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The objective of the research sponsored by this NASA
Grant was to study the existence, stabllity and computation
of periodi¢ and almost periodic solutions of vector differential
equations x = Ax + F(x,t) and the analogous functional
differential equations. The mathematics used for such systems
treats this system as a perturbation of the linear system
Xx = Ax. Those cases where the construction of almost periodic
solutions leads to a trigonometric series with coefficients in
which arbitrarily small divisors occur were of particular interest.
For convenience we refer to -these cases as the "small divisor"
problem.

The existence, stability and computation of an almost
periodic solution is well known [4] if the perturbation F(t,x)
is small enough and either the eigenvalues of A have nonzero
real parts or the eigenvalues of a certain Jacoblian matrix have
nonzero real parts. Other cases were generally Intractable
except by using the relatively crude methods which are known
for the "small divisor" problem. The methods [1] for the small
divisor problems are limited to very small perturbations and
are necessarily troublesome to execute.

We have discovered during this investigation a very
significant generalization of the problem. It is possible in
many cases to solve a nonlinear initial value problem

X = rt,x), x(t) = v

for all y in some region df R™, It is then possible to study
the existence, stability and computation of almost periodic
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or periodic solutions of perturbed nonlinear systems

x = f(t,x) + g(t,x). Many of the theorems concerning the
perturbed linear system may be proved for the perturbed
nonlinear system. One obvious benefit of such theorems is that
previously the internal nonlinearities of such systems were
treated as noise; and consequently small external perturbations
would nullify the existence of the desired periodic or almost
periodic solutions. Another benefit is that this technique
provides a method to handle many problems previously tractable
only by small divisor methods. This approach to perturbed
nonlinear systems was discovered independently by L. E. May [5];
however, his analysis requires that the unperturbed system is
egsentially a linear system. Two papers illustrating the new
approach to perturbed systems have been written and are described
below, (4), (5). Work is progressing on other aspects of this
technique, and new papers will be submitted soon.

The work on "small divisor" problems was somewhat disap-
pointing. One paper was printed as a NASA contractor's report
and is described below. In addition we have developed a formal
recursive procedure for constructing almost periodic solutilons
in some situations; however, we have been unable to prove the
convergence of the series generated by this procedure. The work
which was done to establish the size of allowable perturbations
was very complicated and it was found that in general the
allowable perturbations were extremely small.

The existence, stability and computation of periodic and
almost periodic solutions to functional differential equations
1s analogous to that for the ordinary differential equation.
One paper was submitted concerning the problem; however, much
work is left undone. In particular, the generalization to
perturbed nonlinear systems mentioned above for ordinary
differential equations has not yet been done; however, no
particular difficulties are forseen for this case.

The following papers have been submitted for publication
as a report of research performed under this grant.

(1) "A family of solutions of certailn nonautonomous
differential equations by series of exponential functions" by
T. G. Proctor and H. H. Suber. NASA Contractor Report
NASA CR-1294. This paper presents two theorems concerning the
computation of periodic or almost periocdic solutions of a
differential equation. The first result makes use of a technique
developed by Golomb [3] to construct a periodic solution to a
nonlinear periodic differential equation, x = f(t,x), f odd in t,
using a recursive technique to find the coefficients in a
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trigonometric series. The technique is also applicable to
quasiperiodic equations; however, we were able to guarantee
convergerice of the trigonometric series only in the periodic
case. The coefficients can be calculated using a computer;
however, we found the process time-consuming. The second

result gives the existence and construction of an almost
periodic solution to a differential equation of the form

X = £(t,x) where f is odd and almost periodic in t and is small.
This problem has the distinction of being the easiest small
divisor problem in differential equations which has appeared 1in
the literature. The paper is written so that the reader can
determine the size of the allowable perturbation function

(in this case f(t,x)); however, even in this relatively simple
problem the resulting calculations are quite time-consuming.

The two theorems described above are then applied to the problem
of reducing a 2-vector linear differential equation y = P(t)y

fo the easily handled form z = Az.

(2) M"Uniqueness and successlive approximations for functional
differential equations" by T. G. Proctor. This paper will appear
in the Journal of Mathematical Analysis and Applications. The
theory of functional differential equations is not as complete
as that of ordinary differential equations. This paper was
written to provide a basis for studying the existence and
computation of solutions of functional differential equations
possessing certain properties, for example, periodicity. The
first result establishes a differential inequality analogous to
the Kamke differential inequalities for ordinary differential
equations. The use of such a theorem is 1llustrated repeatedly
in (5) below. The theorem is then applied to the existence and
construction of solutions to the initial value problem

y(t) =¢(t): Otf_tf_to,

y(t) = F(t,y(*)), by <t <ty +a
where ¢(t) is a given function and F is a delay functional. 1In
a later paper we plan to use the analysis above to study the
existence and construction of periodic solutions to a periodic
functional differential equation.

(3) M"Characteristic multipliers for some periodic
differential equations" by T. G. Proctor. This paper will appear
in the Proceedings of the American Mathematical Society. This
paper gives two new theorems which give the construction of
periodic solutions to nonlinear differential equations. The
smallness condition on the perturbation function is replaced
by finding an upper and lower trial solution. These theorems
are quite useful in constructing examples of systems which
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possess perilodic solutlons in systems where the perturbation is
not small. The same construction is valid for almost periodic
differential equations; however, the hypothesis is hard to

verify in this case. The results are applied to the problem

of finding characteristic multipliers for the 2-vector linear
differential equation x = P(f)x, P with period T. A knowledge of
the characteristic multipliers and vectors enables one to
determine the solutions for all t by calculating the solution
values for 0 < t < T.

(4) MPeriodic solutions for perturbed nonlinear differential
equations™ by T. G. Proctor. This paper has been submitted to
the Proceedings of the American Mathematical Society. Here we
generalize the basic results in periodically perturbed linear
systems to periodic perturbed nonlinear systems. The results
should give new information concerning the motion of nonlinear
springs, etc., in the presence of nolse. The advantages of
such a theory have been pointed out above. The chief difficulty
comes in solving the unperturbed nonlinear initial value problem;
however, this is known in many applications. The results can
also be applied to the determination of characteristic multipliers
of periodic 2-vector systems x = P(t)x as in (4) above. Here
one reduces the problem to a Ricatti equation with periodic
coefficients. If these coefficients are nearly constant the
problem is easily solved since solutions to Ricatti equations
with constant coefficients are well known.

(5) "Integral manifolds for perturbed nonlinear systems"
by H. H. Suber. This is Dr. Suber's dissertation and has been
approved by Clemson University. Currently Dr. Suber is
condensing the results and will submit them for publication soon.

The main theorem in this paper generalizes basic results
concerning the existence of integral manifolds for perturbed
conditionally stable linear systems of ordinary differential
equations [2]. Sufficient conditions are given for the exis-
tence of an integral manifold for perturbed nonlinear system,
in a neighborhood of a critical point, periodic orbit or periodic
surface, in the case where the unperturbed state exhibits
conditionally stable behavior. Although the proof of fthe
theorem 1s constructive in nature it is not expected that the
technique will be of great value for computational purposes.
However, estimates for allowable size of perturbation are
readily available.

One copy of each of the papers above is enclosed as part
of this report.
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Dr. Suber's final two years were sponsored under this grant
during which time he contributed papers (1) and (5) above.
Talks covering the papers (1), (2) and (3) were presented to
the Mathematical Association of America (Spring 1968) and the
American Mathematical Society (Fall 1969). Three one-hour
presentations concerning the papers above were given at Langley
Research Center during the period of the grant.

The work on this project may be summarized by saying that
we have established several techniques for proving the existence
and for computing periodic solutions for perturbed linear or
nonlinear differential and functional differential equations.
One small divisor problem has been treated; however, no real
progress has been made on this class of problems.
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UNIQUENESS AND SUCCESSIVE APPROXIMATIONS FOR
FUNCTIONAL DIFFERENTIAL EQUATIONS¥*

T. G. Proctor
Mathematics Department

Clemson Universilty
Clemson, South Carolina 29631

1. INTRODUCTION

Differential equations which express y'(t) as a function of
past and present values of y(t) have been called delay functional
differential equations. Many of the ideas from the theory of
ordinary differential equations have been generalized for this
type of equation including the basic 1deas of existence and
unigueness of solutions of initial value problems.

Let o and t_ be numbers where - < o < « and to(i a) is a
finite number. In case o = - « read [a, t] as (o, t1. Suppose
that ¢(t) is a prescribed continuous n-vector function on [a, tO]

and we wish to find a continuous function y(t) on some interval

Lo, b, * al, a > 0, such that
y(t) = ¢(t), o <t <t ,
, - T ° (1)
y'(t) = F(t, y()), t, <t <t +a,

where F(t, ¢(+)) is a function (functional) defined for t in
[to, bt ot al and ¢ in C(t) and taking values in R™ and where
C(t) 1s all continuous functions from [a, t] into some set D

in R®. It is known [1] - [3] that for appropriate sets D if F is

¥This work was supported by the National Aeronautics and Space
Administration under Research Grant NGR 41-001-016.



continuous and satisfies a Lipschitz condition in ¢, then the
initial value problem has a unique solution and this solution
may be constructed by successlve approximations.

In this paper we give theorems analogous to the Nagumo and
Wintner theorems for ordinary differential equations [4] which
prove the solution of the initial value problem (1) for other
conditions on F is unique and can be constructed by successive

approximations.

2. A DIFFERENTIAL INEQUALITY

First we give a lemma on differential inequalities which is
analogous to the Kamke differential 1lnequalify theorems for
ordinary differential equations [4], [5]. Let D be a region in
R™ and let F be a function taking values in R for to <t f-to + a
and ¥ in CD(t), where CD(t) is all continuocus functions from

[o, t]1 into D, with the properties that lim F(t_, ¥ (+)) =

T —>co

F(t, ¢¥(+)) whenever t, tl, *++are in [to, by * al, v, by

belong to CD(tO + a) and tn +t, ¥ > ¢ (in the sup norm

n
topology). (If a = -, CD(t) is all continuous functions from
(-», t] into some compact subset of D.) Further, let (t, wl),
(t, wz) in the domain of F and wl(s) < w2(s) for o < s <t imply
F(t, wl(-)) < F(t, w2(-)). Here a vector inequality < means that
every component of the left vector is less than the corresponding
component of the right vector, etc. Also note that we use the

same notation for a function ¥ given on an interval [u, t] and

its restriction to a subinterval [a, t'] € [a, t].



LEMMA 1. Let z be a continuous function from [a, to + a] into D

and be such that

DYz (t) < F(t, z(*)), t <t <t +a; (2)

and let y(t) be a continuous function with the properties

(a) y(t) > z(t), a <t <t ,

0
(b) y' () = F(t, y(*)), t <t <t + a.

Then y(t) > z(t) for to <t < to + a. (Here D+z(t) =

lim suplz(t + h) - z(t)]/h as h > O+.)

Proof. Suppose y(t) > z(t) on some largest interval [to, §] in
Lt t + al]. (Here § could be to.) If for some

x e {1, 2, *++, n} z,(8) =y, (8) then
¥z, (8) < F, (8, 2(*)) < F (8, y(*)) = y,.(8),

which implies z(t) < y(t) for values of t in a right neighborhood
of §, thus ¢ = to + a.

The monotonic behavior of F is crucial since y(t) = 23/ut1/2
is a solution of y'(t) = 1/y(t/2) on 1 < t < 3T and z(e) =
satisfies (1) on 1 < t < 41/7; however, z(t) > y(t) for
23/1Ll <t < 41/7. Thus, the Kamke differential inequalilty type
theorem requires additional conditions. The continuilty condition
on F is sufficient to guarantee the existence of at least one
solution to (1), see [1], [2]. The differential inequality theorem

above then will infer the existence of a right maximal solution to

(1) as Coppel [5] does for ordinary differential equations. Then



the strict inequality in (2) may be replaced with < provided y(t)

is the maximal solution of (1), see Coppel [5].

3. A UNIQUENESS THEOREM.

Let ¢ be a given continuous n vector valued function on
La, to] and let Cb(t) be the collection of continuous functions
f(s) on [a, t] which agree with ¢ on [a, tO] and which lie in
§(0(t,), b) for £, <s <t <t +a, (Slyg, b) = {y: ly-y,| <vh.
Let F be a function taking values in R for t in [to, t, * al

and ¢ in Cb(t) with the property that 1im F(tn, wn(‘)) = F(t, v(=))

n-o>
whenever t, ty, *++, are in [to, bty + al, ¥, ¥y, ***, belong to

c (to +a)and t > t, ¥ > ¥ (in the sup norm topology).

b n

In addifion to the continuity requirement above, we want to
impose a restriction on F which is analogous to the Nagumo con-
dition. For this purpose we define a set of linear functionals.

Let W be the set of all linear functionals w, of the type
to+a
w(t, x(*)) = [ X(s)dsn(t, s),
o

defined for to <t < to + a, x a continuous function on

La, to + a] where n(t, s) is as described below and where the

functional differential equation

x(t) = 0, a <t <%

o’ (3)
x(t)' = w(t, x(*)), t <t < t, t+a,

has a solution fw(t) on some interval [o, t, * GW], where § > 0,

such that fW does not wvanish on (to, t 4+ 6W] and

O

lim £ (£)/t = t_# 0. Here n(t, s) is
trt + " °



on
(i) defined, real—valued/(to, t, + al x La, byt al,
(i1) constant for t < s,
(iii) nondecreasing in s, (4)

(iv) continuous in t uniformly with respect to s.

Some examples of such linear functionals w in which fw(t) = tp,

0 <p £ 1 are

t
(a) w(t, x(*)) = 35 J x(s)ds where o = -¢g, t, = 0, 6W = €.
t t-€
(b) w(t, x(*)) = lAx(t) + Bx(t/2)] where a = t_ = 0, A, B,
such that p = A + B/2P, and
(¢) w(t, x(*)) = l§ X(tz) where o = t_ = 0.
t o
THEOREM 1. Let F be as specified above and satisfy
[F(o, 9 ()) = F(b, by < wit, [ (b - v) (), (5)

for (t, wl), (t, wz) in the domain of F, for t > by and for some

w in W. Then the initial value problem (1) has at most one

solution on any interval [o, t, €] for small € > O.

Proof. Assume there are two different solutions yl(t) and y2(t)

on some interval [a, t_ + €]. By shrinking € we may suppose that

(]
for y(t) = y;(t) - y,(¢), ]y(to +e)| #0 and € < §,- Consider
the solution x(t) = 0, @ <t < t_ x(t) = %ly(to +e)|r, (£)/

Ifw(to + )], t, <t 2t  + & of the initial value problem (3).

