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CALCULATION ON IONIZING

H-ATOM H-ATOM COLLISIONS

K. Omidvar

H. Lee Kyle

ABSTRACT

The Born approximation is used to calculate the cross sections when an hy-

drogen atom in an excited state with the principal quantum number n collides

with an hydrogen atom in the ground state. Calculation has been carried out

when the first atom is ionized while the second atom may have any final state.

The cases considered are n = 1, 2, 3, and 4. A closure approximation origi-

nally used by Lodge is also used here for high impact energy calculations. We

find disagreement with some of the Lodge's numerical results.

At sufficiently high impact energies the cross sections are inversely propor-

tional to the energies. Coefficients of proportionalities for all cases are given.

When the incident atom is in a high principal quantum number such that the re-

lation (m/M) K 2 a o > n 2 >> 1 is satisfied, with K 2 the impact energy in rydberg,

m and M the electronic and the atomic masses, and n the principal quantum num-

ber considered, the cross section is given as Q o = 4(M/m) (tn 4n 2 - 1/2) ( 7ra o YK 2.
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CALCULATION ON IONIZING

H-ATOM H-ATOM COLLISIONS

I. INTRODUCTION AND FORMULATION

In recent years astrophysicists and plasma physicists have expressed in-

creased interest in the reactions that excited hydrogen , atoms undergo when they

collide with other hydrogen atoms. In this paper l we consider the following three

reactions which lead to the ionization of the excited atom:

H(nt) + H(1s) -y H+ + e + H(Is) ,	 (1)

H+ + e + H(n' t') ,	 (2)

-•H++e+H++e,	 (3)

where nt are the principal and the azimuthal quantum numbers of the incident

atom, and n' V are thosb of the target atom after collision.

Bates and Grifling2 have shown that the cross sections for the reactions (1),

(2) and (3) in the Born approximation are given by

q^.x

Q(nt — c, 1 s -^ n') = - S2 2	 a,^ f A	 ( T(nt m -^ is , 1 s n' ) 2 q dq .L	 (4)
M Amin
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Here, using atomic units, q is the momentum transfer by the excited atom in

the center of mass system, m is the absolute value of the magnetic quantum num-

ber of the excited atom; a m = E m/W + 1) where E m = 1 if m = 0 and E m = 21f m ^ 0,

and k is the momentum of the ejected electron. The final state of the target atom

is indicated by n . For reaction (2) the cross sections reported here include a

summation over all possible bound excited states of the target atom. When the

target is also ionized as in reaction (3), n' = k' , and an additional integration

with respect to k' is carried out. The initial relative velocity is s, and finally

the absolute values of the transition matrices are given by

IT(ntm -k, is- 1s)J = 9 1- 4+q2 ^-2] (k  Ieiq•rl ntm)	 (5)

^T(ntm-- k, is - n' V m ')) - 4z ^k le iq-r l ntm><n' V m' le'a•r l is>l(g)
q

IT(ntm-- k, is- k' ) J = 42 (<k leiq•rl ntm><k' leiq•rl ls>	 (q)
q

For evaluation of the matrix elements of exp (iq • r) in these equations be-

tween nt m and k the general formula given by Omidvar and SuWvan 3 is used,

while for the squared modulus of the matrix elements of exp ( i q • r) between is

.,

2
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and n' -C' m', summed over t' m', the formula given by Bethe 4 is used:

LI < nt e' a ' rl 1s>1 
2

t,m

[n2
—^ + ( 9n)2 X [(n - 1) a 1 (gn) z

]
n+3 	 (g>

( n + 1 ) + (qn)

Concerning the limits on q without loss of accuracy we can at high incident

energies let qma x- 00, while to second order in m/M, with m the mass of an electron

and M the reduced mass of the system,

am QE	 m a << 1^- 1	 ,gmin 
ti 

Ls	 + 4M s 2	 M S 2

LaE being the sum of the excitation energies of the two atoms. For the three reac-

tions (1), (2) and (3) 1aE is given in rydberg units by k 2 + 1 /n 2, k 2 + 1/n 2 + 1 - 1/n' 2,

and k 2 + 1/n 2 + 1 +k' 2 , respectively.

Simplification arises by assuming that groin in (4) is independent of the final

state of the target atom. It will be shown below that this assumption is justified

when the incident particle has sufficiently high energy. By putting % n - q n in

this case, summing the right hand side of (4) with respect to all the excited states

of the target atom, and making use of the closure property of the hydrogen atom

(9)

= 2 s n^ q z

3
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wave functions, we find that

Qn^-► c, ls-'

n ►

_ 1287T 2

S2 ^ fq 
L  

1 -	 1
q	 ^1 + q2/4 4

2

x < k Ie iq.r l ntm	 (10)

where summation with respect to n' includes excitation to the discrete, as well

as to the continuum, states of the target atom.

