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On Ignoring the Singularity in Numerical Quadrature.

By

R.K. Miller

1. Introduction
Davis and Rabinswitz [1] recently studied the question
of "ignoring the singnlarity" in numerical quadrature.
That is, if f(t) becomes singular at a point § where
a < £ < b then one defines f(§) = 0 (or any other

finite value) and then approximates the integral.
I = fo(t)dt

by a usual numerical quadrature rule. They show that
this procedure is not valid in general. However if

£ = a (or some other rational point of [a,b]), then
compound quadrature rules do approximate I when f is
monotone near §. Certain of the positive results in

[1] where generalizied by Rabinswitz [2]. Gautschi

[3] has applied a result in [2] to two other quadratures
of interpolatory type.

The purpose of this paper is to géneralize some of the
convergence theorems in [l] and [2]. We shall replace
the assumption of monotonicity of f(t) near t = £ by the

more general condition that f(t) can be dominated by a

monotone, integrable function. We shall elso establish



some theorems on error bounds and convergence rates which

are similar to thosec obtained in [4].

(®]

eneral Quadratures

Let M be the set

M = {f€c(o,T]le(o,T) : £ is nonnegative and non-

increasing on 0 < t < T}.

Define M  to be the set of all functions f€ C(0,T]

such that f can be majorizied ty a function in M,

M, = {r € c(0,7]:3 FEM with |£(t)|<F(t) on 0 <

t<T}.

For any function f&€ M assign the arbitrary value
d

f(t) = 0 when t = 0.

Given any numerical quadrature rule
a(r) = 2§, W) £(1(5)), £ € clo,T]

let Q(f,S) be the modified quadrature rule obtained from

Q by redefining f(0) = 0,

a(£,8) = Zy=0 ¥ (IL(T(3)), £(0):= 0



Then Q(f,S) ignores possible singularities at t = 0

and is well defined for all functions f €& Md. In general
Q(f,s) # @ (f) for all functions f€C[0,T]. With these
preliminaries we are ready to generanlize the lemma [2].

First consider rules which are open at t = 0.

Lemma 1. Consider a sequence of rules

Q(f) = Iy o W (§) £(T (3))

n

wnere

A
=

0 <1 (0) < T (1) € <= % Tn(mn) <

"
o

and wn(3)>o for all j. Define T (-1)

Suppose there exist positive constants C and A such

that uniformly for all positive integers n, if

j =0(1)m and if lTn(J)| < A then
(2.1) w_(3) <c {7 (3) - (3-1)}.

(3 = 0(1)mn means J = 0,1,2,c00sm_s)



Suppose for each function g € C[0,T] one has

T

Og(t)dt,n+w.

(2-2) 1lim Qn(g) = [

Then for any function fEMd

(2-3) lim Qn(f,S) = fgf(t)dt, n-o,

In particular if O<B<A, if one defines

£.(t) = £(t) on B <t < T; = £(B) or 0 < t < B,
and if
6(t) = sup {|f(s) - fB(s)I : % < e £ T},

then the error

Es(f,Qn) = fgf(t)dt - Qn(f,S)

satisfies the estimate

(2-4)  |E_(r,Q)| < |E(rg, )| + |/o(e(t) -

f(B)}dat| + cfg 6(t)dt.



Proof. Write E = Es(f,Qn) in the form

=
n

T _ ; “n
Jole(t) - £ (t)}at + E(f,Q ) + Ly=0 v ()

{r,(r () - £(7 ()}

fg{f(t) - £(B)}dat + E(fg,Q ) + €

Then for any n

m

ey < 2,20 v () Ten (9)) - £5(7 (5))]
mn

< Ty Wo(3) 8 (7 (3)) = Q. (8, 8)

Since ﬁEMd, there exists a majorizing function FEM.