By (5) we have

DF|y(t) ] <wi(t,|ly()]), t <t <t +e.



For any 0 < ¢ < € the initial value problem

) 0, a <t < to’
z(t) =
x(t), t <t <t +o0,

z'(t) = w(t, z(t)), t_+o <t <t +e,

has a unique solution, namely x(t), since w(t, x(+)) satisfies a
Lipschitz condition in x for t in [to to, t, * e]. The remarks
following Lemma 1 then imply that we cannot have x(t) > |y(t)| on

a right neighborhood of to’ Hence, there is a decreasing sequence

of points tk - to such that

IY(tk)‘ z X(tk)’ k=1, 2, **°

Thus x(tk)/(tk - toX{+ 0 but this is impossible since

. +
lim fw(t)/t -t # 0 as t » t, - Hence y(to + e) = 0.

Remark 1. The proof of the theorem makes use of the linearity of
the functional w and the form of the solutions of (3). It is not
readily apparent how one would generalize Kamke's unigueness
theorem [U4] since if w(t, x(+)) is a nonlinear functional, a

solution of (1) passing through %]y(to + €)| may not exist.

Remark 2. It is possible to relax the requirements on the
integrator function n(t, s) in the case of nth order scalar

functional differential equations as shown by Theorem 3 below.



Iy, SUCCESSIVE APPROXIMATIONS.

Next we wish to show that the sequence of successive approxi-

mations given by

yn(t) = ¢(t), o < " < tO’ n=1, 2, 2
y (6) = o(t.), 6)
& } to <t < to + B,
yn(t) = ¢(to) + Jt F(s, yn*1(°))ds, n=1, 2, -+,
o

converges for t in [a, t_ + B] to a solution of (1) where

o
B = minf{a, %, GW} and where M is such that |[F(t, ¢(+))| < M when
t, <t <t  +min{a, 8§ } and ¥ is in C (t, + min{a, § }). It is

easy to see that (6) defines a sequence.

THEOREM 2. Let F be as specified above and satisfy

[FCE, wy(e)) = FlE, by | < wlt, o = vyl (o)),

for (t, wl), (t, wz) in the domain of F and t > t_, for some w

in W. Then the sequence (5) converges to the solution of (1) on

[t t + B8].

c? "o

Proof. The sequence (6) is uniformly bounded and uniformly equi-

continuous on [to, to + B] so by Ascoli's theorem there is a

subsequence {yn (t)}oo converging to some function y(t) uniformly
k k=1

on [to, to + B]. Hence the sequence {ynk+l(t)}k=1 converges

uniformly to some function y¥(t) on [to, t 4+ BJ]. If we can

o
show A(t) = 0, where

A(t) = 1lim sup]wn(t)], w (t) = yn(t) - yn_l(t),

n > o



then y = y¥ = the unique solution of (1) and thus the whole

sequence {y._(t) m_ converges to y(t) uniformly on [t t + B]
n n=1

o’ 7o

(see Hartman [4], pp. 4 and 41). The remainder of the proof
amounts to first showing D+A(t) < w(t, A(t)). Then if we suppose
A(t) Z 0 we may repeat the strategy in Theorem 1 to get a con-

tradiction. The details in the case of ordinary differential

equationsg are given in [6] and [7].

5. A UNIQUENESS THEOREM FOR SCALAR PROBLEMS.

Let ¢ be a real-valued function with n-1 continuous deri-

vatives defined on [a, tO]; and for t in [to, t_ 4+ a] let Cb(t)

o}

be the set of all real-valued functions f with n-1 continuous
derivatives defined on [a, t] which agree with ¢ on [a, to] and

satisfy

116y - 6w )] <, k=0, 1, =, n-1,

tin (¢, t_ + a]‘,‘(f(k> is the kth derivative of f). Let

e}

U(t, x(*)) be real-valued for t in [to, t + a] and x in Cb(t)

o
and be such that 1lim U(tn, wn(-)) = U(t, $(+)) whenever
n->o
t, t1, t5,, "°* is in [to, to+a], ¥, ¥y, " belong to Cb(tO + a)

and tn MR (in the sup norm topology).
An nth order initial value problem for delay functional differ-

ential equations is to find a function y in Cb(tO + a) such that

(M ey = ucs, y(*)), t, <t <t  +a. (7)

o
Of course this type of problem is a special case of the initial

value problem (1); however in this form it is possible to give new



hypothesis on U so that (7) has at most one solution on any in-
terval [to, to + €] for small € > 0. The following theorem
generalizes a result due to Wintner [8] which is given in ex-

panded form in Hartman [4], page 34.

THEOREM 3. Let nk(t, s), k=0, 1, 2, ***, n-1 satisfy conditions
(1) = (i1i) of (4) and let U(t, x(+)) satisfy
Nt RS (1)
[UCt, x(+)) - U, y(=))| < ] A (%) [x*/(s)-y ' (s) |a n, (t,s)
k=0 t
o)
for t in (to, t, t al, where the nk(t) are non-negative functions
such that
n-1 to+a(s_to)n—k
kzo}\k(t) to '(n—_}—{—y-!— dsnk(t, S) _<__ l, tO < T f_ tO + a.

Then there is at most one solution to (7) on any interval

[ao, to +¢e] for small & > 0.

The proof 1s an easy extension of the proof given in Hartman

[4], page 558.
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CHARACTERISTIC MULTIPLIERS FOR SOME
PERIODIC DIFFERENTIAL EQUATIONS

T. G. Proctor#¥*

1. Introduction. Let P(t) be a 2 X 2 matrix with elements
which are continuous real valued functions of period T and

consider the differential equation
(1) x = P(t)x,

where x is a vector with two components. It is well known [7]
that there are numbers Al and AZ, called characteristic multi-
pliers, and corresponding solutions xl(t), x2(t) of (i), called
normal solutions, which satisfy for i = 1, 2,

T

Xi(t + T) = Aixi(t), -0 < § < @, A1A2 = exp JO trace P(t)dt.

If Al # A2 and in some cases when Al = kz any such normal
solutions xl(t), x2(t) are independent. In this case a know-
ledge of the characteristic multipliers and the values of
Xl(t), xg(t) for 0 <t < T gives information for every solution

of (1) for all t. It is clear that corresponding statements

can be made for the second order equation

2
d a =
5+ o) gk +altly - o,

¥This work was supported by the National Aeronautics and
Space Administration under Research Grant NGR 41-001-016.



with continuous periodic coefficient functions p(t), q(t)

since this results from the case

0 1
) P(t) =

y
I ~q(t) ~p(t)

Calculation of the characteristic multipliers is not
routine since in general one does not know even one non-—
trivial solution of (1). However it is possible to obtain
convergent series representations for the solutions and thus
calculate approximate values for the multipliers [2], [8].

An alternative procedure for obtaining the characteristic
multipliers and the corresponding normal solutions for (1) is
possible whenever an associated Riccatl differential equation
has a periodic solution. If we make the change of coordinates
Xl = Zl + y(t)zz, x2 = 22 in (1) where y(t) is a solution of

the Riccati equation

32

= a(t) + b(t)y + C(t)yz,
(2)
a(t) = pl2(t), b(t) = pll(t) - pgz(t), c(t) = —p21(t),

the differential equation in z can be integrated. This gives
THEOREM 1. (a) If x(t) = column (xl(t), xz(t)) is a solution
of (1) then y(t) = Xl(t)/xg(t) is a solution of (2) on any
interval on which xg(t) does not vanish. (b) If y(t) is a

solution of (2) on an interval I containing the number k then



t
x1(£) = y(£) exp JKEpZI(S)y(S) + py,(s)]ds
(3)
5 t
x2(6) = exp [ [pyy ()y(s) + p,p(s)0as
k

is a solution of (1) on I. (c¢) If y(t) is a solution of
(2) with period nT and f is the mean value of pgl(t)y(t) +
p22(t) over the period nT, where n is a positive integer,
then et is a characteristic multiplier for (1) for the
period nT and (3) is a normal solution of (1) corresponding
to this multiplier.

In sections 2 and 3 of this paper we will prove two
theorems with rather restrictive hypotheses which give the
existence of a periodic solution of (2). The theorem in
section 2 can be viewed as a special case of the theorem in
section 3. We also mention other known techniques for
constructing periodic solutions to the Riccati differential
equation.

Similar analysis for the differential equation (1) where
P(t) is n x n and x is an n Veétor leads to the study of a
matrix Riccati differential equation and the analysis is
more difficult. Tﬁe technique of using a Riccati differential
equation has been used by Gelmand [3] and Andrianov [1] for the
j(t).

2. Db(t) has nonzero mean value. Let H be the set of all

case of quasiperiodic coefficients by

continuous real valued functions with period T, let b ¢ H,
t

let B(t) = J b(s)ds and in this section we will assume
0 ;

B(T) # 0. Also suppose u, & ¢ H and satisfy &(t) < u(t) for



all £t and let K be the subset of H consisting of functions
f where &(t)<f(t)<u(t). Further assume q(t, z) is a con-
tinuous real valued function defined for &(t) < z < u(t)

such that for any fixed z, g € H and define J: K~ H by

t

t+T
In(t) = ;F_BT%—__ Jt q(s, h(s))exp Jsb(v)dv ds.

THEOREM 2. If (1) Ju(t) < u(t), &(t) < Je(t) for all t and
(2) e‘B(T)- 1 >0 and z < w implies q(t, z) < q(t, w) or
(3) e;B(T)— 1 <0 and z < w implies q(t, z) > q(t, w), then
the sequences {.j'mu(t)}gzl and { J’mz(t)};=l converge

uniformly to periodic solutions of

(W) Z = pt)z + alt, 2).

Proof. The hypothesis (1) and (2) or (1) and (3) imply that
if h, k € K and h(t) < k(t) for all t then Jh(t) < Jk(t) for
all t. Thus the sequences {.YHW&t)};=O and {ifmu(t)};=0 are
nondecreasing and nonincreasing respectively, uniformly
bounded and equicontinuous.

Remarks., If z(t) is a periodic solution of (4) where

a(t, z) = c(t)(w(t) + 2)°,

t
a(s) exp I b(v)dv ds
S

w(t) =

1 Jt +T
e —

-B(T &
we have that y(t) = w(t) + z(t) is a periodic solution of (2).
If g(t) is a periodic solution of (4) where q(t, y) =

a(t) + c(t)y2 then y(t) is a periodic solution of (2).



Example. If we regard the right member of & = (y - 1) %
(y = 2) as having period 27 the corresponding transformation

4 is given by

-3t (42
In(t) = —%Ef-I e35[n°(s) + 2]as.
e’ -1 /'t

We note u(t) = 5/4, 2(t) = 0 satisfy the conditions of the
theorem and I7m2(t), jfmu(t) converge to 1 as m »> <,

Several theorems on periodic solutions of (2) are given
in Hale [6, pp. 28-31] which result from the contraction
mapping theorem and successive approximations. Using Theorem
5.1 [6] a periodic solution exists if (1) |e(t)] is small
enough (q(t, z) = c(t)(w(t) + 2)°, y = w(t) + z(t)) or (2) if
la(t)| is small enough (q(t, y) = a(t) + c(t)y2). We state
without proof an obvious modification (for the scalar case)
of Theorem 5.2 [6] because of its relation to (1). Let
h € H and have mean value zero. Let r and ¢ be positive
numbers and let q(t, y, 4) be a continuous real valued function
for all t, =-r <y < r and |u| < 0. Further let g be periodic

for fixed (y, u) and satisfy for |y|, |z| < o, |u]| <o
lalt, y, ) = alt, z, w| < nu, o)y - 2|, at, 0, 0) = 0,

where n(u, p) is continuous and nondecreasing in u and in p

for |u| <o, 0 < p < r.



THEOREM 3. There is a 8, 0 < 8§ < ¢, so that for |u| < $§

22

= ulb(t) + a(t, y, u) + h(t)]

has a periodic solution which is the 1limit of successive
approximations.

COROLLARY. Let p(t, u), c(t, u) be continuous real valued
functions defined on R x [0, o] which satisfy p(t, 0) =
c(t, 0) = 0, p, c € H for fixed py, let g, r, h € H, h with
zero mean value, r with nonzero mean value and let

a(t) p(t, w + h(t)

P(t) = P(t3 U) =
-c(t, w q(t) - r(t)

Then for p sufficiently small there is a periodic solutilon
y(t) of (2) and eTf is a characteristic multiplier for (1)
where f is the mean value of pll(t)y(t) + p22(t).

By replacing t by t/u we see that an alternative state-
ment for this corollary is that there is a number A and a

solution of

q(t/u) p(t/u, w) + h(t/u)

-c(t/u, W) al(t/u) - r(t/uw)

satisfying x(t + uT) = Ax(t) when u is small enough.

Wasow [9] and Golomb [4] have developed a recursive
scheme for constructing periodiec solutions for the gquasi-
linear differential equation y = b(t)y + q(t, y, u) when
b(t) has nonzero mean value and u is small. The resulting

theorems provide another technique for obtaining periodic



7
solutions of (2) and thus obtaining characteristic multipliers
for (1). Golomb [5] also shows that in certain cases this
recursive scheme leads directly to a calculation of the
characteristic multipliers and corresponding normal solutions.
3. General Case. Let H’ be any closed subspace of H in the
uniform topology and for any £ € H define Mf = lJT f{t)dat.

T/o

Let &, u be in H' with 2(£) < u(t) for all t and let K be all
functions in H’ lying between 2 and u. Further suppose

a(t, y, u) is defined and continuous for &(t) <y < u(t)

[u] < o for some ¢ > 0 and has period T for fixed (y, u).

For any number a satisfying 2(0) < a < u(0) and |n| <o

define “ja,u: K - H by
£
Janf ) =2+ | [a(s, (o), W) - miate, £(6), w)as.
THEOREM 4. For fixed (a, u) ifAjé(K)CZH/, T, u(t) <ule),

0ty < 7,
implies J, RASCIIEVA

Uz(t) for all t and if y, z € K, y(t) < z(t)

uz(t) for all ¢ then the sequences

bl
M oo m ® . .
{ja’ul(t)}mzo, {ja,uu(t)}m=0 converge uniformly to functions

2¥(t, a, u), u*(t, a, u) satisfying
g (b, a, u) = q(t, y(t, a, w), u) - Ma(t, y(t,a,u), wi.