Lodge, 5 in order to determine qo, has assumed that the largest contribution

to the cross section arises from the excited states of the target atom for which

k 	 k. This then leads to a = 2k 2 + 1/n 2 + 1, and through (9) q o to determined.

If, at sufficiently high energies, the contributions from (2) and (3) are added, agree-

ment is found with the value given by (10) using the above value of qo . This can

be seen from Figures 1-3, in the next section, for the C curve is just the sum of

(1) and (10). It should be noted, however, that the integrand in (10) for q small

behaves as a positive power of q. At sufficiently high incident energies it is

therefore immaterial what value for q o is used as long as qo << 1.

In contrast to the case of the charged particle-neutral atom collision, the

dipole 1/r 2 interaction potential does not exist for neutral atom-neutral atom

collisions. The long range van der Waals potential behaves as 1/r for distances

larger than 137 times the atomic radius, an&as 1/r' for smaller distances, and

is not important for inelastic collisions. The foregoing discussion implies that
Mrz
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collisions with large inpact parameters are not important. This will have two

observable effects. First, few low energy electrons are ejected in neutral-

neutral collisions in contrast to the charged particle-neutral collisions; second,

the total cross section at high energies is inversely proportional to the incident

energy, and the collisional cross section is given by a single parameter. The

energy distribution of the ejected electrons and these parameters will be given

in the next section.

We now derive an analytic expression at high impact energies for the cross

section when the incident atom is in a highly excited state. Since only close col-

lidions are important in atom-atom collisions, when n 2 >> 1, with n the principal

quantum number of the incident atom, the interaction of the nucleus of the inci-

dent atom with the rest of the system can to some extent be neglected, and the

problem resembles the scattering of an electron by the ground state of the target

atom. This punt has been recognized by a number of workers in the field. 6

However, the presence of the nucleus of the incident atom has the effect of

eliminating the 1/r 2 potential which exists for inelastic electron-atom collisions.

We can then treat the problem as the problem of the electron-atom collision

provided we elim.;nate contributions from the small momentum transfers which

corresponds to the long range potential.

The inelastic cross section in the Born approximation for scattering of an

electron by an atom when the momentum transfer is between q 1 and qm X and all

5
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states of the atom are excited is given by7

. 	 z

	

Qoi" -8"	 1 - <0 @iQ•rl 0
1 fq

qax

i	
q

with k 12 the electron energy in rydberg and <0 I the initial state of the atom. In

(11) ql must be larger than the minimum momentum transfer for the transitions

that contribute appreciably to the total cross section. For atomic hydrogen and

provided DE/k 
12 

<< 1, with AE the excitation energy of the atom, (il) reduces to

cn 
= 47r 

a o2 
,n	

4	 _ 13! 	 > AE	 AE «Q o	 k 2 	 q a ^	 q1	 2F,	 kz	 1	 (12)

	

1	
1
2 0	 1

The second inequality is also the criterion for the validity of the Born approximation.

We now fix on an expression for %. In the impact parameter formulation

for atom-atom collisions it would be physically reasonable and accurate to ignore

impact radii greater than the radius of the incident, excited atom. For larger

radii the interaction between energetic neutral atoms vAll be negligible. Now q,

is related to this cut-off radius and an analogous and similarly accurate apprcad-

oration in the momentum change integral is to assume that ql ti 1/nao.

To get the total cross section we must add to (12) the contribution from the

elastic cross sectionven 8 e^ =	 s/3kgi	 by Qo	 7^r ao	 1 , 
k l » 1. With these con-

siderattons we fits for the total cross section

4n a Z

Qo = Q0 + Qo " = k Zo ^^r► 4n^ - 1/2	 (13)
1
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For transitions that contribute appreciably to the total cross section of in

(12) lips between 3/4 to 3 rydbergs. We can then combine the condition n 2 >> 1,

the inequalities in (12), and the criterion for the validity of the Born approxima-

tion in the inequalities

kl2 ao > n2 >> 1 .	 (14)

In terms of the energy of the incident atom (13) and (14) can be combined into

Q o = 4(M/m) (tn 4n^ - 1/2 (^a0 ) ^ K2

(m/M) K 2 ao > n2 >> 1 ,	 (15)

with M the mass and K 2 the energy in rydberg of the incident atom, and m the

mass of the electron. Equation (15) shows that for sufficiently high incident

energies and high principal quantum number of the projectible, n, the ionization

cross section increases as h n 2^. Examination of Equation (15) for n = 3 and 4

shows that the results obtained from this equation differ about 2% and 1% respec-

tively from the resw.ilts of the detailed calculation shown in Table 1.