Then for s in the range b<t<s<B one has
|£(s) - £g(s)| < F(s) + F(B) < 2F(t).
Therefore
§ (t) <'2F(t) on 0 < t < B, &§(t) =0

on B <t<1l, and hence GEELl(O,l). Note also that &(t)

is continuous, nonnegative and nonincreasing. This



together with (2.1) implies that

Q(8,8) = & Wo(3)8(T, (3)) < cxlr (3) -

Tp(J)<B

T (§-1)}6(1_(§) < ¢ 2 f$:§§11) 8

(t)at = C fg 6 (t)dt.

This completes the proof of (2.k4).

Line (2.3) follows immediately from (2.4) and the
estimate §(t) < 2 F(t). 1Indeed by first chocsing B
small and then choosing n large one can make the right
hand side of (2.4) as small as desired. 8.5.D,
Almost the same result is ?rue for quadratures which are
closed at t = 0.

Lemma 2. Suppose a sequence of quadrature rules Qn

satisfies the two conditions

0=r1(0) <7 (1) <...<T(n)<T, W/ ()0,

Suppose there exist positive constants C and A such that

if |7 (3)| < A end if J = 1(1)m_ then (2.1) is true

uniformly in n. If (2.,2) is also true then (2.3) follows.

In particular if fb € c[o,T] and GEEMd are the functions

defined in Lemma 1 and if 0 < B < A, then




(2.5) |E_(r,a )| < | B(ry, o)) | + [spie(t) -
r(B)}at| + ¢ fg 6(t)at «+ wn(o) | £(B)|

Proof. The proof is the same as that of Lemma 1 except

for the estimates of en. In this case

€ = z;zg w () {e(r (3)) - £ (7 (3)},

and

m
=}
A

<@, (8,8) +w (0) [r(B)]

IA

cfgd(t)dt + W _(0) |£(B) |

where we define 8§(0) = 0. Our hypotheses easily imply
that Wn(O) + 0 as n »> ®», Therefore Lemma 2 is proved.
Combining the two results we have proved:

Theorem 1. Consider a sequence of numerical gquadrature

rules Qn where

\
0 <t (0) <7 (1) <...< T (m) <TandW(J)>0.

Suppose (2.1) is true as in Lemma 1 (when Tn(0)>0)

or Lemma 2 (T (0) = 0). If (2.2) is also true, then for

any f € Md



Q(£) » f3 £(t)1t as n + =

Indeed if O < B < A ¢nd if £, € C [0,7] and 6 € M,

are the functions defined in Lemma 1 then

(2-6)  |E_(£,0 )] < |E(£5,Q )| + |/5{r(t) -
r(B)jat| + csg 8(t)at + {1 - sgn T_(0))

wn(0)|f(B)|.

One can also generalize the Corollary in [2, p.196] in

the obvious way.

Compound Rules.
Consider a queadrature rule R defined on the interval

0<t<1

(R) R(t) = zY

3=0 Myt(ty)

where J > 0 and

m
(3-1) 0 < tg <ty <. <tp L, wJ 5 0. £J=U wJ -
(If t, > 0 then define t_; = 0.) For any integer n > 1



ana any interval 0 < t < T one can then define a
compound rule

yJ

(n X R) Ry (f) = ERIo(Ey,

de f(tJH + Hk)}

where H = T/n. Let C>0 be any constant satisfying

(3.2) W, gty -t,,)¢C (J = 1(1)J)

and either

(3.32) W, < (t, # 1 - tJ) c (if t, > 0 or ty < 1)
or

(3.30) (g +w;) g (t; -ty ;) C (if t,=0 and t;=1).

Theorem 2. If (R) satisfies (3.1) then for any fEM,

_ LT
lim an(r,s) = fof(t)dt.

n->c

Proof. The definition (3.2-3) of C implies that (2.1)
is true with A=T. Since R integrates constants and
n*® then (2.2) is also trival. Therefore Theorem 2 is

a corollary of Theorem 1. Q.E.D.
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The error estimate (2.6) is rather pessimistie for
compound rules. Therefore we shall derive another
estimate which is more suiteble for many purposes.