The proof is identical to that of Theorem 2.
COROLLARY. If 2¥(t, a, W) exists and M{q(t,2*¥(t,a,u), u)l = 0
then 2¥ is a periodic solution of

d
a%= q(ts Y, ]J)'



An analogous statement holds for u¥(t, a, u).

As an example of this theorem and corollary consider
alt, y, w) =y sin t, a = 1, and H' the set of all even
functions in H, 2(t) = 1 and u(t) = el™¢08 t,

Hale [6, pp. 38-44] gives several theorems for periodic
solutions of %%—= b(t)y + q(t, y, u) in the case where b(t)
has zero mean value and q is small for small p. These theorems
again use successive approximation and the contraction
mapping theorem. 1In the application of these theorems to
the differential equations the symmetry properties of
q(t, ¥y, p) play an important role in the analysis to determine
if the bifurcation equations Mq(t, y(t)) = 0 have a solution.
One of the simplest cases arises when b(t) = 0 and q(t, y, u)
is odd in t. In this particular case the recursive method
developed by Wasow and Golomb also gives a convergent
series expansion for the solution for small u.

4, Final Remarks. Note that if T is the least period of
P(t) in (1) then the coefficient functions a, b, ¢ in (2)
have least period 0 or T/n for some positive integer n.
By applying the construction procedures used in Theorems
2, 3, or B, we construct solutions of (2) with period T/n
or 0. Then by replacing nT by T in Theorem 1, we obtain

a characteristic multiplier for the periocd T.



For a given matrix Q(t) we notice that all matrices
P(t) = Q(t) + K(t) have the same associated Ricatti

differential equation (2) if K(t) has the form

p(t) 0

0 p(t)

K(t) =

If for some such K(t) equation (1) can be solved, Theorem 1
may be used to solve equation (2). This in turn furnishes
a method to solve x = Q(t)x. This remark applies even if
none of the functions in Q(t) and K(t) are periodic. How-
ever in the case of periodic P(t) suppose x = P(t)x has a
normal solution, column (Xl(t), xg(t)) where xz(t) does not
vanish., If A 1s the corresponding characteristic multiplier,
y(t) = xl(t)/xz(t) and g = Mp(t), then AeTg is a characteristic
multiplier for x = Q(t)x and a corresponding normal solution
is given by (3) where Py, 1s replaced by py,5 - P

Since the proof of Theorem la and b does not require
the periodicity of P(t), theorems which imply the existence
of bounded or almost periodic solutions of (2) or the
asymptotic form of certain solutions of (2) also give

information concerning the solutions of (1).
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T. G. Proctor, Periodic solutions for perturbed nonlinear

differential equations.

Abstract: The existence of periodic solutions of a
periodically perturbed system of nonlinear differential
equations 1is established. The construction of such sclutions
1s proved in a more restricted situation. These results
generalize well known results for perturbed linear differential

equations. Examples are given.



PERIODIC SOLUTIONS FOR PERTURBED
NONLINEAR DIFFERENTIAL EQUATIONS

T. G. Proctor*

1. Introduction. In this paper we investigate the existence

and construction of periodic solutions of a periodically perturbed
system of nonlinear differential equations. The perturbed

system is studied using an integral equation introduced by
Alekseev [1], [2] which is a generalization of the variation

of constants integral equation. The techniques used are

analogous to those used in establishing the existence of

periodic solutions in perturbed linear systems [3]. Almost
periodic perturbations of nonlinear systems have been studied

by May [4] using a similar technique; however, our systems

will not necessarily meet his requirements.

2. Existence of periodic solutions. Let P, &6, o be positive
numbers with § < o, let SG and S0 be the closed spheres of
radii § and ¢ respectively in R™ and let f(t,x) be a C1 function
from RxS_ into R"™ with period P in t. We make the following
assumptions concerning the function f.

(1) v in 56 implies the solution x(t,t,y) of the

unperturbed l1lnitial value problem

x = £(t,x), x(t) =y

Department of Mathematics, Clemson University, Clemson,
8. C. 29631. This work was supported by the National
Aeronautics and Space Administration under Research Grant
NGR 41-001-016.



exists for 0 <’t-1t < P.

(ii) There 1is a set K& Ss 80 the function F given by

F(Y) =y - X(P,O,Y)
is a homeomorphism of K onto F(X).
(iii) f(t,0) = 0, 0 <t < P.

We denote the continuous functions with period P from
R into S(S by 56' Let the perturbation function g(t,x,e) be a

continuous function from RXS6XEO,EO] into R and satisfy
(iv) g has period P in t, g(t,x,0) = 0.

(v) TFor k in Sé and

P
a
v(k,e) = [B(p,5,k(s))8(s,k(s),0)as,
0
we assume y(k,e) is in F(K) for 0 < e < €q
Let § be the Banach space of all continucus functions with

pericd P from R into R" with the supremum norm and let T be
an operator from Sd into S defined by
t

Ti(t) = x(t,0,F L(y(k,e)) + J§§<t,s,k(s>>g<s,k<s>,e>ds
0

for 0 <t < P, 0 < e < €y-



THEOREM 1. For e small enough T has a fixed point y(t).
Further y(t) is a periodic solution of the perturbed differential

equation

v = £(t,y) + g(t,y,¢e).

Proof. The hypothesis on f implies x(t,t,y) and %%(t,T,Y)
are continuous for y in S6 and 0 < t-t < P. Conditions (iii)

and (iv) imply

1im x(t,0,F T (y(k,e))) = 0
e>0

uniformly for 0 <t < P and k in 36 so choose €, SO that

TSS:ZTSG for 0 < e < ¢ It 1s easily checked that T is

1
continuous, S(S is closed and convex and TS has a compact
closure in 365 therefore by the Schauder fixed polnt theorem

there is a function y(t) = Ty(t). This representation shows

y(t) has a derivative which is given by

y(t) = £(t,x(t)) + glt,y(t),e) +

t

jfx<t,x<t,s,y<s>>>§%<t,s,y<s>>g<s,y<s>,e)ds
0

where x(t) = X(t,O,F—lh(y,e))). Also we have



f(t,y(t)-—f(t,X(t)) =

t
= |Sr (6, x(t,5,5(s)))ds

= |2, (6, x(0,8,5(5))50 (6 5,y (8))[§(s)-£ (5,7(s)) Ids.
0

Therefore for

W(t) = y(t) - glt,yt))-f(t,y(t)),

we have

t
W(e) = e, 6, (6,8,5())8E 6,5,y () W (s)as
0

The only solution of this equation on [0,P] is W(t) = O.

Example 1. The initial value problem x = X2, x(0) = ¥y has
solution
x(t,7,v) = [r{ETry. 5P S Y S 3p 0 <t-t <P
For K = [—%ﬁ,o] the function
Y -
F(Y)—‘Y—i—__—"y‘? Yll’lK

is continuous and has continuous inverse

f 2
-1 _a-v o =lbo/P



for -1/6P < o < 0. The requirement (v) on g can be written as

k in Sl_
2P

implies

P
-1/6P < J 5 g(s,k(s),e)ds < 0O,
0

[1- k(s)(P 5)]
Theorem 1 establishes the existence of a periodié solution
to a perturbed nonlinear differential equation; however, no
construction is given for such a solution, In many cases it
seems unreaglistic to suppose that T 1s a contraction operator
since F_l may not be Lipshitz as in the example. The following
section does provide a method to construct periodic solutions

in a special situation.

3. Construction of periodic solutlons. Let & be a region

n’ and let f(t,x) be a C' function from RxQ into R™ with

in R
period P> 0 in t and let £(t), u(t) be continuous functions
from R into @ with period T with £(t) < u(t), 0 <t < P where

a vector inequality £ < u means the components Ki’ Uy of the

vectors £, u satisfy Ki < Ugs i=1,2,...,n. Let
S = {x in R™: £(t)<x<u(t) for some t}

‘then for v in S we assume



(i') the solution x(t,t,y) of the initial value problem

X = f(t,x), x(t) = v

exists for O

i A

t-1 < P, t any real number; and

(ii') the function F given by

Y - X(P,O,Y)

i

F(y)

is a homeomorphism of S onto F(S).

Let g(t,x) be a continuous function from Rx3 into R™ with
period P in t and let S¥ be the set of continuous functions
k(t) from R into R™ with period P satisfying £(t) < k(t) < u(t)
for all £t. For k in S¥ and

P
v(e) = [3E(R,5,k())a(s,k(e))as
0]
we assume y(k) is in F(S). And we define an operator T on
S¥ into S by
t

Tk(t) = x(t,0,F L(y(k)) + J%%(t,s,k<s)>g<s,k<s>>ds
0

for 0 < £ < P.



THEOREM 2. If £(t) < T&(t), Tu(t) < u(t) for 0 < £ < P and if
k, h in 8* with k(t) < h(t), 0 < t < P implies Tk(t) < Th(t),
0 <t < P, the sequences {Tmﬂ}mzo, My m=0 converge uniformly

to fixed points of T. If y is a fixed point of T then y(t)

satisfiles

y = £(t,y) + glt,y).

Proof. The sequences {Tmﬂ(t)}mzo and {Tmu(t)}m:6 are
nondecreasing and nonincreasing respectively, uniformly bounded

and equicontinuous. Hence they converge uniformly to limit
functions which are fixed points of T. The proof that such a fixed
point is a solution of the perturbed differential equation is

identical to that given for Theorem 1.

Example 2. The initial value problem x = x(1-x), x(0) = y has

solution

-1

ye
1+'\{(et_T

X(t,TsY) =
-1)

for y > 0, 0 < t=1 < P. For y* = (ef/?-1)/(ef-1)

the function

P
e

F(y) = y - —S
LR S



has continuous inverse

1, (eFely(a4ad)+/ (eF-1)° (14a)C4ba(et~1)
B (OL) = P
2(e =1)

3

F(y¥) < a < 0. Let h(t) be a nonnegative function of period P

such that
P
Ih(S)ds < y*(eP/z—l),
Q
let
-h(t
g(t,x) = (2) )
1+x
and let £(t) = 0, u(t) =1, 0 <t <P It is easy to verify

the conditions of the theorem if P is small enough.

4, Final remarks. The hypothesis ii and ii' of Theorems 1

and 3 respectively 1s analogous to the noncriticality requirement
[3] made for unperturbed linear systems. The existence of
periodic solutions to perturbed nonlinear systems corresponding
to the critical case can be treated using the methods above.
However, if one imposes hypotheses similar to those used in
Theorem 1 the question of a solution to the resulting bifurcation
equations is not easily established. This follows since we

do not know the dependence of the fixed point y(t) as a function
of €. Hypotheses similar fo those used in Theorem 2 are extremely
hard to verify since this reguires that the difference between a
function g(t,x) and its mean value be monotone over a class of

periodic functions x(t).



REFERENCES

[1] V. M. Alekseev. An estimate for the perturbation of the
solutions of ordinary differential equations I
(Russian). Vestnik Moskov Univ. Ser. I. lat. Meh.

No. 2 (1961), 28-36.

[2] V. M. Alekseev. An estimate for the perturbation of the
solutions of ordinary differential equations II
(Russian). Vestnik Moskov Univ. Ser. I. Mat. Meh.

No. 3 (1961), 3-10.

[3] J. K. Hale. Oscillations in Nonlinear Systems. McGraw-

Hill Book Company, Inc., New York (1963).

(4] L. E. May. Perturbation problems in fully nonlinear
systems. Dissertation, North Carolina State University,

Raleigh, N. C., 1969.

Footnotes

AMS Subject Classifications: Primary 3445

Key Phrases: Periodic Solutions, Perturbed nonlinear

differential equations, Alekseev formula, variation of
constants, existence of periodic solutions, construction of
periodic solutions, Schauder fixed point theoren.

¥This work was supported by the National Aeronautics and
Space Administration under Research Grant NGR-41-001-016.
CLEMSON UNIVERSITY



A FAMILY OF SOLUTIONS OF CERTAIN
NONAUTONOMOUS DIFFERENTIAL EQUATIONS BY SERIES
OF EXPONENTIAL FUNCTIONS

by T. G. Proctor and H. H. Suber

1. INTRODUCTION

We consider in this paper the consftruction of solutions
for certain nonautonomous differential equations. The first
result makes use of a technique developed by Golomb [5]
and Wasow [10] for constructing solutions of some non-
linear differential equations by means of series of
exponential functions. The technique as employed here
gives explicit formulae for:a family of periodic solutions
of a Ricatti equation with odd periodic coefficient and
finite Fourier series expansion.

Following this is a theorem concerning the existence
of a family of almost periodic solutions of the vector

differential equation

y = g(t, y).

Here y is an m-vector; g(t, y) is Quasi—periodic and odd in
t and satisfies certain other conditions. (A quasi-periodic
function is a function almost periodic in t with a finite
base of frequencies Wiy Wos 7 T, Wy .) The theorem is

a generalization of a resulft concerning periodic solutions
when g(t, y) is periodic in t [2], in particular, the

Ricatti case mentioned above. The proof of the theorem

utilizes a method devised by Kolmogorov [7] to overcome the



problem of arbitrarily small divisors and gives a method of
constructing approximations to the almost periodic solutions.
Since we assume that g has a finite base of frequencies we
can present the sysfem of equations in an autoncmous form by
considering a higher dimensional version of the differential
equation. The theorem is as follows:

Let x be an n vector, let y be an m vector and consider

the differential eguations
X=w , y = £(x, y) , (1.1)

where f(x, y) = -f(-x, y), and where the components of

f(x, y) are analytic for |y| < R, and |Imx| < R,, and

1
where f has period 2m in each of the components of x.
Suppose that the vector Q = (wl, Woy * * % wn) satisfies

an inequality

ko] > £

T (1.2)

for some positive constants K and v and all vectors
k = (kl’ k2, ey kn) with integer components where

n

L lk;| # 0. Then if f£(x, y)
i=1

is sufficiently small for |y| < R; and [Imx| <R

&1

n
keQ = .z k,w; and |k
i=1

55 there
is a neighborhood of y = 0 such that all solutions of (1.1)
starting in this neighborhood are almost periodic with base

frequencies Q.



We note the requiremenﬁ on § (inequality (1.2)) is not
stringent. If VvV > n, such a constant K exists for almost
all § (in the sense of Lebesgue measure) [2]. The proof
of this theorem is given by constructing an infinite se-
quence of coordinate transformations so that in the limiting
set of coordinates the differential equations can be in-
tegrated in a neighborhood of y = 0.

The last section gives an application of the results

mentioned above.

