OSMOTIC COEFFICIENTS AND MEAN ACTIVITY COEFFICIENTS OF A SERIES OF UNI-UNIVALENT ELECTROLYTES IN AQUEOUS SOLUTIONS AT 25°C.

Prepared for
National Aeronautics and Space Administration

NASA Contract Number: R-09-022-029

NBS
U.S. DEPARTMENT OF COMMERCE
NATIONAL BUREAU OF STANDARDS
NATIONAL BUREAU OF STANDARDS

The National Bureau of Standards was established by an act of Congress March 3, 1901. Today, in addition to serving as the Nation's central measurement laboratory, the Bureau is a principal focal point in the Federal Government for assuring maximum application of the physical and engineering sciences to the advancement of technology in industry and commerce. To this end the Bureau conducts research and provides central national services in three broad program areas and provides central national services in a fourth. These are: (1) basic measurements and standards, (2) materials measurement and standards, (3) technological measurements and standards, and (4) transfer of technology.

The Bureau comprises the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, and the Center for Radiation Research.

THE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement, coordinates that system with the measurement systems of other nations, and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation's scientific community, industry, and commerce. The Institute consists of an Office of Standard Reference Data and a group of divisions organized by the following areas of science and engineering:

THE INSTITUTE FOR MATERIALS RESEARCH conducts materials research leading to methods, standards of measurement, and data needed by industry, commerce, educational institutions, and government. The Institute also provides advisory and research services to other government agencies. The Institute consists of an Office of Standard Reference Materials and a group of divisions organized by the following areas of materials research:

THE INSTITUTE FOR APPLIED TECHNOLOGY provides for the creation of appropriate opportunities for the use and application of technology within the Federal Government and within the civilian sector of American industry. The primary functions of the Institute may be broadly classified as programs relating to technological measurements and standards and techniques for the transfer of technology. The Institute consists of a Clearinghouse for Scientific and Technical Information, a Center for Computer Sciences and Technology, and a group of technical divisions and offices organized by the following fields of technology:

THE CENTER FOR RADIATION RESEARCH engages in research, measurement, and application of radiation to the solution of Bureau mission problems and the problems of other agencies and institutions. The Center for Radiation Research consists of the following divisions:

1 Headquarters and Laboratories at Gaithersburg, Maryland, unless otherwise noted; mailing address Washington, D. C. 20234.
2 Located at Boulder, Colorado 80302.
3 Located at 5055 Port Royal Road, Springfield, Virginia 22151.
ELECTROCHEMICAL DATA

PART XIII

OSMOTIC COEFFICIENTS AND MEAN ACTIVITY COEFFICIENTS
OF A SERIES OF UNI-UNIVALENT ELECTROLYTES IN
AQUEOUS SOLUTIONS AT 25 °C.

by
Yung-Chi Wu and Walter J. Hamer

Prepared for
National Aeronautics and Space Administration
NASA Contract Number: R-09-022-029

IMPORTANT NOTICE

NATIONAL BUREAU OF STANDARDS REPORTS are usually preliminary or progress accounting documents intended for use within the Government. Before material in the reports is formally published it is subjected to additional evaluation and review. For this reason, the publication, reprinting, reproduction, or open-literature listing of this Report, either in whole or in part, is not authorized unless permission is obtained in writing from the Office of the Director, National Bureau of Standards, Washington, D.C. 20234. Such permission is not needed, however, by the Government agency for which the Report has been specifically prepared if that agency wishes to reproduce additional copies for its own use.
Electrochemical Data. XIII. Osmotic Coefficients and Mean Activity Coefficients of a Series of Uni-univalent Electrolytes in Aqueous Solutions at 25 °C.

ABSTRACT

This report gives the osmotic coefficients and the mean activity coefficients of a series of uni-univalent electrolytes in aqueous solutions at 25 °C. The values are expressed on the molality or weight basis. The electrolytes treated are: NaF, KF, RbF, CsF, NaClO₃, KClO₃, NaBrO₃, KBrO₃, HClO₄, LiClO₄, NaClO₄, TiCl₄, LiOH, NaOH, KOH, CsOH, HNO₃, LiNO₃, NaNO₃, KNO₃, RbNO₃, CsNO₃, AgNO₃, NH₄Cl, NH₂NO₃, NH₄ClO₄, NaCNS, KCNS, NaH₂PO₄, KH₂PO₄, NaH₂AsO₄, and KH₂AsO₄.

I. Introduction

This report represents a continuation of the work presented in Electrochemical Data, Part XI. Again the literature data were fitted to the equation for the excess Gibbs energy (free energy):

$$\Delta G^{\text{ex}} = \nu m \text{RT} (1-\phi_m + \ln \gamma)$$ \hspace{1cm} (1)

where \(\nu\) is the number of ions into which one molecule of solute (electrolyte) dissociates, \(m\) is molality, \(R\) the gas constant, \(T\) the Kelvin temperature, \(\phi\) the osmotic coefficient, and \(\gamma\) the activity coefficient on the molality scale. Values of \(\Delta G^{\text{ex}}\) as a function of \(m\) were determined by using the following equations for \(\phi\) and \(\gamma\):

$$\phi_m = 1 - 2.302585 \left[\frac{z^+ z^- \Lambda_m}{(B_m^*)^3 m} \left[1 + B_m^* \sqrt{m} \right] - 2 \ln \left(1 + B_m^* \sqrt{m} \right) - 1/(1 + B_m^* \sqrt{m}) \right]$$

$$+ 2.302585 \left[\beta_m/2 + 2C_m^2/3 + 3D_m^3/4 + 4E_m^4/5 + \ldots \right]$$ \hspace{1cm} (2)
and

$$\log \gamma = -\frac{|z^z|A^{\pm m}}{1 + B^{m/m}} + \beta m + C m^2 + D m^3 + F m^4 + \ldots \ldots \quad (3)$$

Substitution of equations (2) and (3) in (1) gives ΔG^{ex} as a function of m, namely:

$$\Delta G^{\text{E}} = \nu RT (2.302585) \left\{ \left[|z^z| A^{+m} / (B_m^{*})^3 \right] \left[(2 - B_m^{*}m)B_m^{*}/m \right]
- 2 \ln (1 + B_m^{*}/m) + \beta m^2/2 + C m^3/3 + D m^4/4 + E m^5/5 + \ldots \ldots \right\} \quad (4)$$

The parameters B_m^{*}, β, C, D, and E were then obtained by least squares using a computer program. These parameters were then used to express ϕ and $\log \gamma$ individually by equations (2) and (3) above. The standard deviations of the fit of these equations are denoted, respectively, by S_ϕ and S_γ and are given at the bottom of each table. In these least square fits values of B_m^{*} were selected that made S_ϕ and S_γ minimal. Terms with coefficients of D and E were required only for those electrolytes for which data were available at very high concentrations (above about 3M). [Note: inadvertently, in report Electrochemical Data, Part XI the ion-size parameter, a, was omitted from equations III.9, III.10, and III.11. In each equation the constant B should be replaced by the notation B_{m}^{*} where the subscript m means molality and makes the constant consistent with that given in equations II.5 and II.6 of that report. Also in equation III.31 B_m^{3} should be $(B_{m}^{*})^3$ and B_m^{*} should be B_{m}^{*}. In this report B_{m}^{*} is replaced by B_m^{*} thus removing the physical significance to this parameter and making it empirical.
II. Results

The results are given in tables 1 to 32, inclusive. In each case the values are those calculated by the above equations and represent the best fit to the experimental data.

III. References

(For data at 25 °C only)

NaF

 Emf: NaHg|NaF(m)|PbF$_2$, PbHg
 m = 0.05 - 0.9 m (saturated at 0.983 m)
 Isopiestic vapor pressure: m = 0.1 - 4.0: φ and γ

KF

 Isopiestic vapor pressure: m = 0.1 - 4.0: φ and γ
 Isopiestic vapor pressure: m = 2.0 - 17.5: φ and γ

RbF

 Isopiestic vapor pressure: m = 0.1 - 3.5: γ and φ

CsF

 Isopiestic vapor pressure: m = 0.1 - 3.5: φ and γ
\[\text{NaClO}_3 \]

Isopiestic vapor pressure: \(m = 0.2 - 3.0 \): \(\phi \) and \(\gamma \)

\[\text{KClO}_3 \]

Isotonic solutions: \(m = 0.2 - 0.7 \): \(\phi \) and \(\gamma \)

\[\text{NaBrO}_3 \]

Isotonic solutions: \(m = 0.2 - 2.617 \) (saturated): \(\phi \) and \(\gamma \)

\[\text{KBrO}_3 \]

Isotonic solutions: \(m = 0.15 - 0.50 \): \(\gamma \) and \(\phi \)

\[\text{HClO}_4 \]

Emf: \(H_2 || \text{HClO}_4 || \text{HClO}_4 || H_2 \)

\(m = 0.01 - 0.10 \): \(\gamma \)

Vapor pressure: \(m = 0.0 - 12.0 \): \(\gamma \)

Isopiestic vapor pressure: \(m = 0.1 - 16 \): \(\phi \), \(\log \gamma \)

Isopiestic vapor pressure: \(m = 0.1 - 16.0 \): \(\gamma \), \(\phi \)
LiClO$_4$

Isopiestic vapor pressure: $m = 0.2 - 4.5$: ϕ and γ

γ calculated from diffusion coefficient data. Concentration in moles/liter $c = 0.0005 - 0.020$: γ

NaClO$_4$

Isopiestic vapor pressure: $m = 0.2 - 6.5$: γ, ϕ

[Note: $t = 25 \pm 1.0 ^{\circ}C$] Isopiestic vapor pressure: $m = 4 - 16$:
γ and $(1 - \phi)$ ["Salt dried to constant weight in oven at 110 $^{\circ}$C. No further purification attempted."]

Isopiestic vapor pressure: $m = 6 - 16$ (even concentrations):
ϕ and γ

TlClO$_4$

Isopiestic vapor pressure: $m = 0.025 - 0.5$: γ

LiOH

Emf: $H_2|\text{LiOH}(m_2)|\text{Li}^+\text{Hg}|\text{LiOH}(m_1)|H_2$
$m = 0.9505 - 3.926$: γ

Vapor pressure measurements: $m = 0.5 - 5.0$ (γ)
$m = 1.0 - 5.0$ (ϕ)
NaOH

\[
\text{Emf: } H_2 | \text{NaOH(m)}_2 | Na_x Hg | \text{NaOH(m)}_1 | H_2 \\
m = 0.0202 - 3.10: \gamma
\]

\[
\text{Emf: } H_2 | \text{NaOH(C2)} | Na_x Hg | \text{NaOH(C1)} | H_2 \\
m = 0.0202 - 3.10: \gamma
\]

\[
\text{Emf: } H_2 | \text{NaOH(C1)} | Na_x Hg | \text{NaOH(C2)} | H_2 \\
m = 0.01004 - 2.825: \gamma
\]

\[
\text{Emf: } H_2 | \text{NaOH(m)} | Na_x Hg | \text{NaOH (0.05)} | H_2 \\
m = 0.05 - 4.0: \gamma
\]

\[
\text{Emf: } \text{Hg} | \text{HgO, NaOH(m)} | H_2(Pt) \\
m = 0.1 - 0.9
\]

Activity of water in NaOH-H_2O solution calculated.

Isopiestic vapor pressure: \(m = 2.0 - 29.0: \phi \) and \(\gamma \)

Vapor pressure: \(m = 5.085 - 13.834 \) water activities

Vapor pressure: \(m = 1.0 - 27.0: \phi \)
KOH

\[\text{Emf: } \text{Hg} + \text{H}_2\text{O}, \text{KOH(C}_1\text{)}, \text{K in Hg, KOH(C}_2\text{)}, \text{HgO} + \text{Hg} \]
\[m = 0.003 - 1.00: \gamma \]

[Note: See M. Knobel, J. Am. Chem. Soc. 45, 70 (1923) for a revision of this work. Chow did not exclude air from his solutions.]

\[\text{Emf: } \text{H}_2 | \text{KOH(C}_1\text{)}, \text{Hg}_{x} | \text{KCl(C)} | \text{KOH(C}_1\text{)} | \text{H}_2 \]
\[m = 0.001 - 3.0: \gamma \]

\[\text{Emf: } \text{H}_2 | \text{KOH(C}_1\text{)}, \text{KCl(C)} | \text{K}_x \text{Hg} | \text{KOH(C}_1\text{)} | \text{H}_2 \]
\[m = 0.03 - 3.0: \gamma \]

\[\text{Emf: } \text{H}_2 | \text{KOH(aq., M)} | \text{K}_x \text{Hg} | \text{KOH(aq., M = 0.05)} | \text{H}_2 \]
\[m = 0.05 - 4.0: \gamma \]

Vapor pressure: \(m = 1.0 - 20.0: \gamma, \phi \)

CsOH

\[\text{Emf: } \text{H}_2 | \text{CsOH(m)} | \text{Cs}_x \text{Hg} | \text{CsOH(0.05)} | \text{H}_2 \]
\[m = 0.01016 - 1.3205: \gamma \]
 Emf: Pt|Q(sat), HNO₃(m', fixed)|HNO₃(m, variable), Q(sat)|Pt
 Q = quinhydrone
 c = 0.001021 - 0.2040; -log γ

 Emf: Glass electrode|HNO₃(m₁)|HNO₃(m₂)|glass electrode
 m = 0.01 - 0.10; γ

 Liquid vapor equilibrium measured for binary system HNO₃-H₂O
 for compns. of liquid phase from 0 to 68% HNO₃.

