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EXPLODING SPHERES OF DUST
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Exploding Spheres of Dust

Jeffrey M. Cohen

Institute for Space Studies
Goddard Space Flight Center, NASA

New York, New York

The expansion and gravitational collapse of

spherical balls	 of dust are investi-

gated. Three cases are considered: positive, zero and

negative curvature of the space within the cloud of

dust. In each of these three cases the interior geometry

is matched to an exterior Schwarzschild geometry. Also,

in each case, the mass m seen by an observer at infinity

is found to be positive definite and related to the den-

sity o and radius r of the dust via m = (4r/3)ar 3 . The

radius and density of the dust are functions of time.

The method develope•) in this paper can be applied to

thick shells of dust surrounding a collapsing or sta-

tionary body, giving simple models of supernovae. The

envelope expands leaving the central body as a remnant.

These results are compared to those of Newtonian physics.

Some effects of rotation are discussed.
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I.	 INTRODUCTION

In Newtonian mechanics one investigates the expansion or

collapse of a homogenous spherical ball of dust by intearat-

ing Newton's equations. The same problem in general rela-

tivity is more complicated; it usually involves solving

Einstein's field equations in two coordinate patches and

then fitting the geometries together. The patching problem

is often the most difficult part of the problem. However,

in the case of expanding or collapsing dust, an interesting

theorem due to IIeckedorff and Misner 1 and Lindquist and

Wr , !ler 2 reduces the patching problem almost to the si.m-

piic:.ty of Newtonian mechanics. This theorem  states that:

a necessary and sufficient condition for two 4-geometries

to -loin smoothly (at the interfact) is that particles at

the interface follow simultaneously the geodesic laws of

motion for the two separate geometries. The method is

applied in ref. 3 for the case of positive curvature of

the space within the dust. Through the use of this theorem

one can match the geometries without matching the metrics.

I.n this paper we consider the cares of zero and

negative curvature as well as (for completeness) positive

curvature. One obje,tive is to write the solution in such

a way that it can be used in a subsequent paper concerning
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the gravitational collapse of rotating balls of dust.4

In section II, Newton's equations for the gravitational

collapse of a ball of Gust are written down and integrated.

This is doen to facilitate the interpretation of the rela-

tivistic results for the cases of zero and nec,ative curva-

ture. For the case of positive curvature, it is often more

convenient to interpret the solution via the initial value

4
equations at the point of time symmetry.	 In sections III

and IV geodesics are investigated. The geometries are

matched and the results are discussed physically in sections V and

VI. In section VII,the effect of rotation is considered.

II. NEWTONIAN COLLAPSE

To facilitate the interpretation of later results, a

short Newtonian investigation of the expansion or collapse

of a dust ball is given here. Newton's equaaions for the

outermost dust particle of the dust ball are

Mr' = -Mm r-2 .	 (1)

Here M denotes the geometrized mass  of the dust particle

m, the mass of the entire dust ball r, the radius of the

ball, and the dot denotes differentiation with respect to

time. Integration of Ec. (1; yields

r2 = -Kn + 2m r-1	 ( 2)

r-
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where -Kn is integration constant equal to twice the total

energy of the particle per unit. mass.

If the cases of positive, zero and negative K n are

investigated separtely, the solution takes the simple form

r	 ro sin 2 (r/2)

t = ( 2) (ro /2m) 2	
(r -sin TI)

0 < Kn = 2m/ro (def. of ro),

r = Et 2/3

3
Sn/2 for Kn	 01

r = r sinh2	2)
U

t	 2) ( ro /2m) 2 ( sinh r1 - r, )	 ( 3c)

0 > K = -2m/r .
n	 o

For Kn > 0 the dust expands and then recontracts. In

the other two cases the dust only Pxnands or contracts. In

general relativity, the cases of K
n 

positive, zero and

negative correspond to positive, zero and negative curvature

for

and

for

(3a)

(3b)
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of the space within the dust. Also the expressions (3)

become identical With those of general relativity if the

time is replaced by the proper time.

