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Abstract 
0 

Radiative t ransfer  theory is developed f o r  the 1304A t r i p l e t  of 

atomic oxygen which includes the e f f ec t s  of pure absorption by molecular 

oxygen and va r i ab i l i t y  of t h e  temperature governing the r e l a t i v e  populations 

of t h e  ground state 3P 

intensity-height p ro f i l e  f o r  the dayglow, t h e  theory is us& t o  determine 

the i n i t i a l  source function or  the production rate. 

levels .  S ta r t ing  from 811 essent ia l ly  complete j 

From the solut ion,  w e  

are able  t o  discuss quant i ta t ively the important dayglow exci ta t ion sources. 

The solutions are shown t o  be somewhat sens i t ive  t o  the following parameters: 

(1) the o s c i l l a t o r  s t rength f ,  (2) the temperature governing the Doppler 

l i n e  width, (3) the temperature governing the 3P levels  and (4) O2 

absorption below about 130 km. The assumption of complete frequency 

red is t r ibu t ion  is  applied and the  basis of i ts  va l id i ty  is analysad with 

3 

regard t o  &e given problem. 

A source is required i n  the F1 region whose s t rength is about 200 

3 exci ta t ions  per cm per  sec a t  170 km. The a l t i t u d e  p ro f i l e  f o r  the required 

source agrees w e l l  with those calculated f o r  exc i ta t ion  of oxygen by supra- 

thermal photoelectrons, 

?This work is based on a portion of the thes i s  submitted by D. J, Strickland 
t o  s a t i s f y  requirements f o r  the Ph.D. i n  Physics at  the University of 
Pittsburgh. 

*Present address: Department of Physics, University of Florida,  Gainesville, 
Florida. 
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1 0 INTRODUCTION 

This is the f i r s t  of two papers which w i l l  discuss t ransport  of 

the resonance radiat ion of atomic oxygen i n  the Earth 's  upper atmosphere. 

In  the  present paper w e  treat the  dayglow and i n  the second w e  s h a l l  con- 

s ide r  the  aurora. 

of 1302-04-061,abbreviated hereaf te r  as 13041. 

successful dayglow experiments have been performed i n  which a l t i t u d e  prof i les  

of 1304i radiat ion from about 100 km t o  600 km have been recorded on sounding 

rockets (Fast ie  e t  al . ,  f964a; Fastie and Crosswhite, 1964b; Kaplan e t  al.,  

1964; F a s t i e ,  1968; Heath, 1968). Several analyses of the ear ly  dayglow 

observations have been published (Donahue and Fastfe,  1964; Tohmatsu, 1964; 

Donahue, 1965 ; Tohmatsu , 1965) indicat ing tha t  the observed height prof i les  

and apparent emission rates require  the presence of a source i n  the thermo- 

sphere more important f o r  exci ta t ion of the t r i p l e t  than absorption of the 

s o l a r  emission l i nes  e These analyses, however, w e r e  based on observations 

carr ied only t o  Aerobee a l t i t udes ,  %,e., about 200 km. Such da ta  do not 

extend high enough t o  show the form of the  var ia t ion  with height above the 

a l t i t u d e  of maximum brightness This limitation, coupled with uncertaint ies  

about the  absolute brightness of the  d r g l o w  lines and about the absolute 

f lux  and spec t r a l  p ro f i l e  of t he  s o l a r  l i nes ,  has l e f t  a cer ta in  ambiguity 

The radiat ion t o  be studied is a t r i p l e t  at  wavelengths 

To date,  a number of 

i n  the assessment of the r e l a t ive  importance of the in t e rna l  and external  

sources of exc i ta t ion  (Donahue, 1965). 

made, some high a l t i t u d e  da ta  were avai lable  (Kaplan e t  al., 1964) bu t  are 

A t  the  t i m e  these analyses were 

d i f f i c u l t  t o  explain i n  tenns of reasonable models and are suspected of 

background contamination 

Recently, Fastie(1968) has observed the a l t i t u d e  p r o f i l e  of t h i s  

dayglow fea ture  from about 220 km t o  about 600 km during the f l i g h t  of a 
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Jave l in  sounding rocket from Wallops Island i n  November 1964. 

obtained at  tha t  t i m e  can be extended downward by normalizing i t  t o  the 

earlier Aerobee observations between 100 km and 220 km. Thus completed, 

i t  gives a suff  i c i en t ly  complete representation of the "typical" s p a t i a l  

p ro f i l e  of the  airglow radiat ion f i e l d  t o  reveal the d is t r ibu t ion  of the 

sources required t o  create it. 

por t  calculat ion can determine these sources from the  airglow information 

as w e l l  as how it can put some in te res t ing  l i m i t s  on the range of atomic 

oxygen model atmospheres ~~~a~~~~~ L.rith the observed radiat ion prof i f e .  

The r e su l t s  require the presence of a strong in t e rna l  source centered near 

170 km t o  exc i t e  the  3s3S1 level of atomic oxygen a t  a rate of about 200 

The prof i le  

This paper w i l l  show how a radiat ive trans- 

sec-l. Regarding the density models, the var ia t ion  of the resonance 

l i n e  brightness with a l t i t u d e  above 400 km where sunl ight  should be the  

pr inc ipa l  source of exc i ta t ion  appears t o  demand more atomic oxygen i n  the 

atmosphere than the models appropriate f o r  the  t i m e  of the  Javel in  f l i g h t  

would call for .  

a f t e r  w e  have developed the transport  theory f o r  the 1304 t r i p l e t .  

These points w i l l  be discussed i n  considerably grea te r  d e t a i l  

2.0 Atomic Properties and Temperature Dependence 

The 1304 t r i p l e t  arises from the t r ans i t i on  ( 2 ~ ) ~  3P - (2P)a 2,190 

(3S11 3sl which is designated as a resonance t r ans i t i on  both because i t  is  

allowed and because the ground state (3P) is involved, 

are characterized by la rge  o s c i l l a t o r  s t rengths  (f  values) and i n  turn by 

large cross sect ions,  The f value w e  o r ig ina l ly  chose f o r  t h i s  work has 

the magnitude .021 (Parks e t  al.,  1967), With such a s m a l l  o s c i l l a t o r  

s t rength i t  proved impossible t o  reconcile the experimental a l t i t u d e  p ro f i l e  

with reasonable oxygen abundances. 

Such t rans i t ions  

A much la rger  f value seems t o  be needed. 

Recent measurements by Lawrenee 4969) yie ld  a value of 0 46 and F. & W a n  
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(personal comunicatfon) reports  t h a t  the  value reported by Parks e t  al. 

(1967) i s  too low by a fac tor  of about two. Theoretical f numbers have 

been calculated by G a r s t a g  (19611 (f - .051) and Kelly (1964) (f = .025). 

Using Lawrence's (1969) value of ,046, we have recalculated our solutions and 

favor these i n  giving a physical Enterpretation f o r  our results. As B point 

of i n t e r e s t ,  w e  present solutions i n  Section 6 f o r  both f values showing the 

e f f ec t s  of changing t h i s  parameter. 

The f value fs re la ted  t o  the l i n e  center cross section uo f o r  

absorption of resonance radiatfon by the relat ionship 

= -  r e  2 f  
mc U 

0 

where the l i n e  has a Doppler p ro f i l e  and AvD i s  the  Doppler width given by 

-1 2kT 
"D = ' o  '/-) 

We see by Equation (2 )  t ha t  uo is a function of the  k ine t ic  temperature T. 

This temperature var ies  from about 200° t o  as high as perhaps 1000° over 

the  a l t i t u d e  range of i n t e r e s t  i n  t h i s  study. Selected values of u as a 

function of k ine t ic  temperature f o r  f = .021 and .046 are shown i n  Table 

1. The values shown have been used t o  obtain the  r e su l t s  which w i l l  be 

presented i n  Section 6,  

0 

The frequency dependent cross section u(x) is  given by 

where $ (x) is  the l i n e  p ro f i l e  and x i s  a measure of frequency i n  uni t s  of 

Doppler widths from the  l i n e  center 
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x = (V - v )/AvD 
0 

I n  pas t  work (Donahue and Fast ie ,  1964; Tohmatsu, 1964; Donahue, 1965; 

Tohmatsu, 1965) a pure Doppler l i n e  shape 

2 
-X IpW = e 

has been assumed. I n  t h i s  case 

(3) 

It is a w e l l  known f a c t  t h a t  the contributions from the na tura l  wings of 

the l i n e  become important i n  case considerable multiple scattering o r  im-  

prisonment of the  photons oecurs. 

regions of the  atmosphere, 

f o m  

Such is the case f o r  us i n  the  lower 

Consequently, we have generalized $(x) t o  the 

In t h i s  form of 4(x) fiebe ;un-nomlia;edr Vbigt function) - a is a parameter 

specifying the s t rength of the wings of the l i n e ,  

. Y  a =  4a avD 

y being the  t r ans i t i on  probabili ty o r  inverse l i fe t ime of t he  excited state. 