 Combines new transpiration data on partial pressures of HNO₃
 c = 2 - 16 m/ℓ; γ

 Chem. 69, 97 (1965).
 Isopiestic vapor pressure: m = 2.0 - 28.0; γ and φ

 Vapor pressure measurements: m = 0.00 - 12.8693; γ

 Isopiestic vapor pressure: m = 0.1 - 3.5; γ

 Isopiestic vapor pressure: m = 0.1 - 13.5; φ and γ
LiNO₃ (continued)

 Diffusion coefficients: c = 0.0005 - .020: γ

 Vapor pressure: m = 1.0 - 20.0 (ϕ)
 m = 0.5 - 5.0 (γ)

NaNO₃

 Isopiestic vapor pressure: m = 0.1 - 6.0: γ

 Vapor pressure: Activity of H₂O and apparent and partial molal volumes of the salts in these solutions were calculated.
 m = 0.1 - 10.830 (saturated)

 γ calculated from diffusion coefficient data
 c = 0.005 - 0.020

 γ calculated from diffusion coefficient data
 c = 0.003 - 0.015

 Vapor pressure: m = 0.1 - 10.0: ϕ

KNO₃

 Isopiestic vapor pressure: m = 0.1 - 3.5: γ
KNO₃ (continued)

Differential diffusion coefficients: c = 0.00 - 0.00919

Diffusion coefficient data
\[c = 0.0005 - 0.020: \gamma \]

Vapor pressure: \(m = 1.0 - 3.0: \phi \)

RbNO₃

Isopiestic vapor pressure: \(m = 0.1 - 4.5: \gamma \) and \(\phi \)

CsNO₃

Isopiestic vapor pressure: \(m = 0.1 - 1.5: \gamma \) and \(\phi \)

AgNO₃

Emf: \[Ag \mid AgNO₃(C_1) \mid AgNO₃(C_2) \mid Ag \]
\[C = 0.002 - 0.10: \gamma \]

Isopiestic vapor pressure: \(m = 0.1 - 13.5: \phi \) and \(\gamma \)
AgNO₃ (continued)

 Conductometric method: c = 0.00 - 0.00628: Diffusion coefficients

 Vapor pressure: m = 1.0 - 14.0: φ

NH₄Cl

 Vapor pressure: m = 0.1 - 7.38 (saturated): γ

 Isopiestic vapor pressure: m = 0.1 - 7.390 (saturated): γ and φ

 Isopiestic vapor pressure: m = 5.0 - 7.42: φ and γ

NH₄NO₃

 Isopiestic vapor pressure: m = 0.1 - 25.954 (saturated): γ and φ

NH₄ClO₄

 Isopiestic vapor pressure: m = 0.1 - 2.1: φ and γ

NaCNS

 Isopiestic vapor pressure: m = 0.1 - 4.0: φ and γ
NaCNS (continued)

Note: \(t = 25 \pm 1.0 \, ^\circ C \)

Isopiestic vapor pressure: \(m = 1.0 - 18.0: \gamma; (1-\phi) \)

Salt used without purification

KCNS

Vapor pressure: \(m = 0.00 - 10.0 \)

Isopiestic vapor pressure: \(m = 0.1 - 5.0: \phi \) and \(\gamma \)

\(\text{NaH}_2\text{PO}_4 \)

Isopiestic vapor pressure: \(m = 0.1 - 6.5: \phi \) and \(\gamma \)

Isopiestic vapor pressure: \(m = 0.1 - 1.3: 1 + \log \gamma \)

\(\text{KH}_2\text{PO}_4 \)

Isopiestic vapor pressure: \(m = 0.1 - 1.8: \phi \) and \(\gamma \)

Isopiestic vapor pressure: \(m = 0.1 - 1.3: \phi \)

\(\text{NaH}_2\text{AsO}_4 \)

Isopiestic vapor pressure: \(m = 0.1 - 1.3: \phi \)
KH₂AsO₄

Isopiestic vapor pressure: \(m = 0.1 - 1.3: \phi \)

<table>
<thead>
<tr>
<th>(m)</th>
<th>(\phi)</th>
<th>(\gamma)</th>
<th>(m)</th>
<th>(\phi)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.926</td>
<td>0.01</td>
<td>0.967</td>
<td>0.901</td>
</tr>
<tr>
<td>0.02</td>
<td>0.956</td>
<td>0.868</td>
<td>0.05</td>
<td>0.939</td>
<td>0.813</td>
</tr>
<tr>
<td>0.10</td>
<td>0.924</td>
<td>0.764</td>
<td>0.20</td>
<td>0.908</td>
<td>0.709</td>
</tr>
<tr>
<td>1.0</td>
<td>0.875</td>
<td>0.575</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\beta_m = 1.30 \\
\beta = -0.0252 \\
\phi^* = 0.0019 \\
\gamma^* = 0.0013
\]
TABLE 2 - Osmotic coefficients and mean activity coefficients of KF at 25 °C

Based on data in references 3,4]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.09</td>
<td>0.928</td>
<td>0.647</td>
<td>0.90</td>
<td>0.932</td>
<td>0.645</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.0</td>
<td>0.940</td>
<td>0.643</td>
<td>1.0</td>
<td>0.950</td>
<td>0.644</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.927</td>
<td>1.2</td>
<td>0.941</td>
<td>0.647</td>
<td>1.2</td>
<td>0.951</td>
<td>0.644</td>
</tr>
<tr>
<td>0.01</td>
<td>0.968</td>
<td>0.902</td>
<td>1.4</td>
<td>0.942</td>
<td>0.648</td>
<td>1.4</td>
<td>0.952</td>
<td>0.645</td>
</tr>
<tr>
<td>0.02</td>
<td>0.958</td>
<td>0.870</td>
<td>1.6</td>
<td>0.943</td>
<td>0.649</td>
<td>1.6</td>
<td>0.953</td>
<td>0.650</td>
</tr>
<tr>
<td>0.05</td>
<td>0.942</td>
<td>0.818</td>
<td>1.8</td>
<td>0.944</td>
<td>0.650</td>
<td>1.8</td>
<td>0.954</td>
<td>0.651</td>
</tr>
<tr>
<td>0.10</td>
<td>0.930</td>
<td>0.773</td>
<td>2.0</td>
<td>0.945</td>
<td>0.651</td>
<td>2.0</td>
<td>0.955</td>
<td>0.652</td>
</tr>
<tr>
<td>0.20</td>
<td>0.920</td>
<td>0.726</td>
<td>2.5</td>
<td>1.014</td>
<td>0.679</td>
<td>2.5</td>
<td>1.015</td>
<td>0.680</td>
</tr>
<tr>
<td>0.30</td>
<td>0.916</td>
<td>0.700</td>
<td>3.0</td>
<td>1.048</td>
<td>0.705</td>
<td>3.0</td>
<td>1.050</td>
<td>0.706</td>
</tr>
<tr>
<td>0.40</td>
<td>0.915</td>
<td>0.683</td>
<td>3.5</td>
<td>1.084</td>
<td>0.738</td>
<td>3.5</td>
<td>1.086</td>
<td>0.740</td>
</tr>
<tr>
<td>0.50</td>
<td>0.916</td>
<td>0.671</td>
<td>4.0</td>
<td>1.121</td>
<td>0.777</td>
<td>4.0</td>
<td>1.123</td>
<td>0.779</td>
</tr>
<tr>
<td>0.60</td>
<td>0.918</td>
<td>0.662</td>
<td>4.5</td>
<td>1.160</td>
<td>0.822</td>
<td>4.5</td>
<td>1.162</td>
<td>0.824</td>
</tr>
<tr>
<td>0.70</td>
<td>0.921</td>
<td>0.655</td>
<td>5.0</td>
<td>1.201</td>
<td>0.872</td>
<td>5.0</td>
<td>1.203</td>
<td>0.874</td>
</tr>
<tr>
<td>0.80</td>
<td>0.924</td>
<td>0.651</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B^* = 1.30 \]
\[\beta = 0.0266 \]
\[C = 0.00532 \]
\[D = -0.000286 \]
\[E = 0.00000376 \]
\[s_\phi = 0.0035 \]
\[s_\gamma = 0.0079 \]
TABLE 3 - Osmotic coefficients and mean activity coefficients of RbF at 25 °C

[Based on data in reference 5]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.70</td>
<td>0.939</td>
<td>0.675</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
<td>0.80</td>
<td>0.945</td>
<td>0.674</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.926</td>
<td>0.90</td>
<td>0.951</td>
<td>0.674</td>
</tr>
<tr>
<td>0.01</td>
<td>0.967</td>
<td>0.901</td>
<td>1.0</td>
<td>0.958</td>
<td>0.675</td>
</tr>
<tr>
<td>0.02</td>
<td>0.957</td>
<td>0.869</td>
<td>1.2</td>
<td>0.970</td>
<td>0.679</td>
</tr>
<tr>
<td>0.05</td>
<td>0.942</td>
<td>0.817</td>
<td>1.4</td>
<td>0.982</td>
<td>0.684</td>
</tr>
<tr>
<td>0.10</td>
<td>0.930</td>
<td>0.773</td>
<td>1.6</td>
<td>0.994</td>
<td>0.692</td>
</tr>
<tr>
<td>0.20</td>
<td>0.923</td>
<td>0.728</td>
<td>1.8</td>
<td>1.005</td>
<td>0.700</td>
</tr>
<tr>
<td>0.30</td>
<td>0.922</td>
<td>0.706</td>
<td>2.0</td>
<td>1.016</td>
<td>0.708</td>
</tr>
<tr>
<td>0.40</td>
<td>0.925</td>
<td>0.692</td>
<td>2.5</td>
<td>1.040</td>
<td>0.731</td>
</tr>
<tr>
<td>0.50</td>
<td>0.929</td>
<td>0.683</td>
<td>3.0</td>
<td>1.061</td>
<td>0.752</td>
</tr>
<tr>
<td>0.60</td>
<td>0.934</td>
<td>0.678</td>
<td>3.5</td>
<td>1.076</td>
<td>0.773</td>
</tr>
</tbody>
</table>

\[\frac{B_m^*}{B_m} = 1.10 \]

\[\beta = 0.0789 \]

\[C = -0.00615 \]

\[s_\phi = 0.00815 \]

\[s_\gamma = 0.00590 \]
TABLE 4 - Osmotic coefficients and mean activity coefficients of CsF at 25 °C

[Based on data in reference 6]

<table>
<thead>
<tr>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>.001</td>
<td>.988</td>
<td>.965</td>
<td>0.70</td>
<td>.959</td>
<td>.704</td>
</tr>
<tr>
<td>.002</td>
<td>.984</td>
<td>.952</td>
<td>.8</td>
<td>.967</td>
<td>.706</td>
</tr>
<tr>
<td>.005</td>
<td>.976</td>
<td>.927</td>
<td>.9</td>
<td>.976</td>
<td>.710</td>
</tr>
<tr>
<td>.01</td>
<td>.968</td>
<td>.902</td>
<td>1.0</td>
<td>.985</td>
<td>.715</td>
</tr>
<tr>
<td>.02</td>
<td>.958</td>
<td>.870</td>
<td>1.2</td>
<td>1.003</td>
<td>.727</td>
</tr>
<tr>
<td>.05</td>
<td>.944</td>
<td>.820</td>
<td>1.4</td>
<td>1.021</td>
<td>.742</td>
</tr>
<tr>
<td>.1</td>
<td>.934</td>
<td>.779</td>
<td>1.6</td>
<td>1.040</td>
<td>.758</td>
</tr>
<tr>
<td>.2</td>
<td>.929</td>
<td>.739</td>
<td>1.8</td>
<td>1.058</td>
<td>.777</td>
</tr>
<tr>
<td>.3</td>
<td>.931</td>
<td>.720</td>
<td>2.0</td>
<td>1.075</td>
<td>.796</td>
</tr>
<tr>
<td>.4</td>
<td>.936</td>
<td>.709</td>
<td>2.5</td>
<td>1.118</td>
<td>.850</td>
</tr>
<tr>
<td>.5</td>
<td>.943</td>
<td>.705</td>
<td>3.0</td>
<td>1.159</td>
<td>.908</td>
</tr>
<tr>
<td>.6</td>
<td>.951</td>
<td>.703</td>
<td>3.5</td>
<td>1.197</td>
<td>.970</td>
</tr>
</tbody>
</table>

\[B_m^* = 1.164 \]
\[\beta = 0.0938 \]
\[s_\phi = 0.0098 \]
\[s_\gamma = 0.0068 \]
TABLE 5 - Osmotic coefficients and mean activity coefficients of NaClO₃ at 25 °C

[Based on data in reference 7]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.80</td>
<td>0.889</td>
<td>0.610</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>0.90</td>
<td>0.888</td>
<td>0.601</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.927</td>
<td>1.0</td>
<td>0.887</td>
<td>0.594</td>
</tr>
<tr>
<td>0.01</td>
<td>0.968</td>
<td>0.902</td>
<td>1.2</td>
<td>0.886</td>
<td>0.581</td>
</tr>
<tr>
<td>0.02</td>
<td>0.957</td>
<td>0.870</td>
<td>1.4</td>
<td>0.886</td>
<td>0.571</td>
</tr>
<tr>
<td>0.05</td>
<td>0.941</td>
<td>0.817</td>
<td>1.6</td>
<td>0.886</td>
<td>0.562</td>
</tr>
<tr>
<td>0.10</td>
<td>0.927</td>
<td>0.769</td>
<td>1.8</td>
<td>0.886</td>
<td>0.554</td>
</tr>
<tr>
<td>0.20</td>
<td>0.913</td>
<td>0.717</td>
<td>2.0</td>
<td>0.886</td>
<td>0.548</td>
</tr>
<tr>
<td>0.30</td>
<td>0.905</td>
<td>0.686</td>
<td>2.5</td>
<td>0.887</td>
<td>0.535</td>
</tr>
<tr>
<td>0.40</td>
<td>0.900</td>
<td>0.663</td>
<td>3.0</td>
<td>0.886</td>
<td>0.524</td>
</tr>
<tr>
<td>0.50</td>
<td>0.896</td>
<td>0.646</td>
<td>3.5</td>
<td>0.885</td>
<td>0.514</td>
</tr>
<tr>
<td>0.60</td>
<td>0.893</td>
<td>0.632</td>
<td>4.0</td>
<td>0.882</td>
<td>0.504</td>
</tr>
<tr>
<td>0.70</td>
<td>0.891</td>
<td>0.620</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_m^{*} = 1.40 \]
\[\beta = -0.0209 \]
\[C = 0.00950 \]
\[s_\phi = 0.00819 \]
\[s_\gamma = 0.00546 \]
TABLE 6 - Osmotic coefficients and mean activity coefficients of KClO₃ at 25 °C

