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ABSTRACT
 

Our aim in this paper is to examine a number of fundamental
 

questions in the theory of optimal control of processes monitored by
 

certain general systems of linear functional differential equations
 

with finite memories. In our model the controls may appear in a
 

very general nonlinear functional manner which permits us to consider
 

retardations of a rather general character in the control variables.
 

In particular, we prove a maximal principle for such systems. We
 

consider existence questions in the class of admissible Borel
 

measurable (resp. piecewise continuous, almost piecewise continuous)
 

initial functions and controls. We also show that certain solutions
 

of an uncontrolled linear functional differential equation are piece­

wise analytic or quasi piecewise analytic.
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§1o Introduction. The linear functional differential equa­

tion describing the controlled systems studied in this paper is-given
 

in equation (2.3) below. Many authors have studied control systems
 

with delays in the state variables and there are several extensive
 

bibliographies available in these areas [B-5, E-1, 0-2, H-l Z-l].
 

Recently, models for systems with delays in the control parameters
 

have been proposed and some results for these systems have been ob­

tained [B-3, B-4, D-1, H-3; H-ll K-l, K 2, L-l, L-23. I Such models occur 

naturally in the study of gas-pressurized bipropellant rocket systems
 

[D-l], in population models [B-3, L-51, and in some complex economic.
 

models currently under study.
 

In section 2, we set down the notation, definitions, and
 

standing hypotheses that will be required throughout. In section 3, 

we prove (see Theorem 3.1) that the collection of points in Rn;, 

which can be attained at time t from admissible Borel measurable 

initial functions and controls, is compact and depends continuously
 

(with respect to the Hausdorff metric) on t. The assumptions re­

quired for this theorem are in effect no more than is usually required
 

just to prove the existence of solutions to the linear functional
 



differential equation (2.3) (see [B-i, B-4]). Since the Lebesgue-


Stieltjes measures, which will appear below in the variation bf
 

parameters formula (2.7). can be atomic, we cannot conclude that the
 

above mentioned fixed-time cross sections of the attainable set are
 

convex. However, if we add rather mild assumptions (Properties ) 

and (S2) in section 3), then we do obtain the convexity of the 

fixed-time cross sections of the attainable set (see Theorem 3.2). 

We then adapt an argument of Lee and Markus [L-3] for ordinary con­

trol problems to obtain the statements of the maximal principle in 

section 4 (Theorem 4.l and Remark 4.1). Theorems 3.l and 3.2 can 

be regarded as extensions of some well known results by Neustadt 

[N-2] and Olech [0-1]. Several very special cases of these two 

theorems have appeared in the literature [C-5, L-l L-2, 0-2]. The 

actual statement of the maximal principal is confined to the time 

optimal control problem, although this is not an essential feature 

(cf. the remarks preceding Lemma 4ol). This maximal principle 

complements recent work of Banks [B-3] and Kharatishvili [K-1, K-2j]
 

and in effect contains some of Lee's work [L-l, L-2] as special cases,
 

although Lee has considered a somewhat different class of cost
 

functionals. Also our work in essence includes the necessary con­

ditions determined by _V1anay in [H-2]. Even in the cases where our
 

work overlaps with that of.the above authors, our methods of proof
 

differ in that we have made extensive use of a number of fairly recent 

developments in the theory of measurable multifunctions [A-2. 

C-2, C-3; H-101J-l J-2, K-3, 0-1] to greatly simplify the arguments. 



In section 5 we turn to a study of analyticity properties
 

of "fundamental matrix" solutions to certain systems of functional
 

differential zequations. 
-Many authors (see the references in [B-5, 

E-I Z-l]) have studied various aspects of the analyticity of the 

solutions of very special types of functional differential eauations, 

although none of these results appear to include those presented in 

section 5. Theorem 5.1 is a rather straightforward application of 

known results in.ordinary differential equations, However, 

Theorem 5.2 which is extremely believable, seems to require a proof 

involving a substantially more intricate form of analysis than is 

needed to prove its simple counterpart in the theory of ordinary
 

differential equations. 
It should be noted that the conclusion of
 

Theorem 5.1 guarantees a type of piecewise analyticity of the
 

"fundamental matrix", whereas Theorem 5.2 gives only what we have 

termed quasi piecewise analyticity. One might expect that-if the
 

coefficient matrices in system (5.2) are analytic, and if one starts
 

with an analytic initial function, then the solution of the functional
 

differential equation will also be analytic. 
 Indeed, several authors 

have attempted to prove such results (for example, see [0-2], [P-1]); 

but very simple examples reveal that such general theorems are not 

true (see Remark 5.1). 

Finally, in section 6 we apply the aforementioned piecewise
 

analyticity (resp. quasi piecewise analyti-city) properties to show
 

that under certain circumstances the admissible initial functions
 

and the admissible controls may be delimited to an appropriate class
 

of piecewise continuous (resp. almost piecewise continuous) functions
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functions and the attainable set will be the same as if one were 

using Borel measurable admissible initial functions and controls.
 

These results are simply analogs of those obtained by Halkin [H-5] 

for ordinary linear control problems using the work on subintegrals 

by Halkin and Hendricks [H-6]. Halkin's paper extends earlier work 

in [G-1, H-4, L-4]o 
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§2. Notation, Definitions, and General Hypotheses. If X
 

and Y are nonempty sets, then a multifunction Q: Y -- Y is simply 

a subset of X x Y with domain equal to X; equivalently £2 is a 

mapping of. X into the nonempty subsets of Y. If Y is a topo­

logical space and 2(x) is compact for each x e X. then we say 

.: X -- Y is a compact multifunction. If 7 is a atalgebra of 

subsets of X and if Y is a topological space, then we say a 

multifunction 9: x -*Y is 6-bmeasurable if
 

a-F - .[x'E x[ (x) n F $ ­

belongs to G for each closed F C Y. If X is a topological 

space and is the collection of Borel sets in X, then we shall 

wite Borel measurable instead of a-measurable. If (Y,d) is a 

metric space, then diem (2x)), x e X denotes the diameter of 

n(x), i.e., 

diam 2(x) = sup td(Y,y2)lyl,y 2 E Q(x)l. 

The real vector space of all real p X q matrices will be 

denoted by C for any pair of positive integers p and q. It 
pq
 

is assumed that a definite norm, j a is given on any of the finite
 

dimensional vector spaces which come into our discussion. Let
 

[a,b] be a compact interval in R, and let H: I -;Ipq be a func­

tion of bounded variation. We shall use p to denote the 

Lebesgue-Stieltjes measure on [ab] determined by H (see [D-3, 



6 

pg. 358 ff.]). In constructing such measures from H, H will
 

always be taken to be left continuous on (ab). We observe that
 

if t ->T (t), t c [ab] denotes the scalar-function defined by
 

TH(t) = Vaxsc[a,t]H(s), t e [a,b], 

and if I denotes the variation of the Lebesgue-Stieltjes 

measure I1H then one has [D-3. pg. 362], 

(2ol). ~ = •
 

T

H
 

For conciseness we frequently-use IHI(t) for THJt) (this should
 

not be confused with IH(t)I which is the norm of the matrix
 
b
 

H(t)). If g-[a,b] ->Rp is p,-integrable, then f g(t)dH(t) de­
a 

notes the integral of g over [ab] with respect to the measure 

pHo We use §l([a,b], pH RP) to denote the collection of all 

H1-integrable functions g' [ab] ---RPo 

If a: [a,b]-4 Rp is a multifunction, then f &(t)dH(t) 

is used to denote the set (possibly empty)
 

b
 

'
 (f g(t)dH(t)Ig E QC([a b], pH, Rp ), g(t) E a(t), a < t -b) 

a 

(cf. [A-2, C-2,.C-3, D-2, H-7, 0-1, J-3]) 

We shall deal frequently with mappings f: X x Y ->Z where 

X,Y,Z are sets. It will be convenient to use f(x,.), where x is 
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a fixed element of X, to denote the mapping y ->f(xy), y E Y. 

The mapping f(-,y)" X -Z. for y. a fixed element of Y is 

similar-ly defined. 

Throughout the paper we make the following standing hy­

potheses: 10) F and G are two Lebesgue measurable mappings from
 

R x R into Cnnj 20) F(ts) = 0 for s ? 0, 30) F(t~s) =
 

F(t,-) for s - -'r where T is a given positive constant,
 

40) G(t,s) = 0 for s _t, 50) G(t,s) = G(t,-r) for s -- ; 

60) for each fixed t e'R the functions G(t,') and F(t<') are 

.of bounded variation on R. and in addition 70) there is a Lebesgue 

measurable function P: 9 - R which is Lebesgue sumable on every 

finite interval and which satisfies 

(2.2) IG(t,s)l, IF(t,s)l - P(t), ts e R,
 

O]F(ts) p(t);
Vars RF(ts) = Var[ P t e R,
 

varsER ~t~s =Var se[_ ,t]G(t,s) Pl(t), t e R. 