III. INTERIOR SOLUTION

The space interior to a homogeneovc; distribution of

dust is often described by the RobFrtson-Walker 5 Metric:

ds 2 = -dT 2 + a 2 (T) r l + (k/4) U 2-1-2 dU 2 + U 2 d6 2 + U 2 sin g 6d ;27

(4)

Isere K =1, 0, -1 corresponds to positive, zero negative

curvature of the space within the dust.

The quantity a, which is proportional to the luminosiLl

radius of the dust ball, must satisfy the field equation

00	 00
G	 = 8 T i'

In a synchronous frame 6 on a three dimensional spacelike

surface, t;iis equation takes the form

(3) R + K 2 = 16r-p

where (3) R is the scalar curvature of the spacelike surface,

K 2 is the extrinsic curvature related to the second funda-

mental form K.. via
13

K2 =
 (K',, 2 - K

1J Ki
J

and p is the energy density of the dust.

PF
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Direct calculation yields

(3 ^R = 3k a -2 and K 2 = 3 5 2 a-2,

here ^ denotes differentiation with respect to T.

Consequently the above field equation takes the form

k a -2 = (16 n )/3) - (a/a) 2

The Robertson-Walker s Metric (4) is often used to

describe a homogeneous and isotropic universe (a Friedman

universe). The average density p necessary to yield a

given Hubble constant H = a/a depends on the curvature

constant k. A larger density is necessary for positive

curvature than for zero or negative curvature as can be

seen from inspection of the above equation.

When these three cases are treated separately, we

obtain results very similar to those of Eq. (3):

a = a
0 

sin  (r/2)

T = (a /2) (r -sin )	 (Sa)
0

a = (8r/ 3)  pa3
0

for k = 1,

a = aT2/3

a3 = 6 17pa 3	(5b)

for k = 0,

- 6 -



sinh2 (-/2)

T = (a /2) (sink - - -)	 (5c)
0

J
(c3-/3)	 a

V

for

IiL2rc ;, is thu time dependent density of the dust while

a O and	 are integration constants.

In the space described by this metric there arc geodesics

for which U = constant and T is the proper time along the

geodesic. This is not surprising since the dust was assumed

to be co-moving in the deviation of this metric.

IV. EXTERIOR SOLLTIOti

The space eXterior to a sphere of dust can be described

by the Schwarzschild metric:

2	 2, 2	 2 2	 2	 2	 2	 2	 2
ds = -A dt + B dr + r d= + r sin "d_ ,

where

A2 = 13 -2 = 1-2 m r-1.

Here the constant m is the mass seen by an observer at in-

finity. The connection between this ma-. -s and the density

of the dust can be obtained by matching the interior and

exterior solutions (patching).

r
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An especially simpl` way to obtain the

Lions for radial motion of a dust particle j

(G) is via the variational principle

o =	 r ds

These geodesic equations are

A 2 t 	 0

and

A-2r, J + (A2) r - ( t' ) 2 ] + F: -4 (r')

where  the prime denotes differentiation wit]

the proper time

2	 2	 2
T(dT = -ds ) and A = 1 -2m r 1. Integration of Eq. (a)

yields

	

A2 t' = K
	

(10)

where K is an integration constant. From Eq. (9), t' can

be eliminated via substitution of Eq. (10) yielding

E	
A-2 (r,) 

2^ + K
2	 2A -4 (A) ' = 0	 (11)

J

after some manipulation.

Integration of Eq. (11) yields

2	 2	 - 2	 2	 -	 - -1
(r') = K + K A = K + K - 2m K r	 (12)



„^ru K is z.,i integration constant. For large r znd small

vclocit.,es, Eq. (2) should reduce to a Newtonian expression

,2) . The two expressions (12) and (2) agree in this limit

K = -1. Jencu, Eq. (12) like Eq. (2) contains only one

acDustalile constant i,;. The first inte,ral (12) car, also be

obtained Oirectly from the line element by dividing all

terms by the proper time and eliminating t' via Eq. (10).

This latter method gives K = -1 automatically.