[Based on data in reference 8]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
</tr>
<tr>
<td>0.005</td>
<td>0.975</td>
<td>0.926</td>
</tr>
<tr>
<td>0.01</td>
<td>0.966</td>
<td>0.899</td>
</tr>
<tr>
<td>0.02</td>
<td>0.955</td>
<td>0.865</td>
</tr>
<tr>
<td>0.05</td>
<td>0.934</td>
<td>0.806</td>
</tr>
<tr>
<td>0.10</td>
<td>0.914</td>
<td>0.749</td>
</tr>
<tr>
<td>0.20</td>
<td>0.886</td>
<td>0.680</td>
</tr>
<tr>
<td>0.30</td>
<td>0.865</td>
<td>0.634</td>
</tr>
<tr>
<td>0.40</td>
<td>0.848</td>
<td>0.598</td>
</tr>
<tr>
<td>0.50</td>
<td>0.833</td>
<td>0.568</td>
</tr>
<tr>
<td>0.60</td>
<td>0.820</td>
<td>0.543</td>
</tr>
<tr>
<td>0.70</td>
<td>0.808</td>
<td>0.522</td>
</tr>
</tbody>
</table>

\[B^{*}_{m} = 1.50 \]
\[\beta = -0.162 \]

\[s_\phi = 0.00310 \]
\[s_\gamma = 0.00198 \]
TABLE 7 - Osmotic coefficients and mean activity coefficients of NaBrO₃ at 25 °C

[Based on data in reference 9]

<table>
<thead>
<tr>
<th>m</th>
<th>Φ</th>
<th>γ</th>
<th>m</th>
<th>Φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.60</td>
<td>0.855</td>
<td>0.584</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
<td>0.70</td>
<td>0.848</td>
<td>0.567</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.926</td>
<td>0.80</td>
<td>0.843</td>
<td>0.552</td>
</tr>
<tr>
<td>0.01</td>
<td>0.967</td>
<td>0.901</td>
<td>0.90</td>
<td>0.838</td>
<td>0.539</td>
</tr>
<tr>
<td>0.02</td>
<td>0.956</td>
<td>0.868</td>
<td>1.0</td>
<td>0.833</td>
<td>0.528</td>
</tr>
<tr>
<td>0.05</td>
<td>0.938</td>
<td>0.811</td>
<td>1.2</td>
<td>0.826</td>
<td>0.508</td>
</tr>
<tr>
<td>0.10</td>
<td>0.920</td>
<td>0.759</td>
<td>1.4</td>
<td>0.820</td>
<td>0.491</td>
</tr>
<tr>
<td>0.20</td>
<td>0.898</td>
<td>0.698</td>
<td>1.6</td>
<td>0.813</td>
<td>0.476</td>
</tr>
<tr>
<td>0.30</td>
<td>0.884</td>
<td>0.658</td>
<td>1.8</td>
<td>0.807</td>
<td>0.463</td>
</tr>
<tr>
<td>0.40</td>
<td>0.872</td>
<td>0.628</td>
<td>2.0</td>
<td>0.799</td>
<td>0.450</td>
</tr>
<tr>
<td>0.50</td>
<td>0.863</td>
<td>0.604</td>
<td>2.5</td>
<td>0.768</td>
<td>0.416</td>
</tr>
</tbody>
</table>

\[B_m^* = 1.50 \]
\[\beta = -0.106 \]
\[C = 0.0414 \]

\[s_\Phi = 0.00680 \]
\[s_\gamma = 0.00315 \]
TABLE 8 - Osmotic coefficients and mean activity coefficients of KBrO₃ at 25 °C

[Based on data in reference 10]

<table>
<thead>
<tr>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
</tr>
<tr>
<td>.002</td>
<td>.983</td>
<td>.951</td>
</tr>
<tr>
<td>.005</td>
<td>.974</td>
<td>.925</td>
</tr>
<tr>
<td>.01</td>
<td>.965</td>
<td>.898</td>
</tr>
<tr>
<td>.02</td>
<td>.953</td>
<td>.863</td>
</tr>
<tr>
<td>.05</td>
<td>.932</td>
<td>.802</td>
</tr>
<tr>
<td>.10</td>
<td>.910</td>
<td>.744</td>
</tr>
<tr>
<td>.20</td>
<td>.881</td>
<td>.672</td>
</tr>
<tr>
<td>.30</td>
<td>.857</td>
<td>.623</td>
</tr>
<tr>
<td>.40</td>
<td>.836</td>
<td>.584</td>
</tr>
<tr>
<td>.50</td>
<td>.817</td>
<td>.550</td>
</tr>
</tbody>
</table>

\[B^*_m = 1.30 \]

\[s_\phi = .00076 \]

\[s_\gamma = .00327 \]
TABLE 9 - Osmotic coefficients and mean activity coefficients of HClO₄ at 25 °C

[Based on data in references 11-14]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.989</td>
<td>0.966</td>
<td>2.0</td>
<td>1.209</td>
<td>1.055</td>
</tr>
<tr>
<td>0.002</td>
<td>0.985</td>
<td>0.953</td>
<td>2.5</td>
<td>1.303</td>
<td>1.226</td>
</tr>
<tr>
<td>0.005</td>
<td>0.977</td>
<td>0.929</td>
<td>3.0</td>
<td>1.403</td>
<td>1.445</td>
</tr>
<tr>
<td>0.01</td>
<td>0.970</td>
<td>0.906</td>
<td>3.5</td>
<td>1.509</td>
<td>1.724</td>
</tr>
<tr>
<td>0.02</td>
<td>0.962</td>
<td>0.878</td>
<td>4.0</td>
<td>1.621</td>
<td>2.078</td>
</tr>
<tr>
<td>0.05</td>
<td>0.952</td>
<td>0.836</td>
<td>4.5</td>
<td>1.737</td>
<td>2.527</td>
</tr>
<tr>
<td>0.10</td>
<td>0.947</td>
<td>0.803</td>
<td>5.0</td>
<td>1.857</td>
<td>3.098</td>
</tr>
<tr>
<td>0.20</td>
<td>0.949</td>
<td>0.775</td>
<td>5.5</td>
<td>1.98</td>
<td>3.83</td>
</tr>
<tr>
<td>0.30</td>
<td>0.957</td>
<td>0.766</td>
<td>6.0</td>
<td>2.11</td>
<td>4.75</td>
</tr>
<tr>
<td>0.40</td>
<td>0.967</td>
<td>0.765</td>
<td>7.0</td>
<td>2.37</td>
<td>7.45</td>
</tr>
<tr>
<td>0.50</td>
<td>0.978</td>
<td>0.769</td>
<td>8.0</td>
<td>2.63</td>
<td>11.86</td>
</tr>
<tr>
<td>0.60</td>
<td>0.990</td>
<td>0.776</td>
<td>9.0</td>
<td>2.90</td>
<td>19.07</td>
</tr>
<tr>
<td>0.70</td>
<td>1.003</td>
<td>0.786</td>
<td>10.0</td>
<td>3.17</td>
<td>30.8</td>
</tr>
<tr>
<td>0.80</td>
<td>1.016</td>
<td>0.798</td>
<td>11.0</td>
<td>3.43</td>
<td>49.9</td>
</tr>
<tr>
<td>0.90</td>
<td>1.030</td>
<td>0.811</td>
<td>12.0</td>
<td>3.68</td>
<td>80.6</td>
</tr>
<tr>
<td>1.0</td>
<td>1.045</td>
<td>0.826</td>
<td>13.0</td>
<td>3.93</td>
<td>129.</td>
</tr>
<tr>
<td>1.2</td>
<td>1.075</td>
<td>0.861</td>
<td>14.0</td>
<td>4.17</td>
<td>205.</td>
</tr>
<tr>
<td>1.4</td>
<td>1.106</td>
<td>0.901</td>
<td>15.0</td>
<td>4.39</td>
<td>322.</td>
</tr>
<tr>
<td>1.6</td>
<td>1.139</td>
<td>0.947</td>
<td>16.0</td>
<td>4.60</td>
<td>498.</td>
</tr>
<tr>
<td>1.8</td>
<td>1.174</td>
<td>0.998</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_m^* = 1.70 \]
\[E = 0.000000728 \]
\[\beta = 0.0938 \]
\[s_\phi = 0.00263 \]
\[C = 0.0131 \]
\[s_\gamma = 0.475 \]
\[D = -0.000580 \]
TABLE 10 - Osmotic coefficients and mean activity coefficients of LiClO$_4$ at 25 °C

[Based on data in references 15,16]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.989</td>
<td>0.966</td>
<td>0.80</td>
<td>1.041</td>
<td>0.850</td>
</tr>
<tr>
<td>0.002</td>
<td>0.985</td>
<td>0.953</td>
<td>0.90</td>
<td>1.057</td>
<td>0.868</td>
</tr>
<tr>
<td>0.005</td>
<td>0.978</td>
<td>0.931</td>
<td>1.0</td>
<td>1.072</td>
<td>0.888</td>
</tr>
<tr>
<td>0.01</td>
<td>0.971</td>
<td>0.908</td>
<td>1.2</td>
<td>1.104</td>
<td>0.932</td>
</tr>
<tr>
<td>0.02</td>
<td>0.964</td>
<td>0.882</td>
<td>1.4</td>
<td>1.137</td>
<td>0.981</td>
</tr>
<tr>
<td>0.05</td>
<td>0.956</td>
<td>0.843</td>
<td>1.6</td>
<td>1.171</td>
<td>1.035</td>
</tr>
<tr>
<td>0.10</td>
<td>0.953</td>
<td>0.815</td>
<td>1.8</td>
<td>1.205</td>
<td>1.095</td>
</tr>
<tr>
<td>0.20</td>
<td>0.960</td>
<td>0.795</td>
<td>2.0</td>
<td>1.239</td>
<td>1.160</td>
</tr>
<tr>
<td>0.30</td>
<td>0.971</td>
<td>0.792</td>
<td>2.5</td>
<td>1.327</td>
<td>1.349</td>
</tr>
<tr>
<td>0.40</td>
<td>0.983</td>
<td>0.797</td>
<td>3.0</td>
<td>1.417</td>
<td>1.580</td>
</tr>
<tr>
<td>0.50</td>
<td>0.997</td>
<td>0.806</td>
<td>3.5</td>
<td>1.509</td>
<td>1.859</td>
</tr>
<tr>
<td>0.60</td>
<td>1.011</td>
<td>0.818</td>
<td>4.0</td>
<td>1.601</td>
<td>2.195</td>
</tr>
<tr>
<td>0.70</td>
<td>1.026</td>
<td>0.833</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$B_m^* = 1.90$
$\beta = 0.117$
$C = 0.00753$
$D = -0.000594$

$s\phi = 0.00219$
$s\gamma = 0.00452$
<table>
<thead>
<tr>
<th>(m)</th>
<th>(\phi)</th>
<th>(\gamma)</th>
<th>(m)</th>
<th>(\phi)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>1.0</td>
<td>0.913</td>
<td>0.630</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.2</td>
<td>0.916</td>
<td>0.622</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.928</td>
<td>1.4</td>
<td>0.920</td>
<td>0.616</td>
</tr>
<tr>
<td>0.01</td>
<td>0.968</td>
<td>0.903</td>
<td>1.6</td>
<td>0.924</td>
<td>0.612</td>
</tr>
<tr>
<td>0.02</td>
<td>0.959</td>
<td>0.872</td>
<td>1.8</td>
<td>0.929</td>
<td>0.610</td>
</tr>
<tr>
<td>0.05</td>
<td>0.943</td>
<td>0.821</td>
<td>2.0</td>
<td>0.934</td>
<td>0.608</td>
</tr>
<tr>
<td>0.10</td>
<td>0.931</td>
<td>0.777</td>
<td>2.5</td>
<td>0.947</td>
<td>0.608</td>
</tr>
<tr>
<td>0.20</td>
<td>0.920</td>
<td>0.729</td>
<td>3.0</td>
<td>0.961</td>
<td>0.612</td>
</tr>
<tr>
<td>0.30</td>
<td>0.915</td>
<td>0.702</td>
<td>3.5</td>
<td>0.976</td>
<td>0.618</td>
</tr>
<tr>
<td>0.40</td>
<td>0.912</td>
<td>0.683</td>
<td>4.0</td>
<td>0.991</td>
<td>0.626</td>
</tr>
<tr>
<td>0.50</td>
<td>0.911</td>
<td>0.668</td>
<td>4.5</td>
<td>1.007</td>
<td>0.636</td>
</tr>
<tr>
<td>0.60</td>
<td>0.910</td>
<td>0.657</td>
<td>5.0</td>
<td>1.024</td>
<td>0.648</td>
</tr>
<tr>
<td>0.70</td>
<td>0.910</td>
<td>0.648</td>
<td>5.5</td>
<td>1.042</td>
<td>0.662</td>
</tr>
<tr>
<td>0.80</td>
<td>0.911</td>
<td>0.641</td>
<td>6.0</td>
<td>1.063</td>
<td>0.679</td>
</tr>
<tr>
<td>0.90</td>
<td>0.912</td>
<td>0.635</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(B_m^* = 1.50 \)
\(\beta = -0.00300 \)
\(C = 0.00748 \)
\(D = -0.00120 \)
\(E = 0.0000826 \)
\(s_\phi = 0.00116 \)
\(s_\gamma = 0.00098 \)
TABLE 12 - Osmotic coefficients and mean activity coefficients of TlClO$_4$ at 25 °C