The parameter - a, here re fer red  t o  as the na tu ra l  damping coef f ic ien t ,  may 

a l so  be re la ted  t o  f by the re lat ionship 

(see Mitchell and Zemanslcy, 1961; Equations 33 - 39) where gl and g2 are 

the statist ical  weights of t he  lower and upper states (gl/g2 = 3 f o r  the 
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oxygen t r i p l e t ) ,  

- a as a function of temperature f o r  f = .02l and .046 are given i n  Table 1. 

I n  addition t o  the cross sect ion u0, selected values of 

It can be seen tha t  +(a,x) depends on the  k ine t i c  temperature 

through both x and a. 

f ac to r  of two, as i t  does for the temperature range w e  encounter, i t  would 

be desirable  t o  include the var ia t ion  i n  the transport  problem. To do so, 

however, would make the calculations considerably more d i f f i c u l t  and cost ly  

t o  perform. As is generally done i n  a problem of t h i s  nature,  we have used 

constant values throughout the medium but have varied T as a parameter i n  

such a way as t o  span the  expected temperature range, 

can estimate how mu& e f fec t  the isothermal approximation has on our solut ions,  

I n  a situation i n  which Av var ies  by more than a D - 

From the  r e s u l t s  w e  

The relative populations of atoms i n  the  three leve ls  of the 3P 

ground term are assumed t o  be given by 

where j = 2,1,0 aand where the! s t a t f s t f e a f  weights g5 are 5,3 and 1 f o r  the 

respective levels  3 ~ 2 ,  3pl and 3p0. 

perature as are uo amd Q(a,x). 

including ?ha l imit ing values p 

be pointed out t ha t  t h i s  temperature (hereaf ter  referred t o  as the  

Boltzmann temperature TB) does not necessar i ly  equal the  k i n e t i c  temperature 

governing the Doppler width, %.e., TDo 

f i n e  s t ruc tu re  levels are gnfluenced by c o l l f s i m s  between atomic oxygen 

we see t h a t  p j  is a function of tem-  

Table 2 gives pj for various temperatures 

= 5/9, 319 and 119 as T + 00, It should 5 

I f  the relative populations i n  the 

and ambient e lectrons (as suggested by Dalgarno and Degges, 3.9681, then TB 

w i l l  dPffer from TD and i n  f a c t  w i l l  be grea te r  than TDe 

involving both the  1304 t r i p l e t  and the  f a r  infrared radiat ions resu l t ing  

from the  t r ans i t i on  between the P 

Transport proeesses 

levels can a l so  influence the 3 
2,190 
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r e l a t ive  populations. Their e f f ec t  would be t o  increase the populations 
3 3 of the P1 and Po l eve ls  and the d is t r ibu t ion  would then not be describable 

s t r i c t l y  i n  terms of a temperature. Because of co l l i s ions  between atomic 

oxygen atoms and surrounding pa r t i c l e s  throughout most of t he  medium, we 

s h a l l  assume t h a t  transport  processes have a negl igible  e f f ec t  on the 

re l a t ive  populations and tha t  the populations can be represented by TB which 

may, however, be grea te r  than TD* 

case i n  which TB var ies  through the medium 

varieso 

ca8eulatfmo. 

temperature but  w e  have also cons%dered an isothermal case with TB = POOO', 

chosen t o  represent a s i tua t ion  i n  which there is appreciable cooling of 

It is a much simplier task  t o  treat the 

than the  case i n  which TD 

Ae~ordimgPy, we have emeidsred the e f f e c t  of a variable  TB in our 

~ ~ u a ~ ~ ~  TB has been permisted It0 assume the  mbfent  

e lectrons by atomic oxygen. 

With p th  a function of temperature, t he  op t i ca l  depth f o r  the  j 3 
l i n e  at  a l t i t u d e  z is given by 

As a function of frequency, 

When the medium 

of another by 

is isothermal, t he  depth f o r  one l i n e  can be re la ted  t o  tha t  
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Such a relat ionship permits the t ransfer  equations t o  be reduced t o  forms 

having exp l i c i t  dependence on j u s t  one of the  three depths and effect ively 

reduces the treatment of the transport  t o  a two level problem (Donahue, 

1965). For the non-isothermal problem, a d i f fe ren t  var ia t ion of p f o r  

each J forces us t o  deal  exp l i c i t l y  with each of the three depths i n  the  

t ransfer  equations, Computationally, however, t h i s  introduces no d i f f i c u l t i e s  

provided we accurately relate one depth t o  another a t  each point i n  the 

medium, 

3 

0 

Because molecular oxygen begins t o  absorb the 1304A t r i p l e t  below 

120 km 

incorporated i n t o  the t ransfer  equations. In  f a c t  solut ion of these 

equations including true absorption has been obtained only f o r  the case of 

auroral  exci ta t ion where i t  is of par t icu lar  i n t e r e s t  (Donahue and Strickland, 

1969) 

on the  daygfow (Section 7). 

nearly independent of frequency i n  the neighborhood of the l304A t r i p l e t  

and is taken t o  be 5 x We designate 

i n  a s igni f icant  fashion, t h i s  ab s r p  t ion process has been 

From those r e su l t s ,  however, w e  can accurately estimate the e f f ec t  

The non-resonant cross sect ion f o r  O2 is 
0 

cm2 (Lee, 1955). 

the corresponding op t i ca l  depth by 

3.0 Transfer Equations 

3.1 General Approach 

The problem w e  set ourselves to is t o  determine the  rate So(&) 

3 at  which atomic oxygen must be excited i n t o  the 

produce the observed photon flux. 

from electron impact exci ta t ion,  cascading from higher states, and absorption 

SI level i n  order t o  

The most lgkely contributions t o  So are 
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of resonance radiat ion of s o l a r  origin.  

complicated by the  f a c t  tha t  the  oxygen medium is opt ica l ly  very thick. 

This means t h a t  a photon emftted by an atom excited by one of the primary 

exci ta t ion events w i l l  be absorbed and thus exc i t e  another atom before i t  

has t ravel led very f a r  from its or ig ina l  source. 

t rue  of the  resonance photon subsequently emitted by t h i s  atom, 

r e su l t  of t h i s  multiple s ca t t e r ing  or fmpPismment of resonance radiat ion 

is t h a t  the steady state density of excited atoms is much la rger  than the 

value i t  would have i f  each photon emitted were t o  escape the oxygen medium 

without recapture. 

the medium is determined by t h i s  steady state exci ta t ion rate or source 

function S(g). The rate of primary exci ta t ion So($) represents only a 

very minor pa r t  of S ( r )  

of fmprisoned photon@. 

Obtaining the solut ion is 

The same i n  turn w i l l  be 

The 

The unidirect ional  f lux  of photons a t  a given point i n  

most of which is produced predominantly by capture 
rwn 

2 
The "apparent" co lum emission rate i n  photms/cm -sec-in ster 

observed a t &  i n  a d i rec t ion   COS-'^ from the vertical w i l l  be given by 

where T(P - r ' )  is a transmission function which depends on the number of 

atoms between r and K' i n  the d i rec t ion  of observation. I f  w e  are given 

4n1, the  f i r s t  s t e p  i n  determining the primary exci ta t ion rate is to 

inver t  Equation (8) and determine the  f i n a l  source function SQ) 

Unfortunately the process c m b e  carr ied out only i f  a model f o r  the atomic 

b n u  

t.? t -  

d i s t r ibu t ion  is f i r s t  adopted i n  order t o  specify T(? - E'). 

With S(@ and the  model atmosphere specif ied,  t he  ini t ia l  source 

function SO($ can then be found s ince  S(5) must s a t i s f y  an in t eg ra l  

equation of the type 
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rate S(r') a t  E' 
Iz 

where G is an appropriate kernel  relatina; the e m i s  

to  the exci ta t ion 

To solve Equation 

small compared t o  

of its argument. 

rate at  E,, 

(9) is not a t r iv ia l  exercise,  because So is usually very 

S and because the kernel is s ingular  f o r  vanishing values 

As previously discussed, other  complications a l so  arise 

The in t eg ra l  goes over the e n t i r e  medium. 
Y 

in prac t ice  because of the presence of pure absorption of the photons, 

notably by 02, because va at ions i n  temperature cause var ia t ions i n  the 

width of the resonance absorption l i n e  p ro f i l e  and i n  the population of the  

f ine  structure levels of the  ground state of atomfc oxygen and f i n a l l y  

because complex changes i n  the frequency of the photon occur upon scat ter ing,  

A l l  of these e f f ec t s  w i l l  be considered (not always rigorously) i n  the 

present ereatmeat 

3,2 Comphke Frequency Redistribution 

In the initial. fs l a t i on  of the  t ran  port  problem, a two l eve l  

A c ~ ~ ~ 0 d a t ~ ~  of the f i n e  s t ruc ture  s p l f t t h g  of the atom w i l l  be assumed. 

ground staee of atomfc oxygen w i l l  be made fn the  next sectfon, 

fur ther  be aslaaasged t h a t  the geometry of the medium is plane pa ra l l e l  with 

the density of absorbers furacttons of z only, This is a very good approx- 

imation i n  the  present applfcation where the sun is reasonably high i n  the 

sky and the scale height of oxygen is of the order of one percent of the 

radius of the Earth, 

I$ w i l l  

I n  t h i s  seetion w e  s h a l l  invest igate  the criteria which determine 

the a p p l i c a b i l i q  of complete frequency redis t r ibut ion (CFR) t o  a trans- 

port  problem, 

both i n i t i a l  exci ta t ion and sca t te r ing  from a un i t  volume have the saw 