The solutiu., of the general relativistic equations of

motion takes a simple form when the three cases (1-K`)

positive, zero and negat_.ve are treated scaprately. The

solution is very similar to that for the Newtonian case:

r = r sin (r/2)
0

T = (' 1 ) (ro 12m) 2	 (- -sin -)	 (13a)

for 0 < 1 - K 2 = 2m r -10

r = ; T2/3
(13D)

^ 3= 9m/2

2
for K = 1,

and

ro sinh 2 (--/2)

T = (';) (r 3 /2m) 2	 (sinh •, - -)	 (13c)

for 0 > 1 - K2 = -2m r -1.0

- 9 -



7
The expressions (3) and (13) differ only in that the time

in Eq. (3) is replaced by the proper time in Eq. (13).

The solution (13) describes the motion of a test

particle in gravita:.ional field of a spherically symmetric

110,1, CIL ma g G m.	 Wht , n tho maac.ivo body is c-om1naPd of

gravitationally collapsing dust, there is a connection

between the m,-iss seen by an observer at infinity and the

density of the dust. This connection is obtained by

matching the interior and exterior solutions.

V. MATCHING OF GEOMETRIES AND DISCUSSION

Application of the theorem discussed in section I,

reduces the problem of matching four-geometries of that

of matching eodesics. In section III and IV the geodesics

can be matched by inspecticn. The motion of Lhe same par-

ticle is describable in two different coordinate patches.

Thus, in each description, the proper time of 3 particle

at the inteface between the two geometries and the proper

circumference of the ball of dust should agree.

In view of the above discussion, comparision of Eqs.

(S) and (13) yields

rl + (k/4) U	 a U = r
o	 0 0	 0

a	 = (r 3 /2m) z	 (14a)
0	 0

for k = 1 or -1

- 10 -



zind

au =
0

for
	 (14b)

k = 0.

Thus, if the cc , . ,.ditions (14) are satisfied, the four-goome-

tries will join smoothly at the interface. These conditions

(14) when combined with Eqs. (5) and (13) yield 

m = (4 r./3) p r 3	(15)

for each case. Hence, the general relativistic expression

for the mass of a hcmogeneous ball of dust is identical with

the well known Newtonian expression in terms of the density p

and radius r of the dust ball. Also, in each case the proper

time required for col_apse from a finite radius to the gravi-

tational radius is finite.

To an observer at infinity, the radius of the dust

ball always appears to be greater than the Schwarzschild

radius. Titus, an observer is unable to see the later stages

of the collapse because of the tire dilation. Since no

energy escapes from the dust ball, the mass seen by this

observer is constant. On the other hand, if the ball of

dust (with r > 2m) is initially expanding it will recon-

tract only for the case k = 1.

- 11 -
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Using the method described above there can be constructed

a universe which has sections with negative as well as posi-

tive curvature and with all of these sections fitting together

smoothly. A simple example can be constructed as follows: In

the above calculations we have obtained the geometry exterior

and interior to a collapsing dust ball with negative curva-

ture within it. If a positive curvature Friedman universe is

then patched to the large r portion of the Schwarzschild re-

gion, we have a universe. The method used to patch these two

regions tocother is identical with that used in this paper

to patch the dust ball to the Schwarzschild region. It is

not known whether the resulting universe is open or closed.

As on aid to visualizing the situation, consider a

closed universe at the instant of time symmetry containing

a Schwarzschild region with a positive curvature Friedman

region at each end. Such a universe is shown in Fig. 1.

The universe with a negative curvature section is very

similar, it has a Schwarzschild region with a positive curva-

ture Friedman region on one end and a negative curavature

Friedman region on the other. Such a universe can expand in

one region an"' contract in another.

Other results of physical interest can La obtained via

differentiation of Eq. (13) with respect to the proper tire,

or substitution of Eq. (13) into Eq. (12), yielding

- 12 -



(2m/r) ` (1 - r ro -1 )	 (160)

for k = 1

r' = (2m/r)	 (16b)

for k = 0,

and

r' = (2m/r) ` (1 + r rO -1 ) 2	 (16c)

for k = -1.