Let h:Rm x R ->Rn be a given function such that for each 

t e R the function u -h(U~t), u E R; is continuous, and for each 

u e Em the function t - h(ut), t E R, is Borel measurable. We shall 

consider control systems which can be described by systems of real
 

functional differential equations (FDE's) of the form
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0 	 T 

(2.3) 	 i(t) £f x(t+s)dsF(t,s) + f h(u(s),s)dsG(t~s), 
-T 	 ­

where both integrals in (2.3) are understood in the Lebesgue-Stieltjes 

sense with the symbol d
5 

being used to emphasize that the measures 

are constructed from the functions F(tp') and G(ty'). 

RnLet U [-'t-,,) ---.. and -- 'be given Borel
R 0: .[-r,0] 


measurable, compact multifunctions. It will be assumed that there
 

is a positive constant M such that
 

(2.4) 	 dim u(t), diam h(U(t),t) =<M, t _ -T 

diem 0(t) -g M, -T ;-t ;g O. 

A triple cpnutl is called admissible if (p: [--rO-] -ERn and
 

u: [-%t!] -) Mt, 1I 0 are Borel measurable functions satisfying:
 

(2.5) 	 p(t) c O(t), -t g t - 0, 

u(t) E u(t), -C - t - tl 

The selection theorem of Kuratowski and Ryll-Nardzewski [K-3] assures
 

the existence of admissible triples.
 

Remark 2.1. It is noted that if u: [ab] - 1R is a Borel measurable 

function, then the function t ->h(u(t),t), t e [ab] is also Borel 

measurable. This follows easily from the fact that there is a 

sequence of Borel functions, un [ab] PRm,whose range is a "
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countable set, and which satisfy lim u (t) = u(t) for each
 

t E [ab]. It follows now from the assumptions on h that t ­

h(un (t) t) t e [ab] are each Borel measurable functions and 

lim h(un(t),t) = h(u(t),t), t E [a,b]. Consequently, 

t - h(u(t),t), t c [ab] is Borel measurable. 

For any admissible triple @,u,tl) there is a unique 

absolutely continuous function (or response) t - x(tcpu), 

0 - t - t I satisfying (2.3) almost everywhere on [Otl] and the 

initial condition
 

(2.6) x(t'w'u) = c(t), -T t 0. 

According to the variation of parameters formula [B-1l], this re­

sponse is given by
 

0 
(2.7) x(t,9,u) = C(0)Y(Ot) + f cp(s)dS(f F(as-a)Y(at)da) 

-tr 0 

ta 
+ (f h(u(s),s)dsG((s)Y(t)d, 

0 -t 

where for fixed t _:0 the function s -4 Y(st), 0 ;5s - t is an 

n x n matrix solution of 

t 
(2.8) Y(st) + f F(as-a)Y(zt)d = E, 0 '6 s <- t, 

s 

which is of bounded variation and which satisfies Y(tt) = E, the 

n x n identity matrix, and Y(sjt) = 0 for s > t. 
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A point xE Rn is attainable if there is an admissible 

triple f,ut1j) such that x(tl,,u) = x. The attainable set 

(,TJU)' (or simply & when 0 and U are understood) is defined 

by the equation
 

f((,U) - x e RnIx is attainable). 

The fixed time cross sections of N(tU) at t _ 0 are denoted by 

q (D U) (or simply by _Q/. when 0 and U are understood) andt t 

are defined by the equation
 

t(OU) -_-(x c R" 	 there exist fc,u,t) admissible 

such that x(tpu) = x). 



§3. Properties of the Attainable Set without ConvexiLy
 

Assumptions. We begin rith some simple lemmas and observations. 

Lemma 3.1. Let the standing hypotheses of section 2 be satisfied.
 
t 

Then JY(s,t)j ; El exp f P( )d , 0 s _ t.
 
s 

Proof. This is an easy consequence of (2.8) and the boundary con­

ditions.
 

Remark 3-.. If _% is a compact interval and H: J- £ is of 
Pq 

bounded variation, then H has the well known decomposition into a 

sum of a singular function, an.absolutely continuous function, and 

a saltus (jump) function. We note also that if H = A + N where A 

is the saltus fumction and N is continuous, then Var H = Var A + 

Var N. It is also observed that if H is continuous, then t -

TH (t), t E ., is also continuous. Consequently from (2.1) it can 

1 Hbe shown that is nonatomic whenever H is continuous. 

The next lemma is in essence contained in the papers of
 

Liapunov [L-63, Blackwell [B-6], and Olech [0-1]. There are, how­

ever, some technical differences so we include a proof for the sake
 

of completeness.
 

Lemma 3.2. Let f% be a compact interval and let H: - q 

Rpof bounded variation on . Let 0: _.- be a VH-measurable 

compact multifunction. Let p c ;C(-,[IHIR) be such that
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diam Q(t) < p(t), t c A Then f (t)dI(t) is compact. 

Proof. First we observe that by the Lebesgue-Nikodym theorem (for 

example see [D-3, pg. 263]) there is a IiHt-integrable function
 

B" -e such that
 
pq
 

f g(t)dH(t) = f g(t)B(t)dHr(t), g e XI(Y; H[WRP ) .
 

We write TH = a + v where a is the saltus function of TH and 

is continuous. It is an ,easymatter to prove that the muitifunction,
 

t -->n(t)B(t)., t e -is measurable where f(t)B(t) = (x e RIIx = yB(t) 

for some y e S2(t)). Moreover, diam 2(t)B(t) < p(t)IB(t)I, t E 

One can also verify the identities: 

(3.1) f Q(t)cm(t) = £ Q(t)B(t)df HI(t) f n2(t)B(t)da(t) 

y+ y 

+ f Sl(t)B(t)dv(t); 

the proof of the first equality is facilitated by versions of Filippov's 

selection lemma [C-3, J-13, and the second equality follows from the 

definition of a and v. Now a is purely atomic and gV is' 

nonatomic so the conclusion of the lemma follows from (3.1) and a 

remark of Olech's [0-1, pg. 100] (see [C-3] also for the nonatomic 

case). 

Lemma 3.3. Let H and Y be as in Lemma 3.2. Let Q: .'r Rp. 

v 
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be a multifunction with a Borel measurable selection; that is there 

is a B&el functi6n g: .Y- Rp such that g* (t) e R(t) for each 

t c Y. Then f Wt)dH(t) coincides with the set 0(92,H) 

p[f g(t)dH(t)j the function g: J-R is Bore! measurable and 

g(t) G Q~t), t Gc7) 

Proof. Clearly -(nH) c fy 2(t)dH(t). Conversely suppose 

g E Xe(;HRRP), g(t) c 62(t), t e . Then there is a Borel set 

E C _% with LH(Eo) = 0 and there is a Borel function 

-4R
pg:Y such that g = g on _\ E [R-1, pg. 225]. Using 

X. for the characteristic function of a set S we see that g
 

+ g. is a Borel function satisfying 
o o 

g(t) 2 Q(t), t E _, and g = g a.e. [Ii]. Hence f -(t)dH(t) = 
-% 

f g(t)dH(t), and so f g(t)dH(t) E O(a,H). This completes the 

proof. 

In preparation for the next lemma let us introduce some 

additional notation. FG: [0, ) X R -e are mappings defined bynn 

the following two relations, 

T
 

F(t,s) - f F(czs-a)Y(xt)de,
 
0 

t 
G(t,s) f G(c,s)Y(ct)dx, t _ 0, s e R,
 

0 

where F.G, and Y are the functions defined in section 2 which
 

appear in equations (2.5) and (2.7). We define a function 

R -4 x nW: R Im by the equation 
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m
=_=(Ut) e R, u cR ,(n,h(u,t)), t 

,where h is the function introduced in section 2 (see equation (2.3)). 

A function P [O,eo) X R -> C(m~)n is defined by the equation 

r(t,s) =, 0mn~ , t _ O, s C R, 

where 0 denotes an m X n matrix all of whose entries are zero.
 
mn 

A multifunction L: R - Rm X Rn is defined by the condition 

L.(t) = _ /(U(t),t), t _ -,r. 

Remark 3.2. The sets L(t), t _;-T are evidently compact. Let 

b _;0 be given. if p. is any Lebesgue-Stieltjes measure on 

[-%b], then the multifunction UI[-.rb] is p-measurable. This 

follows from the assumption that U is Borel measurable. Using 

Lusin's theorem for p-measurable multifunctions [C-3, J-l] and
 

extensions of Scorza-Dragoni's theorem [C-3, J-2] it can be proved 

that the multifunction t -->L(t) = r(U(t),t), t e [- ,b] is p­

measurable. Hence L [-cb] is p-measurable for every Lebesgue-


Stieltjes measure p on [-t,b]. 'We note also that because U is
 

Borel measurable and compact, there is a Borel measurable function
 

u*: [-rc) -- 4? such that u*(t) e U(t), t _; -T [K-3]. Remark 2.1 

shows then that L has a Borel measurable selection. Recall now 
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0 

that 0 was also assumed to be Borel measurable. Hence in evaluat­

ing.either of the integrals 

t 
f O(s')d F(t,s) or f L(s)dsr(t,s)
 
-T -T
 

the conclusion of Lemma 3.3 may be applied.
 