By def in i t ion  CFR requires tha t  the frequency prof i les  f o r  



frequency dependence as the absorption prof i le .  

i n  which the co l l i s ion  rate between excited atoms and surrounding pa r t i c l e s  

exceeds the t r ans i t i on  probabili ty f o r  the given state, the  above condition 

I n  any state of equilibrium 

is a t  least approximately sa t i s f ied ;  i n  par t icu lar ,  both the  emission and 

absorption p ro f i l e s  are represented by the Voigt function. When the 

co l l i s ion  rate is s igni f icant ly  less than the t rans i t ion  probabili ty,  a 

unique r e l a t fmsh ip  ex i s t s  between the frequency and direct ion of an incoming 

photon and those of the outgoing photon for a given absorber of velocity 

VI  I*r 

applicable. 

the emission prof i les  can be represented by VoAgt functions- 

I n  such a case i t  is not  nearly as simple t o  es tabl ish tha t  CFR is 

We s h a l l  now consider i n  a semi-quantitative way how accurately 

For a plane parallel geometry, the bas ic  equation of radiat ive 

t ransfer  is 

2 where I is the frequency dependent in tens i ty  given i n  photons/cm -see- 

ster-Bv,, i n  the direct ion u = cos0, k(x,z) is the absorption coeff ic ient  

and E(X,U,Z) is the emissivity o r  number of photons emittedlcm 4ec-ster- 

AvD. 

of i ts  frequency is ko(z)4(a,x), +(a,x) being the VoPgt pro f i l e  i n  t h i s  

work. Expressed i n  terms of the opt ica l  depth rX, Equation (10) becomes 

3 

The absorptPon coeff ic ient  k(x,z) when expressed exp l i c i t l y  i n  terms 

where drx = kog(a,x)dz and\ S ( X , ~ , T ) ,  the t o t a l  source function, is the  r a t i o  

of E t o  k(x,z). 

by T or z .  

The in tens i ty  I is the same function whether w e  index i t  

For CFR, we note tha t  S is not a function of x because E possesses 



the  same frequency dependence as does k. The formal solut ion t o  Equation 

(11) is  

The first term on the right contains the  contribution f romthe  attenuated 

f lux  of radiat ion incident on the  medfm from outside,  The second term 

represents the  flux re sa l t i ng  from emtssion w i t h  t he  medium along direct ion 

v.  A complication f n  using t h i s  solution arises from the f a c t  t ha t  E is  a 

function of Ix not only at  frequency x but  at a l l  other frequencies as well. 

For the condition of radiative equilibrium, we may write E as 

I ( x '  ,SI' ,z)R(x,x' ,Q,SI' ,z) dx'dsE' (13) I E(X,61,2) = EO(X,G,Z) + 

This re la t ionship expresses the condition that the emissivity must equal 

the  rate at which photons of frequency x are created i n  a uni t  volume p lus  

a sca t te red  contribution from that  volume. The quantity R ,  referred t o  as 

the red is t r ibu t ion  function describes th i s  sca t te r ing  and is  the probabili ty 

f o r  a uni t  volume that an incoming photon o f  frequency x' and direct ion 

$2' is absorbed and re-emitted at  frequency x i n  direct ion R . For the s i tua t ion  

i n  which co l l i s ions  are unimportant, re-elltfssion is  i so t ropic ,  and the wings 

of the spec t r a l  l i nes  are included, R has the form 



where 8 is the angle of scat ter ing.  

by Henyey (1940) and more recently analyzed by Hummer (1962). A property 

of R which w i l l  be useful  below is described by the following requirement 

of r eve r s ib i l i t y  

This form of R w a s  o r ig ina l ly  introduced 

If w e  wish, w e  can now immediately in tegra te  Equation (15) over direct ion 

and obtain 

R dx' &2' kog(a,x) s 
Because of the  symmetry, w e  can a l so ,  i f  w e  wish, consider x' and Q *  as 

e i t h e r  the incoming or  the outgoing variable?, I f  they are ineorpreted as oukgoing 

variables,  we must, i n  f a c t ,  obtain ko@ i n  Equation (16) since from the 

above def in i t ion  of R, an in tegra t ion  Q V @ ~  a l l  outgoing direct ions and 

frequencies must leave us with the probabili ty (per un i t  length) of absorption 

at frequency x e 

For the  ease i n  which collisions are important, the  redis t r ibut ion 

function, defined s imi l a r i l y  t o  R above and here designated by R, has the 

simple form 

We immediately see tha t  Re s a t i s f i e s  the same relat ionships  as those expressed 

i n  Equations (15) and (16) f o r  R and has the same symmetry properties. 



L e t  us now consfder Equcttion (13), i .e. rad ia t ive  equilibrium, when 

the in tens i ty  is inaependent of frequency although not necessarily isotropic .  

Equations (15) and (16) show tha t  the scat ter ing contribution t o  E is j u s t  

J ( z )  lso 4 (a,x) where J(z)  is the  e f fec t ive  flux entering the uni t  volume 

AuD. i n  photons/cm - epec - 
t h i s  r e s u l t  holds f o r  Rc as w e l l  as R even though each redis t r ibut ion 

function dleecribes en t i r e ly  diffeyent sca t te r ing  processes. 

Because Rc satisfies Equations (15) and (161, 2 

A close study 

of the properties of the reafs t r fbut ion f a c t i o n  R shows tha t  when x' i s  s m a l l  

the  frequency x of the re-emitted photon has a large probabili ty of being 

anywhere i n  the  frequency range where the Voigt p ro f i l e  is  almost Doppler 

i n  shape - i n  the so cal led core of the l i ne .  

of frequencies so large that the Voigt p ro f i l e  almost has the natural  l i n e  

When x' l ies  i n  the  range 

shape the sca t te r ing  f s  almost coherent and x i s  very nearly the same as x ' .  

Physically th i s  behavior r e f l e c t s  a contest fo r  photons between the  .natural 

l i n e  absorption p ro f i l e  and the  Maxwell-Boltzmann d is t r ibu t ion ,  For 

frequencies close enough t o  the  l i n e  center the  preference is fo r  capture 

a t  the  center of the natural  l i n e  by suf f ic ien t ly  fast atoms while f o r  frequencies 

far from the center capture i n  the natural  wings by slow atoms predominates 

over capture by atoms i n  the t a i l  of t he  Maxwell dis t r ibut ion.  Thus, i f  

one actually applies R t o  a transport  problem, frequency redis t r ibut ion 

occurs at small frequencies but gives way t o  coherency i n  the wings. If 

w e  now consider RC6 we see tha t  a photon absorbed at  x' = 0 has a d i s t inc t  

probabili ty - varying w i t h  the l i n e  p ro f i l e  $(x) - of being re-emitted i n  

the wings, even the  far wings. 

i n  the natural  wings has i ts  greatest  probabili ty of re-emission at  x = 0. 

In the problem w e  treat i n  t h i s  paper the  redis t r ibut ion of frequencies 

is rea l ly  described by R(x,x' ,r ,r ' ,z) .  

On the other hand, a photon captured far 

It i s  our hope, however, t h a t  throughout 

most of the  medium, the intensi ty  var ies  weakly enough over the  importrent 
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frequency range that scat tered radiat ion is  roughly described by a Vaigt 

p ro f i l e ,  thus allowing us t o  replace R by the  much simpler function Rc. 

We emphasize, however, that Rc is not the proper redis t r ibut ion function 

physicalky, i n  OUT case. 

With complete frequency reckkstrfbution, the scat tered radiat ion from 

a uni t  ~ o l m  possesses a Votgt p ro f i l e ,  

tha t  the t o t s 1  emissfon rate E also possesses t h i s  p ro f i l e  provided the  

i n i t i a l  rate does. To apply CFR val idly 

From Equation (131, it then follows 

1) 

2 ) 

must approximately possess a Voigt p ro f i l e  

I ( x ,r , z 1 must be approximately independent of frequency 

Regarding conditfon (21, it w i l l  usually be suf f ic ien t  i f  t he  frequency 

independence extends out t o  about x = 3. 

over an unlimited range, we would f ind  tha t  most of the absorption occurs 

over the  region 1x1 2 3 fo r  the values of the  damping coeff ic ient  appropriate 

t o  t h i s  study. 

Were I ( x , r  ,z) independent of frequency 

In  the case t o  be t rea ted  i n  t h i s  paper the i n i t i a l  source function 

should possess a p ro f i l e  closely resembling a Voigt p ro f i l e  because of t he  

nature of i t s  excitation. The dominant source of exci ta t ion is probabLy 

electron impact on atomic oqy-gen and thus w i l l  produce an i n i t i a l  source 

w i t h  roughly the required p ro f i l e ,  To invest igate  the  second c r i t e r ion ,  

we have calculated the in t ens i t i e s  of the  1302, 04, %A. l ines  at  various 

depths i n  the medium as a function of both frequency and direction. 