[Based on data in references 20]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
</tr>
<tr>
<td>0.002</td>
<td>0.983</td>
<td>0.950</td>
</tr>
<tr>
<td>0.005</td>
<td>0.974</td>
<td>0.923</td>
</tr>
<tr>
<td>0.01</td>
<td>0.964</td>
<td>0.895</td>
</tr>
<tr>
<td>0.02</td>
<td>0.950</td>
<td>0.857</td>
</tr>
<tr>
<td>0.05</td>
<td>0.926</td>
<td>0.791</td>
</tr>
<tr>
<td>0.10</td>
<td>0.900</td>
<td>0.727</td>
</tr>
<tr>
<td>0.20</td>
<td>0.867</td>
<td>0.650</td>
</tr>
<tr>
<td>0.30</td>
<td>0.843</td>
<td>0.598</td>
</tr>
<tr>
<td>0.40</td>
<td>0.822</td>
<td>0.558</td>
</tr>
<tr>
<td>0.50</td>
<td>0.804</td>
<td>0.526</td>
</tr>
</tbody>
</table>

$B^*_m = 0.825$

$s_\phi = 0.00113$

$s_\gamma = 0.0026$
TABLE 13 - Osmotic coefficients and mean activity coefficients of LiOH at 25 °C

[Based on data in references 21,22]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>.001</td>
<td>0.988</td>
<td>0.964</td>
<td>.80</td>
<td>0.861</td>
<td>0.540</td>
</tr>
<tr>
<td>.002</td>
<td>0.983</td>
<td>0.950</td>
<td>.90</td>
<td>0.863</td>
<td>0.532</td>
</tr>
<tr>
<td>.005</td>
<td>0.974</td>
<td>0.924</td>
<td>1.0</td>
<td>0.866</td>
<td>0.526</td>
</tr>
<tr>
<td>.01</td>
<td>0.964</td>
<td>0.895</td>
<td>1.2</td>
<td>0.871</td>
<td>0.517</td>
</tr>
<tr>
<td>.02</td>
<td>0.951</td>
<td>0.859</td>
<td>1.4</td>
<td>0.875</td>
<td>0.508</td>
</tr>
<tr>
<td>.05</td>
<td>0.928</td>
<td>0.794</td>
<td>1.6</td>
<td>0.876</td>
<td>0.501</td>
</tr>
<tr>
<td>.10</td>
<td>0.906</td>
<td>0.734</td>
<td>1.8</td>
<td>0.876</td>
<td>0.493</td>
</tr>
<tr>
<td>.20</td>
<td>0.881</td>
<td>0.665</td>
<td>2.0</td>
<td>0.874</td>
<td>0.486</td>
</tr>
<tr>
<td>.30</td>
<td>0.868</td>
<td>0.624</td>
<td>2.5</td>
<td>0.869</td>
<td>0.470</td>
</tr>
<tr>
<td>.40</td>
<td>0.861</td>
<td>0.596</td>
<td>3.0</td>
<td>0.871</td>
<td>0.460</td>
</tr>
<tr>
<td>.50</td>
<td>0.858</td>
<td>0.576</td>
<td>3.5</td>
<td>0.884</td>
<td>0.457</td>
</tr>
<tr>
<td>.60</td>
<td>0.858</td>
<td>0.560</td>
<td>4.0</td>
<td>0.884</td>
<td>0.450</td>
</tr>
<tr>
<td>.70</td>
<td>0.859</td>
<td>0.549</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$B_m = 0.800$
$\beta = -0.0694$
$C = 0.138$
$D = -0.0831$
$E = 0.0210$
$F = -0.00191$
$s\phi = 0.0934$
$s\gamma = 0.0354$
TABLE 14 - Osmotic coefficients and mean activity coefficients of NaOH at 25 °C

([Based on data in references 23-30])

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>1.6</td>
<td>0.991</td>
<td>0.690</td>
<td>13.0</td>
<td>2.38</td>
<td>6.51</td>
</tr>
<tr>
<td>0.002</td>
<td>.984</td>
<td>.952</td>
<td>1.8</td>
<td>1.005</td>
<td>.700</td>
<td>14.0</td>
<td>2.48</td>
<td>8.03</td>
</tr>
<tr>
<td>0.005</td>
<td>.976</td>
<td>.927</td>
<td>2.0</td>
<td>1.020</td>
<td>.711</td>
<td>15.0</td>
<td>2.57</td>
<td>9.74</td>
</tr>
<tr>
<td>0.01</td>
<td>.968</td>
<td>.902</td>
<td>2.5</td>
<td>1.060</td>
<td>.747</td>
<td>16.0</td>
<td>2.64</td>
<td>11.6</td>
</tr>
<tr>
<td>0.02</td>
<td>.958</td>
<td>.871</td>
<td>3.0</td>
<td>1.103</td>
<td>.792</td>
<td>17.0</td>
<td>2.70</td>
<td>13.6</td>
</tr>
<tr>
<td>0.05</td>
<td>.943</td>
<td>.820</td>
<td>3.5</td>
<td>1.151</td>
<td>.846</td>
<td>18.0</td>
<td>2.74</td>
<td>15.6</td>
</tr>
<tr>
<td>0.10</td>
<td>.932</td>
<td>.777</td>
<td>4.0</td>
<td>1.202</td>
<td>.912</td>
<td>19.0</td>
<td>2.77</td>
<td>17.6</td>
</tr>
<tr>
<td>0.20</td>
<td>.924</td>
<td>.733</td>
<td>4.5</td>
<td>1.256</td>
<td>.989</td>
<td>20.0</td>
<td>2.78</td>
<td>19.6</td>
</tr>
<tr>
<td>0.30</td>
<td>.923</td>
<td>.710</td>
<td>5.0</td>
<td>1.314</td>
<td>1.079</td>
<td>21.0</td>
<td>2.78</td>
<td>21.4</td>
</tr>
<tr>
<td>0.40</td>
<td>.925</td>
<td>.696</td>
<td>5.5</td>
<td>1.38</td>
<td>1.19</td>
<td>22.0</td>
<td>2.78</td>
<td>23.1</td>
</tr>
<tr>
<td>0.50</td>
<td>.927</td>
<td>.686</td>
<td>6.0</td>
<td>1.44</td>
<td>1.31</td>
<td>23.0</td>
<td>2.77</td>
<td>24.8</td>
</tr>
<tr>
<td>0.60</td>
<td>.931</td>
<td>.680</td>
<td>7.0</td>
<td>1.57</td>
<td>1.62</td>
<td>24.0</td>
<td>2.75</td>
<td>26.4</td>
</tr>
<tr>
<td>0.70</td>
<td>.936</td>
<td>.676</td>
<td>8.0</td>
<td>1.71</td>
<td>2.03</td>
<td>25.0</td>
<td>2.74</td>
<td>28.0</td>
</tr>
<tr>
<td>0.80</td>
<td>.941</td>
<td>.674</td>
<td>9.0</td>
<td>1.86</td>
<td>2.56</td>
<td>26.0</td>
<td>2.73</td>
<td>29.7</td>
</tr>
<tr>
<td>0.90</td>
<td>.946</td>
<td>.673</td>
<td>10.0</td>
<td>2.00</td>
<td>3.25</td>
<td>27.0</td>
<td>2.73</td>
<td>31.5</td>
</tr>
<tr>
<td>1.0</td>
<td>.952</td>
<td>.673</td>
<td>11.0</td>
<td>2.13</td>
<td>4.13</td>
<td>28.0</td>
<td>2.72</td>
<td>33.5</td>
</tr>
<tr>
<td>1.2</td>
<td>.964</td>
<td>.676</td>
<td>12.0</td>
<td>2.26</td>
<td>5.21</td>
<td>29.0</td>
<td>2.72</td>
<td>35.5</td>
</tr>
</tbody>
</table>

B = 1.30
β = 0.0484
C = 0.00125
D = 0.000714
E = -0.0000687

F = 0.00000216
G = -0.0000000230
s₁ = 0.0164
s₂ = 0.527
- 27 -

TABLE 15 - Osmotic coefficients and mean activity coefficients of KOH at 25 °C

[Based on data in references 31-35]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>1.0</td>
<td>0.999</td>
<td>0.733</td>
<td>7.0</td>
<td>1.82</td>
<td>2.82</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.2</td>
<td>1.021</td>
<td>0.751</td>
<td>8.0</td>
<td>1.96</td>
<td>3.66</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.927</td>
<td>1.4</td>
<td>1.045</td>
<td>0.773</td>
<td>9.0</td>
<td>2.10</td>
<td>4.73</td>
</tr>
<tr>
<td>0.01</td>
<td>0.968</td>
<td>0.902</td>
<td>1.6</td>
<td>1.069</td>
<td>0.798</td>
<td>10.0</td>
<td>2.23</td>
<td>6.10</td>
</tr>
<tr>
<td>0.02</td>
<td>0.958</td>
<td>0.871</td>
<td>1.8</td>
<td>1.094</td>
<td>0.826</td>
<td>11.0</td>
<td>2.35</td>
<td>7.83</td>
</tr>
<tr>
<td>0.05</td>
<td>0.944</td>
<td>0.822</td>
<td>2.0</td>
<td>1.120</td>
<td>0.857</td>
<td>12.0</td>
<td>2.47</td>
<td>9.97</td>
</tr>
<tr>
<td>0.10</td>
<td>0.935</td>
<td>0.780</td>
<td>2.5</td>
<td>1.185</td>
<td>0.947</td>
<td>13.0</td>
<td>2.58</td>
<td>12.6</td>
</tr>
<tr>
<td>0.20</td>
<td>0.931</td>
<td>0.742</td>
<td>3.0</td>
<td>1.252</td>
<td>1.053</td>
<td>14.0</td>
<td>2.69</td>
<td>15.8</td>
</tr>
<tr>
<td>0.30</td>
<td>0.934</td>
<td>0.724</td>
<td>3.5</td>
<td>1.321</td>
<td>1.18</td>
<td>15.0</td>
<td>2.78</td>
<td>19.5</td>
</tr>
<tr>
<td>0.40</td>
<td>0.940</td>
<td>0.715</td>
<td>4.0</td>
<td>1.391</td>
<td>1.33</td>
<td>16.0</td>
<td>2.86</td>
<td>23.8</td>
</tr>
<tr>
<td>0.50</td>
<td>0.948</td>
<td>0.712</td>
<td>4.5</td>
<td>1.462</td>
<td>1.50</td>
<td>17.0</td>
<td>2.94</td>
<td>28.8</td>
</tr>
<tr>
<td>0.60</td>
<td>0.957</td>
<td>0.712</td>
<td>5.0</td>
<td>1.533</td>
<td>1.69</td>
<td>18.0</td>
<td>3.00</td>
<td>34.4</td>
</tr>
<tr>
<td>0.70</td>
<td>0.967</td>
<td>0.714</td>
<td>5.5</td>
<td>1.60</td>
<td>1.92</td>
<td>19.0</td>
<td>3.06</td>
<td>40.5</td>
</tr>
<tr>
<td>0.80</td>
<td>0.977</td>
<td>0.719</td>
<td>6.0</td>
<td>1.68</td>
<td>2.18</td>
<td>20.0</td>
<td>3.10</td>
<td>47.2</td>
</tr>
<tr>
<td>0.90</td>
<td>0.988</td>
<td>0.725</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_\text{m}^* = 1.20 \]

\[\beta = 0.0933 \]

\[\gamma = 0.00405 \]

\[D = -0.000250 \]

\[E = 0.00000342 \]

\[s_\phi = 0.0107 \]

\[s_\gamma = 0.257 \]
TABLE 16 - Osmotic coefficients and mean activity coefficients of CsOH at 25 °C

[Based on data in reference 36]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>.001</td>
<td>.988</td>
<td>.965</td>
<td>.4</td>
<td>.955</td>
<td>.744</td>
</tr>
<tr>
<td>.002</td>
<td>.984</td>
<td>.952</td>
<td>.5</td>
<td>.964</td>
<td>.744</td>
</tr>
<tr>
<td>.005</td>
<td>.976</td>
<td>.928</td>
<td>.6</td>
<td>.974</td>
<td>.747</td>
</tr>
<tr>
<td>.01</td>
<td>.969</td>
<td>.904</td>
<td>.7</td>
<td>.984</td>
<td>.752</td>
</tr>
<tr>
<td>.02</td>
<td>.960</td>
<td>.875</td>
<td>.8</td>
<td>.995</td>
<td>.759</td>
</tr>
<tr>
<td>.05</td>
<td>.948</td>
<td>.830</td>
<td>.9</td>
<td>1.005</td>
<td>.767</td>
</tr>
<tr>
<td>.1</td>
<td>.942</td>
<td>.793</td>
<td>1.0</td>
<td>1.016</td>
<td>.777</td>
</tr>
<tr>
<td>.2</td>
<td>.941</td>
<td>.761</td>
<td>1.2</td>
<td>1.039</td>
<td>.798</td>
</tr>
<tr>
<td>.3</td>
<td>.947</td>
<td>.748</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_m^* = 1.47 \]
\[\beta = 0.0969 \]
\[s_\gamma = 0.00658 \]
TABLE 17 - Osmotic coefficients and mean activity coefficients of HNO₃ at 25 °C