This velocity r' is related to the velocity r = dr/dt via

,

	

the line element (6) r 
2 

= A 
4 

(r')
	 2 

+ (r ) 
2^-1

)	 rA	 Thus,
LL

the velocity seen by an observer at infinity (who remains at

constant distance from the center of the dust ball) is

27	 -1	 -17x2	 -1^- %i
r = A 12mr	 - 2mro J	 r l - 2mr o J	 (17a)

for k =1,

r = A 2 (2m r
- 1 ) z	

(17b)

for k = 0

and

1	 i r	 _ ^i

r = A 2 j 2m r	 + 2m ro -1 J 2 I 1 + 2m ro 1 ^ Z	 ( 17c)

for k = -1.

In Newtonian mechanics, there are three cases: (1) the

dust expands and then recontracts, (2) the dust expands

E
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continuously with the expansion velocity 	 approaching zero

7P	 as r approached infinity, (3) the dust expands continuously

but the expansion velocity approaches a finite value as a

r approaches infinity. Inspection of Eq. (17) shows that in

general relativity these three cases correspond to positive9,

zero, and negative curvature respectively.. In the latter

case 	 approaches (2m r o
-1 )

(1 + ro 1 2m	 )^ as r approaches

infinity.

When combined with Eq. (17), Eq. (10) has a simple physi-

cal interpretation. For k = 1 and r = r o , Eq. (10) takes the

form

	

dT = (1 - 2m ro-1 ) Z dt
	 (18)

which is the well known relation between time intervals of

the Schwarzschild solution. For k = 0 and k = -1, the dust

expands to infinite radius. Consequently, the expression

(10) can be compared with the results of special relativity

since the Schwarzschild geometry is asymptrmatically flat.

According to special relativity, the time interval dT

measured by an observer sitting on a moving particle is

shorter than the time interval dT seem by a stationary

observer i.e.

dT = (]_ -r 2 ) 2 dt.	 (19)

- 14 -



Substitution of the value of r for r approaching infinity

yields

t^ _ (dt/dt) = 1	 (20)

for k = 0,

aIIL1

t^ _ (1 + 2m ro
-1 )	

(21)

for k = -1 where t = dt/dt.

These expressions are identical with Eq. (10) for

r - infinity and k = 0 and -1 respectively. Thus, in

certain regions the results of Eq. (10) can be obtained

by simple physical arguments.

VI. DISCUSSION OF ASTROPHYSICAL APPLICATIONS

The results of this paper have astrophysical ap -

plications. These results allow a general relativistic

description of astrophysical systems which expand and

never r(.ccn tract as well as those which recontract e.g.

exploding stars (supernovae), galaxies, or clusters of

galaxies at the stage where the pressure and rotation

are negligible. The negative curvature case corresponds

to an unbound system in Newtonian mechanics, one which

never recontracts if it is initially expanding. The

zero curvature case corresponds to the transition be-

tween bound and unbound systems (the zero total energy

case); it just barely expands to infinity using up all

r



its ::inetic energy in the process. Although it is possible,

it is very unlikely in the k = 0, -1 case that the velocity

vectors will be arranged such that the system will collapse.

Consequently, in a p;iysical situation, the k = 0, -1 cases

are more likely to be expanding than contracting.

Using the method discussed in this paper, one can

construct general relativistic supernovae models. The

expanding envelope of the supernovae corresponds to "lie

expanding negative curvature solution given here. For

example, to construct such a model of a supernovae, (col-

lapsing or static) to an exterior Schwarzschild solution,

then patch this to an expanding negative curvature solu-

tion, and finally patch this to another exterior
E -_

Schwarzschild solution. For such a model, the envelope

blows off, leaving a remnant behind. The mass of this 	 =' =

remnant m  is given by

my = (47/3) p r 13

where p is the density and r l is the inner radius of the

envelope. In this way, we can treat the expansion or

col?.apse of thick shells of dust.