Figure (1) shows examples of these at  a depth T~ = 600 f o r  one of our 

earlier models w i t h  f = ,02. The source functions from which these 

prof i les  were derived were themselves obtained i n  the CFR approximation. 

If the  in tens i ty  implied by these source functions were t o  v io la te  the 

second c r i t e r ion  seriously that i n  itself would have Shawn a gross inconsistency 

i n  the application of the approximation. 

0 

We believe,  however, t h a t  these r e su l t s  



present a realistic picture  of the t r u e  in t ens i t i e s .  

par t  on several more cr i t ical  and detai led analyses of the  condition of CFR 

bee e.@;, Holstein (19471, 

f o r  example, w a s  the f i r s t  t o  show tha t  i n t e r i o r  t o  the medium, CFR w i l l  

generally be va l id  i n  the core of the line. 

This is based i n  

Holstein, 1947, Hearn, 1964, and Doschek, 1969). 

Considering Figure (11, w e  see tha t  the in tens i ty  p ro f i l e  is 
0 

generally f l a t  t o  about x = 2, The reason the 1306A prof i les  are the 

narrowest is t h a t  the t o t a l  e f f ec t ive  opt ica l  depth T~ is smallest f o r  the 

1306A l ine.  

p ro f i l e s  extends t o  values of x as large as w e  would l i ke ,  say t o  1x1 

still  an appreciable f rac t ion  of the absorption which would r e s u l t  from a 

4 

Although the frequency independent portion of none of these 
%I 

3, 

perfect ly  f l a t  p ro f i l e  does come f o r  values of x between +2 and -2. 

the  in t ens i ty  prof i les  shown, the resu l t ing  emissivi t ies  f o r  sca t te red  

For 

rarXation would closely resemble the Voigt 

e 

p r o f i l e  i n  the core (o r  the  
2 

-X portion of the Pine) bu t  would show a deficiency i n  the wings. And, 

indeed, i n  the real case described by the exact red is t r ibu t ion  function, 

the emissivity is def ic ien t  i n  the  wings, because of the tendency of photons 

i n  the  wings eo escape the medium a f t e r  a few scat ter ings.  

The deficiency of wing photons i l l u s t r a t e d  i n  Figure (1) shows, 

however, t h a t  the CFR approximation un rea l i s t i ca l ly  enhances the emissivity 

i n  the  wings of the  l ine .  

i n t e n s i t i e s  evaluated very close t o  the upper boundary, w e  see t h a t  CFR tends 

I f  w e  now consider Figure (2) which shows 

t o  break down there ,  

the s i t u a t i o n  regarding the in t ens i ty  p ro f i l e s  improves considerably. 

Over most regions of the medium, as long as t he  examples i n  Figure (1) 

are typical  of the t rue  in tens i t ies ,  CFR should not y ie ld  results 

It is not very f a r  from the boundary, however, that 

So, 

s igni f icant ly  d i f f e ren t  than those obtained i n  an exact calculation. 

investigations referred t o  above a l l  indicate  tha t  this is indeed the caseo 

The 
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Now assuming CFR, the  t o t a l  emission aate can be expressed 88 

where $/Jw is the normalized Voigt p ro f i l e  and l j 4 r  normalizes E f o r  

i so t ropic  miss ion ,  The source fme t ion ,o r ig ina l ly  introduced as S(x,u,r) 

becomes 

and is seen t o  be independent of x and p e  I n  the treatment t o  folluw, we 

choose t o  define the t o t a l  

which represents the t o t a l  

source function by 

The t o t a l  emissivity is then 

emission rate per em2 and per un i t  op t ica l  depth. 

Replacing, R by Rc i n  Equation (13) and dividlng out $he common fac to r  

ko$/4udw we now obtain 
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Equation (12) allows us t o  express t h i s  as 

Here, the contribution of the attenuated external  radiat ion source has been 

lumped i n  t h e  So term along with in t e rna l  exci ta t ion sources. 

be pointed out t h a t  i f  one wishes t o  solve t h i s  equation by i n i t i a l l y  

speciming S 

be given as t o  how So is evaluated. 

represent the actual  rate of i n i t i a l  exci ta t ion produced by the external  

radiat ion source we would f ind  it heavily dominated by wing photons due t o  

the ever Increasing reversal  of t h e  attenuated external  f lux  as it penetrates 

the  medium. 

enough i n  the  wings t h a t  they would escape the  medium almost imedirt tely.  

Hence, t o  choose an ef fec t ive  CFR So, w e  would have t o  judiciously discard 

most of ac tna l  wing dominated So, discarding an ever increasing f rac t ion  

deeper i n t o  the medium (Donahue 1965). Fortunately, we can ignore t h i s  

d i f f i cu l ty  since our objective is t o  derive S f romthe  intensi ty .  

It should 

f o r  an external  radiat ion source, spec ia l  considerations must 
0 

Deep i n  the medium i f  So were t o  

Most of the photons resu l t ing  from t h i s  exci ta t ion are far 

0 

If  we now introduce the t ransport  kernel 

Equation (20) takes the  form 

S ( T )  =  SO(^) + S ( 7 ' )  H(~T - T'I ) d T 1  (22) J 
H i s  the probabi l i ty  per  un i t  op t ica l  depth at T t h a t  a photon upon emission 

from the l e v e l  T' w i l l  reach the l eve l  T and be absorbed. 



3.8 

The in tens i ty  resu l t ing  from emission within the medium can be 

expressed as 

Integration over x permits Equation (23) t o  be wr i t ten  i n  the form 

where 

The transmission function, 1 c - ~ ' l / p )  is the probabili ty t h a t  a photon. 

w i l l  be emitted and w i l l  t r ave l  the  dis tance I T  - T' 1/11 without an absorption. 

Equations (22) and (25) are the CFR forms of the  t ransfer  equations f o r  a 

two level atom where the medium can be represented by 8 plane p a r a l l e l  

geometry. 

incorporating i n  i t  absorption and the  f i n e  s t ruc tu re  of the  ground state 

of atomic oxygen. 

1 

In  the following sect ion we s h a l l  modify t h i s  formulation by 

3.3 Introduction of pure  absorption and f i n e  s t ruc ture  

Pure absorption has the e f f e c t  of increasing the  a f fec t ive  

attenuation along a photon's path. 

by properly a l t e r i n g  the probabi l i ty  functions T and H. 

functions, T ' ( { r  - ~'l/p, It - t ' I / d a n d  R'(1.r - T ' I ,  It - t 'l) become 

Wa take account of t h i s  l o s s  of photons 

The new transport  



and 

To take i n t o  account the f i n e  s t ruc ture  of the ground state of 

oxygen w e  note tha t  a l l  emissions arise from the s ingle  level 3S1. This 

allows us t o  designate S as the t o t a l  source function despite the f ac t  tha t  

the resul t ing emissions separate in to  three d i s t i n c t  l ines .  I f ,  however, 

w e  desire  t h a t  par t  of S which produces the 1302A l i n e ,  f o r  example, w e  
0 

have 

or  more generally f o r  the  jth l i n e  

where g ' is the r a t i o  g /C &. 
j j k  

i n i t i a l  source function So. 

may be expressed as a function of any of the three depths. 

w r i t e  them as functions of T~ and as such they are then given i n  uni t s  of 

photons/un -see-unit a2" 

w e  can use the transformation 

The same considerations a l so  apply t o  the 

I n  solving the t ransfer  equations, S and So 

W e  choose t o  

2 If w e  wish t o  transform from one depth t o  another, 
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and do s imi l a r i l y  f o r  So. The contribution of S t o  the  jth l ine (Equation 

28) may then be wr i t ten  as a function of any chosen depth rk i n  the form 

where k need not  equal J and S (t ) is the rate at which the j* l i ne  is 

emitted per  un i t  T~~ 
J k  

Now, considering the f i r s t  of the t r ans fe r  equations, the in tens i ty  

i n  the Jth l i n e  is 

Experimentally, only the sum of the three l i nes  w a s  measured i n  a 

ver t i ca l ly  upward direct ion and as such the observed in tens i ty  is expressed 

by 

where f 2  on the l e f t  is used simply as an index of the l eve l  a t  which the 

in t ens i ty  is evaluatedo 

The t o t a l  source function S(r2) is comprised of plus 

sca t te red  contributions a r i s ing  from exci ta t ion  each of the three lines, 

For the jth l ine ,  t h i s  latter contribution is 

J 
To add the contributions of the three l ines ,  they 

This term, however, is i n  the  form of an exci ta t ion  rate per uni t  depth T 

i n  the appropriate l ine.  
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must each be changed t o  rates pee tinit T~ and from Equation (291, t h i s  

requires t ha t  each be multiplied by p /p 

becomes 

The transport  equation then 3 2" 

From the nature of our problem, considering the large opt ica l  depths involved 

plus the addition of pure absorption, d i f f i cu l ty  w a s  encogntered i n  obtaining 

a smooth f w c t i d n  f o r  So. 

of our e f f o r t ,  a discussion of khe sources of e r r o r  and the f i n a l  workable 

form f o r  th%s equation as w e l l  as Equation (32) are given i n  the Appendix. 

