t<s<B one has

f(s) - f B(s)I < F(s) + F(B) < 2F(t).

Therefore

d (t) < '2F(t) on 0 < t < B, d(t) = 0

on B <t<l, and hence d CL 1 (0,1).  Note also that b(t)

is continuous, nonnegative and nonincreasing. This



together with (2.1) implies that

Q n (6,S)	 E 2'n (j)<B W 
	 n(j) ) < CF{T n (j ) -

T 11 ( j -1- )f6( l̀' n (j) < C F. f T n (j ) 1) 6n

(t)dt = C f  6 (t)dt.

This completes the proof of (2.4).

Line (2.3) follows immediately from (2 . 14) and the

estimate 6(t) < 2 F(t). 	 Indeed by first chocsing B

small and then choosing n large one can make the right

hand side of (2.4) as small as desired. 	 Q.E.D.

Almost the same result is true for quadratures whicli are

closed at t = 0.

Lemma 2. Suppose a sequenc e of quadrature r u les Q
—	 n

satisfies the two conditions

0 = T n (0) < T n (1) < ... < T n (m n ) < T , Wn(j)>0.

Su ppose the r e exist positiv e constants C and A. such t hat

if	 ITn(j) I	
<	 A	 and if	 j	 =	 1(1 )m ri then	 (2.1)	 is	 true

uniformly	 in	 n. If (2.2)	 is	 also true	 then	 (2.3)	 follow s.

In	 particula r 	 if f  E C[O,T]	 and 6C M 	 are the	 functions

defined	 in	 Lemma 1 and	 if 0	 < B < A,	 then

6
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(2.5)	 Ir. 5 (f,Q rl ) I < I ^,(f E , Q n )	 I + III;{ f(t) -

f ( E	 + C !o 6(t)dt + cti n ( C,	if(H)I•

Frvof. The proof is the same as that of Lemma 1 except

for the estimates of E 	 In this case
n

III

E n = ^j 
^ 4r

n (J) {f(`l'rI(J)) - fb(TnW!,

and

IE n I < Q n (d,S) + W n (0) If(b)I

< Cl od(t)dt + w n (0) If(B)I

:here we define d(J) = 0. Our hypotheses easily imply

that Wn (0) --* 0 as n -> -. Therefore Lemma 2 is proved.

Combining the two results we have proved:

Theorem 1. Consider a sequence of numerical quadrat.ure

rules Q where
n

0 < T (0) < T (1) <...< T (m ) < T and W (J)>0.
n	 n	 n n —	 n

Suppose (2.1) is true as in Lemma 1 (when T n ( 0 ) > 0 )

or Lemma 2 (T n (0) = 0).	 If (2.2) is also true, then for

any f E Md
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Qn(f) > j 0 f(t)1t as n -► °,

Indeed if 0	 <	 B	 < p	 _ nd	 if r ;̂ E_	 C [ 0 ,'1' ]	 and 6 E Md

are'	 the functions defined in Lemma 1 then

( 2 -6)	 IRs(f,Qn) I < I I: ( fL , Q ri ) I + If 0
r"
	 -

f(B))dtl + Cf o 6 (t)dt + {1 - sgn Tn(0)}

W rl (0) I f(1) I .

One can also generalize the Corollary in [2, p.1961 in

the obvious way.

3.	 Compound Rules.

Consider a quadrature rule R defined on the interval

0 < t < 1

(R)	 R(t) = E
j=O W ,jf (t ,j )

where J > 0 and

(3-1)	 0 < t 0 < t 1 < ... < ^ J _ 1	 W ^ > 0, I'	 W, = 1.J

(If t 0 > 0 then define t -1 = 0.) For any integer n > 1



ana any interval 0 < t < T one can then define a

conpound rule

(n X R)	 L (f) =E k _ I {3^ J _ 0 HW ' f(tJ1?

where }I =- T/1 .	 Lot C > 0 be any constant satisfying;

(3.2)	 W  ,^ ( t
i 

- t J-1 ) C

	

(^ = IDW

and either

(3.3a)
	

W 0 < ( t 0 + 1 - t J ) C
	

(if t 0 > 0 or t
i
 < 1)

or

(3.3b)
	

(w 0 + IIJ ) < 
(t J	 tJ - 1) C	 (if t

0 =0 and tJ=1).