[Based on data in references 37-41]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.989</td>
<td>0.965</td>
<td>1.4</td>
<td>1.008</td>
<td>0.744</td>
<td>12.0</td>
<td>1.49</td>
<td>1.89</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.6</td>
<td>1.023</td>
<td>0.757</td>
<td>13.0</td>
<td>1.51</td>
<td>2.00</td>
</tr>
<tr>
<td>0.005</td>
<td>0.977</td>
<td>0.928</td>
<td>1.8</td>
<td>1.037</td>
<td>0.770</td>
<td>14.0</td>
<td>1.53</td>
<td>2.11</td>
</tr>
<tr>
<td>0.01</td>
<td>0.969</td>
<td>0.904</td>
<td>2.0</td>
<td>1.050</td>
<td>0.784</td>
<td>15.0</td>
<td>1.54</td>
<td>2.22</td>
</tr>
<tr>
<td>0.02</td>
<td>0.960</td>
<td>0.874</td>
<td>2.5</td>
<td>1.084</td>
<td>0.824</td>
<td>16.0</td>
<td>1.54</td>
<td>2.32</td>
</tr>
<tr>
<td>0.05</td>
<td>0.947</td>
<td>0.828</td>
<td>3.0</td>
<td>1.117</td>
<td>0.867</td>
<td>17.0</td>
<td>1.55</td>
<td>2.41</td>
</tr>
<tr>
<td>0.10</td>
<td>0.939</td>
<td>0.789</td>
<td>3.5</td>
<td>1.148</td>
<td>0.913</td>
<td>18.0</td>
<td>1.55</td>
<td>2.49</td>
</tr>
<tr>
<td>0.20</td>
<td>0.936</td>
<td>0.753</td>
<td>4.0</td>
<td>1.178</td>
<td>0.961</td>
<td>19.0</td>
<td>1.55</td>
<td>2.55</td>
</tr>
<tr>
<td>0.30</td>
<td>0.938</td>
<td>0.735</td>
<td>4.5</td>
<td>1.207</td>
<td>1.011</td>
<td>20.0</td>
<td>1.54</td>
<td>2.61</td>
</tr>
<tr>
<td>0.40</td>
<td>0.942</td>
<td>0.725</td>
<td>5.0</td>
<td>1.234</td>
<td>1.064</td>
<td>21.0</td>
<td>1.54</td>
<td>2.66</td>
</tr>
<tr>
<td>0.50</td>
<td>0.947</td>
<td>0.720</td>
<td>5.5</td>
<td>1.26</td>
<td>1.12</td>
<td>22.0</td>
<td>1.52</td>
<td>2.70</td>
</tr>
<tr>
<td>0.60</td>
<td>0.954</td>
<td>0.718</td>
<td>6.0</td>
<td>1.29</td>
<td>1.17</td>
<td>23.0</td>
<td>1.51</td>
<td>2.73</td>
</tr>
<tr>
<td>0.70</td>
<td>0.960</td>
<td>0.718</td>
<td>7.0</td>
<td>1.33</td>
<td>1.29</td>
<td>24.0</td>
<td>1.50</td>
<td>2.74</td>
</tr>
<tr>
<td>0.80</td>
<td>0.967</td>
<td>0.719</td>
<td>8.0</td>
<td>1.37</td>
<td>1.41</td>
<td>25.0</td>
<td>1.48</td>
<td>2.75</td>
</tr>
<tr>
<td>0.90</td>
<td>0.974</td>
<td>0.722</td>
<td>9.0</td>
<td>1.41</td>
<td>1.53</td>
<td>26.0</td>
<td>1.46</td>
<td>2.74</td>
</tr>
<tr>
<td>1.0</td>
<td>0.981</td>
<td>0.725</td>
<td>10.0</td>
<td>1.44</td>
<td>1.65</td>
<td>27.0</td>
<td>1.43</td>
<td>2.72</td>
</tr>
<tr>
<td>1.2</td>
<td>0.995</td>
<td>0.734</td>
<td>11.0</td>
<td>1.47</td>
<td>1.77</td>
<td>28.0</td>
<td>1.41</td>
<td>2.70</td>
</tr>
</tbody>
</table>

\[
B_m = 1.50
\]
\[
\beta = 0.0665
\]
\[
C = -0.00180
\]
\[
D = 0.0000127
\]
\[
\sigma_\phi = 0.0142
\]
\[
\sigma_\gamma = 0.0324
\]
TABLE 18 - Osmotic coefficients and mean activity coefficients of LiNO₃ at 25 °C

[Based on data in references 42-46]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>1.0</td>
<td>0.997</td>
<td>0.743</td>
<td>7.0</td>
<td>1.49</td>
<td>1.72</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.2</td>
<td>1.014</td>
<td>0.758</td>
<td>8.0</td>
<td>1.55</td>
<td>1.96</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.928</td>
<td>1.4</td>
<td>1.033</td>
<td>0.775</td>
<td>9.0</td>
<td>1.61</td>
<td>2.22</td>
</tr>
<tr>
<td>0.01</td>
<td>0.969</td>
<td>0.904</td>
<td>1.6</td>
<td>1.052</td>
<td>0.794</td>
<td>10.0</td>
<td>1.66</td>
<td>2.50</td>
</tr>
<tr>
<td>0.02</td>
<td>0.960</td>
<td>0.874</td>
<td>1.8</td>
<td>1.070</td>
<td>0.815</td>
<td>11.0</td>
<td>1.70</td>
<td>2.79</td>
</tr>
<tr>
<td>0.05</td>
<td>0.947</td>
<td>0.827</td>
<td>2.0</td>
<td>1.089</td>
<td>0.837</td>
<td>12.0</td>
<td>1.74</td>
<td>3.08</td>
</tr>
<tr>
<td>0.10</td>
<td>0.939</td>
<td>0.789</td>
<td>2.5</td>
<td>1.134</td>
<td>0.898</td>
<td>13.0</td>
<td>1.77</td>
<td>3.38</td>
</tr>
<tr>
<td>0.20</td>
<td>0.936</td>
<td>0.753</td>
<td>3.0</td>
<td>1.178</td>
<td>0.966</td>
<td>14.0</td>
<td>1.80</td>
<td>3.68</td>
</tr>
<tr>
<td>0.30</td>
<td>0.940</td>
<td>0.736</td>
<td>3.5</td>
<td>1.222</td>
<td>1.039</td>
<td>15.0</td>
<td>1.81</td>
<td>3.96</td>
</tr>
<tr>
<td>0.40</td>
<td>0.946</td>
<td>0.729</td>
<td>4.0</td>
<td>1.263</td>
<td>1.119</td>
<td>16.0</td>
<td>1.82</td>
<td>4.22</td>
</tr>
<tr>
<td>0.50</td>
<td>0.953</td>
<td>0.726</td>
<td>4.5</td>
<td>1.304</td>
<td>1.205</td>
<td>17.0</td>
<td>1.83</td>
<td>4.46</td>
</tr>
<tr>
<td>0.60</td>
<td>0.961</td>
<td>0.726</td>
<td>5.0</td>
<td>1.34</td>
<td>1.30</td>
<td>18.0</td>
<td>1.83</td>
<td>4.67</td>
</tr>
<tr>
<td>0.70</td>
<td>0.970</td>
<td>0.728</td>
<td>5.5</td>
<td>1.38</td>
<td>1.39</td>
<td>19.0</td>
<td>1.82</td>
<td>4.84</td>
</tr>
<tr>
<td>0.80</td>
<td>0.978</td>
<td>0.732</td>
<td>6.0</td>
<td>1.42</td>
<td>1.50</td>
<td>20.0</td>
<td>1.81</td>
<td>4.97</td>
</tr>
<tr>
<td>0.90</td>
<td>0.987</td>
<td>0.737</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_m^* = 1.40 \]
\[\beta = 0.0854 \]
\[C = -0.00138 \]
\[D = -0.0000216 \]
\[E = 0.000000191 \]
\[s_\phi = 0.0180 \]
\[s_\gamma = 0.0625 \]
TABLE 19 - Osmotic coefficients and mean activity coefficients of NaNO$_3$ at 25 °C

[Based on data in references 47-51]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.60</td>
<td>0.869</td>
<td>0.600</td>
<td>3.0</td>
<td>0.810</td>
<td>0.437</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
<td>0.70</td>
<td>0.864</td>
<td>0.585</td>
<td>3.5</td>
<td>0.803</td>
<td>0.421</td>
</tr>
<tr>
<td>0.005</td>
<td>0.975</td>
<td>0.926</td>
<td>0.80</td>
<td>0.860</td>
<td>0.571</td>
<td>4.0</td>
<td>0.797</td>
<td>0.408</td>
</tr>
<tr>
<td>0.01</td>
<td>0.967</td>
<td>0.900</td>
<td>0.90</td>
<td>0.855</td>
<td>0.559</td>
<td>4.5</td>
<td>0.792</td>
<td>0.396</td>
</tr>
<tr>
<td>0.02</td>
<td>0.956</td>
<td>0.867</td>
<td>1.0</td>
<td>0.852</td>
<td>0.549</td>
<td>5.0</td>
<td>0.788</td>
<td>0.386</td>
</tr>
<tr>
<td>0.05</td>
<td>0.938</td>
<td>0.811</td>
<td>1.2</td>
<td>0.845</td>
<td>0.530</td>
<td>5.5</td>
<td>0.787</td>
<td>0.378</td>
</tr>
<tr>
<td>0.10</td>
<td>0.921</td>
<td>0.760</td>
<td>1.4</td>
<td>0.839</td>
<td>0.514</td>
<td>6.0</td>
<td>0.788</td>
<td>0.371</td>
</tr>
<tr>
<td>0.20</td>
<td>0.903</td>
<td>0.702</td>
<td>1.6</td>
<td>0.834</td>
<td>0.501</td>
<td>7.0</td>
<td>0.807</td>
<td>0.366</td>
</tr>
<tr>
<td>0.30</td>
<td>0.891</td>
<td>0.666</td>
<td>1.8</td>
<td>0.830</td>
<td>0.489</td>
<td>8.0</td>
<td>0.858</td>
<td>0.377</td>
</tr>
<tr>
<td>0.40</td>
<td>0.883</td>
<td>0.639</td>
<td>2.0</td>
<td>0.826</td>
<td>0.478</td>
<td>9.0</td>
<td>0.962</td>
<td>0.414</td>
</tr>
<tr>
<td>0.50</td>
<td>0.875</td>
<td>0.618</td>
<td>2.5</td>
<td>0.817</td>
<td>0.456</td>
<td>10.0</td>
<td>1.14</td>
<td>0.497</td>
</tr>
</tbody>
</table>

$B_m^* = 1.30$
$\beta = -0.0465$
$C = 0.00940$
$D = -0.00151$
$E = 0.000105$
$s_\phi = 0.0817$
$s_\gamma = 0.0339$
TABLE 20 - Osmotic coefficients and mean activity coefficients of KNO₃ at 25 °C

[Based on data in references 52-55]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>0.70</td>
<td>0.791</td>
<td>0.498</td>
</tr>
<tr>
<td>0.002</td>
<td>0.983</td>
<td>0.951</td>
<td>0.80</td>
<td>0.778</td>
<td>0.477</td>
</tr>
<tr>
<td>0.005</td>
<td>0.975</td>
<td>0.924</td>
<td>0.90</td>
<td>0.766</td>
<td>0.459</td>
</tr>
<tr>
<td>0.01</td>
<td>0.965</td>
<td>0.897</td>
<td>1.0</td>
<td>0.754</td>
<td>0.442</td>
</tr>
<tr>
<td>0.02</td>
<td>0.953</td>
<td>0.861</td>
<td>1.2</td>
<td>0.733</td>
<td>0.413</td>
</tr>
<tr>
<td>0.05</td>
<td>0.930</td>
<td>0.798</td>
<td>1.4</td>
<td>0.714</td>
<td>0.389</td>
</tr>
<tr>
<td>0.10</td>
<td>0.907</td>
<td>0.737</td>
<td>1.6</td>
<td>0.697</td>
<td>0.367</td>
</tr>
<tr>
<td>0.20</td>
<td>0.877</td>
<td>0.664</td>
<td>1.8</td>
<td>0.681</td>
<td>0.348</td>
</tr>
<tr>
<td>0.30</td>
<td>0.855</td>
<td>0.615</td>
<td>2.0</td>
<td>0.666</td>
<td>0.332</td>
</tr>
<tr>
<td>0.40</td>
<td>0.836</td>
<td>0.578</td>
<td>2.5</td>
<td>0.636</td>
<td>0.298</td>
</tr>
<tr>
<td>0.50</td>
<td>0.819</td>
<td>0.547</td>
<td>3.0</td>
<td>0.612</td>
<td>0.271</td>
</tr>
<tr>
<td>0.60</td>
<td>0.804</td>
<td>0.520</td>
<td>3.5</td>
<td>0.595</td>
<td>0.251</td>
</tr>
</tbody>
</table>

\[B_m^* = 1.10 \]
\[\beta = -0.126 \]
\[c = 0.0165 \]
\[s_\phi = 0.0058 \]
\[s_\gamma = 0.0019 \]
TABLE 21 - Osmotic coefficents and mean activity coefficents of RbNO$_3$ at 25 °C

[Based on data in reference 56]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>0.80</td>
<td>0.769</td>
<td>0.466</td>
</tr>
<tr>
<td>0.002</td>
<td>0.983</td>
<td>0.950</td>
<td>0.90</td>
<td>0.756</td>
<td>0.447</td>
</tr>
<tr>
<td>0.005</td>
<td>0.974</td>
<td>0.924</td>
<td>1.0</td>
<td>0.744</td>
<td>0.430</td>
</tr>
<tr>
<td>0.01</td>
<td>0.965</td>
<td>0.896</td>
<td>1.2</td>
<td>0.722</td>
<td>0.401</td>
</tr>
<tr>
<td>0.02</td>
<td>0.952</td>
<td>0.859</td>
<td>1.4</td>
<td>0.702</td>
<td>0.376</td>
</tr>
<tr>
<td>0.05</td>
<td>0.928</td>
<td>0.795</td>
<td>1.6</td>
<td>0.684</td>
<td>0.354</td>
</tr>
<tr>
<td>0.10</td>
<td>0.904</td>
<td>0.733</td>
<td>1.8</td>
<td>0.667</td>
<td>0.335</td>
</tr>
<tr>
<td>0.20</td>
<td>0.872</td>
<td>0.657</td>
<td>2.0</td>
<td>0.652</td>
<td>0.319</td>
</tr>
<tr>
<td>0.30</td>
<td>0.849</td>
<td>0.607</td>
<td>2.5</td>
<td>0.619</td>
<td>0.284</td>
</tr>
<tr>
<td>0.40</td>
<td>0.829</td>
<td>0.568</td>
<td>3.0</td>
<td>0.593</td>
<td>0.258</td>
</tr>
<tr>
<td>0.50</td>
<td>0.812</td>
<td>0.537</td>
<td>3.5</td>
<td>0.572</td>
<td>0.237</td>
</tr>
<tr>
<td>0.60</td>
<td>0.796</td>
<td>0.510</td>
<td>4.0</td>
<td>0.558</td>
<td>0.220</td>
</tr>
<tr>
<td>0.70</td>
<td>0.782</td>
<td>0.486</td>
<td>4.5</td>
<td>0.549</td>
<td>0.207</td>
</tr>
</tbody>
</table>