Because solving the above equation required much 

t 4.0 Data and Atmospheric Models 

T h e h i a t  pro f i l e  of the  in tens l ty  is shown i n  Figure 3 ' h d  

represents a composite from two experiments (Fast ie ,  1968). During these 

f l i g h t s  the  s o l a r  zenith angle w a s  io?. 

f l i g h t ,  the  Jacchia (0965j) model predicts  an exospheric temperature of 8500. 

An atmos&pheric model appropriate t o  this temperature is given f n  Table 3 

(A. I. Stewart, personal communication) . 
requirement regarding the behavior of the t o t a l  source f b c t i o n  S(T) suggests 

the possibPlity $hat a higher exospheric temperature exis ted during the time 

of the high a l t i t u d e  f l i gh t .  

considered a model having ancexospheric temperature of 1000° (Table 4 ) e  

For the t i m e  of the high a f t i tude  

As w i l l  be discussed shor t ly ,  a 

To account f o r  t h i s  poss ib i l i ty ,  we have a l so  

t h a t  pa r t  of the model above 120 kmwas taken from U.S. Standard Atmosphere 

Supplements, 1966 and tha t  below from Coltgrove e t  al. (1966), the latter 

being scaled so as t o  j o in  j3m@bthly at  120 km. 

op t i ca l  depths '2, 

problem. 

I n  Tables 3 and 4, the 

TI and:-r0 are included t o  show t h e i r  range i n  the 
B 

The par t icu lar  sets given refer t o  TD = 85d. and 1000° respectively 
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aad TB equal t o  the appropriate ambient temperature prof i les ,  

5.0 Total  Source Function Near the Upper Boundary 

I n  the course of solving the t ransfer  problem, w e  have obtained 

soluti&s f o r  both f - .021 and f = .046. 

has a 1000° exospheric temperature (Table 4), 

f = .046, the  1000° model j u s t  mentioned and another with an 850" temperature 

(Table 31, 

we have obtained. 

The basfc model used with f = ,021 

Two models were used with 

Table 5 shows the par t icular  models f o r  the various solutions 

Based on the Jacchfa model, w e  originally solved the t ransfer  

problem using the 850' model and f = .021. 

because of an upturning of S(t2) nCar ~2 = 0 .  A requirement inherent i n  

the transport theory is tha t  $(t) monotonically decrease as the boundary 

is  approached and, i n  fac t ,  possess an i n f i n i t e  slope a t  a = 0, 

Trouble immedfately developed 

The con- 

di t fon at  

transport 

the boundary fs readily demonstrated i f  w e  d i f fe ren t ia te  the 

equation. I n i t i a l l y  we have 

dH From equation (21), dIl[ =J!H and consequently, by replacing with 

% and integrating by par ts ,  we obtain 

dT aS." 

+ S(O)H(T) - S(ro)H(aa C-T) -if$ ( ~ ' ) H ( l t  - a ' l )d t '  (35) dS dSO - m -  
dr  dr 

As T + 0, H(T)+ 00 which is suf f ic ien t  t o  es tabl ish tha t  8 * -, Away from 

the boundary S ( + ) w i l l  continue t o  increase t o  a peak located w e l l  i n t o  the 

medium. Even with an external source of excitation, S(a) peaks w e l l  away 
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from the boundary because of imprisonment which is strongest at the center 

of the medium. 

To correct the behavior of S(a2)  requires .greatsr  sp t f ca l  depths 

near the 600 Ian IeveP, 

problem and t h i s  resulted i n  a considerable improvement although a s l i g h t  

upturning still  persisted. 

is t o  increase the f value. 

of .046 and recalculated S(r2) f o r  both exospheric temperatures, 

resu l t s  are shown i n  P f g u ~ e  4 along with two other solutions t o  be discussed 

shortly., 

essentia8l.y or nearly corrected a t  1000". 

For t h i s  reason, the POOO" model w a s  applied t o  the 

Another method of increasing the optfcal  depth 

Therefqre, we adopted nee'rs (z$g> tralw 

The 

The posit ive gradient i n  S &3. ~~~~~~~~ at 850" but is 

I f  w e  are t o  believe that  the 850' model is actually the more appro- 

priate onep w e  must then consider sources of t h i s  pathological behavior 

i n  S other than a lack of opt ical  depth. 

breakdown of CFR near the boundary. 

however, since f o r  small optfcal  depths, the CFR solution S(+) must, i n  f ac t ,  

approach the t rue S(a) and both i n  turn mst approach the solution for the 

case of no attenuation. 

w e  divide the medium in to  zones and consider average values of S over each 

zone. 

One such source might be the 

This can be ruled out as a problem 

To represent th fs  f a t t e r  s o l u t f ~ n  near the boundary, 

For the f i r s t  two zones, 

and 

- 
s2 = ( h 1 2  - 4TIl)/AT2 

where hIl and 4n12 are the observed in t ens i t i e s  at the bottom of zones 1 
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and 2 and A'cl and Aa2 are the zone widths, 

850' and 1000' models are included in Figure (4) along with the  CFR solutions,  

Because the ac tua l  emission profile? corresponding t o  the t rue  S(+) shows 

a predomnfnaue@ of wing phot 

w i l l  no t  d i f f e r  much from t h a t  with no attenuation but more speciffcal ly  

w i l l  l ie  between the solutimns f o r  t h i s  and the CFR caseo Since all solutfons 

exhib i t  an upturning i n  Figure (41, so must the exact solution and w e  thus 

conclude t h a t  the assumption of CFR is not  responsible f o r  the e f f ec t ,  

The resu l t ing  solutiong for the  

s near the boundary, fn f t f a f ly  the true aoPutim 

Another poss ib i l i t y  is t h a t  4aI aehually decreased more rapidly 

with increasing height than the da ta  indieatad. 

believe,  however, sfnce the unresolved t r i p l e t  w a s  observed with a 

This is d f f f i c u l t  t o  

spectrophotometer, the resolution of whfch w a s  su f f i c i en t  t o  ru l e  out 

spec t ra l  eontaurhation. Unless there wa8 a time dependent source of 

absorption not  properly corrected f q t h e  relative in t ens i t i e s  recorded 

should be re l iab le ,  Although w e  have not sa t i s f ac to r i ly  resolved thc 

question, the beet  explanation seems t o  be tha t  l a rger  op t i ca l  depths are 

cal led f o r o  Pf we assume the f value is no la rger  than Q046,  t h i s  requires 

us t o  abandon the 850" model i n  favor of one with a higher exospheric 

temperature,me in the v i c in i ty  of POOO", or somehow eo introduce considerably 

more oxygen at high a l t i tudes .  

cts Exhibited by the Transfer Solutions 

I n  Table 5, we have l i s t e d  models i n  tern of the parameters f , 
T and TBe 

dffferences tha t  a br ie f  analysis of the various e f fec ts  fs in ordmr. 

proceeding to  compare the various solut ions,  f t  is worth noting tha t  a 

change i n  f has exactly the same e f fec t  as changing TDa Plrovided TD is taken 

t o  be constant throughout the medfum, then TD as w e l l  as f enter the t ransfer  

The s o l u t i m s  we have obtained f o r  them show su f f i c i en t  D 
Before 



equations only through cro and - a (Equations (1) and (59) The relat ionship 

is an inverse  one such t h a t  increasing f has the  same e f f e c t  as decreasing 

T by an appropriate amount. In the following analysis ,  w e  first show the 

e f f ec t s  produced by changing TB and t h  

t o  compare solut ions f o r  d i f f e r i n g  f values s ince  the  e f f e c t  is the same 

D 

TD. It w i l l  then be straightforward 

as changing TDe 

To show the  e f f ec t s  of changing TB and TD, w e  consider solut ions 

f o r  f = .046 and Tex = 850". 

t o  1000' has a negl igible  e f f ec t  on So at l o w  a l t i t u d e  and so w e  s h a l l  

confine t R i s  discussion t o  the  850" model. 

t o t a l  source functions S 3v(b) Qd and S 

Changing the exospheric temperature from 850' 

In 'Figure (5) are shown the  

(2). These are solutions f o r  3 C b )  
a k ine t i c  temperature of 300°K but f o r  a var iable  TB and f o r  a TB constant 

at 1000" mespeetively. The subscr ipt  b denotes the models i n  which Tex is 

8504 and f is 0.046, Because each of these solut ions relate5 t o  the same 

in tens i ty  p ro f i l e ,  it follows t h a t  model 3C is the  more opaque model 

requiring a greater  source function ehan 3V, I f  we consider individual  

op t ica l  depths, w e  see from Equation (7) t h a t  

r e l a t i v e  t o  those of 3V as the a l t i t u d e  decreases while the reverse 

and T~ of 3C increase 

happens to a*,, 

increases i n  

The f a c t  t h a t  Sgc is grea ter  than S3v indicates  t ha t  relative 

and -c0 more than compensate f a r  the relative decrease i n  

Thus the e f fec t ive  opacity of 3 C  is grea ter  than 3V as measured by "2 

the transmfssion function r e l a t ing  S(z) t o  4x1. 