Theorem 2
	

If (R) satisfies (3.1) then for any fe M 

1 im
	

R n (f,S) = fTf(t)dt.

n-► W

Proof.	 The definition (3.2-3) of C implies that (2.1)

is true with A = T. Since R integrates constants and

n-)-- then ( 2.2) is also trival .	 Therefore Theorem 2 is

a corollary of Theorem 1. 	 Q.E.D.

9



The error esti.rnate (2.6) is rather pessimistic f(,r

compound rules. Therefore we shall derive another

estivate which is more suit,..ble for many purposes.

Let K>0 be the smallest constant which satisfies

(3. 11) 	
W 
	 < (t j - tj -1) K

for j = 1(1)J if t 0=0 or for j=0(1)J if t0>0.

Theorem 3.	 Suppose (3.1) and (3. 11) are satisfied.	 Let

H = T/n for any function f E M d define

f H (t) = f(H) if 0 < t < H; f(t) if H < t < T.

If F E M is any majorizinp; function for f then

t H

(3.5)	 IEs(f,Rn)I < IE(f H ,R n )I + fHF(t)dt + K 
fOm 

F(t)dt

or

IF^(f,Rm)I < IE(f H ,R n )I + (1+K) f 	 F(t)dt.

proof. Since (R) integrates constants, then the error

may be written in the form

10

E s (f,R n ) = E(fH ,R n ) + E0



where

fI
(3.6)	 EO = I0 f'(t)dL - F 1=0 Hwif(t,H).

Since If(t) I < F(t) en 0 < t < T, then

Ifo f(t)dt I < IU n(t)dt.

Let a, = 0 if t 0 > 0 and a = 1 if t 0 = 0. Then f(0) = 0

and ( 3 . la) imply

IFS =0 
Hw	 f(t,H)I < Fa Hw F(t,H)

J

< K Fa H(t
i
 - t j .-1 ) F(tiH)

t
<	 FJ ft ^	 F(t)dt = K 

fJHa tJ -1
	

F(t)dt.

This proves (3.5) and the theorem.

If one knows that f CC 1 (1 0,T],  then the term E(fH,Rn)

may be estimated using Peano's theorem.

That is

11

E(fH ,R n ) = f1 P n (s) fm(s)dt

where P  is the appropriate Peano kernal. Since
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1) rl (s+II) = P n (s) on 0 - s < T-II, then I:' n (s) I need be

be estimated only on the interval 0 < s < FI. Therefore

the following result is an immedi ate _orol i ary of Theorem 3.

Corollary 1. Assume the hyp otheses of Theor em 3. If

f E C 1 (0,T] then

(3.7)	 IE(f,Rn)I < II P n II I H If'(t)Idt + JoF (t)dt +

t H
K 

f0m Y'(t)dt

where IIP n II = sup {IP n (s)I = 0 < s < H}.
Corollary 1 is useful in estir.ating convergence rates

in certain cases.Following [4] we shall say that a

function f E C 1 (0,T] is weakly singular at t = 0 if the

function

a(t,f) = If(t) I + jt 
I 
f, (s) Ids

J. s in L1(0,T).

Corollary 2.	 SIL ose the hy p o theses of T heorem _', are true.

If f is ,Teakly s i ngulnr (a-, t = 0) t hen

(3.8)	 Es(f,Rn) = 0(JH a( t,f)dt) as H->0.



Proof. It follows immediately from the definition of

weakly singular functions that f E 1 .1 d and a(t,f) c i•i

is a majorizinC function.	 Thus (3.7) implies

IF : S (f,li n ) ^ < I I P n 1 I fTjf' (t)dt + fpa(t,f)dt +

Kf'Ta(t,f)dt

< IIP n II a(H,f) + (1 + K) f 
	
cc( t,f)dt.

Using the estimate II P n II < 2H (see for example [1E,

section II]) and the monotonicity of a one has

IPnI I a(H,f) < 2H a(H,f)< 2fHa(t,f)dt.

Therefore for any n (H = T/n) one has

I E(f , R n )I < (3 + K) fH a(t,f)dt.

Q.E.D.

For example if f(t) = t -P (0<p<l) then (3.8) predicts

that E s (f,R n ) is at least of order h -P ' If f(t) = t-P

sin (t q ) where 0 <p,q <1 and p + a <1 then E s (f,R n ) is

at least of order h l p-q . If f(t) 	 = t-P sin (t- q ) where

0 < p < 1, q > 0 and P + q > _l then our theory predicts

convergence but gives no order estimate.

13
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Nilmerical Exam p le .