Lemma-3.4. Let the standing hypotheses of section 2 be satisfied. 

For t _ 0 define .t(0,U) to be the set 

0 t
o(o)r(o,t) + f 0(S)dsF(t,s) + f L(s)dPr(t,s). 

-T -

Then we have the identity: t(!,U) = t(0,U), t - 0. 

Proof. Examining the third summand on the right hand side of (2.7)
 

we use the unsymmetric Fubini theorem [C-1] and the assumptions on
 

G in section 2 to write
 

t
 
(3.2) f (f fh(u(s)ts)dsG(,s))Y(t)da = 

O -T
 

t t

f"ff h(u(s),s)dsG(,s)]Y(at)da = 

O -T 

t
f h(u(s),s)ds(f G(cs)Y(ct)d-c. 
-T 0 



We have the identity* 

t t 
(3.3) f h(u(s),s)asG(t,s) -f M(u(s),S)dsr(t,s). 

Consequently from (3.2), (3.3), and (2.7) we have
 

Since F(t,-)" is left continuous on (-',0) we have that if
 

-T - sn < , and sn ->0 as n-, then lim F(zsn-a)= F(,-a),
 

0 < a ;5 r. Therefore from the Lebesgue dominated convergence
 

theorem and the definition of F we get that [0) is not an atom
 

of (.., Hence

F(t, )
 

0 0 

f p,(s)dsF(ts) = f Z(s)dsF(t,s) 

if p(s) = i(s) except at s = 0. From this remark, the variation 

of parameters formula (2.7), and Remark 3.2 one can show the reverse 

inclusion At(uU)C &ft(O,U). If the detailed proof of this in­

clusion is carried out, then the meaning of the comment in the 

preceding footnote becomes clear. This completes the proof of the 

representation formula of the lemma. 

Our reason for introducing the auxiliary function -Y and r is
 

to avoid certain questions concerning the existence of Borel
 

measurable selections. Halkin used a similar device in [H-5]. 
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Theorem-3.1. Let the standing hypotheses of section 2 be satisfied. 

Then 

(i) The sets QftU), t _ 0 	 are compact; 

(ii) The mapping t _ ( t _ 0&t(OU), taking its values 

Pn
in the compact nonempty subsets of is continuous with respect
 

to the Hausdorff metric [A-1];
 

(iii) 	 For any t _i 0 the set U -Qt(-Du) is compact. 
te[Ot] 

Proof of (i). This is an imediate consequence of the representatioe 

formula in Lemma 3.4 and Lemma 3.20 

Proof of (iii). This is readily deduced from (ii). 

Proof of (ii). Let S denote the closed unit ball in Rn with 

center at the origin. We must prove that given t> 0 and E > 0 

there is a 8 > 0 such that 

(5.4) a, + es D-,/ and _se,+cs DI~ l 5t 0 

The relations in (3.4) can be verified by considering two cases:
 

Case (a). t _ t,; Case (b). 0 - t < t Consider case (a) first.
 

Suppose x E _&t then there is an admissible triple
t
 

~t~ut~t} such that xt = x(tcptut). Define the function
 

U" [-%tl] ->R to be the restriction of ut to [-t tl]. Using
 

the variation of parameters formula (2.7). Lemma 5.1 inequalities
 

(2.2) and (2.4), hypothesis 11o) of section 2, and some standard­

manipulations with Lebesgue-Stieltjes integrals we obtain the
 

estimate 



(3.5) Ix(t,cpt,ut) - x(ttW)-I g MIz(o,t) - Y(ot 1 )j + 

' t t 
Mf P(a)jY(at) - Y(,t 1 )Ida,+ MIElf P(a)[zp f P(Q)d]da 
o 	 tI


tI1
 

+ Mf P()IY(,t) - Y(a,tl)Ida. 
0 

We 	now give a similar estimate for Case (b). By the Kuratowski-Ryll-

Nardzewski selection theorem [K-3] there is a Borel function
 

*: [T,) Rm such that *(t) e (t), t _ -T. We note that 
Ul1 Et. u tX[_t] + e x(t~tl] is a Borel function-and (qt,,Ul~tl1 

is admissible. For reasons similar to those adduced to support
 

(3.5) we get the inequality
 

(3.5') Ix(tgPtut) - x(tljt(ptul)I - MIY(O't) - Y(O,tl)I + 
-	 tI
tI 


MJ Pg (a'at) - Y(at 1)Ida+ MIEII P(a)[Evp f P(t)dtjdce+ 
0 t a 

t
 
MI P(cIY(act) - Y(at )Ida.
 

0 

From the continuity of Y(a,.), the Lebesgue dominated convergence
 

theorem, and inequalities (3.5) and (3.5') there results
 

(3.6) Given ti .0 and c > 0 there is a 8 > 0 depending only 

on t1 and E such that It-tli ;55bt _00 imply 

Ix(t,t,ut) - x(tltpt,i)I ;- e and Ix(t,qt,nt) ­

X(tlPt Ul)l -.
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Statement (3.6) implies
 

The other inclusion relationship in (3.°4) is proved by a symmetric
 

argument which is omitted.
 

Remark 3.3. Let t - -Y(t), t-i 0 be a compact multifunction 

which is continuous with respect to the Hausdorff metric. If we 

impose a terminal condition of the form 

(3.7) X(tl ,ui) FY(t!) , 

then by the usual device [N-2] Theorem 3.1 yields an existence
 

theorem for the time optimal control problem. If we consider only 

admissible controls whose domain [-Ttl] lies in some fixed inter­

val [- ,E], and if there is a terminal constraint (3.7) or, indeed, 

if the right end is free, then Theorem 3.1 can be used to give an
 

existence theorem for the problem of minimizing P(x(t,,,u)) on
 

the class of admissible triples fcp,u,tl such that (3.7) is
 

satisfied* or for the problem of minimizing P(X(tl,(,u)) on the 

Actually for these existence- statements it is not necessary to assume 
that the multifunction -Y is continuous or even compact. It 
suffices to have the multifunction - closed (ie., 5(t) is 
closed for t ? 0) and upper semicontinuous in the Kuratowski sense
 
(see for example [K-4, C-4, J-l]). We keep the stronger hypothesis
 
of continuity because it is needed in proving necessary conditions
 
for a minimint.
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class of admissible triples mutl), where P is a real valued
 

.
continuous function on Rn 

In order to deduce necessary conditions for the optimization
 

problems mentioned in Remark 3 3 it is desirable to have that the 

sets (t(,U) are convex. This cannot be deduced under the general
 

circumstances of Theorem 3.1 because the Lebesgue-Stieltjes measures
 

involved in the representation formula, }Yt(OU) = AP(¢JU) of
 

Lemma 3.4 can be atomic. It is noted that any function on an inter­

val [ab] into ; which is of bounded variation has only a
 
pq
 

denumerable number of discontinuities. We say that F has property
 

(A1 ) if for each t G R it is possible to index the points
 

-0i(t), i.= 1,2,.., in the interior of [-TO] at which F(t,-) is 

discontinuous, in such a way that continuous functions t - ei(t), t E Rc 

are defined and t -t - ei(t); t e R is strictly increasing
 

i= 12;..... We say that G has property (L) if for each t e R it
 

is possible to index the points i(t)',-i 1,2,... in the interior of
 

[-ct], at which G(t,-) is discontinuous in such a way that continuous
 

strictly increasing functions t ->tj(t), t E R, i,= 1,2,..., are defined.
 

Theorem 3.2. If in addition to the standing hypotheses of section 2 

we assume that q(0) is convex, F and G are Borel measurable, F 

has property G-A), and G has property (A), then conclusions 

(i), (ii), and (iii) of Theorem 3.1 are still valid and (0,), 

t _ 0 are convex.
 

Before proceeding with the proof we give another lemma
 

that will be useful in the proof. 



21 

Lemma 3.5. Let P: R -> R be a continuous strictly increasing func­

tion. Let f. [a,b] --; be a Lebesgue summable function. We
 

define three functions WW 2 ,W: R -- £ by the equations 

b
 

W1 (s) = f f()I(s-p(q)), s E R, 
a
 

b
 
W2(s ) = f f( )J(s-'pf())dg, s- R 

a
 

b
 

W3(s) f f( )J(-s+p(f))d, s c R 
a
 

where I J: B R are the step functions defined by the relations
 

Wx ) < 0
>x 


Then W. "is continuous, i = 1,2,3.
 