2. THE PERIODIC CASE
Let Ik denote the set of all k-tuples of non-negative

integers. The elements of Ik can be counted according to

the following technique. Let (nl, Ny, = 0 ", nk) e I, let
n, n, ng n,
m= 2 73 SR PR I where Py 1s the ith prime
number i = 1, 2, - « +, k, then denote (nl, Ny, = 0 s nk)
by N_. Note that N; = (0, 0, + - -, 0), Ny = (1, 0, - - -, 0),

etec. The natural ordering of the non-negative integers then

orders all the elements of Ik’ Nl’ N2, . For
Nn’ Nm € Ik we make the following remarks:
i) m is prime iff N is of the form (0,0, +~--,1, +-- 0).

ii) Define addition in I, component-wise. Then

k
Nn + Nm = Nz iff nm = &,

iii) We say that N <N iff n <m and N,o< N

iff n < m. From ii) it is clear that

Nn + Nm = Nz implies that Nn < N, and N < N

2 m £



For w real let € = (w, - w, 2w, -2w, * * -, kKw, =-kw). Now

for N = (nl, Ny, % s Doy 95 nék) € I2k let m” be the
integer so that N _. = (n2, Ny, * ot gy, n2k_1). We
observe that Nm-Q = —Nm,-Q. Let Ok denote the class of

odd periodic functions of the real variable t with period

2nw which have finite Fouriler series containing only terms

% 4
of the type fJ.elet for j = %1, 22, - - -, k., Using

the above notation we may represent functions in Ok in the
form
iNn-Qt
£(t) = ) fe (2.1)
Nnel2k
n prime
where fn = —fn since f 1s odd.

Theorem 2.1. For n > 0 sufficiently small the differ-

ential equation

-

v = n(alt) + b(t)y + c(t)y?), (2.2)

where a, b and ¢ ¢ 0., has an even periodic solution yv(t)
of the form
iNn'Qt
y(t) = ] y.e . (2.3)
N_ eI
n 2k
Proof. Assume that (2.2) has a solution of the form

indicated. Then formally we have



z z Z iNn-Qt
n a_ + y b+ V.y.C_le , (2.4)
mp=n mp mp=n 27m"p

p prime p prime
where aj, bj and Cj’ J prime are the coefficients of the

series representations (2.1) of a, b, and ¢ respectively.

Now in case Nn-Q # 0 we write

N .
ERYIEY) an 5 n prime
n
Vo = % (2.5)
N .
iNn-Q[ ) ymbp + ) ygymcpl n not prime

mp=n mp=n
- p prime P prime

and for N_+Q = 0,
n

y, = 0 . (2.5a)

iN_-Qt
Suppose that the terms containing e n on the right

side of (2.4) vanish whenever N @ = 0. Then by remark iii)
above we see that (2.5) defines v, recursively so that (2.3)
will be a formal solution. To show that this is indeed the
case we present the following.

Lemma 2.2. Let {yh} be the sequence of numbers defined

by 2.5. Then Vg = Yy



Proof. The proof is by induction. If NH-Q = 0 then
clearly Yo = Y- and so in particular for n = 1. Now

suppose that Vg = Iy~ for all m < n. Then we may write

V., = &= Zyb+ zyyc
n iN Q[mp m’p gmp=n 2°m”p

#

- )
:".——‘——'—.—‘— y ;("b ﬁ) + z y xy ’(—C )>
1Nn’ Q[mp=n m P gmp=n 277m P

»

where p is prime. But mp = n iff mp” = n”. So we see

that Vg = Ip- which proves the lemma.

Lemma 2.3. If Nn e 1 is such that Nn-Q = 0 then

2k

Z y. b+ yoy.c_ + y b+ y,y.c_ =0
" 2mg=n A7m7p mpzn’ mp zmg=n’ 2 m"p ’

where p is prime.

Proof. By Lemma 2.2 we have Vo = Yy~ for all n and

since b and ¢ ¢ Ok’ we may write

y b

B Znym'(”bp’) T mop

} y. b )
mp=n mp mp mp=n
and

D Y¥mey = L Yge¥pe(-c L) == ] y,y

c b
fmp=n mp Lmp=n p fmp=n"~ m-p

where p is prime.



Now in order to show that (2.2) is a solution of
equation (2.1) we will prove that formal series (2.3) with
Yn defined by (2.5) converges uniformly and absolutely for
all t and n sufficiently small.

Let C represent the complex plane, for
2k

z = (Zl’ Zos "t s Z2k) e C and N € ng define
Ny 1 Mo "ok :
z = 2972570 1 tZop and IZI = m?xlzjl. A function f
mapping 02k into C is analytic in the polydisk
{z € cok {zi| < r} of radius r about the origin iff f

has the representation,

f(z) = ] az n

where the sum is uniformly and absolutely convergent in

the polydisk. 1In case f is analytic, Cauchy's inequality

gives for |z| < 8§

where ]Nn]= n, +n, +° ° * +n, and M= sup | £(z)l.

Now for z ¢ 02k let



a¥(z) = ) ]ajlz s
Jj=1
2k
b¥(z) = ) |o.lz, , (2.6)
j=1 7
v 2k
c¥(z) = ] le.lz, ;
j=1 ¢
and let u(z) = f(a¥(z), b¥*¥(z), c¥(z)) where
i 1
1-nb 1-nb anac :
-..n -—
- 1 - 208 1 ¢ # o0,
f(a,b,c) =
a
l?nb s ¢c = 0.
e
Note that u is the solution of the equation
u(z) = n[c*ug(z) + b¥*u(z) + a¥*] (2.7)

which vanishes when a¥ = b¥ = c¥ = 0. We see that u(z)
is an analytic function of z in any region which does not

include zeros of the function

g(z) = (1-nb*(z))° - Una*(z)c*(z).

Now for & > 0 choose n, > 0 so that [g(z)| > 0

whenever |z| < 1 + §; e.g. for L = max{laj[,lbjl,lcjl},
J
1 : 1
let n, < grEcTEsy » then ngla¥*|, n, Ip¥], n,le*| < g and



we see that in this case |g(z)| > 0. ©Now for all n,
0 <n < n_ we have u analytic in the polydisk [z| < 1 + 6.

Hence, in this polydisk u has the representation

u(z) = ) uz n, (2.8)
Nn€I2k
where
N,
lu | < M/ (1+6)
n —
with M =  sup lu(z)].
|zj}=1+6

On the other hand, substituting from (2.8) into (2.7)

and using (2.6) we obtain

-
nlanl n prime

u, = < (2.9)
n mpzn umlbp] + 7 zmpzn ugupe s 0 not prime.
L P prime P prime

Comparing this with the recursion formula (2.4), with

yi = 0, we see immediately that

1
'ynl < alunlﬁ n = 13_2:
iN_+Qt
Since |e | = 1 for all t we have



g

[¢)]

| A
g
o~
<

i

("

| A

1=

~1
}...I

2k (1+8) O

<

which not only proves absolute and uniform convergence,
but also gives a bound for the solution y(t).
Remarks:
i) In the proof of Lemma 2.2 we showed that
Yo = Vp- for all Nn EvIZK such that
Nn-Q # 0, FProm this we conclude that
the solution found above is even in t.
Note also that the solution has zero

mean value.

ii) The particular order relation used here for
Ik is not essential to the proof. See

Golomb [5] and Wasow [10] for different

schemes.

iii) It is possible to use the result in this section
directly to obtain solufions with mean value other
than zero. Let f£(t, y) represent the right side
of equation (2.1) and suppose that y(f£) is the

solution of



iv)

V)

y o= £(t, y)

given above. For any fixed constant c, let
z =y + ¢ in (2,1). The theorem gives a
technique for obtaining a solution of the

new equation
z” = f¥(¢, z),

where £¥(t, z) = f(t, z - ¢) with zero mean
value. This in turn gives a solution to the

original equation with mean value -¢.

Let y be an n-vector, let pz(t) be an n-vector
with components pQ(J)(t) €0, J =1,2,°",n,
2 = 1,2,°*. Then the differential equation
Nz
yo=n ] py(t)y (2.10)
R
where the right side converges for }yl < r may
be solved using the techniques of this section.
The only essential difference occurs when one
attempts to find an analytic solution of the
corresponding equation (2.8). Here one may use

the implicit function theorem to show existence

of such a solution for n sufficiently small.

The existence of periodic solutions of equations of
the form (2.10), for n small is shown by Hale
[6’ p' 1“5]v

11



3. THE QUASIPERIODIC CASE
For any positive integer n let Jn denote the set of

all n-tuples of integers, for o = (o, 0y, * * *, an) e I,

n
let o] = izllmil and let ¢™ be all m vectors (yq5"59,)

where each component is a complex number. For simplicity we

will treat only the case where y is a m = 1 vector.

We shall be concerned in this section with functions

1

defined and analytic on (x, y) subsets of ¢™ x ¢t into

C1 which are periodic of period 27 in each component of x.

These subsets will be of the form

1+4n,

D(r, p) = {(x,y) ¢ C [Imx| < o, [y| < r}

where the norm | | of the vector X denotes the maximum

of the absolute value of its components. We denote the class

of such functions by P(r, p) and note that any
g € P(r, p) has a Fourier-Taylor series representation
oy lox_ R
glx, y) = ] HPCE A
la],l8]=0

where the guB are complex numbers and where the sum is taken
over all o € Jn and B € Il‘
Several lemmas are listed below without proof. The

proofs are elementary and are similar to those given in [2].

12



Lemma 3.1. Let h & P(Ry, R,) and let |h(x,y)| < M,

M >0 in D(Rl, R2>' The PFourier-Taylor coefficients, given

by

_ 1 v ~ioex .
hyg = ZE;;H JJ J hB(X)e dx dx,---dx_, a € I, B € I,

where

B

1 9
hB(X) = B—'— -a——B—h(X, y) s

y y=0
and where the jth integral is taken from Xj = 0 to Xj = 2m,
satisfy the inequality

gl < o2
OLB - R B
1
If h(-x, y) = -h(x, y) in the above we have

h—aB = "haB and conversely. If h(-x, y) = h(x, y) we

have hfas = haB and conversely.

Lemma 3.2. If the elements of the sgequence

{huB} aedJ , Be I, satisfy
" flocle
Ih, ol < ——]—T~e ,
1

then

15



[ee]

h(x,y) = Z haBeiaoxyB
lal,[B]=0
is analytic for |y| < Rle-a, |Imx| < R, -8 for any positive

§ < 1 such that R2 - 6 > 03 and in this domain we have

22r1+lM

|h(x, ¥)| < —orL

Lemma 3.3. For all positive numbers m, v, § we have

Lemma 3.4. (Cauchy's Inequality). If the complex

valued function h(z) is analytic and bounded by M for

|z| <R, M,R > 0, then for |z| < Re™®, 0 < § < 1, we have

dh

dz

o

R§

The proof of the main result of this section depends
almost entirely on the following considerations.

Let £ ¢ P(Ry, R,) and satisfy f(-x, y) = -f(x, y),
let f satisfy

l£(x, y)| <M = 62 (0FVIHT (3.1)

in D(Rl, R2) where § is specified below, let w satisfy (1.2)
for some positive constants K and v and all o € Jn with

o] # 0 and consider the differential equations

X =, y = £(x, y). (3.2)

b



Lemma 3.5. For each x in |Imx| < R, - 26§ there exists
an 1nvertible transformation U defined on a subset of C

into C, given by U(n) = y where

=

y =+ ulx, n), [ulx, n)| < = 40 1 (3.3)

l=c]

for lnl < Rlé_ud: lIle < R2 -~ 286. Putting n = U—l(y)

in (3.3) we obtain the differential equations (3.2) in the

new coordinates

X =0, no= f£¥(x, n); (3.4)
. -Ug
and in D(Rle N R2 - 28)
l£*(x, n)] < m3/2, (3.5)
Further we have f¥(x, n) = -f¥(-x, n) and
~L4§

£* ¢ P(Rle > Ry - 28), Here § is taken as a positive

number satisfying

1/n+v+i
< oin (Ri) . R, K or ¥ (g)v 1 1/n+v+6
= 16, > 22 2n+3W 0 Zndl WV 0 12

Proof. a) Definition of u(x, n): Choose u(x, n) as

the solution with mean value zero of

5w = flx, n) (3.6)
ou . e au . .
where §§-1s‘the vector with elements T in the ith row and
J

-Jjth column. This gives

15



u(x, n) = ) Tosx B
la],l8]=0 *P
where
f
- _aB -
Yag T Ta-w o7 0, Uog = O-

Since |f(x, n)| <M for |y| < Ry, |Imx| < R,, Lemma 3.1,

inequality (1.2) and the above imply

~lalR; v
luagl f.Me|3] KI
By
By Lemma 3.3
_‘u‘ (R2—6)
M Y] e
IuOLB‘ i K(S\) (e) F%LIBI

Hence, using Lemma 3.2 we have u(x, n) defined and analytic

for |n| < Rle—s, |Imx| < R, - 2§ and bounded in this domain by

2n+1l V
M (v
n+l+v K (5) ’ (3.7)

no

| u(x, M| <
$

Thus, inequality (3.3) is valid and we note that

u(x, n) = u(-x, n) and u e P(Rle—s, R, - 26).

b) The transformation U : By equation (3.3) the

set D={neC : |nl i_Rle_26} is mapped into a set
containing A = {y e C : |y| ﬁ_Rle_36}; i.e. U(D) oA.
Since

16



ou 1
m 2270
-28 26 that U™T
for [n| < Rye™"", |Imx| < R, - 28, we see tha is
defined on A. Thus for |n| < Rle—uﬁ, | Imx| < R, - 26,

u(x, n) is defined and (3.7) holds.

¢) The function f¥(x, n): Substituting from (3.3)

into (3.2) gives

(1 + 327 = £(x, y) - £(x, n),

so that
£E(x,n) = (1 + 8% ()TN (EG,n + ulx,n) - £(x,n))5 (3.8)

and we note here that -f*¥(-x,n) = £¥(x,n).

Now we have

-1
la+ 5] <2 (3.9)

hence

[£%(x, n)| < 2 |f(x,n + u(x, n)) - £(x, n)J.

But

2n+1l v
2 M (v
| £(x,n + ulx,n)) - £(x,n)| < sup {;gg Vs & (&)

17



where the supremum is taken over |y| < Rle"d, |Imx| < R,.

By Cauchy's inequality

of < 2M
dy - Rlé 2
thus
2n+3 v
: 2 2 2
PR(x, ) =S (B M2 w25
KR16

and the proof of the lemma is complete.