$\frac{R_m}{m} = 1.00$

$\beta = -0.125$

$C = 0.0159$

$\delta \phi = 0.0100$

$\delta \gamma = 0.0026$
TABLE 22 - Osmotic coefficients and mean activity coefficients of CsNO₃ at 25 °C

[Based on data in reference 57]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>0.40</td>
<td>0.822</td>
<td>0.562</td>
</tr>
<tr>
<td>.002</td>
<td>.983</td>
<td>.951</td>
<td>.50</td>
<td>.803</td>
<td>.529</td>
</tr>
<tr>
<td>.005</td>
<td>.974</td>
<td>.924</td>
<td>.60</td>
<td>.786</td>
<td>.501</td>
</tr>
<tr>
<td>.01</td>
<td>.965</td>
<td>.897</td>
<td>.70</td>
<td>.771</td>
<td>.477</td>
</tr>
<tr>
<td>.02</td>
<td>.952</td>
<td>.860</td>
<td>.80</td>
<td>.758</td>
<td>.456</td>
</tr>
<tr>
<td>.05</td>
<td>.929</td>
<td>.796</td>
<td>.90</td>
<td>.745</td>
<td>.438</td>
</tr>
<tr>
<td>.10</td>
<td>.904</td>
<td>.733</td>
<td>1.0</td>
<td>.735</td>
<td>.421</td>
</tr>
<tr>
<td>.20</td>
<td>.870</td>
<td>.656</td>
<td>1.2</td>
<td>.717</td>
<td>.394</td>
</tr>
<tr>
<td>.30</td>
<td>.844</td>
<td>.603</td>
<td>1.4</td>
<td>.704</td>
<td>.372</td>
</tr>
</tbody>
</table>

\[B_m^* = 1.20 \]
\[\beta = -0.182 \]
\[C = 0.0397 \]
\[s_\phi = 0.0036 \]
\[s_\gamma = 0.0016 \]
TABLE 23 - Osmotic coefficients and mean activity coefficients of AgNO₃ at 25 °C

[Based on data in references 58-61]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>0.70</td>
<td>0.783</td>
<td>0.486</td>
<td>4.0</td>
<td>0.521</td>
<td>0.210</td>
</tr>
<tr>
<td>.002</td>
<td>0.983</td>
<td>0.950</td>
<td>.80</td>
<td>.770</td>
<td>.465</td>
<td>4.5</td>
<td>.499</td>
<td>.194</td>
</tr>
<tr>
<td>.005</td>
<td>0.974</td>
<td>0.924</td>
<td>.90</td>
<td>.757</td>
<td>.447</td>
<td>5.0</td>
<td>.480</td>
<td>.180</td>
</tr>
<tr>
<td>.01</td>
<td>0.964</td>
<td>0.896</td>
<td>1.0</td>
<td>.746</td>
<td>.430</td>
<td>5.5</td>
<td>.464</td>
<td>.168</td>
</tr>
<tr>
<td>.02</td>
<td>0.951</td>
<td>0.859</td>
<td>1.2</td>
<td>.723</td>
<td>.401</td>
<td>6.0</td>
<td>.450</td>
<td>.158</td>
</tr>
<tr>
<td>.05</td>
<td>0.928</td>
<td>0.794</td>
<td>1.4</td>
<td>.703</td>
<td>.376</td>
<td>7.0</td>
<td>.427</td>
<td>.142</td>
</tr>
<tr>
<td>.10</td>
<td>0.903</td>
<td>0.731</td>
<td>1.6</td>
<td>.683</td>
<td>.354</td>
<td>8.0</td>
<td>.409</td>
<td>.129</td>
</tr>
<tr>
<td>.20</td>
<td>0.872</td>
<td>0.655</td>
<td>1.8</td>
<td>.665</td>
<td>.334</td>
<td>9.0</td>
<td>.394</td>
<td>.118</td>
</tr>
<tr>
<td>.30</td>
<td>0.849</td>
<td>0.605</td>
<td>2.0</td>
<td>.648</td>
<td>.317</td>
<td>10.0</td>
<td>.378</td>
<td>.109</td>
</tr>
<tr>
<td>.40</td>
<td>0.829</td>
<td>0.567</td>
<td>2.5</td>
<td>.609</td>
<td>.281</td>
<td>11.0</td>
<td>.360</td>
<td>.101</td>
</tr>
<tr>
<td>.50</td>
<td>0.813</td>
<td>0.536</td>
<td>3.0</td>
<td>.576</td>
<td>.252</td>
<td>12.0</td>
<td>.336</td>
<td>.093</td>
</tr>
<tr>
<td>.60</td>
<td>0.797</td>
<td>0.509</td>
<td>3.5</td>
<td>.547</td>
<td>.229</td>
<td>13.0</td>
<td>.304</td>
<td>.085</td>
</tr>
</tbody>
</table>

$E_m = 0.90$
$β = -0.105$
$C = 0.00755$
$D = -0.000250$
$s_φ = 0.0118$
$s_γ = 0.00155$
<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>1.0</td>
<td>0.895</td>
<td>0.602</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.2</td>
<td>0.897</td>
<td>0.591</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.927</td>
<td>1.4</td>
<td>0.899</td>
<td>0.584</td>
</tr>
<tr>
<td>0.01</td>
<td>0.968</td>
<td>0.902</td>
<td>1.6</td>
<td>0.902</td>
<td>0.578</td>
</tr>
<tr>
<td>0.02</td>
<td>0.957</td>
<td>0.870</td>
<td>1.8</td>
<td>0.905</td>
<td>0.573</td>
</tr>
<tr>
<td>0.05</td>
<td>0.941</td>
<td>0.817</td>
<td>2.0</td>
<td>0.909</td>
<td>0.569</td>
</tr>
<tr>
<td>0.10</td>
<td>0.927</td>
<td>0.770</td>
<td>2.5</td>
<td>0.919</td>
<td>0.564</td>
</tr>
<tr>
<td>0.20</td>
<td>0.914</td>
<td>0.718</td>
<td>3.0</td>
<td>0.929</td>
<td>0.562</td>
</tr>
<tr>
<td>0.30</td>
<td>0.906</td>
<td>0.688</td>
<td>3.5</td>
<td>0.937</td>
<td>0.561</td>
</tr>
<tr>
<td>0.40</td>
<td>0.902</td>
<td>0.666</td>
<td>4.0</td>
<td>0.945</td>
<td>0.561</td>
</tr>
<tr>
<td>0.50</td>
<td>0.899</td>
<td>0.649</td>
<td>4.5</td>
<td>0.951</td>
<td>0.560</td>
</tr>
<tr>
<td>0.60</td>
<td>0.897</td>
<td>0.636</td>
<td>5.0</td>
<td>0.955</td>
<td>0.560</td>
</tr>
<tr>
<td>0.70</td>
<td>0.896</td>
<td>0.625</td>
<td>5.5</td>
<td>0.960</td>
<td>0.561</td>
</tr>
<tr>
<td>0.80</td>
<td>0.895</td>
<td>0.616</td>
<td>6.0</td>
<td>0.966</td>
<td>0.562</td>
</tr>
<tr>
<td>0.90</td>
<td>0.895</td>
<td>0.608</td>
<td>7.0</td>
<td>0.989</td>
<td>0.573</td>
</tr>
</tbody>
</table>

$\phi = 0.00667$

$\gamma = 0.00387$
TABLE 25 - Osmotic coefficients and mean activity coefficients of NH₄NO₃ at 25 °C

[Based on data in reference 65]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>1.2</td>
<td>0.808</td>
<td>0.482</td>
<td>9.0</td>
<td>0.631</td>
<td>0.233</td>
</tr>
<tr>
<td>0.002</td>
<td>0.983</td>
<td>0.951</td>
<td>1.4</td>
<td>0.798</td>
<td>0.463</td>
<td>10.0</td>
<td>0.621</td>
<td>0.221</td>
</tr>
<tr>
<td>0.005</td>
<td>0.975</td>
<td>0.925</td>
<td>1.6</td>
<td>0.789</td>
<td>0.446</td>
<td>11.0</td>
<td>0.610</td>
<td>0.211</td>
</tr>
<tr>
<td>0.01</td>
<td>0.966</td>
<td>0.898</td>
<td>1.8</td>
<td>0.781</td>
<td>0.431</td>
<td>12.0</td>
<td>0.600</td>
<td>0.202</td>
</tr>
<tr>
<td>0.02</td>
<td>0.954</td>
<td>0.863</td>
<td>2.0</td>
<td>0.773</td>
<td>0.418</td>
<td>13.0</td>
<td>0.591</td>
<td>0.194</td>
</tr>
<tr>
<td>0.05</td>
<td>0.933</td>
<td>0.802</td>
<td>2.5</td>
<td>0.755</td>
<td>0.389</td>
<td>14.0</td>
<td>0.581</td>
<td>0.186</td>
</tr>
<tr>
<td>0.10</td>
<td>0.913</td>
<td>0.746</td>
<td>3.0</td>
<td>0.739</td>
<td>0.366</td>
<td>15.0</td>
<td>0.572</td>
<td>0.179</td>
</tr>
<tr>
<td>0.20</td>
<td>0.890</td>
<td>0.681</td>
<td>3.5</td>
<td>0.725</td>
<td>0.346</td>
<td>16.0</td>
<td>0.562</td>
<td>0.173</td>
</tr>
<tr>
<td>0.30</td>
<td>0.875</td>
<td>0.640</td>
<td>4.0</td>
<td>0.712</td>
<td>0.329</td>
<td>17.0</td>
<td>0.553</td>
<td>0.167</td>
</tr>
<tr>
<td>0.40</td>
<td>0.863</td>
<td>0.609</td>
<td>4.5</td>
<td>0.701</td>
<td>0.314</td>
<td>18.0</td>
<td>0.545</td>
<td>0.161</td>
</tr>
<tr>
<td>0.50</td>
<td>0.853</td>
<td>0.584</td>
<td>5.0</td>
<td>0.690</td>
<td>0.301</td>
<td>19.0</td>
<td>0.538</td>
<td>0.156</td>
</tr>
<tr>
<td>0.60</td>
<td>0.845</td>
<td>0.564</td>
<td>5.5</td>
<td>0.681</td>
<td>0.290</td>
<td>20.0</td>
<td>0.532</td>
<td>0.151</td>
</tr>
<tr>
<td>0.70</td>
<td>0.838</td>
<td>0.546</td>
<td>6.0</td>
<td>0.672</td>
<td>0.279</td>
<td>22.0</td>
<td>0.528</td>
<td>0.144</td>
</tr>
<tr>
<td>0.80</td>
<td>0.831</td>
<td>0.530</td>
<td>7.0</td>
<td>0.656</td>
<td>0.261</td>
<td>24.0</td>
<td>0.538</td>
<td>0.140</td>
</tr>
<tr>
<td>0.90</td>
<td>0.824</td>
<td>0.516</td>
<td>8.0</td>
<td>0.643</td>
<td>0.246</td>
<td>26.0</td>
<td>0.569</td>
<td>0.139</td>
</tr>
<tr>
<td>1.0</td>
<td>0.819</td>
<td>0.504</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_m^* = 1.00 \]

\[B = -0.0450 \]

\[C = 0.00286 \]

\[D = -0.000124 \]

\[E = 0.00000215 \]

\[s_\phi = 0.0196 \]

\[s_\gamma = 0.00313 \]
TABLE 26 - Osmotic coefficients and mean activity coefficients of NH₄ClO₄ at 25 °C

[Based on data in reference 66]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>0.60</td>
<td>0.823</td>
<td>0.537</td>
</tr>
<tr>
<td>0.002</td>
<td>0.983</td>
<td>0.951</td>
<td>0.70</td>
<td>0.813</td>
<td>0.517</td>
</tr>
<tr>
<td>0.005</td>
<td>0.974</td>
<td>0.924</td>
<td>0.80</td>
<td>0.805</td>
<td>0.500</td>
</tr>
<tr>
<td>0.01</td>
<td>0.965</td>
<td>0.897</td>
<td>0.90</td>
<td>0.798</td>
<td>0.485</td>
</tr>
<tr>
<td>0.02</td>
<td>0.953</td>
<td>0.861</td>
<td>1.0</td>
<td>0.792</td>
<td>0.472</td>
</tr>
<tr>
<td>0.05</td>
<td>0.930</td>
<td>0.798</td>
<td>1.2</td>
<td>0.782</td>
<td>0.449</td>
</tr>
<tr>
<td>0.10</td>
<td>0.908</td>
<td>0.739</td>
<td>1.4</td>
<td>0.776</td>
<td>0.431</td>
</tr>
<tr>
<td>0.20</td>
<td>0.881</td>
<td>0.668</td>
<td>1.6</td>
<td>0.772</td>
<td>0.417</td>
</tr>
<tr>
<td>0.30</td>
<td>0.861</td>
<td>0.622</td>
<td>1.8</td>
<td>0.772</td>
<td>0.406</td>
</tr>
<tr>
<td>0.40</td>
<td>0.846</td>
<td>0.587</td>
<td>2.0</td>
<td>0.774</td>
<td>0.397</td>
</tr>
<tr>
<td>0.50</td>
<td>0.834</td>
<td>0.560</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bₘ* = 1.00
β = -0.0905
C = 0.0190
s_φ = .0131
s_γ = .00875
TABLE 27 - Osmotic coefficients and mean activity coefficients of NaCNS at 25 °C

[Based on data in references 67,68]