The i n i t i a l  source functions So(z) as obtained from S(z9 by use 

of Equations (A4)are compared for models 3C and 3V i n  Figure (69. 

the  medium with the grea te r  opacity w i l l  provide grea te r  amplification of 

So by fmprismmen$as t h e  escape funct ioq I$ is smaller. %.%us a ma313er So is 

required t o  produce a given S ( a )  at a given a l t i tude .  

Generally 

This e f f e c t  is not  

great  enough, however, t o  reduce S:' very much relative to S 3v despi te  
0 

the  grea te r  opac%$y of 3C i n  comparison with 3V. 
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The e f f ec t  of changing Doppler temperatures can be seen i n  Figure 

(6) where S(z) are compared for models 3C(b) and 8C(b), i n  which the  Doppler 

temperatures are 300' and 850' respectively but TB i s  constant at  100O'K. 

The l i n e  center op t i ca l  depths a re  la rger  f o r  the 300' case than f o r  the 

850' case by a fac tor  of 1.68, 

Doppler core of the l lnee  model 8C is more transparent than model 3C and 

requires a smaller sonrce function, 

lower a l t i t udes ,  however, the  opt lca l  depths become so  great that  the 

wings dominate the  t raneport ,  I n  t h i s  s i t ua t ion ,  the  medium of 3C actual ly  

becomes more transparent than that  of 8C thus requiring less source function 

as Figure ( 6 )  indicates.  

+(x) i s  represented, as it can be, by 

Thus where t ransport  occurs mainly i n  the 

This i s  the  case above 160 km. A t  

Quant i ta t ively t h i s  e f f ec t  can be understood i f  

where 

Then 

2 1 e-Xc: = 
x: 



when I T  - T' I is small, and 

X 
C 

when I T - T' 1 is large. Between the 

distances i n  the 1304A l i n e  are 7800 
0 

temperatures respectively, However, 

by Equation (38) are 8.39 x and 

120 km and 140 km levels the op t i ca l  

and 4637 f o r  the 300' and 850' Doppler 

the transport  functions, given pract ical ly  

8,OO x loM4 f o r  3C and 86 respectively, 

The in i t ia l  source functions So(z)  required t o  produce S3c and 

SSc are Shawn i n  Figure (8). So 3c dominates So8' re la t ive ly  more than 

dominates Sa even at  high a l t i tude .  This indicates  tha t  medium 3C is s3c 
not par t icu lar ly  e f f i c i en t  compared t o  8 C  i n  trapping photons despite the 

greater  l i n e  center opacity. The reason is tha t  large s l a n t  paths are 

involved i n  determining the escape probabili ty E and the transport  kernel 

H. Because of the e f f ec t  of the wings the model 8 C  remains a rnore ef fec t ive  

imprisoner of photons than 3C up t o  f a i r l y  high a l t i tudes .  

I n  Figures (9) and ( l o ) ,  i n  addition t o  the i n i t i a l  source 

functions j u s t  discussed f o r  models 3C(b), 3V(b) and 8C(b), are shown the 

excitation rates required f o r  models 8V(b), 3C(a3, 3V(a), 10C(a) and lOV(a) e 

The last four cases, shown i n  Figure ( lo) ,  are the models i n  which the 

o s c i l l a t o r  s t ren th  assumed w a s  0.021 and the exospheric temperature w a s  

&fjOb*iCk:The s imi l a r i t y  of the  prof i les  f o r  cases 8(b) and 3(a) is a 

consequence of the e f f e c t  we have mentioned above, tha t  increasing the 

osc i l l a to r  strength is equivalent t o  reducing the Doppler temperature. 

development of a bimodal s t ruc ture  i n  S 

and the  l i n e  center opacity&M& 

importance of dissociat ive photon cxck&Lcm as a source of 

a l t i tudes.  

The 

as the  Doppler width increases 

ep: 3s in te res t ing  i n  view of the  pO8Sible 

S1 atoms a t  l o w  

0 

3 

We s h a l l  discuss t h i s  point at  greater  length i n  the next section, 



Doppler temperature, constant 1000° Boltmmn temperatu 

s t rength of 0.046) along wi 

except t h a t  T, and TD are 1000'. 

atom3.c oxygen than the f i r s t  at  high a l t i t udes  and has a considerably 

grea te r  l i n e  center  opacity. 

source regions. 

of magnitude weaker than the other which has a maximum at about 170 km. 

Presumably the high a l t i t u d e  source is provided by absorption 

&l lOC(c)  which is the same as 

The second model therefore  contains more 

In both models there are c lear ly  two principal  

One source maximfzes above 400 km and is about two orders 

of s o l a r  photons i n  the  three s o l a r  01 resonance Q ~ ~ S S ~ O R  lines. 

contribution t o  So from t h i s  source should be given by 

The 

where po, the cosine of the  s o l a r  zenith angle, is 0.5 i n  our case and 

( T F ~ ) ~  is the  e f fec t ive  s o l a r  f l ux  at the center  of the ICth l i n e  i n  uni t s  

of photons/cm eec Bz, According t o  Tousey (1964) and Touseg et  ala (1964), 

when AvD is appropriate Eo an 850" Doppler temperature the e f fec t ive  f lux  

2 

7 = 5.2 x 10 ph 



B 

These values assume that  the so l a r  l ines  are square i n  prof i le  and 0,2A 

wide. They are thus lawer l i m i t s  unless the lines are seriously reversed. 

In case of reversal w e  note tha t  So would increase with decreasing a l t i tude  

more rapidly than w e  calculate here, 

In  Figure (11) So from th i s  so l a r  source 1s plotted f o r  the 850'K 

atmosphere, 

850'K model but has about the same maximum strength, 

For the 1000' model the maxfmum Q C C U ~ S  higher than f o r  the 

The agreement between 

the predicted source shape and strength and tha t  calculated from the air- 

glow data would be f a i r l y  good w e r e  the so l a r  f lux  about one th i rd  as great 

as w e  have taken i t  to be, the a i r g l ~ ~  three eimes as bright o r  there were som@ 

combination of r e ~ u c e d  so la r  f lux and increased airglow emissi BW. rate, 

so l a r  So also seems t o  be sh i f ted  about one scale height above the So required 

from the airglow data f o r  ehe 850'K model. 

The 

Increasing the oxygen content 

of the atmosphere dmrs not tend t o  s h f f t  one curve relative t o  the other, 

but a reversal  i n  ithe solar lfne prof i le  could bring the so l a r  source 

downward, 

~ r ~ ~ ~ ~ ~ e ,  it is w e l l  t o  recall tha t  the assumption of CFR is 

more than questionable in the  1 

medium, 

depths of a very thick 

The ~ ~ ~ ~ ~ i n g  radiation f lux  is seriously reversed (FfgUPe 21, 

The deficiency 3.n the real case means tha t  CFR, assuming as ft dms a f lux 

independent of frequency overestimates the outgoing f lux available fo r  

scat ter ing near the l i n e  center. 

magnitude of So real ly  required t o  produce a given scattered radiation 

f ie ld .  

Hence it tends t o  underestimate the 

This remark should scmc as a caveat f o r  attempts t o  deduce the 

density of an atmospheric constituent from the measurement of the brightness 

of scattered resonance radiation. Even in the optically th in  boundary of 

an atmosphere which bee 

the l i ne  prof i le  and absolute f lux of the radiation emerging from the 

s cptfeal ly  thfck below it is necessary t o  know 



i n t e r f o r  of the atmosphere as w e l l  as the  external radiat ion t o  obtain the 

abundance of scatterers from the scat tered emission rate. 

The inadequency of the s o l a r  f l ux  source i n  accounting f o r  the 

magnitude and height p ro f i l e  of the  1304 afrglow brightness shows c lear ly  

i n  Figure (11) and confirms the or ig ina l  conclusion of Donahue and Fastfe (1964) 

t ha t  an in t e rna l  exci ta t ion source i n  the F l  region is required. 

p ro f i l e  of the source required is shown in Figure (12) f o r  the model 8C(b), 

This model is chosen as the  one most l i ke ly  to  represent r e a l i s t i c a l l y  

atmospheric conditions at the time of the  Javel in  experiment, 

suggestions by Dalgarno (P96b) and Barth (1963) t h a t  energetic photo- 

electrons should provide the necessary source there  have been a number of 

calculations of the rate of exci ta t ion of the S term by t h i s  mechanism. 

The 

Following 

3 
1 

tsu, ~reen ana %ra;%l, l%a; pa&gtxm et a&,, a969 10 

In  Figure (12) w e  show the rates calculated by Prasad (1969) and 

A. I. Stewart (personal communication, Dalgam~ et de 1969) f o r  conditions 

similar t o  those assumed i n  our calculation. 

i n  f ac t ,  f o r  the same model, 

model, but  allows f o r  escape of photo-electrons while Stewart assumes h e a l  

energy loss. 

f a i r l y  close agreement with the required So above 230 km. 

rates have a l l  been normalized a t  170 km. 

The Stewar t  calculation is, 

The Prasad calculation is based on OUK 1000' 

AlPcrwance f o r  escape should bring the Stewart curve i n t o  

The exci ta t ion 

That of Stewart  i n  par t icu lar  

is more sharply peaked and reaches a maximum somewhat lower than the required 

source. 

rate by photo-electrons and the rate needed t o  explain the dayglow data  is 

good. be 

increased below 150 km (Donahue and Strickland, 1969). 

about 20% at 130 km and should remove the discrepancy t o  be seen i n  Figure 

(12) at  low a l t i tude .  