Theorem 3.1. Let f be as in Lemma 3.5. Then if M

(and thus 8) is sufficiently small for each x in |Imx| i,Rg/z

there exists an invertible transformation, V, defined and
-R
analytic on {n e C : |n| < R e 2} into ¢™, given by

V(n) = y where
y =n+ v(x, n). (3.10)

Denoting the inverse transformation n = V_l(y) we obtain

the differential equations (3.3) in new coordinates

X = w, n = 0.
Furthermore we have v{(-x, n) = v(x, n).

Proof. Choose 61 > 0 so that for Sj =

18



v 2
) 8, <
g d =
i 1/n+v+l
. Ri) RlK (g)v X (g)v (L)l/n+v+5
1= 16. > 2n+3\Ww/ 2 _2n+1\v/) 2 D

2

Apply Lemma 3.5 iteratively j times. Let ui(x, y) denote
fhe function in the transformation of coordinates at the
ith step and let fi(x, n) denote the corresponding right
side of the differential equation. We obtain the composite

map Fj(x, n) = y where
FJ(X,n) =n + uj(x,n) + uj_l(X,uj(x,n))+-~-+ uy (x,m + uj(x,n)+"

u, (x,n + uj(x, n) + -++ + u3(x, n),

defined for |n| < R,expl[-4 % 8.1, |Imx| < R, - 2 %
- 1=1 + - i

S.,
i=1 1

where in the associated differential equations
X=w |, n = (x5 ),

the functions fj(x, n) satisfy

- 6.2(n+v)+7

Ifj(x, n)| f_MJ 3

We observe that the composite transformations are defined
-R
for all j in |n] < Rye 2, |Imx| < R,/2, and that

thus the limiting composite transformation

19



F(x, n) = 1im F.(x, n) = n + v(x, n), (3.11)

j—)-oo

will exist in the above domain. In the coordinates defined

by (3.11) the differential equation (3.3) becomes

X = , n=0

b, APPLICATION
Adrianov [1] and Gelmand [4] outlined a procedure for
finding a transformation x = Z(t)y so a given differential
equation

dx _
aE' - Q(t)x’

where Z(t) Q(t) are almost periodic n x n matrices and where

P satisfies certain conditions and x in an n-vector, becomes

& = Ay, A constant

in the new coordinates. We shall follow this procedure and
use Theorem 3.6 to effect the same transformation in cir-
cumstances where the earlier work fails to apply.

Let H be the class of all functions

£(t) = g(wlt, wyb, o, wnt)
where g(ul, Uy, © 07, un) is real analytic and has
period 27 in each Uy s i=1, 2, * * *, n. Consider the

differential equations



."

La(t) + ngyq () ]x; + ng ,(E)x,,

dt
(L.1)
dx2
go = Ny (B)xq + [a(t) + ngy,(€)Ix,,
where n > 0 and q, a4 e H and qij(t) = —qij(~t), i,j =1, 2,
and where w = (wl, Wy, * ° wn) satisfies inequality (1.2).
We make the change of coordinates
Xp =¥t W X5 29, (4.2)

where T is any almost periodic solution of the differential

equation

o= nlag, * (agy - )T - Tl (4.3)

In the new coordinates (4.1) becomes

dy
1 _
(4.1
dy
2 _
T T Mp1¥y * nlapT gy, +ady,

Theorem 3.6 guarantees that for n small enough equation (4.3)
has almost periodic solutions, which belong to H. Equation
(4.4) may now be integrated to obtain

a t
a¥(t)e ¢

1]

I 1

aot bot
b¥(t)e cq + b¥¥(f)e c

Yo 2

21



where a, and bo are the mean values of q + ndq7 = NTdnq
and g + Ndss + Ny T respectively and a¥*, b¥ and b¥¥ ¢ H,
Reversing the change of coordinates (4.2) we obtain a

fundamental matrix solution of (4.1) of the form
a 0
At e}
¢(t) = P(t>e s A = [O boil ?

where the elements of P(t) are almost periodic and belong

to H.

The change of coordinates

P(t)z

b
1}

in (4.1) yields

Ne

= AZ

The case treated by Gelmand [4] required that the linear
term in the resulting differential equation for 1t have mean
value which dominates the other elements in order that there
exists an almost periodic solution of this equation. Thus
Theorem 3.6 permits us to consider a new situation.

If in 4.1 we require that q, g e Op (defined in

iJ
section 2) i, j = 1, 2, then we may use Theorem 2.1 to obtain
an explicit representation for periodic solutions of equation
(4.3) for n sufficiently small. Then we may integrate equa-

tions (4.4) and obtain explicit solutions of (4.1). Note

that if

22



®© iNn'Qt
(t) = Z T,€

is the solution of (4.3) given by Theorem 2.1 and T4 =0

we have periodic solution of (4.1).

solutions was shown by Epstein [3].

The existence of these

23
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INTRODUCTION

This dissertation establishes the existence of integral
manifolds for a system of perturbed nonlineagr differential
equations in a neighborhood of a c¢critical point.

The notion of an integral manifold for a system of
differential equations, as used in this discussion, is
given here. Let U be an open set in RP and consider the

system of differential equations
(1) z = 72(t,z),

where z, 7 are real p-vectors and Z is continuous in RxU.
Let z(t,t,r) denote solutions of (1) satisfying the
initial condition z(tr,t,z) =¢. For a fixed number =t

suppose there exists a set S+ which can be represented in

the form

S+ = {(t,z) in RxRpIzu=v,(t,z yeoesZ ), i=l;...,k, totl,
S k+1 P -

where v = (Vl,...,Vk), k < p, is defined and continuous

on [1,»)xV, V a subset of RP™¥. The set ST will be

called a positive (integral) manifold for system (1) if

any solution, z(t,r,z) of (1), with (t,z) in st exists
for all £t > 1 and is such that (t,z(t,t,z)) is in st for

all ¢ > T



Similarly a set
ST = {(t,z) in RXRp\zi=ui(t,zk+l,...,zp), i=1,...,%, t<t},
where u = (ul,...,uz), 2 < p, is defined and continuous

on (-»=,T]xW, W a subset of Rp_z, will be called a negative

(integral) manifold for system (1) if any solution,

z(t,t,z) of (1), with (r,z) in S~ exists for all t < 1

and is such that (t,z(t,t,z)) is in 8 for all t < T.
Suppose that system (1) possesses a positive manifold

S+ with v bounded on its domain. Consgider the perturbed

system
(2) z = Z(t,z) + Z¥(t,z),

where Z* is a real p-vector. Sufficient conditions on
the function Z¥ are given to insure the existence of a
positive manifold

s* = {(t,z) in Rl+p|zi=v§(t,z 1=1,...,k,t>1},

k+l,...,zp),
with v¥* = (vf,...,vﬁ) bounded on its domain. A simiiar
result is obtained for negative manifolds.

A restatement of the problem in a special case

serves as a model. The system



has local solutions

6]
(14262 (£=1))

B

x(t,T,a) = 5
(1-2B"(t-1))

1/2° y(t,T,8) = 1/2"

The phase portrait manifold of (3) is given in Figure la.

Notice that

S+ = {(t,x,y){Of_X, y=0, t>0},

is a positive manifold for (3) and

s” = {(t,x,y)]x=0, 0<y, t<0},

is a negative manifold for (3). The problem here is to
Tind sufficient conditions on the perturbation functions
X(x,y), Y(x,y) so that the system

—X3 + X(Xsy)> & = y3 + Y(Xay):

e
It

has pesitive and negative manifolds



+
Sg = {(t,x,y)]|0<x<e, y=v+(X), t>0},
Sy = {(t,x,y) |x=v"(y),0sy<n, t<0},

with V+ and v= bounded on their respective domains. The
phase portrait of this system may then be represented

schematically by Figure 1b.

A yy

//

S //j

Figure la Figure 1b

In previous work on this problem the typical approach
has been to assume that system (1) has a manifold S. In
many cases solutions on S are perilodic in t. Then under
the proper conditions, see [9], there exists a reversible
transformation, T, defined in a neighborhood of S which

carries (1) into a system of the form



De
il

d + o(t,8,x,y),

e
"

() Ax + F(t,0,x,y),

e
1l

BY + G(t,0,x,y),

where d is a constant %-vector, 6 an f2-vector, X an
m-vector, y an n-vector, 2+mtn = p. Here A is an mxm
matrix with eigenvalues which have negative real parts,

B is an nXn matrix, with eigenvalues which have positive
real parts, and the functions ©, F and G satisfy certain
smoothness and order conditions and are multiply periodic

in 6 with period w = (ml,...,wz), w, >0, 1=1,2,...,2,

i
i.e. 0(t,0+w,x,y) = 0(t,0,x,y) where
B + w = (61+w

.. 40 +wg).

1°° 2
Equations (4) represent system (1) in a neighborhood

of a critical point, periodic orbit or perilocdic surface

depending on whether the 6-equation is absent, & = 1,

or & > 1. 1In case % =0 system (4) may be considered a

linearization of the original system. The transformation

T sends the perturbation function Z* into the triple

(0¥ ,F¥ ,G¥) and the problem then becomes one of finding a

manifold with some specified properties for the system

6 = d + G(t,@,x,y),
(5) x = Ax + F(t,0,%,y),
y = By + G(t,0,x,y),



where 6 = 0 + 0%, etc. One usually begins with a system
in the form of (5). Functions describing the manifolds
for (5) are then obtained as solutions of a certain
improper integral equation, see for example ([13], p.137),
formulated by the use of the classical variation of
constants technique. The linear term in (5) gives rise
to factors of the form exp(tA) which guarantee the
convergence of these integrals. (An exception to this
is work by Kelley [15]). This approach was introduced
by Bogolinbov and Mitropolsky [3], [4] and subsequently
developed by Hale [12] and Kelley[15]. Of interest here
is the case in which the linear terms in (5) are replaced
by nonlinear terms. Again one is led to consider an
improper integral equation, obtained in this case from
a generalization of the variation of constants formula
due to V. M. Alekseev [1]. Special hypotheses are
introduced to insure convergence of the improper
integrals.

Some work on the nonlinear problem has been done by
L. E. May [17]. The hypotheses used by May seem to admit
only systems which behave in an essentially linear manner
in the unperturbed state. The theorem presented here,
which includes the model problem above, requires no
linear or approximate linear behavior in the unperturbed

state.



Other people who have worked on the problem of
integral manifolds are Diliberto [10], [11], Levinson

[16] and Sacker [18].
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PRELIMINARY CONSIDERATIONS

The symbol || will be used to represent any fixed

2 m

norm cn R”, R or R" as well as the corresponding

operator norm. In several of the proofs in this
dissertation it is expeditious to use some specific

norm, say |]l, for the finite dimensional space involved.
In each such case norm equivalence in finite dimensional
spaces 1is envoked to obtain the desired result, i.e.,

there exist numbers Nl’ N, > 0 such that

2
Nl o< <Nyl

For a square matrix A define u[A] by

u[A] = 1im 1I+hAl-1

ho+0 h ’

where I is the identity matrix. For a proof that this
limit always exists and for further discussion of the
function up see [8].

For € > 0 and m a positive integer, let B(e,m)
represent the open ball of radius ¢ in R™.,  Let UCZRk,
Vc:Rz and suppose that £:UxV»RP. Further suppose that
all mth order derivatives of f with respect to its
first k variables exist and are continuous on UxV and
that all nth order derivatives of f with respect to its

last & variables exist and are continuous on UxV. Then

f is said to be ¢c™W)Nc™(v):RP,



Let W be any open set in r" and J be an interval in
R. Suppose that f, g are C(J)/\C'(W):Rn. Then solutions

of the initial value problem

(6) x = £(t,x), =x(t) =z,

(7) y = £(t,y) + glt,y), y(1) = (T),

are locally unique when (1,z) is in JxW. Further if
x{(t) = x(t,T,z) is the solution of (6) then it is well
known [7] that the matrix ¢(t,t,z) = %%(t,T,C) is a

fundamental solution of the variational equation

7 = £ (t,x(t,7,2))z,

of .
where f_ is the matrix with 1,jth element §§£° It is
J
also known that %%(t,T,C) = -®(t,t,0)f(t,z), [17]. DNow

suppose that y(t) = y(t,1,z) is the solution of (7).

Then one may write

it

8 (t,s,y(s))[-F(s,y(s))+y(s)]

o(t,s,y(s))gls,y(s)),

S x(t,5,y(s))

fi

and therefore
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x(t) = y(t) + (o(t,s,y(8) )g(s,y(s))ds

ot ———

This relation, which is a generalization of the variation
of constants formula, is due to V. M. Alekseev [1], [2].
For further discussion of this relation see [5], [6]1, [7]

and [19].



THE UNPERTURBED SYSTEM

In this section sufficient conditions are given for
exlstence of positive and negative manifolds for the
unperturbed system. Let & > 0, m > 0, n > 0 be integers.

Consider the system

6 = d,
(8) x = f£(t,x),
v = g(t,y),

where d 1s a constant L-vector and f and g satisfy

(I1) f is C(R)r\Cl(B(z,m)):Rm for some € > 0O
(Iii) f£(t,0) = 0, t in R;
(Iiii) there exist a, a > 0 such that
ulr (£,x)] < ~a|x]®, t in R, x in B(e,m);
(IIi) g is C(R)n(ﬂ(B(n,n)):Rn for some n > O:
(I7ii) g(t,0) = 0, t in R; and,
(II1ii) there exist B, b > 0 such that

blyls < —u[—gy(t,y)], t in R, y in B(n,n).

Theorem 1. Let (Ii) through (IIiii) hold. Then for

T a fixed number

st = {(t,9,x,y)|06 arbitrary, |x|<e, y=0, t>t},



is a positive manifold for system (8) and
ST = {(t,8,x,y)]08 arbitrary, x=0, |y|<n, t<t},
is a negative manifold for system (8). Further if

(6(t),x(t),y(t)) = (8(t,t,v),x(t,1,2),0) is any solution

of system (8) with (t,v,z,0) in s* tnen

(9) 1x(t,1,2)]| < 4

T (1+a|* (st Y

for some A > 0 and all t > t; and if (8(%),x(t),y(t))
= (8(t,t,v),0,y(t,1,0)) is any solution of (8) with

(t,v,0,0) in 8 then

(10) ly(t,1,0)] < Lo :
= (1-Blo|B(t-1))1/8

for some B > 0 and all t < T.
Proof. It is sufficient to show that solutlons of
x = f(t,x) exist for t > 1 and are bounded as in (9),
and that solutions of y = (g(t;y)) exist for t < T and
are bounded as in (10).