<table>
<thead>
<tr>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.989</td>
<td>0.965</td>
<td>0.90</td>
<td>0.962</td>
<td>0.708</td>
<td>6.0</td>
<td>1.34</td>
<td>1.21</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>1.00</td>
<td>0.968</td>
<td>0.710</td>
<td>7.0</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>0.005</td>
<td>0.977</td>
<td>0.928</td>
<td>1.20</td>
<td>0.980</td>
<td>0.715</td>
<td>8.0</td>
<td>1.49</td>
<td>1.59</td>
</tr>
<tr>
<td>0.010</td>
<td>0.969</td>
<td>0.905</td>
<td>1.40</td>
<td>0.993</td>
<td>0.723</td>
<td>9.0</td>
<td>1.56</td>
<td>1.82</td>
</tr>
<tr>
<td>0.020</td>
<td>0.960</td>
<td>0.875</td>
<td>1.60</td>
<td>1.005</td>
<td>0.732</td>
<td>10.0</td>
<td>1.63</td>
<td>2.07</td>
</tr>
<tr>
<td>0.050</td>
<td>0.948</td>
<td>0.828</td>
<td>1.80</td>
<td>1.018</td>
<td>0.743</td>
<td>11.0</td>
<td>1.68</td>
<td>2.32</td>
</tr>
<tr>
<td>0.100</td>
<td>0.939</td>
<td>0.789</td>
<td>2.00</td>
<td>1.032</td>
<td>0.755</td>
<td>12.0</td>
<td>1.72</td>
<td>2.57</td>
</tr>
<tr>
<td>0.200</td>
<td>0.934</td>
<td>0.752</td>
<td>2.50</td>
<td>1.066</td>
<td>0.790</td>
<td>13.0</td>
<td>1.75</td>
<td>2.81</td>
</tr>
<tr>
<td>0.300</td>
<td>0.935</td>
<td>0.732</td>
<td>3.00</td>
<td>1.102</td>
<td>0.831</td>
<td>14.0</td>
<td>1.76</td>
<td>3.00</td>
</tr>
<tr>
<td>0.400</td>
<td>0.938</td>
<td>0.721</td>
<td>3.50</td>
<td>1.140</td>
<td>0.879</td>
<td>15.0</td>
<td>1.76</td>
<td>3.15</td>
</tr>
<tr>
<td>0.500</td>
<td>0.942</td>
<td>0.714</td>
<td>4.00</td>
<td>1.178</td>
<td>0.933</td>
<td>16.0</td>
<td>1.74</td>
<td>3.24</td>
</tr>
<tr>
<td>0.600</td>
<td>0.946</td>
<td>0.710</td>
<td>4.50</td>
<td>1.217</td>
<td>0.993</td>
<td>17.0</td>
<td>1.70</td>
<td>3.26</td>
</tr>
<tr>
<td>0.700</td>
<td>0.951</td>
<td>0.708</td>
<td>5.00</td>
<td>1.256</td>
<td>1.059</td>
<td>18.0</td>
<td>1.65</td>
<td>3.22</td>
</tr>
<tr>
<td>0.800</td>
<td>0.957</td>
<td>0.707</td>
<td>5.50</td>
<td>1.300</td>
<td>1.130</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\beta_m = 1.60 \]
\[\beta = 0.0458 \]
\[C = 0.00176 \]
\[D = 0.0000986 \]
\[E = -0.0000198 \]
\[s_\phi = 0.07 \]
\[s_\gamma = 0.180 \]
TABLE 28 - Osmotic coefficients and mean activity coefficients of KCNS at 25 °C

[Based on data in references 69,70]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.90</td>
<td>0.893</td>
<td>0.606</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
<td>1.0</td>
<td>0.893</td>
<td>0.599</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.927</td>
<td>1.2</td>
<td>0.893</td>
<td>0.587</td>
</tr>
<tr>
<td>0.01</td>
<td>0.967</td>
<td>0.901</td>
<td>1.4</td>
<td>0.893</td>
<td>0.577</td>
</tr>
<tr>
<td>0.02</td>
<td>0.957</td>
<td>0.869</td>
<td>1.6</td>
<td>0.893</td>
<td>0.569</td>
</tr>
<tr>
<td>0.05</td>
<td>0.940</td>
<td>0.815</td>
<td>1.8</td>
<td>0.894</td>
<td>0.562</td>
</tr>
<tr>
<td>0.10</td>
<td>0.926</td>
<td>0.768</td>
<td>2.0</td>
<td>0.894</td>
<td>0.556</td>
</tr>
<tr>
<td>0.20</td>
<td>0.913</td>
<td>0.716</td>
<td>2.5</td>
<td>0.895</td>
<td>0.544</td>
</tr>
<tr>
<td>0.30</td>
<td>0.906</td>
<td>0.685</td>
<td>3.0</td>
<td>0.896</td>
<td>0.534</td>
</tr>
<tr>
<td>0.40</td>
<td>0.901</td>
<td>0.664</td>
<td>3.5</td>
<td>0.896</td>
<td>0.526</td>
</tr>
<tr>
<td>0.50</td>
<td>0.898</td>
<td>0.647</td>
<td>4.0</td>
<td>0.896</td>
<td>0.518</td>
</tr>
<tr>
<td>0.60</td>
<td>0.896</td>
<td>0.634</td>
<td>4.5</td>
<td>0.896</td>
<td>0.512</td>
</tr>
<tr>
<td>0.70</td>
<td>0.895</td>
<td>0.623</td>
<td>5.0</td>
<td>0.898</td>
<td>0.508</td>
</tr>
<tr>
<td>0.80</td>
<td>0.894</td>
<td>0.614</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B_m^* = 1.30 \]
\[\beta = -0.00291 \]
\[C = 0.00302 \]
\[s_\phi = 0.0105 \]
\[s_\gamma = 0.00620 \]
TABLE 29 - Osmotic coefficients and mean activity coefficients of NaH$_2$PO$_4$ at 25 °C

[Based on data in references 71, 72]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>1.0</td>
<td>0.778</td>
<td>0.469</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
<td>1.2</td>
<td>0.762</td>
<td>0.442</td>
</tr>
<tr>
<td>0.005</td>
<td>0.975</td>
<td>0.925</td>
<td>1.4</td>
<td>0.747</td>
<td>0.420</td>
</tr>
<tr>
<td>0.01</td>
<td>0.966</td>
<td>0.898</td>
<td>1.6</td>
<td>0.735</td>
<td>0.400</td>
</tr>
<tr>
<td>0.02</td>
<td>0.954</td>
<td>0.864</td>
<td>1.8</td>
<td>0.724</td>
<td>0.384</td>
</tr>
<tr>
<td>0.05</td>
<td>0.933</td>
<td>0.804</td>
<td>2.0</td>
<td>0.715</td>
<td>0.369</td>
</tr>
<tr>
<td>0.10</td>
<td>0.912</td>
<td>0.746</td>
<td>2.5</td>
<td>0.699</td>
<td>0.340</td>
</tr>
<tr>
<td>0.20</td>
<td>0.885</td>
<td>0.677</td>
<td>3.0</td>
<td>0.690</td>
<td>0.319</td>
</tr>
<tr>
<td>0.30</td>
<td>0.865</td>
<td>0.631</td>
<td>3.5</td>
<td>0.687</td>
<td>0.303</td>
</tr>
<tr>
<td>0.40</td>
<td>0.848</td>
<td>0.595</td>
<td>4.0</td>
<td>0.689</td>
<td>0.291</td>
</tr>
<tr>
<td>0.50</td>
<td>0.833</td>
<td>0.566</td>
<td>4.5</td>
<td>0.697</td>
<td>0.283</td>
</tr>
<tr>
<td>0.60</td>
<td>0.820</td>
<td>0.541</td>
<td>5.0</td>
<td>0.710</td>
<td>0.278</td>
</tr>
<tr>
<td>0.70</td>
<td>0.808</td>
<td>0.520</td>
<td>5.5</td>
<td>0.729</td>
<td>0.276</td>
</tr>
<tr>
<td>0.80</td>
<td>0.798</td>
<td>0.501</td>
<td>6.0</td>
<td>0.753</td>
<td>0.276</td>
</tr>
<tr>
<td>0.90</td>
<td>0.788</td>
<td>0.484</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$B_m^* = 1.30$

$\beta = -0.130$

$c = 0.0260$

$s_{\phi} = 0.0137$

$s_{\gamma} = 0.00429$
TABLE 30 - Osmotic coefficients and mean activity coefficients of KH₂PO₄ at 25 °C

[Based on data in references 73, 74]

<table>
<thead>
<tr>
<th>m</th>
<th>φ</th>
<th>γ</th>
<th>m</th>
<th>φ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.964</td>
<td>0.50</td>
<td>0.807</td>
<td>0.536</td>
</tr>
<tr>
<td>.002</td>
<td>.983</td>
<td>.951</td>
<td>.60</td>
<td>.790</td>
<td>.508</td>
</tr>
<tr>
<td>.005</td>
<td>.975</td>
<td>.925</td>
<td>.70</td>
<td>.774</td>
<td>.483</td>
</tr>
<tr>
<td>.01</td>
<td>.965</td>
<td>.897</td>
<td>.80</td>
<td>.759</td>
<td>.461</td>
</tr>
<tr>
<td>.02</td>
<td>.953</td>
<td>.862</td>
<td>.90</td>
<td>.745</td>
<td>.442</td>
</tr>
<tr>
<td>.05</td>
<td>.930</td>
<td>.798</td>
<td>1.0</td>
<td>.732</td>
<td>.424</td>
</tr>
<tr>
<td>.10</td>
<td>.906</td>
<td>.737</td>
<td>1.2</td>
<td>.707</td>
<td>.393</td>
</tr>
<tr>
<td>.20</td>
<td>.873</td>
<td>.661</td>
<td>1.4</td>
<td>.683</td>
<td>.366</td>
</tr>
<tr>
<td>.30</td>
<td>.848</td>
<td>.609</td>
<td>1.6</td>
<td>.660</td>
<td>.342</td>
</tr>
<tr>
<td>.40</td>
<td>.826</td>
<td>.569</td>
<td>1.8</td>
<td>.638</td>
<td>.321</td>
</tr>
</tbody>
</table>

\[B_m^* = 1.30 \]
\[\beta = -0.187 \]
\[C = 0.0498 \]
\[s_\phi = 0.00936 \]
\[s_\gamma = 0.00629 \]
TABLE 31 - Osmotic coefficients and mean activity coefficients of NaH$_2$AsO$_4$ at 25 °C

[Based on data in reference 75]

<table>
<thead>
<tr>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
<th>m</th>
<th>ϕ</th>
<th>γ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.40</td>
<td>0.876</td>
<td>0.638</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.952</td>
<td>0.50</td>
<td>0.864</td>
<td>0.613</td>
</tr>
<tr>
<td>0.005</td>
<td>0.976</td>
<td>0.927</td>
<td>0.60</td>
<td>0.853</td>
<td>0.590</td>
</tr>
<tr>
<td>0.01</td>
<td>0.968</td>
<td>0.902</td>
<td>0.70</td>
<td>0.842</td>
<td>0.570</td>
</tr>
<tr>
<td>0.02</td>
<td>0.957</td>
<td>0.870</td>
<td>0.80</td>
<td>0.831</td>
<td>0.552</td>
</tr>
<tr>
<td>0.05</td>
<td>0.940</td>
<td>0.816</td>
<td>0.90</td>
<td>0.820</td>
<td>0.535</td>
</tr>
<tr>
<td>0.10</td>
<td>0.924</td>
<td>0.766</td>
<td>1.0</td>
<td>0.810</td>
<td>0.519</td>
</tr>
<tr>
<td>0.20</td>
<td>0.904</td>
<td>0.707</td>
<td>1.2</td>
<td>0.788</td>
<td>0.490</td>
</tr>
<tr>
<td>0.30</td>
<td>0.889</td>
<td>0.668</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$B_m^* = 1.60$

$\beta = -0.0849$

$s_{\phi} = 0.00774$

$s_{\gamma} = 0.00416$
TABLE 32 - Osmotic coefficients and mean activity coefficients of KH₂AsO₄ at 25 °C

[Based on data in reference 76]

<table>
<thead>
<tr>
<th>m</th>
<th>(\phi)</th>
<th>(\gamma)</th>
<th>(m)</th>
<th>(\phi)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.001</td>
<td>0.988</td>
<td>0.965</td>
<td>0.40</td>
<td>0.849</td>
<td>0.601</td>
</tr>
<tr>
<td>0.002</td>
<td>0.984</td>
<td>0.951</td>
<td>0.50</td>
<td>0.833</td>
<td>0.571</td>
</tr>
<tr>
<td>0.005</td>
<td>0.975</td>
<td>0.926</td>
<td>0.60</td>
<td>0.819</td>
<td>0.545</td>
</tr>
<tr>
<td>0.01</td>
<td>0.966</td>
<td>0.899</td>
<td>0.70</td>
<td>0.807</td>
<td>0.523</td>
</tr>
<tr>
<td>0.02</td>
<td>0.955</td>
<td>0.865</td>
<td>0.80</td>
<td>0.796</td>
<td>0.504</td>
</tr>
<tr>
<td>0.05</td>
<td>0.935</td>
<td>0.807</td>
<td>0.90</td>
<td>0.787</td>
<td>0.487</td>
</tr>
<tr>
<td>0.10</td>
<td>0.915</td>
<td>0.752</td>
<td>1.00</td>
<td>0.772</td>
<td>0.472</td>
</tr>
<tr>
<td>0.20</td>
<td>0.889</td>
<td>0.684</td>
<td>1.20</td>
<td>0.754</td>
<td>0.442</td>
</tr>
<tr>
<td>0.30</td>
<td>0.867</td>
<td>0.637</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[B^*_m = 1.30 \]

\[\beta = -0.0854 \]

\[s_\phi = 0.0276 \]

\[s_\gamma = 0.00754 \]
OFFICIAL DISTRIBUTION LIST

National Aeronautics & Space Admin. Scientific and Technical Information Division
Washington, D.C. 20546
Attn: US/Winnie M. Morgan
2 copies plus 1 reproducible