-16-



VII. EFFECT OF ROTATION

An important question in astrophysics is: Does

rotation stop collapse or does collapse crush rota-

tion 11.) In order to study this question, consider a

`_est particle on the surface of the collapsing ball of

dust. In Newtonian mechanics one learns that if the

particle has sufficient tangential velocity, it will

remain in orbit around the collapsing du:t. If the

particle remains in orbit, it has a point of closest

approach to the center of the collapsing dust ball.

At this point the outward radial acceleration is equal

to or greater than zero. The former case corresponds

to circular motion.

The general relativistic equations of motion of

the test particle can be obtained from the variational

principle (7) yielding

(rr 2Q ^)	 = 0	 (22a)

(A2 t^)	 = 0	 (22b)

2B 2 r 	 (B 2 ) r (r ) = 2r (W 2 - (A 2 ) r (t ) 2 .	 (22c)

-17-



Integration of Eqs. (22a) and (22b)

	

r 2 C%, = t	 (23a)

	

A 2 t' = K	 ( 23b)

and substitution into Eq. (22c) yields

2 „	 2	 , 2	 2 -3	 -2 2 -4
2B) r (r ' )	 = 21 r	 - 2mr	 K A	 (23c)

At the test particle's point of closest approach to

the center of the dust ball, the radial velocity r' vanishes

and the rr.dial acceleration r" is equal or greater than

zero. This implies that

2	 2 -4
z m r K A

On the other hand, the world line of the particle must re-

main within the light cone. This is true only if

	

a,, 2 : K2 r2 A -2	 (25)

at the point of closest approach. These two conditions (24)

and (25) are consistent only for r :^! 3m.

Thus, for r a 3m, rotation of the test particle about

the center of the dust ball can stop the collapse of the

particle	 The particles can remain in orbit abound the

col!Dpsing dust ball. However, for 3m > r > 2m the gravi-

tational attraction overpowers the centrifugal force.

(24)

- 18 -



Thus, in this region the rotation cannot stop the collapse.

This is because the expression for centrifugal force devi-

ated from the Newtonian one since the particle world line	 i

must remain within the light cone; the local velocity of

the particle cannot exceed that of light.

A collapsing star r.in shed some of its angular momen-

tum via the above mechanism and collapse toward its

Schwarzschild radius leaving planets in orbit about it.

But for 3m > r > 2m the planets cannot remain in orbit.

The centrifugal force is overpowered by the gravitational

attraction and everything collapses.

- 19 -
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7. The origin c,nd sign of the time in the above expression
are arbitrary. Thus the above solutions arc valid if
the time t is replaced by + (t-t ). This is also true
of the prcvicus solutions. The substitu}ion t -- -t
gives an initially collapsing solution.

8. For the case where k = 1 or -1 this result is obtained as
follows:	 1 3 = (87,/3) pa 3 /a o = (8r./3) p r 3 (1 + ,(k/4)
(Uo2) 3

/aoUo = (Sr/3) 
pr 3 ao2 r

0
-3 = (47/3) „r /m.

9. For a discussion of a ball of dust with positive
curvature via the initial value equations, see ref. 3.
An extensive bibliography of previous work on the sub-
ject is also given there.

10. A similar problem was considered by Wahlauist and
Estabrook (Phys. Rev. 156, 1359 (1967); These
authors consider only the case of positive curva-
ture of the space within the dust as dad Oppenheimer
and Snyder (Phys. Rev. 56, 455 (1939)).

11. iIoyle, Fowler, Burbidge, and Burbidge, (1964). Ap. J.
139, 909.

12. For a .:omplete discussion of such orbits see 	 =_
Y. Hagihara (1931). Jap. J. of Ast. and Geoph. VIII 67
see also e.g. B. Kuchowicz, (1966). Acta Phys. Polom.
30, 981 and the references cited there.
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Figure Caption

i=

Figure 1: Closed inhomogenecus universe at the moment of 	

tatof time symmetry. This univer-z e is obtained

by patching positive curvature Friedman regions

to both enas of a Schwarzschiia rayion.
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