From (Ii) it follows that for each T in R and
|z| < e there exists a unique solution x(t) = x(t,7,2)
with x(t,1,2) = ¢ of X = f(t,x) in a neighborhood V of

T. So for each t in V and |g| < € one may write
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Dol x(6)]| = 1im LEE)#DR(E)|-]x(6)]
h++0
= 1qm  X(E)HRECE,x(E)) =[x ()|
h-++0 h

where Dp|x(t)| denotes the right derivative of |x| at

t. Since f(t,0) = 0, £t in R, the mean value theorem

gives
1
f(t,x(t)) = fo(t,sx(t))ds-x(t).
0
Therefore
1
DR|x(t)1 < %i?o %(1I+hjfx(t,sx(t))ds|—l)Ix(t)l
0
llI+th(t,sx(t))|-1
< lim j = ds |x(t)].
h~+0

0

Let {hi}i:l be a sequence of positive numbers with limit

zero and let

|I+hifx(t,xsx(t))|—l

J;(s) = 5 , i=1,2, , s in [0,1].
1
Since
1. 1
|7, ()] < H;@+fx(t,sx(t))|~ﬂzlli
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< %:ﬁ+fx(t,sx(t))*5%i = | (e,ex(e)],

it follows that {Ji(s)}izl is a uniformly bounded seguence
sequence of uniformly continuous functions on (o,1].
Further 1lim Ji(s) = u[fx(t,sx(t))]. Thus by the

1>
Lebesgue Dominated Convergence Theorem

1im

ds =
n>+0 h

u[fx(t,sx(t))]ds,

Ot

|I+hfx(t,sx(t))]—l T
0

and

1

1
DR|X(t)} [u[fx(t,sx(t))]ds\x(t)l < —ajlsx(t)ladslx(t)!
0

in

0

i

a +1
—m‘X(t)la .

o+l
The initial value problem i = -#2— , u(1) = [z],

has solution

- el
(144 z]%(t-1))

1/a?

where A = %%T' Using a standard comparison theorem

([14], Theorem 4.1, p, 26) one finds that

|x(t)] < lel , £t > T,
Iz (1+A{§la(t-r))1/“ =
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Hypothesis (IIi) implies that for each T in R and
|o] < n there exists a unique solution y(t) = y(t,t,0)
of y = g(t,y) in a neighborhood V of 1. So for t in V

and |o|l<n it follows that

D, |y (t)| = -lim |y (t)-hy () |-]y(t) ]
. h>+0 h
1
1
> —lm o I-hj (t,s8y(t))ds)y(t)]
T h->+0 h I( Ogy y
- ly(t)l’

| I-ng (t,sy(t))]-1
; ;

> —-1lim
h~++0

ds|y(t)],

O

where D y(t) denotes the left derivative of lyl at t.

As above one may apply the Lebesgue Dominated Convergence

Theorem to show that

1 1
Dy ly(e)| > —ju[—gy(t,sy(t))]dsly(t)l > Jblsy(t)
0 0

Bdsly(t)|.

Thus

b +
DL ly(e)] 2 geply(e) ],

and inequality (10) follows as above with B = %%1.



THE PERTURBED SYSTEM

Again let & > 0, m > O, n > 0 be integers. Congider

the real system of ordinary differential equations

(11)

Moo

e

] De

H

=d + 0(t,0,x,y),

f(t,x) + F(t,0,x,y),

g(t,y) + G(t,0,x,vy),

where d 1s a constant f-vector and the following

assumptions hold:

(ITT1)
(IITii)

(ITIiii)

(IVi)

(IVii)

(IViii)

(IViv)

f is C(R)N Cl(B(eo,m)):Rm for some €

£(t,0) = 0, t in R;

g In (0,1):

there exist a, a > 0 such that

u[fx(t,x)] < -alx]|%, t in R, x in B(ey,m);

g is C(R)N C2(B(n,n)):Rn for some n in (0,1):

g(t,0)

0, gy(t,O) = 0, t in R;

there exist B, b > 0 such that

blyl® < —u[—gy(t,y)], t in R, y in B(n,n):

there exist y, ¢ > 0 such that

max
1,3,k

B(n,n);

2

g

J

d

i
§§———— (t,y)

Ik

< c]le, £t in R, y in



(Vi) o, F and G are defined and
C(R)f\Cl(RQXB(eO,m)XB(n,n)):Rk for k = &, m
and n, respectively;

(Vii) ©, F and G are multiply periodic in 6 with
period w = (wl,...,wz), wy > 0, 1 =1,2,...,%;
(viii) o(t,e,0,0), F(t,0,0,0), G(t,8,0,0) vanish
for (t,6) in Rl+£; and,
(Viv) there exist positive numbers p, g, r and L
L(|x[+]y P,
L(lxl+ly D,

L(lx|+ly )7,

| A

such that leel, lexl, leyj
Fols 1Fels 17|
61, 10,1, 1oyl

for |x| < eg, Iyl <.

A

S

Theorem 2. Let (III1) through (Viv) hold with

vy + 1 > a, min{p,qa,r} > a. Then for all e sufficiently
small and T any real number there exists a function v 1in
C([T,m)XRQXB(e,m)):Rn, v(t,8,x) multiply periodic in 8

with period w, v(t,6,0) = 0 for (t,6) in R1+£, such that

S: = {(t,0,x,y)]9 arbitrary, |x|<e, y=v(t,6,x), t>t}

is a positive manifold for system (11). 1In case & =0

min{p,q,r} is replaced by min{g,r}.

18
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This theorem is the main result of this thesis. The
proof of Theorem 2 will be given after several results
are established. First an outline of the proof will be
présented.

Let 0 < § < min{l,n/e} and for T in R, 0 < € < €45
define

Q(e) = {v in C([1,»))N ¢ (R*xB(e,m)):R"|

v(t,0,x) satisfies (VIi)-(VIiii)}.

(VIi) v has multiple period w in 6}
(VIii) +v(t,8,0) = 0, 6 in RY, t < 71 and,
(VIiii) max sup sup , sup {|V(t,9,x)],|ve(t36,x)|,
F<t<o 0 in R |x|<e
T
va(t,e,x)l} < 8.

For v in Q(e) define Ov(t,e,x) = 0(t,0,x,v(t,0,x))
and define F' and G’ similarly. Let

(wv(t,r,e,x),gv(t,r,e,x)) denote solutions of

=d+ 0" (t,0,x),

Ds

(12v)

£(t,x) + F (t,0,x),

b
"

with initial condition (6,x) at t = 1. When the initial
conditions are clearly understood the solutions will
be abbreviated (¥'(t),£'(£)). It will be shown that an

operator T, given by
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(13)

0
(Tv)(£,0,x) = J®(t,s+t,v(s+t,wv(s+t,t,e,X),gv(s+t,t,e,x)))

xGY (s+t,9" (s+t,5,6,%x),E  (s+t,t,6,%))ds,
where o (t,t,0) = %E y(t,71,0) and y(t,t,0) is the solution
of y = g(t,y) with y(t,7,0) = 0, is defined on Q(e) into
Qle).

Note that

(14) (W (t,T,0+w,%x),E" (t,1,6+w,%))

= (v (t,7,8,%),E (£,1,08,x)) + (w,0),

implies that (Tv)(t,8+w,x) = (Tv)(t,08,x) for v in G(e).
The set Q(e) may be thought of as a subset of the

Banach space of bounded continuous functions, v(t,0,x),

on V(eg) = [r,w)XRQXB(s,m) with multiple period w in 6 and
norm ||v|| = sup|v(t,8,x)|. It will be shown that for e
Ve
sufficiently small T is a contraction map on Q(e) and
A in

that there exists a function'T(E) such that the operator
T may be extended to u and Tu = u. The function
w(t) = u(t,wv(t),gv(t)) can be shown to satisfy the

differential equation
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v o= g(t,y) + 66,0V (£),E7(t),y),

and it follows that u is the function needed to describe
the positive manifold SZ of Theorem 2.

The first of the lemmas which will be needed is
Lemma 3. Let the hypotheses of Theorem 2 hold. For
e > 0 sufficiently small, all 9, |x| < e, v in Q(e),
the solution (P (t),£'(t)) of (12v) with initial

condition (6,x) at t = 1 exists for t > 1 and satisfies

eV (t)]| < x| ,
| = (1+A]X|u(t—r))1/a

v v
lEa(e) ] lE (8]

1% v
AMCIAPIAACH)

| A

M,

[ A

M,

for scme positive constants A and M independent of the
choice of v in Q(e).

Proof. Let

1
a q-o

£ ,
(a+1)2q+lLI

< minqe

1 0’

|
g.

Then for |x| < e, and all 6 solutions (V' (t),E'(t)) of

1
(12v) exist and satisfy ]EV(t)I < g in a neighborhood U

of 1. So for t in U it follows that
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(A

As in the proof
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- 1im i§7+h§VJ—laVl

h>+0

RN AL: TCICRAD DS MR MNAS MI B A
h-+0 h

14im l€V+hf(t>€V)l—1€Vl TR
h>+0 h

of Theorem 1 one finds that

eV +nr(t,e)1-1E"] . _-a B
1lim h — o+1 '
h~+0Q

From (VIii) and (VIiii) it follows that
lv(t,0,x)| < 8lx| < [x],
and from (Viii) and (Viv)
iFv(t,wv,Ev)! < 2q+1L|€V]q+l.
Therefore
- vio+l +1 +1 -
Dele"| < F21E %7 + 297 e] 2

A

-1 g+l q-o viatl
m(a—-E (OH-l)Lﬁl ) {i ‘

=A,,vio+l
'—a'lg ‘ [}
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= _..q__. - q+1 ‘Q"'OC o
where A a+1(a (a+1)2 Lgl ) > 0. Thus, as in

Theorem 1,

£V<t’,[‘,e,x) < ixl , t > T,
| 01 (1+A|x|“<t—T>>1/“ -

The existence and continuity of Eg, g;, wg and
\4

v
X
(A (£),x(8)) = (vg(t),Eq(t)) or (W (t),E (t)), then

in V(€1> are well known, see ([17], p. 25). Let
from (12) it can be seen that

A= (@e+®yve)x + (@X+®yvx)x,
X = (fX+FX+FyVX)X + (F6+Fyve)x,
where 0, = Oe(t,wv(t,T,e,x),iv(t,T,G,x),v(t,wv(t,T,B,x),
£V (t,1,8,%))),

ete. Therefore

X < LLcle” [+ fvie, v7 ey P le [+ lvie,p7,eT) P
lvg 1112 ]

+ LLCeY [+ v, v ,e") PP+ ey [+]v(e, w7, e )P
lv 131x]

2PHIL Y P+ 2P Y|Py,

A

and Dplx| = 1im  [x#nx|-[x]
N

h>+
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|I+hf_|-1
lim hx
h++0

1A

|
Ix] + [P P v LIx] + [FgtFova[|A]

| A

ule (6,672 10x] + 290 eY 2 x| + 22 || a |

I A

A 1EY % x|+ 28 L Y A,

where Ay = a - 2q+1L€qiu > 0. Since DR]A] < |X] ana

since p > o implies JEV(S)lpds <o it follows that there

T
19 K2 > 0 such that
t

(15) [A(e)] < Ky + K, flx(s)llav<s>|pds,
T

exist constants K

so that
Delx(e)] < a1 (e) [*x(e)| + 297 L]V |?

T
x(Kl+K2flx(s)|lEv(s)Ipds).

Now consider the scalar equation

. Vo v

v = ~AO]£ I v + K3l€ Iq,
where

0 < K, = 2q+lL(K1+K2 fz]gv(s)lpds) < w,
T



It is clear that for t > 71

£ £ £
v(t) = v(T)eXp[—AOJIEVladSJ + K3J1Evllep[—AOJIEVIadu]ds,
t T T s

< vit) + Ksjlﬁv(s)‘qu.
T

Now for
1

: : Alg-0) |T7¢

€ < min 81, —"ITB-'E—'— s
and |x| < e,

q K,o|x|
K3J1€V(S,T,9,X)|qu < K3j ‘Xla ds_ 575 = 3
(1+A]x | " (s=-1)) Alg-o)

T T
Then 1f 0 < v(t) < 1 it follows that 0 < v(1) £ 2 for

all t > 1. Suppose v(t1) is chosen so that v(7) = [ x ()]
then |x(t)] < v(t) for all t > 1. For suppose this is
not the case. Then there exist t > t such that

[x(£)] > v(t). Let

£, = sup{t||x(t)|-v(£)<0, T<t<tl,
t
then [x(t,)]| = v(t,) and

Dplx(t )| < A7 (6 ) [Pv(E))
t
+ 2q+1L|€V(tl)Iq(Kl+K2J|€V(s)|pv(s)ds)

g8V (1) 1% (8 + Ko1€7 (50 |% = Dpvlt,).



Thus

DR((X(tl)l—v(tl)) < 0,

and this contradicts the definition of tl' Therefore

from (15) it follows that
t
IA(e)] < K, + K2J2§£V(s)lpds

T
©

< K4 ZKZJlEv(s)Ipds =M < o,
T
Lemma 4. Let (IVi) through (IViv) hold and let

y(t,T,0) be the solution of y = g(t,y) with y(t1,7,0) = 0.

Denote %Ey(t,T,o) by ¢(t,Tt,0). Then for |o| < n and

t <1
lo(t,t,0)] < 1,
and
——o(t,1,0)| < Tlt-t||o|Y, T >0, j=1,2,...
J

Proof. For solutions z(t) of the linear system
z = C(t)z,

it is known that ([18], Theorem 3, p. 58) for t < 1
t
lz(t)]| < ]z(r)lexp[—u[—c(s)]ds.
T
Since ®(t,T,0) is a fundamental matrix for
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Ne
]

Hgy(t,y(t,T,O))Z,
it follows that

jo(t,T,0)|

A

t
epr;u[—gy(s,y(s,T,o))]ds
T
T

~b]y(s,r,0)|8ds < 1.