Let K>0 be the smallest constant which satisfies

(3.4) W, < (ty - ¢, ,)K

for §j = 1(1)J if t,=0 or for j=0({1)J ir t0>0.

Theorem 3. Suppose (3.1) and (3.4) are satisfied. Let

H = T/n for any function fGEMd define

If FEM is any majorizing function for f then

t H
(3.5) IEs(f,Rn)l < lE(fH,Rn)| + ng(t)dt + K fom F(t)dt

|q§f,nm)| < IE(fH,Rn)I + (1+K) fg F(t)dt.

Proof. Since (R) integrates constants, then the error

may be written in the form

Es(f,Rn) = E(fH,Rn) + Eo
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wvhere

_LH
(3.6) By = S5 e(e)at - PY_o Heyf(t,H).

Since |f(t)| < F(t) cn 0 < t < T, then
|15 £(t)ar] < s r(t)at.

Let ¢ = 0 if t; > 0 and ¢ = ) if t,=0. Then £f(0) = 0

and (3.4) imply

J

127,

J
ij £(t,H)]| < ', de F(t,H)

J
SKI H(tj - tJ;l) F(tJH)
% t M
J -
2 T ftj—l F(t)at = K S5 priyae.

This proves (3.5) and the theorem.
If one knows that fGECl(O,T], then the term E(fH,Rn)
may be estimated using Peano's theorem.

That is
E(f.,R ) = /X p (s) £' (s)dt
H> ' n 0 "n m

where Pn is the appropriate Peano kernal. Since
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Pn(s+H) = Pn(s) on 0 < s < T-H, then l?n(s)l need be

be estimated only on the interval 0 < s < H. Therefore

w

the following result is an immediate corollary of Theorem

Corollary 1. Assume the hypotheses of Theorem 3. If

£ e ¢'(0,7] then
T H
(8.7) |E(f,Rn)| < [IPnll fH|f'(t)|dt + Jy F(t)at +
t H
K [)" F(t)at
where ||Pn|| = sup {IPn(s)I = 0 < s < H}.

Corollary 1 is useful in estimating convergence rates
in certain cases.Following [4] we shall say that a

function f € Cl(O,T] is weakly singular at t = 0 if the

function
a(t,1) = [r(s)] + s} | (s)]as

is in Ll(O,T).

Corollary 2. Suppose the hypOotheses of Theorem 3 are true.

Uf f is weakly singular (a% t = 0) then

(3.8) E_(f,R_) = 0(/4u(t,f)dt) as K0,



Proof. It follows immediately from the definition of
weakly Qingular functions that f € Md and a(t,f) € M

is a majorizing function. Thus (3.7) implies

|E,(£,R )]

| A

e ] ryler(e)ae + roale,r)at +

nga(t,f)dt

|A

[1e_ || a(H,£) + (1 + K) /g alt,r)at.

Using the estimate lan|| < 2H (see for example [bL,

section II]) and the monotonicity of @ one has
||Pn|| a(H,f) < 2H a(H,f)< 2Iga(t,f)dt.
Therefore for any n (H = T/n) one has

IE(f,Rn)I < (3 + K) fg alt,f)dt.
Q.E.D.

For example if f(t) = §~F (0<p<l) then (3.8) predicts

P. P

that Es(f,Rn) is at least of order h_ e £(t) = ¢~
sin (t79) where 0 <§,q <1l and p + q <1 then Es(f,Rn) is
et least of order W1 P™%, 1 £(t) = t°F gin (+”%) where
0<pP<1l,q>0and P+ q > 1 then our theory predicts

convergence but gives no order estimate.
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Numerical Example.