Proof. First we remark that p: [ab] -e[p(a), p(b)] has a con­

tinuous inverse, p : [p(a), p(b)] -- [ab] which is also strictly
 

increasing. Some elementary calculations yield the following
 

formulas.
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0 for s _ p(a) 

W1 (s) 
b 

f £(t)a 
a 

P-1(Sp- (s) 
f f( 
a 

)a 

for 

for 

s > p(b) 

p(a) < s p(b), 

o for s < p(a) 

w2(s) = 
b 

f f( )d 
a 

for s t p (b) 

P-16 
f 
a 

f( )d4 for p(a) - a < p(b), 

and 

" for s > p(b) 

W3 (s) 

b 
f f()a 
0 
b 

f f( )d 

for 

for 

s - P(a) 

p(a) < s p(b). 

The continuity of the functions Wi, i = 1,2,3 is an immediate con­

sequence of these formulas and the continuity of p-1 on [p(a),p(b)]o 
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Proof of Theorem 3.2. We write F(t,s) AF(t s) + NF(t,s) and 

G(ts) = AG(ts) + NG(ts) where AF(t,") is the saltus function 

for F(tyY), AG(t,-) is the saltus function for G(t,'), and both 

NF(t,-) and Nj_(t.) are continuous. Denote the jump of F(t,.) 

at -ei(t) by Bi(t) and the jump of G(t,<) at i(t) by Ci(t), 

i = 1;2)... . The jump of F(ty') at -T is denoted by B1!(t) 

and the jump of F(t-) at 0 is denoted by Bo(t). The jump of 

G(t,-.) at - is denoted by C1l(t) and the jump at t is denoted 

by C (t). From Remark 3.1 and inequalities (2.2) it follows that 

(3.8)i2 I Icjt)I P(t), t E R.i(t)I, s 

Since F and G are Borel measurable, the functions B.,Ci,
 

i = -1,0,1,2,... are all Lebesgue measurable. For example let us 

show Bi Is Lebesgue measurable, i > 1. Define sn(t) = 1/n - ei(t)' 

n = 1Y2,3.o. , then sn(t) > _ei(t) and lim sn(t) = -oi(t). Since 

F*(t °) is left continuous on (-,r0) we have
 

Bi (t)= lim F(ts n(t)) - F(t,-e(t)). 

Since F -isBorel measurable, the functions t -) F(ts n (t)) and 

t -4 F(t,-Oi(t)) are Borel measurable (a fortiori Lebesgue measurable). 

Hence Bi is a Borel function and thus Lebesgue measurable. The 

proof of the measurability of the.other functions is similar. Define
 

B(t) - 2 Bi(t) and C(t) - C(t) (both series converge by (3.8)).
i=l i=1 
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The saltus functions AF and AG can be written in the form
 

(3.9) AF(ts) = B_l(t)J(-s- ) + (Bo(t) - B(t))J(s) 

+ 	 Bi2(t)I(s+qi(t)), 
i=l 

and 

AG(t,s) = C2 (t)J(-s-t) + (C(t) - C(t))J(s-t) 

+ Zci(t)I(s- i(t)). 

We have
 

T 	 T 

(3.10) F(ts) = f AF(as-a)Y(at)da+ fI\NF(,s-)Y(ct)da
 
o 	 o 

t t
 
G(t,s) = f AG(Cz,s)Y(a,t)dcz + f NG(C,s)Y(x,t)da,
 

. 0 	 0 

and the second terms on the right hand side of both equations depend 

continuously on s by the Lebesgue dominated convergence theorem. 

Using (3.8), (3.9) and the dominated convergence theorem we get 

T 	 IC 

(3.11) f AF(as-a)Y(ct)dg = f B1 l(a)Y(,t)J(-s+a-)d + 
0 0
 

Tr M T
 
f 	(Bo(a) - B(c))Y(at)j(s-a)dt+ 2 B(cY(ct)I(s-ctie(a))d­

i=1 o
o 
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According to property (A) and Lemma 3.5 each term in the series 

(3.11) is continuous in s. We also have
 

I T 
(3.12) If Bi(a)Y(at)I(s-a1ea))dYi 9 KIElf IBi(a)Ida, i = 1,2,..., 

0 0
 

t 
where K = exp f p(f)d. Moreover, the series
 

0
 

ff IBi(a)Ida converges by (3.8). Hence by the Weierstrass M-test
 
o
= 


and (3.12) the series in (3.11) converges uniformly for s e [-0]
 
T 

(t i 0 is fixed). Therefore the function s f AF(s-a)Y(at)da, 
0
 

-,c- s - 0 'is continuous, and we conclude that F(ty') is continuous 

on [--r.0] for each fixed t _ 0. By an entirely parallel argument 

it can be shown that G(t,') (also r(t,.)) is continuous for each 

fixed t > 0. Using the Lebesgue-Nikcdym theorem [D-3. pg. 263 it 

is determined that there exist integrable Borel functions 

V-: [-rjO] -0enn and V : [--,t] -(m+n)n such that 
F 

o 0
 

fv(s)dsF(t,s) = f p(s)V (s)djL_ I
 
-T -T F F(t,-)
 

for p e cl([-jo l )., , Rn ) and 

F(t,") 

t t 
f g(s)d r(t,s) -f g(s)v(s)dl~r(t,.)I,
-T -T_ 

for g e; l([-rT;t] Pr(t,.), R5. From the representation formula 

in Lemma 3.4 and an extension of Filippov's selection principle 

[C-3, J-1] we obtain
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0 

(3.13) 	 -- t(J,u) = c(0)Y(ot) + f 0(s)v(s)dli I + 
-T F F(t,-) 

t 
f L(s)V(s)dl jir(t'.)l 

n It(t,.)IBy Remark 3.1 It ed axe nonatomic, and we 

conclude that .wt(o,U) is convex (see [0-1, C-3]). 

We shall use co (B) to denote the convex hull of a set 

B C Rp. 

Corollary 3.1. Let ' denote the multifunction, t - co (O(t)),
 

m-T ; t ; 0. Let U*: [-c) -R be a Borel measurable compact 

multifunction such that diam (U*(t)) ;9M and co (h(U(t),t)) = 

co (h(U*(t),t)) for t _ -'r. Let the hypotheses of Theorem3.2 be 

satisfied. Then
 

_(j;U) = Q(y0 ), t 0. 

Proof. The identity is easily verified by using equation (3.13),
 

the linearity of V (s) and Vp(s) and Theorem 7.1 in [C-3].
 
F 

As a particular case of Corollary 3.1 we obtain:
 

Corollary 3.2. Let the hypotheses of Corollary 3.1 be satisfied. 

In addition suppose ! (t) is the set of extreme points of '(t), 

and u [-', ) - R is a multifiunction such that diam U#(t) g M 
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and the set of extreme points of co (h(U(t),t)) is equal to 

h(U"(t),t), t _ -T. If the multifunctions ' and Uli are compact 

and Borel measurable, then 

-&t4(OU) -- -Qj iu#), t 0. 

Remark 5.4 In Theorem 3.2 it was assumed that 0(0) is convex. 

If this should happen not to be the case, then one can always select 

%5 a compact convex subset of 0(0) (for example 0 could be a 

singleton point set), and define 

t 
[ cD(t 

=0 

Since @* is also Borel measurable, compact, and satisfies 

diam 0 (t) - M, t e [-t,0] we could replace 0 by * and 

Theorem 3.2 could be applied.
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§4. Necessary Conditions-for an Optimal Control. The 

properties of the attainable sets deduced in section 3 suggest that 

the main geometric ideas involved in proving the maximal principle 

for ordinary linear control problems (see [L-3]) are -going to retain 

their validity for certain of the optimization problems formulated 

in Remark 3.3. We shall only consider the time optimal control 

problem mentioned in Remark 3.3° It will be clear from the dis­

cussion that the results -canbe used to prove a maximal principle 

for the other problem discussed in the aforementioned remark if we 

add additional assumptions which assure that on compact convex sdib­

sets -Q9' of Rn the mapping P assumes its minimum on &/' the 
t t 

boundary of 5Q%, e.g., when P is linear (cf. [H-2]). 

The following lemma is true and the proof is in effect 

given in [L-3]. 

Lemma 4.1. Let 0g@: [ab] -4R be compact multifunctions which 

are continuous with respect to the Hausdorff metric. Let a(t) 

be convex for a -< t -< b. Let t E (ab] be such that a(t*) 

@(t*) j 0 and a(t) n @(t) = 0 if a- t < t*. Then 

eC () A 0(t*) implies x* e 

We shall use- <xy> to denote the scalar product, xy e Rn 

and A' to denote the transpose of a matrix A. 