A

exp

e,

Since g is C(R)N Cz(B(n,n)):Rn the partial
derivatives of @(t,t,0) with respect to each component
Uj of o exist and satisfy

7 = gy(t,y(t,T,O))Z + Aj(t),
where

Aj(t) = Mj(t)Q(t,T,U),

and Mj(t) is the nxn matrix with k, #th element given
by

d

¥
Z |37, ayl(t,y(t yT58) e J(t T,0),

See ([14], Theorem 3.1, p. 95). Thus, by the usual
procedure for solving a nonhomogeneous system of linear
differential equations ([14], pp. 48-49) it can be seen
that

1"
%%T(t,r,o) = I@(t,s,c)Aj(s)ds.
J
T
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Therefore for £t < 7

T T
53;¢<t < 1]@(t,s,c){lAj(s)[ds ﬁ_i Aj(s) ds.

Making use of norm equivalence in R” there exists N > 0

such that

2

’e
[Aj(s)l < N max LS

; 2

| A

Nc]y(s,T,o)]Y.

Therefore by inequality (10)

l%—a-.—é(t,r,a)

T T
iNCIIy(S,T,U)’YdS:iNCIO'Yf
J t t

(1- B]o]Y(s T))Y/%

ibhlclY(T—t).
Choose T' = Nec and the result follows.

Theorem 5. Let the hypotheses of Theorem 2 hold. Then
for € > 0 sufficiently small the operator T given by
equation (13) is defined on Q(eg) and maps Q(e) into

itself.

Proof. Let €5 > 0 be small enough so that Lemmas 3 and

4 hold. Then for (t,0,x) in V(e2)



|Tv(t,0,x)] < JL(IEV(t+s,t,9,X)l

]V(t+s,w (t+s,6,0,%),E  (t+s,t,6,%)) )" as

r+l

<2 LJIE (t+s,t,8,x) |t tas

l/\

0

r+lLJ

(r+1)/a
O(1+A| s)

2r+lLalX|r+l—§

< o0,
A(r+l-a)

Let

1

€, = min{ € AS(r+l-a) e
2
3 27| Tty

then for e < 63 T is defined on Q(e), Tv(t,0,0)

and |Tv(t,8,x)| < 8. Also since

IXII’+1 1

< 3>
(1+A|X|us)(r+l)/a - (1+As)(r+l)/a

1 .
>(r+l)7&’ds <o 1t follows that Tv converges

and

O———— 8

(1+As

uniformly for (t,6,x) in V(e) which implies that Tv

is continuous on V(e). It has been noted previously
that Tv has period w in 6 for v in Q(e). It remains to
be shown that %E(TV)’ %E(TV) exlist and are continuous

and bounded by § for (t,6,x) in V(e).
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In the following the summation convention will be
used. Let A represent either the 6 or the x vector.

Then the 1,jth element of the matrix %E(QGV) is given

by
v v
2 (4. 67 = 305y | BV, Oy N 3V, 3y GX
rs 1kk . X .
9h; ik 90, | 36y 9); 3%y By
- Vv v
.o 3Gy 8y, 80y 3E,
ok " i
i 862 8Xj ax2 Byj

v
+ PGy Vg 9 + 7y agm}

2
3V, | 98y Bhy 3%y 3y

where oG@ = @(t,t+s,v(t+s,¢v(t+s,t,ﬁ,x),gv(t+s,t,e,x)))

va(t+S,wV(t+s,t,e,x),gv(t+s,t,e,x)).

From Lemmas 3 and 4, (Viii), (Viv) and norm equivalence

for RY there exists N¥ > 0 such that

3(e6") < NNET(s) |v|Y(2)L( | g7 |+ v )T

+ NR[L( g [+]|v] ) M+L( g |+]v])T3M]

W s|x|YTH

O(l_*_A‘XtOLS)('\{*'l”'i'l)/OL
ESN

O(1+A]X|G'S)r/u’ 3

Fa

+ M

30

where M, = 2UN¥IM max{UNT,3}. Since r > max{2a-(y+1),a}

if follows that



(1+Alxlu )(Y+T+l)/&

a2 (a-(y4r+1)) (2a=(y+r+l))

oo

x % |T0
|x|” ds =
(1+A|x|as)r/a A{r+l-o ’

0

and

SIX’Y+P+1
(1+A|X‘as)(y+r+1)/a

s ~—qdg <

< (1tas) (YFEFD/G

>

O 8
Ov——y 8

[0} o0
: ds < oo,
£(1+A|xlas) £(1+As)r/u
0
Therefore J%T(QGV)ds converges uniformly for (t,6,x) in
V(e ) and is dominated by a continuous real valued
function D(e) defined on [0, €5 ) with 1im D{(e) = If

e>0
83 > 0 is such that D(s3) < 6 then for (t,8,x) in V(EB)

A

o]

0
%X(Tv) = I§~(®Gv)ds,
and

\——(TV) < 6.

The following lemmas will be used to show that T

is a contraction map on Q(e€).
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Lemma 6. Let the hypotheses of Theorem 2 hold and let

g, > 0 be such that Theorem 5 holds. Further let

4
v, W be in Q(EM) and suppose that

(W7 (6,7,0,%x),8"(£,7,8.%x)), (V' (t,7,0,x),E"(£,7,6,%))
are the corresponding solutions of {(12v), (1l2w). Then

there exist K > 0, independent of v, w in Q<€M) such

that
[ —y" | + 1V-E"] < k| |v-w]],

where ||v-w|| = sup |v(t,T,x)-w(t,0,x)].
V(gu)

Proof. For (t,8,x,y), (t,0,x,y) in V(eu)XB(n,n) and

x| = max{|x],|x]}, |¥y] = max{|y], |y},
it is clear that

66, 6,%,5)-0(t,0,%,5) | < LOX|+FP(]6=8]+[x=x|+|y-y|).

Let h(t) = max{|g " (t)|,]E"(t)|}, then

max{ |v(t, v  (£), 8 (e, |wit, " (£),E"(£)) |} < h(t). But

Iv(t, v, 0" ) -w(t, ", o) |
< ve, vV, e ) =v (WL EN) [+ vie, v, e ) -w (e, o7, EY) |
V=9 [+ g7 =" |+ |v=w]]),

I A



implying that
1oV (t,v",eV)-0"(¢,9",e") |
< 2PLnP (e) 2|V —y" |+ eV -E" )+ ] [v-w] )
< 2PHLLnP (Yo" [+ " [+ ] [v-w] ]).

In the same way,

7Y (6 ,0Y, eV -F (5,9",E") |

41 Qg REE
< 29T ) (o -9 |+ gV =BT [+ ] [v-w ] 1)
Let H(t) = Lh(t) max{2p+l,2q+l}. Note that Lemma 3
implies {Hp(s)ds < o gnd IHq(s)ds < o,
T T

Now from (12)

| A

v W d v oWl
(16)  Dply -7 | ‘ag(w -v) |

|-~

16V (t,u",e7)-0" (£, 4", ") |

< ®PC8) (LY =g [+ 17" [+ [v=w|]),

and



VoW V. W V. W
Do |eV-"| = 11m LEE)MEED|-lE7-E7]

h>+0 h‘
< 11 LE-EN (£ (5,8)-F (5, ") |- |£7-E"|
" ho+0 h

LA CRAR A B L CIRAN AD I
The mean value theorem gives, for some v in [0,1]
£(E,E) = £(£,E") = £ (t,vE" +(1-v)E") (8V-E"),
and therefore

Dple¥-£"] < ulf (t,ve"+(1-v)E")11g"-€"|
+ HEE) (97" [+ €7 ="+ [ Jv-w | ).

But
uLE, (8, VvE +(1-v)E") ] < -a|vE™1-v)E"|* < 0,
so that
Dl e’ -e"| < 5 (9 -9" |+ |- [+] lv=u| ), t > t.
The above inequality, together with (16), gives

DpClu =" [+1€7-g" ) < K (Jw =y [+| V=" [+ [v-u|]),
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where XK(t) = B3 (t) + HP(t). Since | (t)-¥"(1)| = 0

= 1€V (1)-£"(1)| it follows that

t t
[WV-v"| + |gV-£"| i_[lv—w!lJK(s) exp{JK(u)du}ds
T S

.IA

K||V"‘W} '3
where K = exp[K(s)ds < o,
T

Lemma 7. Let the hypotheses of Theorem 2 hold and let

®(t,T,0) be as in Lemma 4.

(t,6,x,y) in (—W,T]XRQXB(Eu,m)XB(ﬂ,m) there exists P > 0
such that

Then for all (t,0,x,y),

N A AN

lo(t,T,y)8(t,0,%,y)-0(t,T,y)G(t,8,%,y) ]

< PUIEIHIT DT+ (=t) (T 1+ [T DY

< {]0-6]+|x-x|+|y-y |},

where |X| = max{|x|,|£|}, ly| = max{lyl,!§\}.

Proof. The mean value theorem gives

A A A

I@(t,T,y)G(t,e,x,y)—é(t,T,§)G(t,6,x,y)
< sup{'%é'(@(}) ]+]%§(¢G))+|§—§(¢G)u{!e—5|+|x—§1+ly—§l},

where the supremum is taken over 32XB(eu,m)XB(n,m).



For » = 8 or x it follows from Lemma 4 and (Viv) that

(e (E,T,3)6(,0,x,5)) | < LClx[+]y 7.

Again norm eguivalence for R" implies there exists Nl > 0

such that

%(Q(t,T,y)G(t,e,X,y)

® o
< N lelmax |22, t,y)| + |oCt,1,v)] |G (t,0,x,y)].
1 3 Y . dy

J

By applying Lemma 4 and (Viv) it can be seen that

(8 (6, T,3)6(6,0,0,3) | < MIx|+]y DTy (e-1)

+ L{|x|+|y]F.

Put P = max{NlLF,SL} and the result follows.

Theorem 8. Let the hypotheses of Theorem 2 hold. Then
for all € > 0 sufficiently small the operator T, defined
by equation (13), is a contraction map on Q(e).

Proof. Let N 0 be such that Theorem 5 holds and let
v, W be in Q(es). Then for h(t) = max{|€"(t)|,|g"(t)]|}
it follows from Lemmas 3, 6 and 7 and equation (13)

that
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by

| Tv-Tw| < j|@(t,t+s,v(t+s,wv(t+s,t,e,x),gv<t+s,t,6,x))J

0

xGY (t+s,9  (b+s,t,0,%),E  (t+s,5,6,%))

- o(t,t+s,w(t+s, V" (t+5,t,0,x),E" (t+5,5,0,%)))

xG" (t+s, v (t+5,5,0,%),E" (t+s,t,6,x)) ) |ds

0

|/\

0

I(2 h (S)+2r+l P+Y+1(S))

x (|07 1+ eV ="+ |v-w] | yds

r+1

|/\

P(K+1)

r+l

[A

P(K+1)

0

s|x]”

00

(W7 (5)+sn™ T2 (s))as | |v-w] |

EdN

— d
(1+A]X]us)r/u S

|

Oty 8

(o8]
+ J L
5 (1+A]x]|
o

!A

o) (TFYFI) /G ds | [ lv-wl|

1P(K+l)D(|x|)l|v«w||

where D{e) is described in Theorem 5. Let € > 0 be

such that 2r+l

the result follows.

Eroof of Theorem 2.

1ls a contraction map

{V }

v, in Q(e),

n= l’ 1
Cauchy and therefore

P(K+1)D(e,) < 1. Then for € = min{e.,e,}
6 . 5256

Since T maps Q(e) into itself and
it follows that the sequence
Vo n+l

converges to a continuous function

= Tv. ,0..,V = Tv ,... 1is
l’ 3 n’

u in 9(e). Since {v }n 1 1s uniformly Lipschitz with

Lipschitz constant §

it follows that the 1imit function
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u is likewise Lipschitz. By extending the definitions

v

or 0¥, g’

and F' to allow v to be continuous it can be
seen that the initial value problem (12u) has the
unique solution (wu(t,T,e,x},Eu(t,T,e,x)). Further,
since @Vn{t,e,x) - Ou(t,r,x) and Fvn(t,e,x) > Fu(t,e,x)
uniformly on [T,W)XRQXB(E,m)XB(n,n> it follows
([14], Theorem 2.4, p. 4) that (wvn,avn) > (e
uniformly on IXIXRQXB(s,m) where I is any compact
interval in [1,®). Observe that the bounds computed
for &v in Lemma 3 hold for Eu.

Consider the sequence of functions {Jn}nrl’ where

v v

I (s) = ®($,t+s,vnét+s,w'n(t+s,t,3,x),€ D(t+s,t,0,%x)))

xG M(t+s,¥ P(t+s,t,0,x),E T(t+s,t,0,%)),

n=1,2,...

From the above remarks and from the continuity of

and G it follows that

lim Jn(s) = @(t,t+s,u(t+s,wu(t+s,t,e,x),iu(t+s,t,e,x)))

11

xG" (t+s, 9" (t+s,t,0,%x),EX (t+s,t,8,%)),

for 7 < £ < s < o,



It follows from Lemmas 3, 6 and (Viv) that

v

. v v
[7,(s)] < |a P(t+s,p (b+s,t,0,x),E "(b+s,t,0,x)) ],

AN

2T+l lr+l

r+l/0°

< 2r+¢

v
Llg M(t+s,t,0,x)]| < Lix
(1+A]x[%s)

n=1,2,...,

therefore the Lebesgue Dominated Convergence Theorem

implies
0
(18) wu(t,8,x) = lim v_(t,08,x) = lim IJ l(s)ds
N+ n N+ N~
0

I}

n
g O g

1lim Jn_l(s)ds

Il>o00

o(t,t+s,u(t+s,p  (t+s,t,0,x),
% (t+s,t,6,x)))

xGH (t+s, v (f+s,t,0,%x),E% (t+5,5,60,%))ds
By using this representation of u it will now be shown

that the function w(t) = u(t,wu(t),iu(t)) satisfies the

differential equation

v = glt,y) + a(t,v (), (t),y).

From the definition of w(t) it follows that

39



0
w(t) = I@(t,t+s,u(t+s,wu(t+s,t,wu(t),Eu(t)),
Z g (t4s,t, e (8), 80 ()
<G (t+s, v (b+s,t, 0% (8), 4 (5)),

EM(t+s,t,0" (£),€%())ds,
but from the uniqueness of solutions of (12u),
(g (t+s,t,9" (t,1,0,%),E7(,1,0,%)),
g% (t+s,t, 0% (£, 1,0,%),E%(t,1,0,%))
= (wu(t+s,T,e,x),Eu(t+s,r,6,x)).

Thus

w(t)

It

0
j@(t,t+s,u(t+s,wu(t+s,x,e,x),g“(t+s,r,e,x)))

ooXGu(t+s,wu(t+s,T,9,x),Eu(t+s,r,6,x))ds

]

t
J@(t,s,u(s,wu(s),iu(s)))
“xa (s, ¥4 (s),E% () ,uls, ¥ ()€ (5)) )ds

]

t
[Q(t,s,w(s))G(s,wu(s),gu(s),w(s))ds.