However, i n  general the agreement between the calculated exci ta t ion 

A t  l o w  a l t i t ude  absorption by O2 requires t h a t  our values f o r  S 
0 

The correction is 



On the other  hand there  are other po ten t ia l  sources of exci ta t ion 

which might be s ign i f icant .  Two of these are d issoc ia t ive  processes involving 

02, one upon electron impact the other  following photon abearption, 

threshold f o r  the photo-dissociative source is at 840A and there  is an edge 

The 
0 

in the  absorption cross sect ion at t h a t  wave length, The magnitude of the 

increase i n  the cross sect ion suggests tha t  t he  p a r t i a l  cross-section 
2 involving excitation might be about 2 x c m  at 800; (Cook and Metzger 

1964) 0 

3 The rate of productfm of the oxygen 3s SI term by t h i s  process 

has been calculated f o r  both the  850°K and 1000°K atmospheric models 

t rea ted  i n  t h i s  paper. Solar f luxes and absorption cross sect ions have been 

taken from the tabulations of Hinteregger e t  al. (1965) and the cross sect ion 

fo r  photo-dissociation estimated from the measurements of Cook and Metzger ( 

The r e s u l t s  are Chapman layers with peak rates of 54 ~m-~sec-' a t  155 km 

f o r  the 1000' a&mosphere and 70 ~ m - ~ s e c - ~  at  145 km f o r  the 850° atmosphere, 

Only the  f lux  down t o  790A is e f fec t ive  i n  t h i s  process owing to  the  strong 

absorption of N2 below 7908. 

which penetrates to  about 120 km, 

0 

0 0 

A possible exception is the s o l a r  304A l i n e  

A portion of t h i s  l fne  may produce 

photodissociative exci ta t ion of O2 i n  an important mount despi te  a small 

cross sec t ion  because of the large s o l a r  flux. However, the excited atoms 

should have Barge ve1ocfties and only a s m a l l  p a r t  of the ~~~~~~~~~ emitted 

can be imprisoned. In f a c t  the radiat ion emitted from a large f rac t ion  of 

the exci ted atoms produced by dissociat ing O2 may be Doppler sh i f ted  so much 

t h a t  i t  has  l i t t l e  chance of being absorbed local ly ,  Thus a CFR analysis 

of the  fntensity-height p ro f i l e  would not call  f o r  a loca l  maximum i n  So 

from such a source. Although the  most transparent models such as 10(a) 

call for a bimodal source with a maximm near the  l e v e l  where the d issoc ia t ive  

process is expected t o  be e f fec t ive ,  such models seem t o  be su f f i c i en t ly  
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unrea l i s t i c  as t o  lead us ( regretful ly)  t o  regard t h i s  in tc res t fng  feature  

as for tui tous.  

Applying the techniques of rad ia t ive  transfer theory t o  the 
@ 

analysis of the  01 13048 dayglow, we have determined t h e  Anitial source 

function or  production rate of the  3S level of oxygen s t a r t i n g  with an 

observed in t ens i ty  height p ro f i l e  and a var ie ty  of model atmospheres, 
1 

The 

calcdatfoncs have taken i n t o  account the var ia t fon of the B o l t m n n  

temperature determining the  popalation of the  ground state leve ls  and pure 

absorption by 02. 

temperature have been assumed although d i f fe ren t  temperatures have been 

Complete frequency red is t r ibu t ion  and a constant Doppler 

considered, 

non-negligible e f f ec t s  are observed as these are ehanged. 

In  both the case of Doppler and the Boltzmenn temperatures, 

By the nature of the calculations,  tlie s"aluticn represents 

exc i ta t ion  by a l l  mach sins t ha t  were actual ly  operating during the time 

of the expedxent. The d~~~~ sources of exc i ta t ion  appear t o  be photo- 

electron impact on atomic oxygen be%m 400 km and resonancc-abeorptfon of 

the 1304 s o l a r  Pines above t h i s  a l t i t u d e ,  the  former being, by f a r ,  the 

stronger source. 

fnto the S level from higher states of oxygen, rad ia t ive  reeombinatfon and 

Addit imal  SQUKC~S of secondary importance are cascading 
3 

d%ssociative exci ta t ion of 02. 
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Appendix 

To present the  f i n a l  workable form of the  t ransfer  equations, 

we f i r s t  consider the two level problem without pure absorption. Once 

the theory is thus formulated, w e  add pure absorption and f i n a l l y  take 

account of the f i n e  s t ruc ture  of the  oxygen ground state. Our numerical 

approach is t o  dllvfde the medium i n t o  N variable  zones, with the upper 

and lower boundaries of the nth zone specif ied by the depths T~ and 

T 

S(T) near the boundaries but otherwise slow var ia t ion  over the rest of the 

medium. A t  the  bottom of the nth zone with op t i ca l  depth T* + 

in tens i ty  has the form 

Variable zones are applied t o  take account of rapid var ia t ion of n + 1' 

the 

T 

1 
4rIn = C T(Tn + 1 - T')dT' 

m = n  

m 
where Sm is the average value of S(T') over the an* zone. I n  terms of the 

so cal led width function 
m 

dx (A2) 1 -(Tn + 1 - +,)9(a,x) - T ' ) ~ T '  = T(Tn + 1 
- O D  

w =  nm 
I& I m 

the in t ens i  t y  becomes 

1 
m e n  = c sm c"mn - 

m = n  

The mstr ixOnmis  t r iangular  and thus inversion techniques are not required 

t o  solve f o r  Sme Beginning with the f i r s t  zone w e  have 



34 

f ollowcd by 

and so on. 

Once S(T) is  determined, the i n i t i a l  source funct ions (TI can be 
0 -  

found most readily i f  Equation (22) is wr i t ten  i n  the form (Donahue and 

F a t i e ,  1964) 

The function E(T), referred t o  as the escape function and defiued by 

E(?) = 1- ( i ( / ~ - T f ~ ~ ~ T ~  

0 
(A5 

is the probabili ty tha t  a photon originating at  T w i l l  escape the medium 

without being resonantly absorbed. The advantage of Equation (A4) is t h a t  

S and the in tegra l  term have been modified such t h a t  t h e i r  magnitudes are 

similar t o  So. I n  the form of Equation (22), an accurate solut ion of So 

f o r  op t ica l  depths as large as those i n  t h i s  problem is not  possible because 

of imprisonment which produces typical  differences between S and So of three 

o r  four orders of magnitude. 

I n  terms of N zones, Equation (A4) becomes 
?m+l 

- 
where the functions Son, Sn, En, and H are referenced t o  

value of the nth zone. 

the transport: i n t eg ra l  and designate it by 

T ~ ,  the center 

We r e f e r  t o  the in t eg ra l  within the summation as 
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Most of the computational work involved i n  ob t4n ing  an accurate solut ion 

f o r  So is concerned with the  proper numerical evaluation of t h i s  integral .  

Computationafly, i t  2s very useful t o  note t h a t  without pure absorption both 

E(T) and H ( ~ T - T ~ ~  are related t o  the function 

which represents the probabili ty tha t  a photon emitted a t  T' w i l l  travel t o  

Tn without being absorbed. 
- 

The relationships are 

- 
E(?,) = ec;,, f6JTo-Tn) (A91 

and 

where re fers  t o  a' 3 . I n  terms of 6(l:n-a11 1 n 
m + l  T 

'm 

(All 

Integration by par t s  leads t o  the  followfng two forms of Knm, the f i r s t  f o r  

the case i n  which S(a') is assumed not t o  vary within the zone and the second 

i n  which i t  is  assumed t o  vary l inear ly  as a function of For S constant a'. 



while fo r  a l inear  varfation of E Over each zone 

where 

and 

It i s  interest ing t o  note tha t  the term i n  large brackets i n  Mm depends on 

the properties of the  model alone and not on the source function. 

Unless the zones a re  made so narrow aha so numerous as t o  destroy 

the advantages f o r  which the technique of zone division i s  designated, the 

approximation tha t  S is constant fo r  each zone can lead t o  serious error .  

Becawe H' decreases as T' varies across the zone? the effect ive average 

value of S(T') is  found closer t o  T~ than the  center of the zone. "he e r ror  

arises i n  the transport  in tegra l  because Sn is  subtracted from S ( T ' )  and the 

difference becomes very sensi t ive t o  S(T') when S ( T ' )  = Sn. Approximat ing 
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the real S ( T ' )  by a l inea r  function over each zone considerably improves 

the accuracy of Km and t h i s  approximation has been used t o  obtain the 

r e su l t s  i n  t h i s  paper. 

now be wr i t ten  as 

I n  terms of Mnm the transport  equation f o r  So may 

n 
+ C Mm 

m =  1 'on 'nEn 

a form expressed i n  terms of the transport  functions W(T) and E(T). 
Two ef fec ts  eomplicate these procedures fo r  obtaining S(T) and 

So(+) i n  the aurora and airglow. One is  absorption of the resonance photons 

by molecular oxygen, the other is  the t r i p l e t  nature of the radiation. 