Theorem 4.1. Let the hypotheses of Theorem 3.2 be satisfied. If
 

'P*u t is an optimal solution to the time optimal control
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problem in Remark 5.3, then there is a function *: [O,t ->1Rn 

which ig of bounded variabion and satisfies the adjoint equation 

*(s) ± f t,()F,' (as-c)da = e, 0 - s - t 
s 

where e is an outward normal to a support hyperplane to the set
 

. (0,U) through the point x(t 4 ,u) on the boundary of 
t 

such that 
t 

) *e(o),iV(o)> <r,,*(o>, (Po Eq(0); 

To
 
20) f <f *(s)dsF(as-a),*(a)>ac 

O -T 

T 0
 

f <f p(S)dsF(as-a),*(a)>c 
O -T 

for every admissible q4
 

t. t . 
30) f <f h(u*(s),s)dsG(,s),(cc)>da 

o -T 

t *,t 
f <f h(u(s),s)dsG(a~s),tV(a)>da. 
0 -T 

for every admissible u. Moreover if 5f(t) is equal to a fixed 

compact convex set Z C Rn for t _ 0, then e can be picked to
 

satisfy the transversality condition: e is normal to a common
 

support hyperplane separating -y.*(¢,U) and Z. 
t 
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Proof. Let x = x(t*,c& u). By Theorem 3.2 anJ Lemma 4.1 we in­

fer that x belongs to the boundary of"' . There is a vector 
t 

e c Rn with ]eI = I such that 

max <e5x>1x E JZ_ = <e,x*>. 
t
 

Using the fact that the value of cp(O) does not affect the value 

of the second term on the right hand side of (2.7) (cf. proof of 

Lemma 3.4), and some elementary reasoning involving formula (2.7)­

it can be shown that
 

(4.1) 	 (a) <q*(), eY' (0,t*)> -<p, eY' (0,t*)>, ( e
 

0 (P0 00)
 

(b) <0 (s)d F(ais-a)Y(6,t)da], e> _
 

<f p d 	 e> 
< 0q,(~7F (a, s-a)Y(cx.t )d] .e 

for every admissible (p 

(c) <f [f h(u*(s),s)dsG(agsiY(at*)da, e> ­

<fI~h(u(s),s)dsG(a,s)]Y(azt*)daj, e> 

for every admissible u. Define .*(a) = e t (at*), 0 a < 



Then by appropriately using the unsymmetric Fubini theorem [C-1] and
 

some standard manipulation with the scalar product in (4.1)b,,c,
 

°
 relations 2 ) and 30) are proved. The fact that a -> (a), 0 - a t*
 

is of bounded variation and satisfies the adjoint equation is an
 

i ediate consequence of (2.8).
 

The transversality condition is just a geometric property.
 

n 2
In proving this condition we use the ndrm in R defined by Ixj = 

<X,x>. We have &/' n for o - t < t*. Let t e [Olt be 

such that t -*t as n- c. Let a e he Z be such that 
n n nt'n.

lan-bnI is the minimum value that the function (x,y) ->Ix-yl, 

(xy) c -29 x T assumes. Then an - bn 0 and en = 
n 

(b-a )/I a-bjI 
nn n n 

is a unit outer no mal to .sY 
' 

at a 
n 

and a unit 
n 

inner normal to 23 at b . Hence . n 

(4.2) (xl<en,x-a> O]D/,
D 
n 

lx.<en, x-bn-> 0) D Z, n = 1,2,3,... 

We might as well assume en -e and bn -b as n-c. Then an 

also converges to b. Using (4.2) and the fact that -2e -e Z/) 
n t
 

as n -- w (the limit is taken with respect to the Hausdorff metric)
 

we find that
 

[xl<e,x-h> 0) D]O 
t 

tx[<e,x-b> _0) : Z 
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so that v = [x!<e,x-b> = 0) is a hyperplane satisfying the trans­

versality condition. 

Remarj 4.1, We can put conditions 20) and 30) of Theorem 4.1 in a 

form which will in many cases be more manageable if we assume that 

F(t,') and G(t,-) have no singular part and if the functions 

(A,
i = 1,2,3,... introduced in properties 1) and (2) are 

of class C . Let us indicate the form which 20) and 3o) take in 

this case. We use the decompositions F = A. + NF and G = AG + NG 

which 	were introduced in the proof of Theorem 3.2. According to
 

our 	assumptions -NF(ty") and NG(t,-) are absolutely continuous0
 

By some rather involved analysis, which includes several applications 

of the unsymmetric Fubini theorem [C-I]. it can be shown that condition 

20) of Theorem 4.i implies 

21) 	 <(p*(s),P(s)> _ V(s),P(s)> a.e. on [-TO] 

for every admissible c where P is defined by 

P(s) 	= -*(s+ )BI 1 (s+t) + 1 

+ 	 f *(a).- (a,s-a)da, s e [-ro],
 
0
 

and pK(a) B a - e1(a) for a e [0,t], K, denotes the characteristic 

function of [pi(O), Pi(Q)] n [-.,0], and v.(s) /-/P(p	 i1 (s)) for
 

s c 	[-',0], i = 1,2,3j.... By a similar type of analysis which is
 

again 	omitted -3o) can be showm to imply 
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a.e. on [Ot 
-x 

], 

and
 

<h(u*(f),d), Q()> ? <.u(),j), Q( )>, a.e. on [-,t] 

for every admissible u where Q is defined by 

Q'(0 =V ()() C,'(~h(~
 
i=l
 

+ 	 f t *aY N (a, )da
 
o
 

adl 5t is the characteristic function of [Ot ], - is the 

characteristic function of [i(O), ti(t*)], and i() ! 

t 
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§5. Analyticity Results f'or Solutiois of FDE.s. As the 

reader is by now well aware, the representation (2.7)- of solutions 

to (2.3), in terms of "fundamental" or "adjoint" matrix solutions 

[B-i] is of immense importance in the study of control of such sys­

tems. In this section we investigate analyticity properties of 

these fundamental matrix solutions for certain types of linear (in
 

the state variable) systems which are special cases of (2.3); -namely
 

K 0 
(5.1) i(t) = x(t-ei)Ai(t) + f x(t+s)A(t,s)ds + h(u(t),t)

i=O -T 

with 0 = 00 <01 <... < ek _ which correspond to an F(t.)
 

consisting of an absolutely continuous function plus a saltus func­

tion with a finite number of constant (in t), jump points. The 

associated fundamental matrices X(tcr) satisfy (as a function of 

t,)
 

K 0 
"(52) (t)= Z X(t-ei)A(t) + f X(t+s)A(t,s)ds, t > a 

i=o -T 

X(cr) = E, X(t) = 0 for t <-a0 

Since the corresponding adjoint matrices Y(at) satisfy (in a) 

systems [H-1] which can be put in a form similar to that of (5.2)
 

and since twe have X(t,() = Y(cxt), to investigate analyticity 

properties of X and Y in a or t it suffices to examine the 

analyticity in t of solutions to (5.2). Considering the following
 

two examples one sees that systems of the type (5.2).with analytic
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coefficients and analytic initial function need not possess an
 

analytic solution.
 

Example 5.1. The scalar system
 

C(%) =x(%-il) t > 0 

x(t) = 1, t C [-1,0] 

has a unique solution on [-1,2] given by­

1 t C [-1,0] 

x(t) I + t, t C [0,1] 

3/2 + t2/2, t e [1,2] 

which is not analytic at t = 1. 

Example 5.2. The scalar system
 

0 

i(t) = f x(t+s)ds, t > 0 
-1
 

x(s) = , t e [-1,O]
 

has a unique solution on [-!,2] given by
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1, t e [-1,O]
 

x(t) 1 + sinh t, t e [0,i] 

co 2n-1 

1 + sinh t - Z )n-)-­

which is not analytic at t = 1. 

Remark 5.1. Example 5.1 can be used to contradict a theorem of 

Pinney ,[P-l, p. 237] while Example 5.2 contradicts a result due to 

Oguztoreli [0-2,-p. 52],o (It is not difficult to show that the 

right side of the system in Example 5.2 is analytic in x in the sense 

of Volterra [V-I, 0-2] as required in Oguztoreli's theorem.) 

In light of the previous examples and remarks one might ex­

pect under reasonable assumptions on the coefficients to obtain not 

analyticity but some type of piecewise analyticity for solutions to 

(5.2). We are thus motivated to introduce the following concepts 

(see also Halkin [H-4] and Levinson [L-4]). A function f: R -4 R 

is analytic on [alb] if there exist e > 0 and a function g 

analytic on (a-e,b+e) such that f = g on [ab]. We say that f 

is piecewise analytic (pwa) on [alb] if there exists a partition 

a = s < s, < ... < sv = b such that f is analytic on [si-l1S 

i = l,2 ,...,v. Finally, f is said to be-quasi piecewise analytic
 

(qpwa) on [ab] if -there exists a partition a = s < ... < sV 

= b such that f is analytic on (Si-lSi), i = 1,2,.o.v. 
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Combining a modification of the step-method [E-1] with 

known results for ordinary linear differential equations wTe can prove 

Theorem 501, Let A(t,s) 0 in (5.2) and t ->Ai(t), i = O,1, ... ,K 

be (real) analytic on [a,) into nn. If the lags 0i. i = 1,2, 

...K, are commensurate, then the solution to (5.2) is pwa on 

[a,a+T] for any T > 0. 