The data in [1] will be used to illustrate the theory
given above. For the midpoint rule M(f) = f(%) one has

H=nh

T/n. Since -Pn(s) = s if 0 < s < h/2; 2-h if
h/2 <s < h, then |[P || = h/2 and K = 2. Therefore (3.2)

has the form

h/2

lEs(f,Mn)l < (n/2) fglf'(t)ldt + fg F(t)dt +'2f0

Table 1 contains data for the case

(4.1) fé t’l/2dt = 2,

The fourth column is the theoretical error computed using
(3.7). This error bound is seen to be pessimistic by a
factor of T to 8. Corollary 2 suggests that the error may

be of the approximate form
(b.2) E(£,M ) = c/h (h=T/n)

)

are given in column five. The theoretical ration computed

for some constant C > 0. The ratios Es(f,Mn) / Es(f,Mn+l

using (4.2) is v2 (column six). It can be seen that (L4.2)

is approximately true with C = .61.

(Insert table 1 near here)

F(t)at.
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Table 2 contains similar data for (L.1l) using the
trapezoid rule (T), Simpson's rule (S) and the Gaussian
two point rule (02). The theoretical errors are good

for the trapezoid rule and progressive worse for Simpson
and Gauss two point. In all cases (4.2) is approximately
true, Es(f,Tn) = 1.5vh, Es(f,Sn) = .89/h anad Es(f,nXGQ)

= .35/h.

(Insert table 2 near here).

One could also analysis the data in [1] for (4.1l) using
the Gauss 48 - point rule. In this case Es(f,n X Gha)
= .18v/h (approximately). It would be very difficult to
estimate ||Pn|] accurately in this case. Thus (3.7) is
essentially useless.

Data for the example

y A 1
- t72 sin (t79) at

0 1.0813h

is given in table 3 for Simpsen's rule and for the Gauss

48 - point rule. For this case our.theory predicts conver-
gence but yeilds no useful information on errors or conver-
gence rates. For Simpson's rule the method appears to be
convergent. For Gh8 the method starts to converge nicely

but blows up at the fourth step.



Mo (£5)
1.8931
1.92hk
1.9L465
1.9622
1.9733
1.9811

1.9866

TABLE 1

Error
.1069
L0756
.0535
.0378
.0267
.018L

.013k

Th.Error
6763
L4815
.h321
2h27
.1720
.1218
.0864

Ratio
Jhh
113
415
416
k13

.h1o

Th.Ratio
RGBT

Ll



® o = ®
<

10 X
12 X
14 X

16 X

Approx.

1.7418
.81k

=

1.8709
1.9087
1.9355
1.95k)

1.8Lk27
1.8887
1.9213
1.9L44Y
1.9606

1.9721

1.7528
1.8252
1.8573
1.876L
1.889k
1.8991
1.9066

1.9126

TABLE 2

Error

.2582
.1826
.1291
.0913
.06L5
0456

-1573
.1113
L0787
.0556
.0394
.0297

L2472
L1748
.lb2T7
.1236
.1106
.1009
.093L
.087h

Th.Error
.6031

h29k
.3055
.2168
1237
.1089

1.1792
.8735
.6198
.4393

.+ 3013

.2203

T.6572
5.4012
L.4213
3.8341
3.4328
3.1360
2.9050

1.76L0

Ratio
1.41)4

1.h41k
1.k1h
1.k15
1.h1k

1.413
1.414
1.415
1.41

IS Ty -

1.h41k
1.225
1.155
1.118
1.096
1.080

1.069

Th.Ratio
a1k

1

n

il

n

b1k
.225
.155
.118
.095
.080

.069



22 X s
2 x s
2T x s
28 xs
22 x s
210 s
1 X G,g
2 X G4
3 X 6

L x Gh8

Approx
1.123h

9116
L9727
L9ThS
1.0201

1.0586

.9hko
.992k
1.0ko2

.9300

TABLE 3

Error

-.0k21
L1697
.1086
.1068
.0612

0227

.1346
.0889
.0389

1513

Ratio
2h

1.562
1.01°7
1.7h5
2.696
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