The data in [1] will be used to illustrate the theory

given above. For the midpoint rule M(f) = fO one has

H= h= T/n.	 Since -P n (s) = s if 0< s< h/2; 2-h if

h/2 < s < h, then II P n 1I = h/2 and K = 2.	 Therefore (3.2)

has the form

I F (f,m )I < ( h/2) f T lf 1 (t)Idt + f 	 F(t)dt + 2fh/2F(t)dt.s	 n	 n	 0	 0

Table 1 contains data for the case

(4.1)	 Io t 1 c dt = 2.

The fourth column is the theoretical error computed using

(3.7).	 This error bound is seen to be pessimistic by a

factor of 7 to 8. Corollary 2 suggests that the error may

be of the approximate form

(4.2)	 Es(f,Mn) = Cvrh- 	 (h=T/n)

for some constant C > 0. The ratios E s (f,M n ) / Es(f,Mn+l)

are given in column five. The theoretical ration computed

using (4.2) is Y'2- (column six). It can be seen that (4.2)

is approximately true with C = Al.

(Insert table 1 near here)
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`fable 2 contains similar data for (4.1) using the

trapezoid rule (T), Simpson 's rule (S) and the Gaussian

two point rule (G 2 ). The theoretical errors are good

for the t.rapezoid rule and progressive worse for Simpson

and Gauss two point. In all cases (4.2) is approximately

true, E s (f,T n = 1.5 v h, F s (f,S n )
	

.89417 and Es(f,nXG2)

.35 4,^.

(Insert table 2 near here).

One could also analysis the data in [1] for (4.1) using

the Gauss 48 - point rule.	 In this case E s (f,n X G48)

.18y rh (approximately). It would be very difficult to

estimate IIP ,1 11 accurately in this case. Thus (3.7) is

essentially useless.

Data for the example

1	 1
fo t_ Z sin (t -7 ) dt = 1.08134

is given in table 3 for Simpson's rule and for the Gauss

48 - point rule. For this case our.theory predicts conver-

gence but yeilds no useful information on errors or conver-

gence rates. For Simpson's rule the method appears to be

convergent. For G 48 the method starts to converge nicely

but blows up at the fourth step.



TABLE 1

n mn(f0) Error Th.Error Ratio Th.Ratio

2 5 1.8931 .1069 .6763 1.414 1.414

2 6 1.9244 .0756 .4815 1.1113 1.414

2 7 1.9465 .0535 .4321 1.111.5 It

2 8 1.9622 .0378 .2427 1.416 "

2 9 1.9733 .0267 .1720 1.413

2 10 1.9811 .0184 .1218 1.410 if

2 11 1.9866 .0134 .0864



TABLE 2

Approx. Error Th.Error Ratio Th.Eatio

2 5 X T 1-741-8 .2582 .6031 1.414 1.414

2 6 X T 1.81.'(4 .1826 .4294 1.41)4 it

2 7 X T 1.8'(09 .1291 .3055 1.414

2 8 X T 1.9087 .0913 .2168 1.41.5

2 9 X T 1.9355 •0645 .1537 1.414

2 10 X T 1.951111 .01456 .1089

2 5 X s 1.8427 .1573 1.1792 1.413 1.414

2 6 X s 1.8887 .1113 .8735 1.414 of

2 7 X s 1.9213 .0787 .6198 1.415 if

2 8 X s 1.9444 .0556 .4393 1.411 it

2 9 X s 1.9606 .0394 ..3113 1.412 it

2 10 X s 1.9721 .0297 .2203

2 X G 2 1.7528 .2472 7.5572 1.414 1.414

4 X G 2 1.8252 .1748 5.4012 1.225 1.225

6 X G 2 1.8573 .1427 4.4213 1.155 1.155

8 X G 2 1.8764 .1236 3.8341 1.118 1.118

10 X G 2 1.8894 .1106 3.4328 1.096 1.095

12 X G 2 1.8991 .1009 3.1360 1.080 1.080

14 X G 2 1.9066 .0934 2.9050 1.069 1.069

16 X G 2 1.9126 .0874 1.7640



TABLE 3

Approx Fl•ror Ratio

2 5 X s 1.123): -.042] .241

2 6 X s .9116 .1697 1.562

2 7 x s .9727 .1086 1.017

2 8 x s .97115 .lo68 1.715

2 9 x s 1.0201 .0612 2.696

2 1-0 X s 1.0586 .0227

1 x 048
.91149 .1346 1.534

2 x G 48 .99211 .0889 2.285

3 X 0 48 1.0402 .0389 .2571-

4 x 0 48 .9300 .1513

I
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