Proof. We shall give the proof for K = 1, 81 = I since it will 

then be clear how one extends the results to cover the case of a 

finite number of commensurate lags. Thus we consider the system 

(5.3) x(t) = X(t)Ao(t) + X(t-1)A1 (t), t > y 

X(a) E
 

X(t)= 0, t <a
 

and denote by G the solution of
 

6(t) = U(t)Ao(t) 

G(a) = E. 

From the theory of ordinary differential equations it is known that
 

Q and G-1 exist and are analytic on (a-% a+T+e) for some 

e > 0. Since the solution X of (5.3) agrees with U on [a+l], 

we have that X is analytic on [ca+!]. Furthermore, we see that 
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t 

(5.4) x(t) = (+n)G'(an) + f X(s-l)A1 (s)U1(s)ds)QG(t) 

for t G [ nri-n+l], n 1. Hence the analyticity of , AI 

on [a+l,o+2], and that of X on [,c+il] inply that X is 

analytic on [a+lg+2], which by the same reasoning leads to the 

analyticity of X on [+2,r+3]. A finite number of repetitions of 

this reasoning using (5.4-) completes the proof,
 

Remark 5.2. From the definition of the determinant it follows 

immediately that if [ctP] is any interval of analyticity of X 

(the solution to" (5.2) with A(t,s) - 0), then either X is singular 

on -[c6,] or else there are at most a-finite number of points in 

[fP] where X- (t) fails to exist. 

Just as the step-method fails in existence proofs for (5.2)
 

whenever A(ts) 0, this form of the step-method will not be of use
 

in proving analyticity results for solutions to the general system
 

(5.2). We can, however, obtain the following result by utilization 

of successive approximations with step-like procedures. 

Theorem 5.2. Suppose that (ts)-*A(t~s) and t ->Ai(t) 

i = 0ljl .... K. are (real) analytic oi- [car,) x [-TO] and [a,-) 

° 
respectively into ;nn Tf the lags 91 0 ...1k; r are 

commensurate, then the solution to (5.2) is qpwa on [ra,+T] for 

any T>0. 

Again, we shall here give a proof of this theorem only for
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the special case
 

0 

(5 .5) X(t) = X(t)A0 (t) + X(t-l)Al(t) + f X(t+s)A(ts)ds, t e [oT],-1 

X(O)= E, X(t) = 0 for t < 0, 

as it will then be easily seen how one modifies the ideas to obtai 

the result for commensurate lags on [ci,a+T]. Since the uniform 

limit of a sequence of real analytic functions need not be analyti 

if we wish to use successive approximation techniques to obtain
 

analyticity results, then we must work with complex systems. That 

is, we must somehow replace (5.5) by a system defined on a domain 

the -complexplane C which contains [-lT] so that the system 

is equivalent to (5.5) on [-1T]. Before beginning the proof we
 

give some preliminary results which will be needed.
 

Lemma 5.1. If f is analytic in a region S'(ab) = (z = x+iyj 

a < x < b; -d < y < d) and continuous at z = a from within 
z 

k(ab), then F defined by F(z) f f(t)d is an analytic function 
a 

on Y(a,b). 

Proof. From the extended form of Cauchy's theorem [W-1] it follows
 

that F is independent of path in k(ab) and is thus well defined.
 

For z e YV(a,b) 
Z 

in a neighborhood of 7 e SK(a,b) we have 

F(z) = F(z 0 ) + f f( )dt which is analytic at z0 by well-knovm 
z 

0 
results, 
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Lemma 5.2. Suppose (ts)-4a(ts) is real analytic on
 
2 

(-CjTI-) e C R Then there are sets and in(-l-e,) . Y 7. 1 

of the form 

8- fz x-+iYx-x(-8,T+8) ye(-8,8)} 

-- [z = x+i-ylxe(-l-8;8), ye(-8,8)} 

* 2 
and a function (Z,w) - a * (z,w) analytic on ×x 2 such 

that a = a where (or
aK K =f(xO)1xE[OT]] X f(x,O)Ixc[-lO] 


K = [0,T] x [-1,O] as a subset of R). 

Proof. Define 9 = (-cT+E) x ( l-c ;), which is an open region 

in R on which a is analytic. It then follows [N-1, p. 5] and 

*
[H-8 p. 41-42] that there is an open set 9 in 2 -with
* 2* *suhtt 

e n R' = 9 and an analytic function a on 9 such that 

a9 a. The set K defined in the lemma is compact in -2 and 

2 * -2 
K n ( --9 ) is empty since K f R2 C 9. It is then not difficult 

to show that there is a 8 > 0 such that ' and, as defined 

in the lemma satisfy K C X c *. 

Proof of Theorem 5.2. Our first task is to somehow extend system
 

(5 .5) (or, as in the usual case of successive approximations, its 

equivalent in integral form) to a system on a complex domain where 

of course we want all coefficients involved to be analytic. From 

Lemma 5.2 and standard arguments it follows that there exist domains 
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, (see Lemma 5.2) and analytic continuations (which we again 

denote by A and A.) of the mappings (ts) ->A(ts) and t -

A (t) to x and r6spectively. Let and 

be 8/2 neighborhoods in (.(using the usual norm in C) of the 

sets [-1,0] and 	[OT] respectively. These are the regions on
 

which we shall work throughout the remainder of the proof. 

For k any integer, we define Sk = [z e 0:k < Re (z) < k + 1) 

n (§ u _ 9. We shall consider the system defined for 

z c Sk-U [k+l4 k _m0 by 

(5.6) 	 X(z) EE + f X()A( 0 ) + x(Q- 4)A1 ( )
 
[0,z]
 

+ f X (-+wA (§,w)dw) d
[-1,0] 

where we must indicate the paths of integration to be.used. The 

path [Oz] for z E Sk U fk+l) consists of straight line segments 

joining.-z and k, k and z-l, z-1 and k-l,.%..,z-(k-1) and 1, 

1 and z-k, z-k and 0. Note that the path will always lie in 

§ . The integral f _oX( w)A(tw)dw, for on the polygonal 

pathjoining 0 and z described above and e Sm U [m+l), is to be 

integrated along the w-path of straight line segments joining, 0 and 
- + n -4+ m and -1. Hence for any e S' U [m+l} this latter 

m 

integral depends- on the values of X along the segments joing 

and m. m and - 1. Note that for z real the system (5.6) 

with the proper initial conditions reduces to the integrated form 
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(inthe usual sense) of (5.5).
 

We next obtain a quasi-slabwise analytic (i.e., analytic on
 

Sk, k = 0l .. ) solution to (5.6). To do this we define successive
 

approximations X. show that each is analytic on Sk; k = 0,1,...,
 

and that (Xn) converges uniformly on each S The limit function
 

will be the desired solution. Define for n = 0,1,2... XnZ(z) = 0
 

for Re (z)<0 and X (0) = E. For z e Sk Utk+l), k= 0,1,2,...
 

define Xo(z) = E and
 

(5c7) Xn(Z) = E + 	f [Xn_l()Ao( ) + Xn_I(t-I)AI()
 
[0,z]
 

+ f-	 xn-((+w)A(t,w)dw)d
 
[-1,0]
 

for n = 1,2..., where the paths of integration are the polygonal 

paths described above. Note-that each Xn5 n _t1 is defined on 

-U-9 less the rays U (z = k+iyly # 0). 
k3O 

We shall say that a function g is left continuous at 

z =k k 0, if g(t ->g(k), as t -*k, e Sk-1. A similar 

meaning is attached to "right continuous at z = k". Finally, we 

shall say that g is continuous at z = k if it is both left and 

right continuous at z = k in the above sense. We now state and 

prove an induction lemma which will yield analyticity of X on the
n 

Sk -


Induction Lemma. Let n - 1. Let k 0. Then Xn I analytic on
 



S_ sSo Sl'... Sk and continuous at z =O,1,2, ...,k imply X 
n 

analytic on Sk and continuous at z = k.
 

Note. Since clearly none of the approximations are left continuous
 

at z = 0, we understand "continuous at z = 0" to mean "right 

continuous at z = 0T" in the above lemma.
 

Proof. Suppose the assumptions of the induction lemma are true.
 

We can then establish
 

Lemma 5.3. Let ,m be a fixed integer, 0 - m < k. For
 

e S U [m) U [m+l) define 

F() = _o]X(0+w)A(w)dw. 

Then F is analytic on Sin right continuous at -z = m, and, if 

m < k left continuous at z = m + 1. 