For low incident energies where the inequalities in (15) are not satisfied but

still n Z >> 1, the Born approximation is not valid and the elastic cross section

becomes comparable or larger than the inelastic cross section. Derivation of

an analytic expression in this case does not seem to be easy. It can however be

said that for sufficiently low energies where the inelastic cross section can be

7
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neglected compared to the elastic cross section (cf. Figures 1, 2, 3) 9 the total

cross section as n increases should approach an upper 'sound.

II. RESULTS AND DISCUSSION

Since the azimuthal angles are cyclic in all the integrations, it is evident

from (4) that for single ionization a triple, and for double ionization a quadruple,

numerical integration should be carried out to find the corresponding cross

sections, the integration with respect to the angle of colatitude of k' being done

analytically. These integrations were carried out using the Gaussian quad-

rature. At impact energies above 100 KPV the sum of reactions (2) and (3)

differed by at most a few percent from the results given by (10). This later

equation, with the value for q. given by Lodge, was therefore used to obtain

most of the results at higher energies. This saved much computer time.

In Figure 1 the sum of the cross sections for reactions (1), (2) and (3), when

both incident and target atom s are in the ground state, ai a compared with the

measurements of McClure 9 and Wittkower et al. 10 The data of Wittkower et al.

contains a contribution from charge exchange

H+H-'H+ +H- .	 (16)

Between 3.15 KeV and 63 KeV McClure determined the cross section for (16)

and subtracted it out. At higher energies he didn't do this but above 100 KeV the

contribution from charge exchange is unimportant. 9 Whittkower's incident beam

8



consisted only of H(is) atoms while McClure's beam contained some excited

hydrogen atoms. However, McClure determined that their presences increased

his measurements by at most only a few percent.

The cross sections for (1), (2) and (3) were previously calculated by Bates

and Griffing2 for ground state collisions. Our results for reaction (3) and for

the sum of the three reactions are about 2% higher than the graphical results of

these authors.

Also shown in Figure 1 is the curve designated by C, which is obtained by

using the results of the closure relationship, Equation (10), for the contribution

of the excited states of the target atom, and using Lodge's choice for q o . Above

500 KeV we have estimated reaction (3) by subtracting reaction (2) from the

closure relation (10). It should be pointed out that neither in this case, nor in

the cases of n = 2 and 3, do we find agreement with the numerical values of

Lodge. As explained later on, we attribute this to an error in his calculations.

In Figures 2 and 3 similar curves with the same definitions are given for

n = 2 and 3 cases. It is seen from Figures 1 and 2 that the closure relationship

gives the same results as the explicit integrations for energies larger than

100 KeV. Below this energy and for n = 2 and 3 it underestimates the total cross

sections due to an underestimation of reaction (2) in which the target is excited.

Since the experimental results also agree well with those of the Born approxi-

mation for energies higher than 100 KeV, it seems that the closure relationship

provides a useful way of calculating the total cross sections.

9



As discussed in the previous section, due to the lack of the 1/r2 potential,

the cross sections fall off at high energies as the inverse of the energy E. In

Figure 4 the product of the energy and cross section, E x Q(E), is plotted versus

E. It clearly is seen that all curves approach their asymptotes which are hori-

zontal lines. Thus at high energies we can write

Q( n) = C  E i	 (17)

In Table I we give Cn for the various reactions and n = 1, 2, 3, 4 evaluated at

1000 KeV. These C  and (17) yield usable cross soctious for impact energies

greater than 500 KeV. For n greater than 4 use Equation (15).

Examination of (4) indicates that for the cross section to take the form (17),

the momentum change integral must becomo a constant, independent of its lower

bound gmin• We have tested this by putting gmin = 0 for all energies of the ejected

electron and also by use of Lodge's g, for qm in and no noticeable variation in the

cross section occurred at high energies. This insensitivity to q. in explains the

accuracy of the Lodge approximation at high impact energies.