Keeping t o  the two level formulation of the theory f o r  the present, absorption 

by O2 can be taken i n t o  account when S(t) is deduced from 4tnI(.r) by l e t t i n g  

th a 

zone and T~ + 

T'(Tn + 1 
that  Equatfon (A3) is then changed t o  

be the opt ica l  depth f o r  absorption by O2 between the  center of the m 

The transmission function i n  Equation (Al) then becomes 

nm 

- T', tn + 1 - t') as defined i n  Equation (26). The r e su l t  is 

I -a 
4rIn = C sme nm(w - W n , m +  1 1 n *m m = n  

(A161 

The e f f e c t  is t o  increase the values of S 

appreciable e 

i n  regions where absorption is m 

Similarly, i n  the transport  Equations (A4) and (A6) H'( I T  - T' I ,  
It - t' 1 )  as given by Equation (27) m u s t  replace H( I T  - T' I). The transport  

in tegra l  (A71 becomes 
T 

f i m +  
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Pf t ' i s  taken t o  be constant through each zone then 

where 

Here tm is  the opt ica l  depth i n  O2 from the center of s t r i p  n t o  the 

center of s t r i p  m and E2 is the second exponential integral .  

I f ,  however, we consider a l inear  variation i n  the t '  across a 

zone expressed by 

H' is defined as the divergence of &, where 

(821) 

For m # n, the e f f e c t  on Knm of replacing talm by a variable  absorption f o r  

each zero is very small. 

n and m is taken in to  account by using the function 6 
kernel H'. 

Therefore, i n  practice, O2 absorption between zone 

i n  evaluating the 

W e  need not  even consider the case m = n s ince by the  nature of 
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= - s n 1 - T ' I  ¶ trim) 

Knm, t h i s  term is v i r tua l ly  zero. 

applies t o  the c'ase of constant S(T') i n  each zone, may be writteu i n  the 

form 

Now Lnm, the  transport  Ontegralwhich 

m +  1 T 

The second form Mnm, appropriate i n  the case of a l inea r  var ia t ion i n  S(T')  

over each zone, becomes 

T n 

a f t e r  an integrat ion of Equation (A17) by parts.  

the in t eg ra l  term takes the form 

After some manipulation, 

where 

Inser t ion of Equation (A24) i n  Equation (A23) leads t o  the f i n a l  two level 

form f o r  Mnm 
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M nm = 2 {AS n,m + 1 e 1 (“n9m + 1, trim' - ”n,m E l(ATn,m, t )  nm 

-t 

which is t o  replace the earlier version i n  Equation (A13). 

The escape function En must a l so  be modified t o  accommodate pure 

absorption. Beginning w i t h  the def in i t ion  of Equation (A5) and using 

Equation (A101 th f s  function becomes 

T m 

The sum is  often very close t o  unity and En very s m a l l  f o r  an opt ical ly  thick 

medium. 

of say 50 comes from the nth s t r i p  i t s e l f  s ince most absorption occurs very 

The la rges t  contribution t o  the  series, even i f   AT^ is of the order 

close t o  the point of or ig in  t o  the  photons. Near the or igin,  i t  is  

desirable t o  approximate pure absorption by a l inea r  function ra ther  than 

by an average value. 

transport  function e2 i n  the integrand. I n  contrast  t o  the dominance of the 

nth term i n  En’ we  w e r e  able t o  ignore Mm and hence the function 6, as w e l l  

i n  the evaluation of the transport  integral .  

Hence, f o r  the nth zone i t s e l f ,  w e  have used the 

Evaluation of the in tegra l  i n  Equation (A27) with n = m yields  the 

value 

For the other zones i t  is su f f i c i en t  to  consider t’ constant i n  each zone 

and use the form El i n  the integrands. This leads t o  
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(A291 

T m 

Thus 

(A301 

It i s  in te res t ing  t o  note t h a t  the  addition of pure absorption actual ly  

increases the "escape" probabili ty s ince by def in i  tion, escape here r e fe r s  

t o  loss  from the medium without a resonance absorption. 

Finally the extension of t h i s  treatment to the  three l ines  at 
0 

1302, 1304 and 1306A is simple. The in tens i ty  becomes 

-a nm n,m+ 1 
1 3 - w  p2 1 

4rIn = C S,(T,) C g' (-1 e 
m = n  3 3 P p  

while the  transport  solution becomes 

where S and S are expressed i n  terms of depth T ~ .  

Equation (A32) is now the sum of probabi l i t i es  of escape i n  each of the 

three l i nes ,  i .e,,  

The escape function i n  
0 
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I n  summary we have reduced the  transport  in tegra l  and $he escape 

function t o  expressions involving the transport  functions W 

( A 2 ) ) ,  & (Equation (A8)), 

(A21)). 

(Equation nm 

&(Equation (A19)) and E2 (Equation 

we considered four cases f o r  the transport  integral :  

1) No pure absorption 

a) S(T) constant over a given zone; Equation (A12) 

b) S(T) l i nea r  over a given zone; Equation (A13) 

2) Pure absorption included 

a) S(T) constant; Equation (A22) 

b )  S(T) l inear ;  Equation (A26) 

Corresponding t o  the transport  in tegra l  are two cases f o r  the escape 

function: 

1 )  No pure absorption; Equation (A9) 

2) Pure absorption included: Equation (A30). 
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FIGURE CAPTIONS 

1. 

2. 

3, 

4. 

5. 

6. 

7. 

8. 

9. 

10 * 

Direct ional  and frequency dependent CFR i n t ens i ty  prof i les .  

considerably grea te r  op t ica l  depths along the l i n e  of s igh t  i n  the  

downward d i rec t ion  (0  = 180") the  corresponding prof i les  at la rge  x 

are grea te r  than those f o r  the  upward observing direction. 

Directional and frequency dependent CFR i n t ens i ty  p ro f i l e s  near the 

upper boundary 

Smoothed experimental 1304 in tens i ty  height p r o f i l e  including the low 

a l t i t u d e  da ta  of F a s t i e  e t  al, (1964) and high a l t i t u d e  data  of Fas t ie  

(1968) . 
Behavfor of S('r2) near the  upper boundary f o r  models with exospheric 

temperatures of 850' and 1000'. 

the  case which ignores attenuation from the point of emission t o  the  

point of observation. 

Total  source functions S(z) f o r  the 850' exospheric temperature model. 

The solutions show the  e f f ec t  of changing TBa I n  each case TD = 300'. 

I n i t i a l  source functions So(z) corresponding t o  the  S ( z ) ' s  of Fig.. 5, 

Total  source functions S ( z )  f o r  the  850° exospheric temperature model. 

The solutions show the e f f ec t  of changing TD from 300' i n  model 3C t o  

850* i n  model 8C, 

I n i t i a l  source functions So(z) corresponding to  the S ( z ) ' s  of Fig. 7, 

Ini t r ia l  source functions S ; ( z )  of Fig.. (6) andt-(8) shbwa f o r  comparison. 

Included on the  abscissa is  the temperature p ro f i l e  of the 850' exo- 

spheric  temperature model. 

I n i t i a l  eource functions f o r  the 1000' exospheric temperature model and 

f = .021 shown f o r  comparison among themselves and t o  compare with those 

of Fig. 9 which per ta in  to  f = .046. 

Because of 

The dashed curves represent S ( T ~ )  f o r  

In each case, %= 1000'. 
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11. The i n i t i a l  source functions So 8C(b) (z) and So lo(c) ( 2 )  f o r  the  850' and 

1000° exospheric temperature models extended t o  high a l t i t udes  and the 

s o l a r  resonance production rate determined exp l i c i t l y  by Equation (39). 

12. I n i t i a l  source function ST(=) and production rates determined f o r  

photoelectron impact exci ta t ion on 01. 

zenith angle of 60'. 

as Stewart's solut ion while the 1000° model w a s  used to  determine Prasad's 

A l l  solutions r e fe r  t o  a s o l a r  

The 850' model w a s  used t o  determine So(z )  as w e l l  

solution. 
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Table 2, Boltmann factors for the triplet levels of the ground stake 

p2 

812 
II 

674 

-617 

555 

Pl 

%56 
L 

,256 

.294 

333 

.e PO 

,032 

.070 

.089 

,111 



TabLe 3. 850' Exospheric Tmpsrature Moael 

2 (b) 
_i__ 

100 

120 

150 

200 

250 

300 

350 

400 

450 

500 

600 

700 

T (OK) 

208 

355 

643 

801 

838 

847 

849 

850 

850 

- 

850 

850 

850 



- 
220 

347 

661 

893 

990 
1000 

1000 

1000 

1000 

1000 

1000 

Table 4. 1000° Exospheric Temgereture Model 
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Table 5. Models used t o  obtain transport solutions 

for the f values ,021 and .046 

f = .O46 - f = .021 - 
(I TeF = 850" 

4 

3V(d 300 variable 3Vfb) 

3c (4 300 1000 3c (b 1 

1oc(a) 1000 1000 8c (b 1 

lOV(a) 1000 variable 8V(b) 

300 variable 

300 1000 

850 variable 

850 loooo 

T,, = 1000" 

zac(c) 1000 1000 
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