Use of the hypotheses of the induction lemma and Lemma 5.3
 

yield that the integrand
 

-%Q)= X 1 ()Ao( ) +.X 1-l)Aj() + f X ( +wA(swdw 

Z-0 1-10 =1 

in (5.7) is analytic on o .. k_ and continuous at
 

z = 0;1 ... k-l left continuous at z = k. Hence by the extension
 

of Cauchy's theorem (see the proof of Lemma 5.1) the part of the
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integral in (5-7) from 0 to k along the polygonal paths is 

actually independent of path (as long as the paths cross the lines 

Re (z)= m through the point z = m). Thus, (5.7) may be written 

k z 
-z)E + t( +(5.8) X = f )d f Y(t)da 

o k 

z
2 

where as usual f denotes integration along the straight line 
z1
 

segment joining z1 and z2 Thefirst integral in (5.8) is now 

independent of z e Sk . Thus we need only show that the second 

integral is analytic for z e Sk . But this follows immediately from 

the hypotheses of the induction lemma, Lemma 5.3, and Lemma 5.1. 

We therefore have Xn analytic on Sk -

We shall next argue that Xn is right continuous at z = k;
 

the arguments for left continuity are not dissimilar and will be
 

z 
omitted.- From (5.8) we have Xn(z) -.Xn(k) = f Y(Q)dt for z E Sk, 

k 
the integrand 9 being analytic on S and right continuous at 

k 
z = k. Thus Y is bounded in some "right neighborhood" of z = k 

from which the desired result follows immediately. To complete the 

proof of the induction lemma it remains only to establish the
 

validity of Lemma 5.3. 

Proof of Lemma 5.3. Making the assumptions given in the statement 

of the induction lemma, we let m be a fixed-integer, 0 - m - k. 

Then F(s), t E Sa can be written 



m0
 
F(~, f Xn_1(+w)A(t,w)dw, + f *X ni(-Q-,)A(Q,w)dw
 

'-1M
 

f£ xnil()A( ,w-t)dw + f x1 1 (W)AQ(,w-t~) dw. 
-li m 

The right continuity of F at z = m follows from the continuity 

of A, the boundedness of Xn-1 in right and left neighborhoods of 

z = m and a right neighborhood of z = m - 1, and the theorem on 

dominated convergence. For m < k the proof that F is left 

continuous at z = m + 1 is similar. (If m = k these arguments 

are no longer valid in obtaining left continuity of F at m + 1 

since at this stage in the induction we do not have that X is 

left continuous at k + 1, which is needed for the boundedness 

conclusions about XnI
 

We turn next to the analyticity arguments for F on S . 

We shall argue that the function f defined by f( )= 

f Xn_l( A( w )dw is analytic on S, similar-arguments being 
m 

valid for the term £ Xni(w)A(t,w-t)dw in F above. 

Fix to e S For t in a sufficiently small neighborhood 

j of 0 we can write 

m m 

+ f x 1 (w)Ak(t;w-t)dw - hl(t) + h2(t) 
to­

where the integranis are analytic in t on _J1 for each fixed 
0 



w e > nd analytic in w on Ao for each fixed' E /. A
00 0 

straightforward application of Morera's theorem establishes the
 

analyicity of h on _/. Use of a theorem of Hartogs-Osgood

0 

[H-91 p. 28] yields that h2 is of the form f g(w, )dw where g 

is analytic in _Io X o7',from which the analyticity of h fol­

lows easily. 

Having confirmed the validity of the induction lemma, we
 

point out that it follows directly from the analyticity properties of 

X0 (recall X0 (z) E z Sk U k 0,1, and= for e = ,k+l}, . . . 

Xo(z) = 0 for Re (z) < 0) and the induction lemma that each X 

is analytic on each Sk . 

We next prove that the sequence (X n) converges uniformly
 

on the region of interest. Let 2 be the positive integer (2 > T) 

such that Sk = 0 for k > A and S,_1 0. (Recall the definition 

of Sk -9 and 9 .) We shall show that the sequence (X ) con­

verges uniformly on 9Z B U 3k U [k). We note that we trivially 
k=o 

have uniform convergence of [Xn on Sl U [0) to the function X 

defined by X(z) = 0 for z e S_l X(O) = E. Recall now the 

definition of X given in (5.7) and the integration paths employed.n 

For any z E 9J let s (z) denote the arclength of the polygonal 

path described above (see (5.6)) which joins 0 to- z. Let M 

be a bound for IAo( )I, IA(, )IA e %- and IA( ,w)l, (tw)e 

9 x §. Then for z e ? we have 
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Ix(z)'-xo(z)I = If Xo()Ao(t) + xo( -l)Aj( )[0, z]. 

+ 	 f X (Q w)A( 0,w)dq)dtji 

; 	f ( 1 + IA(0)I + f JA(t,w)I IaDI dI 
[Oz] [-1;0]
 

-f M + M + M(1+2( ))Id~I

[0,z]
 

-3M(1+3)s(z) - ps(z). 

Furthermore,
 

IX2 (z) - Xz()l f fMxJ() - XOI + Mlxl( -) - Xo(t-1)l
[oz]
 

+ 	f MIXl(-+,w) - Xo(t+,w)l IdwlIdti. 
[-1,0] 

For ge S wie have 

[- I,] 0 =- 0 

0 0 

Sf Mps(Q-w)IdwI 9 fMps(t)IdwI 

F cM( -1+8) 

For t c Sk k : 1 we find that
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(5.9) 	 s(R+ ) _ s (0 

for any w lying on the path consisting of straight line segments 

joing -1 to - + k and -t + k to 0. Hence the above 

estimate is also valid for these values of . It follows that 

Ix2 (z) - x1 (z)I f tMps(t) + Mps( ) + Mpsq;)(l+5)Idtj
[o0,z]
 

;S 5M(l+8)p f s(t)Idflt
[0,z] 

2 [s(z)]2
= 


2 

Using this estimate and the above ideas it is easily shown that 

3 Es(z) 3 
jx xj(z)I g­
3 (z)­

and in general
 

n

jx~(z 	 (z)___ 

for z c T . Hence for n 	 > m we have 

n n 
(5.10) Ixn(Z) - X (zYI 	 - l.( j=m+i " 

But for z e T we have that s(z) 9 P(1+2(6/2)) = 9(1+8). Using 
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this with (5.lO) yields the uniform convergence of [Xn on N?. 

Let us denote by X this limit function on N U S 1. Since each
 

Xn is analytic on Sk and continuous at z = k. we have that X 

also possesses these properties. Furthermore, for each n, Xn (z) 

is real valued whenever z is real, from which it follows that X 

is real analytic on (0,1), (1,2), etc. Finally, since 3X onXn 

[-l T] it is not difficult to argue that X is the unique solution
 

to (5.5), which completes the proof of Theorem 5.2.
 

.One might reasonably expect a stronger type of analyticity
 

(say pwa) than that obtained in Theorem 5.2 to be true for systems 

of the type (5.2) even with A 0 0. The authors have tried n­

successfully so far to obtain these stronger results. Several ideas
 

using different integration paths in defining the successive
 

approximations (see the proof of Theorem 5.2) and stronger assumptions
 

on the coefficients have been tried. These lead to either a lack
 

of analyticity of the estimates in the desired regions, or else an 

inability to obtain uniform convergence of the estimates. The authors
 

were able to prove that the solution to (5.5) is analytic on [0.1],
 

but could not adapt the~e methods to prove analyticity on [kpk+l]
 

for k > 0. The fact that one is using a zero initial matrix on
 

[-1,0) appears to be essential in obtaining analyticity on [0,1].
 

(Note that in this case the system loses some of its lag behavior
 

on [0,1] and is much more like an integral equation.)
 

The analyticity results obtained in this section can be
 

-used to study the zeros of the multipliers in the maximum principle
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for control problems involving functional differential equations
 

(see Remark 5.2 and [B-2, B-3, B-h4 H-2]. The information thus ob­

tained can be especially useful when the maximum principle is also 

a sufficient condition for optimality (see [H-2]). Another applica­

tion of these analyticity results is discussed in the next section.
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§6. Application of the Analyticity Results. We shall use
 

pwc as 	 an abbreviation for piecewise continuous, and when we say a 

function 	 f: [a,b]-->R p is piecewise continuous we are taking the 

standad- definition. We shall say that f is almost piecewise 

continuous (apwc) if there is a finite number of points si e [ab], 

i = O, 1,., N with the property that f [a(,] is pwc for every 

[a,P] C [a,b] for which si [aP], i = 0,1,...,N. 

In this section we shall demonstrate how some -of the work 

with-subintegrals of multifunctions by Halkin and Hendricks [H-6]
 

and the related -existence theory for piecewise cohtinuous optimal
 

controls [H-3] can be applied in special cases of (2°3) to give
 

analogs -of Theorem 3.2 when the, admissible triples (CP,ut are 

required 	to be pwc (or apwc) (i.e., cp and u are pwc (or apwc)). 

Lebesgue measure will be understood in all of the integrals 

appearing in this section. Suppose a multifunction H: [a~b] ->Rp
 
b 

is given. Then we have defined 	 f H(t)dt and with [ab] under­
a 

-stood-we denote this by f H. We define 

* 	 b 
f 	 H _ (f g(t)dtjg: [a,b] -*R p is apwc and -g(t) H(t), t e [a,b]}.
 

a
 

Lemma 6.1 (Halkin-Hendricks). f 	H is convex. 