National Aeronautics & Space Admin.
Washington, D.C. 20546
Attn: RNW/E. M. Cohn

National Aeronautics & Space Admin.
Washington, D.C. 20546
Attn: FC/A. M. Greg Andrus

National Aeronautics & Space Admin.
Goddard Space Flight Center
Greenbelt, Maryland 20771
Attn: Gerald Halpert, Code 735

National Aeronautics & Space Admin.
Goddard Space Flight Center
Greenbelt, Maryland 20771
Attn: Thomas Hennigan, Code 716.2

National Aeronautics & Space Admin.
Goddard Space Flight Center
Greenbelt, Maryland 20771
Attn: Joseph Sherfey, Code 735

National Aeronautics & Space Admin.
Langley Research Center
Instrument Research Division
Hampton, Virginia 23365
Attn: John L. Patterson, MS-234

National Aeronautics & Space Admin.
Langley Research Center
Instrument Research Division
Hampton, Virginia 23365
Attn: M. B. Seyffert, MS 112

National Aeronautics & Space Admin.
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: N. D. Sanders, MS 302-1

National Aeronautics & Space Admin.
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: H. J. Schwartz

National Aeronautics & Space Admin.
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135
Attn: Robert B. King

National Aeronautics & Space Admin.
Geo. C. Marshall Space Flight Center
Huntsville, Alabama 35812
Attn: Philip Youngblood

National Aeronautics & Space Admin.
Geo. C. Marshall Space Flight Center
Huntsville, Alabama 35812
Attn: Richard Boehme
Bldg. 4487-BB

National Aeronautics & Space Admin.
Manned Spacecraft Center
Houston, Texas 77058
Attn: William R. Dusenbury
Propulsion & Energy Systems Branch
Bldg. 16, Site 1

National Aeronautics & Space Admin.
Manned Spacecraft Center
Houston, Texas 77058
Attn: Richard Ferguson (EP-5)
Commander, Naval Ship Systems Command
Department of the Navy
Washington, D.C. 20360
Attn: Bernard B. Rosenbaum (Code 03422)

Department of the Air Force
Flight Vehicle Power Branch
Aero Propulsion Laboratory
Wright-Patterson AFB, Ohio 45433
Attn: James E. Cooper

AF Cambridge Research Lab.
Attn: CRE
L. G. Hanscom Field
Bedford, Massachusetts 01731
Attn: Francis X. Doherty
Edward Raskind (Wing F)

Rome Air Development Center, ESD
Attn: Frank J. Mollura (RASSM)
Griffis AFB, New York 13442

Other Government Agencies
National Bureau of Standards
Washington, D.C. 20234
Attn: Dr. W. J. Hamer

National Bureau of Standards
Washington, D.C. 20234
Attn: Dr. A. Brenner

Office, Sea Warfare System
The Pentagon
Washington, D.C. 20310
Attn: G. B. Wareham

Mr. Donald A. Hoatson
Army Reactors, DRD
U. S. Atomic Energy Commission
Washington, D.C. 20545

Bureau of Mines
4800 Forbes Avenue
Pittsburgh, Pa. 15213
Attn: Dr. Irving Wender

Private Organizations
Aerojet-General Corporation
Chemical Products Division
Azusa, California 91702
Attn: William H. Johnson

Aeromutronic Division of Philco Corp.
Technical Information Services
Ford Road
Newport Beach, California 92663

Aerospace Corporation
P.O. Box 95085
Los Angeles, California 90045
Attn: Library Acquisition Group

Allis-Chalmers Mfg. Co.
1100 South 70th Street
Milwaukee, Wisconsin 53201
Attn: Dr. P. Joyner

A.M.F.
Attn: Dr. Lloyd H. Shaffer
689 Hope Street
Springdale, Conn., 06879

American University
Mass. & Nebraska Avenue, N.W.
Washington, D.C. 20016
Attn: Dr. R. T. Foley,
Chemistry Department

Arthur D. Little, Inc.
Acorn Park
Cambridge, Massachusetts 02140
Attn: Dr. Ellery: W. Stone

Atomics International Division
North American Aviation, Inc.
8900 De Sota Avenue
Canoga Park, California 91304
Attn: Dr. H. L. Recht

Battelle Memorial Institute
505 King Avenue
Columbus, Ohio 43201
Attn: Dr. C. L. Faust
Bell Laboratories
Murray Hill, New Jersey 07971
Attn: U. B. Thomas

Bell Telephone Laboratories, Inc.
Whippany, N. J. 07981
Attn: D. O. Feder, Room 3B-294

The Boeing Company
P. O. Box 3868
Seattle, Washington, 98124
Attn: Sid Gross, MS 85-86

Borden Chemical Company
Central Research Lab.
P. O. Box 9524
Philadelphia, Pennsylvania 19124

Burgess Battery Company
Foot of Exchange Street
Freeport, Illinois 61033
Attn: Dr. Howard J. Strauss

C & D Batteries
Division of Electric Autolite Co.
Conshohocken, Pennsylvania 19428
Attn: Dr. Eugene Willihnganz

Calvin College
Grand Rapid, Michigan 49506
Attn: Prof. T. P. Dirkse

Catalyst Research Corporation
6101 Falls Road
Baltimore, Maryland 21209
Attn: H. Goldsmith

ChemCell Inc.
150 Dey Road
Wayne, New Jersey 07470
Attn: Peter D. Richman

G. & W. H. Corson, Inc.
Plymouth Meeting
Pennsylvania 19462
Attn: Dr. L. J. Minnick

Cubic Corporation
9233 Balboa Avenue
San Diego, California 92123
Attn: Librarian
Mrs. Judy Kalak

Delco Remy Division
General Motors Corporation
2401 Columbus Avenue
Anderson, Indiana 46011
Attn: Dr. J. J. Lander

Douglas Aircraft Company, Inc.
Astrophysics Laboratory
2121 Campus Drive
Newport Beach, California 92663
Attn: Dr. George Moe

Dyametech Corporation
17 Tudor Street
Cambridge, Massachusetts 02139
Attn: R. L. Wentworth

E. I. DuPont De Nemours & Co.
Explosives Department
Repauno Development Laboratory
Gibbstown, N. J. 08027
Attn: Mr. R. W. Prugh
(Contract NASw-1233)

Eagle-Picher Company
Post Office Box 47
Joplin, Missouri 64801
Attn: E. P. Broglio

Electric Storage Battery Co.
Missile Battery Division
2510 Louisburg Rd.
Raleigh, North Carolina 27604
Attn: A. Chreitzberg

Electric Storage Battery Co.
Carl F. Norberg Research Center
19 West College Avenue
Yardley, Pennsylvania 19067
Attn: Dr. R. A. Schaefer

Electrochimica Corporation
1140 O'Brien Drive
Menlo Park, California 94025
Attn: Dr. Morris Eisenberg

Electro-Optical Systems, Inc.
300 North Halstead
Pasadena, California 91107
Attn: Martin Klein
Emhart Corp
Box 1620
Hartford, Connecticut 06102
Attn: Dr. W. P. Cadogan

Engelhard Industries, Inc.
497 DeLauncy Street
Newark, New Jersey 07105
Attn: Dr. J. G. Cohn

Dr. Arthur Fleischer
466 South Center Street
Orange, New Jersey 07050

General Electric Company
Schenectady, New York, 12301
Attn: Dr. R. C. Osthoff/Dr. W. Carson
Advanced Technology Lab.

General Electric Company
Missile & Space Division
Spacecraft Department
P. O. Box 8555
Philadelphia, Pennsylvania 19101
Attn: E. W. Kipp, Room U-2307

General Electric Company
Battery Products Section
P. O. Box 114
Gainsville, Florida 32601
Attn: W. H. Roberts

General Electric Company
Research and Development Center
P. O. Box 8
Schenectady, New York 12301
Attn: Dr. H. Liebhaafsky

General Motors-Defense Research Labs.
6767 Hollister Street
Santa Barbara, California 93105
Attn: Dr. C. R. Russell

Globe-Union, Incorporated
P. O. Box 591
Milwaukee, Wisconsin 53201
Attn: Dr. C. K. Morehouse

Gulton Industries
Alkaline Battery Division
212 Durham Avenue
Metuchen, New Jersey 08840
Attn: Dr. Robert Shair

Gulton Industries
Alkaline Battery Division
212 Durham Avenue
Metuchen, New Jersey 08840
Attn: H. N. Seiger

Hughes Aircraft Corporation
Centinda Ave. & Teale St.
Culver City, California 90230
Attn: T. V. Carvey

Hughes Aircraft Corporation
Bldg. 366, M. S. 524
El Segundo, California 90245
Attn: P. C. Ricks

IIT Research Institute
10 West 35th Street
Chicago, Illinois 60616
Attn: Dr. H. T. Francis

Institute for Defense Analyses
R&E Support Division
400 Army-Navy Drive
Arlington, Virginia 22202
Attn: Mr. R. Hamilton

Institute for Defense Analyses
R&E Support Division
400 Army-Navy Drive
Arlington, Virginia 22202
Attn: Dr. G. Szego

Idaho State University
Department of Chemistry
Pocatello, Idaho 83201
Attn: Dr. G. Myron Arcand

Institute of Gas Technology
State and 34th Street
Chicago, Illinois 60616
Attn: B. S. Baker
International Nickel Co.
1000-16th St., N.W.
Washington, D.C. 20036
Attn: Wm. C. Mearns

Johns Hopkins University
Applied Physics Laboratory
3621 Georgia Avenue
Silver Spring, Maryland 20910
Attn: Richard E. Evans

Leesona Moos Laboratories
Lake Success Park, Community Drive
Great Neck, New York 11021
Attn: Dr. H. Oswin

Livingston Electronic Corporation
Route 309
Montgomeryville, Pennsylvania 19065
Attn: William F. Meyers

Lockheed Missiles & Space Company
Technical Information Center
3251 Hanover Street
Palo Alto, California 94304

Mallory Battery Company
Broadway & Sunnyside Lane
North Tarrytown, New York 10591
Attn: R. R. Cleave

P. R. Mallory & Co., Inc.
Northwest Industrial Park
Burlington, Massachusetts 01803
Attn: Dr. Per Bro

P. R. Mallory & Co., Inc.
3029 E. Washington Street
Indianapolis, Indiana 46206
Attn: Technical Librarian

Martin Co.
Electronics Research Department
P. O. Box #179
Denver, Colorado 80201
Attn: William B. Collins, MS 1620

Mauchly Systems, Inc.
Fort Washington Industrial Park
Fort Washington, Pennsylvania
Attn: John H. Waite

Melpar
Technical Information Center
7700 Arlington Blvd.
Falls Church, Virginia 22046

Metals and Controls Division
Texas Instruments, Inc.
34 Forrest Street
Attleboro, Massachusetts 02703
Attn: Dr. E. M. Joe

Midwest Research Institute
425 Volker Boulevard
Kansas City, Missouri 64110
Attn: Physical Science Laboratory

Monsanto Research Corporation
Everett, Massachusetts 02149
Attn: Dr. J. O. Smith

North American Aviation Co.
S&ID Division
Downey, California 90241
Attn: Dr. James Nash

Oklahoma State University
Stillwater, Oklahoma 74075
Attn: Prof. William L. Hughes
School of Electrical Engineering

Dr. John Owen
P. O. Box 87
Bloomfield, New Jersey 07003

Power Information Center
University of Pennsylvania
3401 Market St., Rm. 2107
Philadelphia, Pennsylvania 19104

Prime Battery Corp.
15600 Cornet St.
Santa Fe Springs, Calif., 90670
Attn: David Roller

RAI Research Corp.
36-40 37th Street
Long Island City, N.Y. 11101
Radio Corporation of America
Astro Corporation
P. O. Box 800
Hightstown, New Jersey 08530
Attn: Seymour Winkler

Radio Corporation of America
AED
P. O. Box 800
Princeton, New Jersey 08540
Attn: I. Schulman

Radio Corporation of America
415 South Fifth Street
Harrison, New Jersey 07029
Attn: Dr. G. S. Lozier
Bldg. 18-2

Southwest Research Institute
8500 Culebra Road
San Antonio, Texas 78206
Attn: Library

Sonotone Corporation
Saw Mill River Road
Elmsford, New York 10523
Attn: A. Mundel

Texas Instruments, Inc.
P. O. Box 5936
Dallas, Texas 75222
Attn: Dr. Isaac Trachtenberg

TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278
Attn: Dr. A. Krausz, Bldg. 60, Rm. 147

TRW Systems, Inc.
One Space Park
Redondo Beach, California 90278
Attn: Dr. Herbert P. Silverman

TRW, Inc.
23555 Euclid Avenue
Cleveland, Ohio 44117
Attn: Librarian

Tyco Laboratories, Inc.
Bear Hill
Hickory Drive
Waltham, Massachusetts 02154
Attn: Dr. A. C. Makrides

Unified Sciences Associates, Inc.
826 S. Arroyo Parkway
Pasadena, California 91105
Attn: Dr. S. Naiditch

Union Carbide Corporation
Development Laboratory Library
P. O. Box 5056
Cleveland, Ohio 44101

Electromite Corporation
Attn: R. H. SPARKS
General Manager
562 Meyer Lane
Redondo Beach, California 90275

Union Carbide Corporation
Parma Laboratory
Parma, Ohio 44130
Attn: Dr. Robert Powers

University of Pennsylvania
Electrochemistry Laboratory
Philadelphia, Pennsylvania 19104
Attn: Prof. John O'M. Bockris

Westinghouse Electric Corporation
Research and Development Center
Churchill Borough
Pittsburgh, Pennsylvania 15235

Whittaker Corporation
3850 Olive Street
Denver, Colorado 80237
Attn: J. W. Reitzer

Whittaker Corporation
Narmco R&D Division
3540 Aero Court
San Diego, Calif. 92123
Attn: Dr. M. Shaw

Yardney Electric Corporation
40 Leonard Street
New York, New York 10013
Attn: Dr. Geo. Dalin