Let t be fixed such that t <t < « and let

~

Q¥ (t) = le(t,s,w(s))als,v%(s),e%(s),uls))ds,

(g Y D)

and

4o



Qp(t) = [o(t,5,0(s))0(s,0"(s),E"(s),u(s))ds.

Sy 8

Since %%(t,s,o) = gy(t,y(t,s,c))@(t,s,o) is continuous

for t < s < 1 and |o| < n and since o(t,t,0) = I

da .t
I (

£Q (8) = =G (6, (£),£%(t),w(t))

+ lg (t,y(t,s,w(s)))o(t,s,w(s))

y

et >

xG (5,0 (s),E (s),w(s))ds.

Also since

8

(19) g (t,y(t,s,w(s)))e(t,s,w(s))

y

S —

xG (s, (s),E%(s),w(s))ds

o o]
g + +
< [rplvieas,ute) (1) |+ [ute) ) as
t [e o]
r+l
25T f +y+2
B [1ee) T e
£
< 2.r+_1Lc Jr 1 ds
t

implies that



Qlﬁl
ct
ot

(t) = [gy t,y(t,s,u(s)))o(t,s,w(s))
£

XG(S,wu(S),Eu(s),w(S))ds,

it follows that

A

(20)  6(t) = $:°(t) + TQr(v)

!

= ~G(t,pH(t), % (E),0(t))

o}

+ fgyw,y(t,s,w(s)m(t,s,w<s>>
T

XG(s,wu(s),Eu(s),w(s})ds.

Now observe that

t
f%gg(t,y(t,s,w(s)))ds

o]

g(t,w(t))

- 1lim g(t,y(t,s,w(s)).

g >0
s>t
But
Tim |y(t,s,w(s))| < IIm lols) |
§ oo s+ (1-B(t-s)|a(s)|P)1/B
s>t s>t

and since g(t,0) = 0

follows that 1im g(t,y(t,s,w(s)) = 0. Also

8>
s>t

=0,

s £t in R, and g is continuous, it



T a(t,y(t,s5,0())) = g, (£,y(t,5(6,5,0(s)))

[%%(t,s,w(s))+%%(t,s,w(s))é(szJ

[}

gy(t,y(t,s,w(s))@(t,s,w(s))

x[-g(s,w(s))+w(s)].

Therefore

t
g(t,w(t)) = ng(t,y(t,s,w(s)))@(t,s,w(s)

x[w(s)-g(s,w(s))Ids.
This equation, together with (20), gives

O(t) - glt,uw(t)) - Gt, v (t), e (t),w(t))

0

_ _ng(t,y(t,s,w(s)))@(t,s,w(s))
t

x[0(s)-g(s,w(s))=G(s,v"(s),E%(s),u(s))lds

Let ¢(t) = w(t) - glt,w(t)) = G(t,p"(t), g% (t),0(t)),

then ¢ satisfies

(21)  o(t) = ng<t,y<t,s,w<s))@(t,s,w<s>>¢(s>ds.
t



4 i

Iv will be shown that ¢t) = 0, ¢t in [r,»), is the only
solution of (21) and the proof of Theorem 2 will be
complete. First observe that ¢(t) is uniformly bounded
on [1,%), TFor it has already been shown that
w(t) + G(t,wu(t),gu(t),w(t)) is uniformly bounded, see
(19) and (20), and (IVii), (IViv) and the definition
of w imply that g(t,w(t)) is uniformly bounded.

From Lemmas 3, 4, (IVii), (IViv) and the definition

of w

o«

l6(e)] < f;i—lm«s)ly“lw(s)lds i—i—fls ()] o(s)]as
t

S

¢{s)|d
v+ ll(l+A(s T))(Y+1)/dl (s)lds

1
(1+A(t=-1))

(y+l-0)/a sup [¢(s)|.

< (y+1)(§+l—u) s>t

<t >

Choose > T so large that

ca 1
(Y+1)(Y+l—u) (1+A(t_._,[))("{+l—0l)/(l

< 1. Then for all
t >t

|(6)| < suplo(s)],

s>t

but this implies that ¢(t) = 0, t > t. Thus



l6(t)| < =7

v l¢(s)]|ds,

e ¢

and therefore

l¢(s)]ds| < 0.

&~

exXpl —— ©
b vy+1 °

[q i A

L

But this gives

l¢(s)]ds > 0, ¢ 5_‘2,

ot St

and therefore ¢(s) = 0, t < s < t.

Corollary 9. Solutions of

-1l/0

y = glt,y) + ¢(t,vH(t),g%(t),y) on S: are 0(t ) as
t

- 00,

Corollary 10. The positive manifold SZ is unique.
Proof. Equation (18) shows that T may be extended to
Q{e) and since Lemma 6 holds in (e) the result follows
from inequality (17).

The corresponding theorem for negative manifolds

will be stated here. Consider the following hypotheses.

(VIT1) £ is C(R)NC%(B(e,m)):R™ for some € in

(0,1);



(VITi1) g(t,0) = 0, £ _(£,0) = 0, t in R;
(VIIiii) there exist o, a > 0 such that
ulf, (t,s)] < -a|x|% t in R, x in B(e,m);

(VIIiv) there exist k, K > 0 such that

of,
max |z=—=—=—(t,x)| < X|x|*, t in R,
B 90X, 90X -
1,5,k 7757k

x in B{e,m);
(VIIIi) g is C(R)(\Cl(B(n,n)):Rn for some n in
(0,1)3
(VIITii) g(t,0) = 0, t in R; and,
(VIIIiii) there exist B, b > 0 such that
blyl® < -ul-g (t,y)1, t in R, y in B(n,n).

Theorem 11. Let (VIIi) through (VIIIiii) and (Vi)

through (Viv) hold with ¢« + 1 > B and min{p,q,r} > B.
Then for n > 0 sufficiently small and T any real
number there exists a unique function w in
C((—w,tJXRQXB(n,m)):Rm,w(t,e,y) multiply periodic in
6 with period w, w(t,6,0) = 0 for (t,8) in (-w,T]xR*,

such that

S; = {(t,0,x,y)|0 arbitrary, x=w(t,0,y), |y|<n, t<t},

is a negative manifold for system (11). If the

f-equation is absent then min{p,q,r} = min{q,r}.



The proof of Theorem 1l follows closely that of
Theorem 2 with the exception that one considers t < 7
instead of t > 1. For w in the proper class of
functions cne proceeds to prove Theorem 11 by finding

a solution ror the sysftem

De

= a + 0(t,8,w(t,0,y),y),
(21w)
g(t,y) + G(t,0,w(t,0,y),y),

e
1]

=00

wit,0,x) = JW(t,t+s,w(t+s,¢w(t+s,t,e,y)vw(t+s,t,G;y)})
0

XF(E+8,0" (£+8,5,0,¥),9" (t+5,£,0,y),

W(t+s,¢w(t+s,t,S,y),vw(t+s,t,6,y)))ds,

where (¢"(t,7,0,y),v"(t,1,6,y)) is the unique solution
of (21w) with initial condition (8,y) at t = T and
Y(t,1,z) = %%(t,r,c), x(t,7,z) is the unique soliuticn
of x = f(t,x) satisfying the initial condition ¢ at

t = 71,

Corollary 1l2. Solutions of

£ = £(t,x) + F(t,0"(£),x,v"(t)) are otf 1 ®) as t » -w,

Remark. The hypothesis of Theorem 2 which restricts
Yy + 1 > o can be relaxed in some cases to include

Yy + 1 = q.
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Suppose that f(t,x) satisfies (IIIi) through
(I11441) with o = vy + 1. Let {o, }, 7, be a sequence of

positive numbers with o < o and lim 0 = 0. Suppose
K+

k)

- Id
Py w
there exists a sequence {f' {£,%)}, ., of

C(R)(\CI(B(E,m)):Rm functions with f(k)(t,o) = 0,

0.
t in R, and u[fék)(t,x)] < -alx| K for each
k =1,2,... . Finally suppose that 1im f(k)(t,x)

Koo
= f{t,x) uniformly on IxB(e,m), I any compact subset

of R.
By gpplying Theorem 2 it can be seen that the

system

6 = d + 0(t,0,x,y),

(22k) f(k)(t,X) + F(t,0,x,y),

>
I

y = g(t,y) + G(t,6,x,y),
has a positive manifold
+

Se k ° {(t,8,x,y)|06 arbitrary, |x|<e, y=u, (£,8,%),t>1},
]

provided min{p,q,r} > a and € sufficiently small.



Let (wk(t),gk(t)) represent the unique soclution

6 = 4d + @(t,e,x,uk(t,e,x)),

(23K) )

%= £ (t,x) + F(£,8,x,u,(t,8,x)),
with initial value (8,x) at t = 1. Then

wk(t) = uk(t,wk(t),gk(t)) is the unique solution of

y = g(t,y) + G(t,¥ (8),E, (t),y),

with initial wvalue uk(T,S,X) at t = 7.

Since the functions

0, (t) = a + 0(t,u, (8,6, (t),0,(8)),
Po(6) = (6,8 (8)) + Flo,u, (8),6, (8),0,(8)),

G, (£) = &(t,0,(t)) + 6(t,v, (£),E,(£),0,(8)),

are uniformly bounded on [T,®) it follows that the
sequence‘{(wk,ik,wk)}kzl is uniformly Lipschitz and
therefore equicontinuous. Now for each k = 1,2,...,
(wk(T),Ek(T),wk(T)) = (e,x,uk(r,e,x)). But
{uk(T,G,X)}k:l is a bounded sequence and therefore
has a 1limit point, say u,. Let {uk(i)(r,e,x)}izl be

oo

a convergent subsequence of {uk(r,e,x)}k=1 with

1im uk(i)(T,e,x) = u,. Since {(wk,gk,wk)}kzl is

{0

b9
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equicontinuous and since solutions cf (22k) are unigue
fee]

if ftollows that {<¢i,gi,wi>}l=

1> where 1 = k(i),
converges uniformly on [T,*) to a function (wO,EO,wO}.
Therefore, from the continuity of Ok’ Fk and Gk it
follows that {{QK,Fk,Gk)} - (@O,FO,GO) uniformly
on [1,»). Thus (wo,ao,wo) is the unique sciution or
(220) with initial value (e,x,uo} at t = T.

Observe that the asymptotic behavior of the
solutions of the x and y equations in the 1imit is the

same as in the case o < vy + 1. For it 1s clear that

Iik(t,T,e,x)} < uiX] 1/ak
(1+Ak!x| (t-1))
lw E)] < 8lg t)]
for some Ak >0, k=1,2,... . Since Ak - A, o, > o

as k » « it follows that

x|
(1+A |x | *(t-1)) /@
5]&0(t)l.

[~

|£g(E,7,8,%) ]

g (6]

| A
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In case system {(22k) is autonomous it is clear

that {uk(t,e,x)} = {uk(e,x)} converges uniformly on
RQXB(e,m). Thus for autonomous systems one may obtain
a representation of the form Ug = TuO for the integral

manifold even in the case v + 1

n

.

In view of the above discussion it can be seen
that Theorem 11 can be extended to include the case
B = x + 1,

Now it can be seen that the model problem dis-
cussed in the introducticn has the predicted soluticn.
In that case a = B = 2 and vy = ¢k = 1. So if X and Y

are o((lxl+|yl)3) one may apply an extended version
1

of Theorem 2 by letting f(k)(t,x) = =X k to obtain

a positive manifold for the perturbed system.

Similarly one applies an extended version of Theorem 11
1

by letting g(k>(t,x) =y k in order to obtain a

negative manifold for the perturbed system.



CONCLUDING REMARKS

The results of this dissertation may be considered
as a parallel development of the works of several
authors, [3], [12], [15] and in particular they closely
resemble Theorem 4.1, p. 330 in Coddington and Levinson
L7]1. These authors obtain results similar to Theorem 2
for a system whose unperturbed state is linear, e.g.,
system (4) in the absence of the 6-equation. Two aspects
of the presentation in Coddington and Levinson are not
given here. First, is is shown that solutions which do
not start on the manifold eventually leave a neighborhood
of the origin. Also it is shown that if the perturbation
function is differentiable, as 1s the case here, then
the manifold is likewise differentiable, i.e., the
function which describes the manifold is differentiable.
Although the manifold in the nonlinear case here has
been shown to be Lipschitz, the problem of showing
differentiability seems more difficult than in the
linear case.

Another aspect of the results in this dissertation
which are not pointed out explicitly in the theorems is
the similarity of behavior of solutions of the unper-
turbed and perturbed sysfems on S+ and S:, respectively.
Let (t,6(t),x(£),0) be in ST and (t,w(t),&(t),w(t)) be

in SZ. Then |x(t)-£(t)| and |w(t)| approach zero as t
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becomes large. In the absence of the 6-equaticn this
may be interpreted as asymptotic eguivalence of systems
{8) and (11). This resembles results obtained by Marlin
and Struble [19] who give sufficient conditions ror the
existence of solutions for a perturbed nonlinear system
which are asymptotic to solutions of the unperturbed
state. Their hypotheses do not cover the case treated

here, nor conversely.
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ABSTRACT



ABSTRACT

The purpose of this dissertation is to give a proof
for the existence of an integral manifold for a system
of perturbed nonlinear differential equations in a
neighborhood of a critical point, periodic orbit, or
perilodic surface. Analogous studies of integral
manifolds where the unperturbed system is linear have
been done before. Functions describing the manifolds,
in the linear case, are usually obtained as solutions
of a certain improper integral equation formulated by
the use of the classical variation of constants tech-
nique. To prove that a solution to this integral
equation exists, use 1s made of certaln exponential
bounds induced by the unperturbed linear system. Of
interest here is the case in which the unperturbed state
of the system has no linear part. Again one is led to
consider sclutions of an improper integral equation,
obtained in this case from a generalization of the
variation of constants formula due to V. M. Alekseev.

In general, one can not expect exponential bounds
analogous to those present in the linear case; however,
by assuming certain smoothness and order type properties

of the functilons involved 1t is possible to demonstrate



the existence of a unique solution of the integral
equation. Additional work is done to show that the
solution of the integral equation gives rise to a
solution of the differntial equation.

It is also shown that on the manifold of the
perturbed system solutions are asymptotic to solutions

of the unperturbed system on the corresponding manifold.