We omit the proof. Let it suffice to say that the proof of
 

Theorem 1 [H-6, pg. 365] may in effect be repeated. One need only take 

f 1and f2 to be apwc in that proof and observe that fl.X [ab]\E+ 

f2" E is apwc if E C [ab] is the union ofa finite number of intervals. 

A set E C Rq is said to be semianalytic (see Lojasiewicz 



[L-7] or Halkin and Hendricks [H-6]) if for every point in Rq 

there exists a neighborhood V of that point such that
 

k
 
E nv= x Rfxlfr(x) = 0 and g.(x) > 0 for j


i=!
 

where gij and fi are real valued functions which are analytic 

on V. 

Lerma 6.2. (Halk-n-Hendricks). Let H: [ab], -> Rp be a compact 

multifunction and suppose the graph of H is bounded. Let there 

exist a finite set of points si; i = 0,1,..oN such that 

a s <s< *... <sN b and such that for each compact interval 

[aP] C [ab] which contains none of the points 
s. the graph of
 
* 

H restricted to [a,13] is semiaalytic. Then f H ff H. 

Again this is only a slight extension of the main result 

(Theorem 2) in [H-6]. Indeed, the proof is clear upon examining the
* 

proof of that theorem. In effect one observes that f H D f H m!&f H) 

where Y'(f H) denotes the set of extreme points of the convex set 

f H., and that f H is convex, and then the proof is immediate. To
 

show that f H Dz(f H) one need only show that the function 

g. [a~b] ->R is apwc, where g is defined by the condition that 

g(t) is the lexicographic maximum (with respect to an arbitrary 

orthonormal basis for Rp 
 as in Olech [0-1])of H(t), t,c [a,b].
 

If the si' i = 0l,...,N and an interval [a]. are chosen as in 

the hypotheses of Lermma 6.2, then Halkin and Hendricks [H-6] have 

showcn gl[aP] is piaw Hence g: [a~b],-4Rp is apwc. 
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RqLemma 6.3 (Halkin). Let B: [ab] X -->Rp be a continuous func­

tion with the property that there is a finite set of points 

K i- 01,... A such that a s o < sI < ... < sN <_b and such 

that BI(a,so) x Rq BI(s N b) X Rq , and BI ( s i -l. s i ) x Rq i =l2,...IN 

are analytic. Define . [ab] x RC ~-> p q by the relation 

9(t,u) = (u,B(t,u)). Let P: [a,b] ->Ri be a compact multifunction
 

satisfying the generic hypotheses of Lemma 6.2. Then the compact
 

>Rpmultifunction 2/': [ab] -- defined by 1f(t) =
 

t e [a,bj also satisfies the generic hypotheses of Lemma 6.2.
 

This result is a modification of a statement of Halkin" s 

[H-5]. Since Halkin omited a proof and since the above lemma 

differs somewhat from his result, we shall suggest a proof which is 

straightforward. There will be no loss in generality if we assume 

that the same points satisfy the hypothesis of Lemma 6.2 with 

Rp R .
H: '[a,b - replaced by s2 [ab] -- It will suffice for us 

to show that if [ap] C [ab] and s i - [/ , i = 0 ).., N 

then /I,[oP] has a .semianalytic graph. Let -V denote the graph 

of %"I[a] and let P = (touoX 0o) be an arbitrary point in 

Rp Rp+ l+ l .
R x Rq - Then there is a neighborhood V0 of (touo) 

x Rqin R R and analytic functions fi gij, i = 11..o k 

j =1 .9 on V such that 

k 
E. V = U (t,u) e R 1iIf i(tu) = 0 and gij(t,u) >0,

i=l 

for j = i1... ] 
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where E is the graph of aI [aA]. Let 9 denote the set 

f(t,ux) G Rr~Q+±I (t,u) e Vo), then 9 is a neighborhood of P0 

lin RI A generic point (t,u,x) in RThc' is also denoted-C+1.. 

1
by (b,u .. q ... ,) and we write (Bi,..., Bp) for the 

Rp+q Ifunction B. Let v: -> be defined by i(t,u,x) = (tu). 
Define functions fi and gi. on 9 by the equations 

2 2= " 
Tf.(t,ulx) =[fi(wF(t,u.,X))]

2 + Z[B1 (t,u) _ sn],
 
1 n=l
 

g. .(t,u,x) = gij-((t,u,.x)) 

for i=l,...,k, j = l,... Then we have that there are real 

numbers a such that ) [ap] and such that B is analytic 

pn a) X R. One can now verify that 

Y i, RC q ) = U [(t,u,x) Rp+q+ljf(tui) = 0 and 
1=1 

gij (t,u,x) > 0 for j = 

where the functions ?i and gij are analytic on fn 

x RP+q). We can assume P0e C,*) x RP+q since the contrary 

case can be dealt with trivialty. Thus 9 is semianalytic and 

this proves the lemma. 

We now turn our attention to the control system (5.1). Let 

-Wt(OU) denote the collection of all points in .Qet( ,U) which 

are attainable from admissible triples "(iut where 
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n[-,O] and [Ot] are Let-: -> u: -*>I apwc. -01.((DU) denote 

the collection of all points in -Qit(tU) which are attainable from
 

admissible triples fp,ut) where bobh q and u are pi-c. The 

variation of parameters formula* (2.7) when applied to the FDE (5.1) 

gives 

t 0 
(6.1) x(t, p,u) = p(O)Y(ot) + f h(u(c),a)Y(at)da + f p(a) (at)da 

0 I 

where St(at) is defined by the equation 

k 
R(a ,t) - 7j=Ai(o+Gi)Y(o,+ei~t)X [ _e.,0] (a) 

+ T O 
+ f A(s,c-s)Y(s,t)ds, -T ;9 a 0 

0 

R2n 

Let a function " [-TO] XE -R be defined by 

M(a,o) (C,CPAR(t)), -' - a - 0, p E R 

- RP+
and let P: [0,t] x Rm be the function defined by 

S(u,a) - (u,h(u,a)Y(a,t)), 0 - a - t, u e I. 

We remark that the representation theorems can easily be shown to
 
be valid under the analyticity hypotheses placed on (5.1) in 
section 5 (Theorems 5.1 5.2),. 
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Define projections irR: Fp'n -->il ard 7T2: -> R by the equations 

w 1 (ux) = x, ux) C xRP = 

n 2n
 
'r2( P= = x, (c3,x) E .a x n -


En each of the follow,.%ing three formulas the first integral on thle 

right hand side of the equation is over the interval [Ot] and 

the second integral is over the interval [--,O]. Using (6.1)' it 

can be sho~m that 

(6.2) (, U) ¢(0)ry(0,t) + 7[ (U (C),a)dg. + -, 2 [i1( ,(c)dl a 

x.o'. ((,u) = (O)Y(O-,t) + w1[f (U(.)a] + 72[f n(c (,))dcl, 

fnd 

-(V)U) (o)Y(ot) + ++[(u(Q).a)a] _2(a)) 

vwhenever the left hand sides are nonempty. 

Theorem 6.1. Lct the homogeneous paxt of (5.1) satisfy the hypotheses 

of Theorem 5.2, a d let the functions h xxjP[o,t]" t > 0 satisfy 

the same conditions as the function B in Lemma 6.3. Let : [-T;O] 

0-R and U: [0, ) -)P be compact, multifrunctions satisfying the 

Here f denotes the subintegral in HaIkin and encricks [H-6]. i.e.; 
if H: [a ] -) RP is some m'l i rnction, then F H 

b 

a 



57
 

generic hypotheses of Lemma 6.2. Then 

Proof. With the aid of Theorem 5,2 and a few rudimentary deduczions. 

one can show that the funlction @ [0,t] x - " and the multi­

function U" [O~t] -->Rm satisfy the generic hypotheses of Lemma 6.3, 

and sinilarly for the function TZ: [-.rO] X Rn .-Rn and the 

multifUnction D: [-',O] ->r. Thus Lemmas 6.5 and 6.2 and the 

second formula in relabion (6.2) apply to give the derived conclusion. 

Theorem 6.2. Let the homogeneous part of (5.1) satisfy the hypotheses
 

of Theorem 5.1 and let the function h be analytic on R- X [Oo). 

Let C: [--LO] - 4 Rn aind -0 [,) -Rm be compact multifuncticus 

such that the graph of 0 and the graph of Ui[Oil "for t 0 

are bounded and semianalytic. Thlben 

= b o(U)0. 

With thie aid of Theorem 5.1 and the above remarks the proof 

of this theorem will be so similar tc Halkins proof [H-5] of the 

corresponding result for nondelay systems that it can safely be 

omitted.
 

Recalling Remark 3.3 one sees tbat Theorems 6.1 and 6.2 give 

new existence theorems for certain optital control problems in the 



class of apwTc admissible triples f9,ut3 and the class of pwc 

admissible triples [cutl respectively. 
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