In order to experimentally investigate the dependence of the total cross

section on the state n of the projectile, McClure 9 has suggested the formula

Q( n) - Q(1s) na	 (18)

6

10



0

f

Then by (17)

a 77 tn (cn/ci)/fin n .	 (19)

Using this formula, we find a = 0.917 for n = 2, a = 0.834 for n = 3, and

a = 0.775 for n = 4. These values are in agreement with the findings of McClure

which indicate that a must be less than one, although his measurements are for

the comparatively low energy range of 25-100 KeV.

or the excited atom in states n = 1 9, 2 9 3 Lodge has previously used reac-

tions (1) and Equation (10) to calculate the curves c shown in Figures 1-3. His

results are shown by the dashed lines in Figure 5. The solid lines are our re-

cults for the same calculation. We attribute the disagreement of the two sets

of curves to an error in Lodges' calculations. He indicates that his reaction (1)

calculation for n = 1 disagrees with that of Bates and Griffing at low energy.

Lodge attributes this to the fact that he has dropped the second order term in

gmin (cf. Equation(9)). We have checked this and have found that this cannot be

the cause of the discrepancy. We can only assume that Lodge has some error

in his calculation the effect of which is more pronounced for n > 1.

Lodge also repeated the calculation but used a plane wave to represent the

ejected electrons. Considering that this approximation is not particularly ac-

curate for impact energies as low as 100 KeV, his results in this case are in

reasonable agreement with our curves shown in Figure 5.

11
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In Figures 6 and 7 are shown the energy distribution of ejected electrons

when the projectile is a H(2s) atom with energies of 100 KeV and 500 KeV re-

spectively. The contributions of the three reactions are shown and the sum is

compared with the electron distribution in an H(2s) -proton collision. In the

latter case most of the electrons are ejected with low energies and dQ/dE for high

E behaves as 1/E 2 , with E the energy of the ejected electron. Note the much re-

duced size of the low energy peak in the problem of atom-atom collisions. For

the 100 KeV projectile, reaction (I), where the target is not excited, dominates

the distribution at high E and in this region dQ/dE also falls off as 1/E Z for atom-

atom collisions. The dominance of reaction (1) is of course much more pronounced

at lower impact energies. However at higher impact energies reaction (3) be-

comes most important as Figure 7 indicates. Even in this case reaction (1) is

the larger in the very high energy tail, but this region contributes little to the

total cross section. Note that in reaction (3) two free electrons are produced,

both of these are taken into account in Figures 6 and 7.

In Tables II and III we present numerical values of the cross sections for

all three reactions and their sum when the projectile is in the principle quantum

states n = 1 and n = 2 respectively. Note that in Table III the 2s and averaged

2p cross . sections are usually about the same size. In fact for all n tho cross

section seems not to vary greatly with the angular momentum t of the excited

electron.

At ,	 All calculations were done on the IBM 360-91 at the Goddard Space Flight

Center.

12
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Table I

Constants, C i, for the asymptotic formula Q i = C  /E,

are given for reactions (1), (2), (3) and the sum.

Units of C are (KeV 7rao ). The C " are obtained from

cross sections calculated at 1000 KeV and yield cross section accurate to

within a few percent at energies greater than 500 KeV.

Reaction (1) (2) (3) Sum (1 + 2 + 3)

(1s -• c, 1s - n') 37.5 17.6 71.5 127

(2 - c, is - n') 50.6 59.2 129 239

(3 - c, 1 s - n') 54.1 101 161 316

0 - c, is - n') 54.2 136 180 370

14



Table H

Cross sections for the ionization of H(Is)

when it collides with H(1s) in units of (rrao2).

Dnpact Energy Reaction

KeV Log (E) (1) (2) (3) (1 +2+3) 

1 0 0.010 - - 0.010

2.5 0.398 0.098 - - 0.093

5 0.699 0.288 0.000 0.000 0.288

10 1.0 0.499 0.004 0.001 0.504

15 1.176 0.569 0.017 0.007 0.594

25 1.398 0.573 0.056 0.043 0.672

35 1.544 0.531 0.091 0.098 0.721

50.1 1.7 0.460 0.115 0.185 0.760

63.1 1.8 0.408 0.120 0.241 0.769

79.4 1.9 0.355 0.118 0.285 0.758

99.9 2.0 0.301 0.111 0.309 0.721

i	 158.5 2.2 0.211 0.086 0.296 0.594

199.5 2.3 0.172 0.074 0.269 0.515

316.2 2.5 0.113 0.054 0.200 0.364

501 2.7 0.074 0.034 0.137 0.244

1000 3.0 0.038 0.018 0.071 0.127

1,585 3.2 0.024 0.011 0.046 0.081

f
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