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SUMMARY

The differential equations for the geometric layout of com-
pression-loaded axisymmetric and cylindrical two-family filamen-
tary structures are established. The analytical formulation is
based upon the reguirement that failure due to local instability
occurs simultaneously in the whole structure.

Solutions are obtained for the particular case where the body
force due to the structure's own weight is the only load. For
this special case, the shapes of the meridian and the cross sec-
tion, respectively, have been determined, as well as the pattern
of the filaments. In addition, the weight per area covered by
the structure is formulated and discussed. Minimum-weight
configurations are defined. Examples for large earth-based and
moon-based structures are presented.
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INTRODUCTION

Among high-~performance structures maximum economy of material
is often obtained by a design in which all structural components
fail simultaneously as the structure is subjected to a unique
ultimate loading condition. “Examples of such structures are the
uniformly stressed Maxwell-Michell type networks, isotropically
stressed structural "soap-film" membranes, uniformly stressed
filamentary network structures ("isotensoids") (Refs. 1, 2), and
the "Shanley tube" (Ref. 3), which is designed to fail simultan-
eously in a local and general instability mode.

Analogously to the isotensoids, structures can be found
which are uniformly compressed. These “isocompressoids" are the
subject of a recent study (Ref. 4). However, under compressive
loads, failure of the structure due to instability may occur long
before the compressive stress limit is reached. The present report
treats this stability problem from a standpoint of buckling of the
individual structural members. Hence, the analytical design con-
dition imposed upon the structure is that each element buckle as
an Buler column between network nodes upon reaching the design
ultimate load. The term "isostabiloid" is used to describe the
filamentary structural configurations satisfying this condition.

This analysis deals with axisymmetric and cylindrical config-
urations with axisymmetric (or uniform along the length) loadings.
In either case no circumferential (or lengthwise) loadings are
considered. The influences of general instability are recognized
but only briefly discussed.



LIST OF SYMBOLS
cross—-sectional area of a single rod
= sinzﬁa
buckling end-fixity coefficient
tube diameter
dimensions of particular Sintes column (Fig. 13)
elasticity modulus
weight form factors for gravity-loaded isostabiloids
stress form factors for gravity-loaded isostabiloids
gravitational acceleration
= sin25
moment of inertia of rod cross section

curvature at apex of structure in nondimensional
coordinates

stiffness form factor of rod cross section <= l;)

A2
mass per unit planform area of gravity-loaded isostabiloids
number of filaments in each family
number of rod sections in each filament
number of unrestrained filament intersections
external meridional load per unit surface area
external normal load per unit surface area

local buckling load of rod

number of meridional node lines in general failure mode
of axisymmetric shells



r radial coordinate

R nondimensional radial coordinate in gravity-loaded
axisymmetric structure (see Eg. 5)

s spacing of filaments at perimeter

t wall thickness

X widthwise coordinate in cylindrical structures

X nondimensional widthwise coordinate in gravity-loaded
cylindrical structures (see Eqg. 7)

y axial coordinate in cylindrical structures

Y nondimensional axial coordinate in gravity-loaded
cylindrical structures (see Eqg. 7)

z vertical coordinate

Z nondimensional vertical coordinate in gravity-loaded
axisymmetric structures (see Eqg. 5)

z nondimensional vertical coordinate in gravity-loaded
cylindrical structures (see Eq. 7)

o angle between meridian and vertical

B8 angle between meridian and filament

AL length of filament between two intersections

p density of rod material

o stress

Subscripts:

values at apex of cylindrical structures

values at rim of structure



BASIC RELATIONS

Axisymmetric Isostabiloid

Consider an axisymmetric structure consisting of two famil-
ies of interconnected rods as the load~carrying parts, and built
in such a way that the arrangement pattern of one family of rod
trajectories is the reflected image of the other family. The rod
trajectories are referred to as "filaments", indicating that these
may be continuous structural members, connected to other filaments
at localized points of intersection.

Let n Dbe the number of filaments in each family; then the
length of an element, A{ , between two intersections is, with the

notation of Figure 1,

1 2mr 1
At = 2 n sing (1)

Assume that all rods are of the same cross section and
material; thus the bending stiffness, EI , is a constant. Let
another constant, C , be the end-fixity coefficient for the
single rod element. This parameter varies from one to four as
the end fixity increases from pinned to clamped. If the rods
are sufficiently slender, then the force in the filament causing
fully elastic local buckling can be written as

_C 1 EI
A

N

cr

or, from Eg. (1)

n . 2
Pcr = > sin B (2)

Assume that the loading is axisymmetric. Then two equili-
brium equations can be written.



Let p, and pn be the external loads per unit surface

area of the structure in the meridional and the normal direc-
tions, respectively, as shown in Figure 1. BAlso, let P be the
compressive force in the filament. Now, examine the filament
between two intersections with filaments of the other family.
r _Ar

The corresponding surface area has the size n sing and is
traversed diagonally by the filament section, A4 . Equilibrium
requires that in the direction of the z-axis
Tr _Ar mr _Axr
P - — = osa + —_— — ind = 0
(P cosa cosg) Pnn sing %% 7 Pp 4 sing °°
and in the radial direction
. . r tanpg 1 Y r .
A(P sina cosf) - P sinsg A—T_E_g'— - '—-'“é—— sing
sina r mn sina
mTr Ar
- p. — cosa = O

nn sina

Dividing by Ar and assuming that the filaments are suf-
ficiently closely spaced that the difference gquotient can be
replaced by the derivatives, yields

d Y Y

—— — —— + —_— =

3 (P cosa cosB) P a cota pn n 0
a ) sinf tang Y J1ES
——— —_ P —_—— —_— —_— =
ar (P sina cosB) T sing P, n p N cota 0

In order to find a more convenient second equilibrium equa-
tion, the first one is multiplied by cosa cospg , the second one
by sina cosf , and the results are summed: ‘

dap sing d . Ir cos
dr r dr (Pr sing) pm n sina



It is now postulated that at ultimate loading the compres-
sive force, P , reaches the local fully elastic buckling load
everywhere in the structure. Thus, P is replaced by P

cr
from Eq. (2): '

2 4 (sinzs cosg cosa) _ I
pmn

Some manipulation yields a form convenient for subsequent use:

R
da (sin4B c052§>cosza,) _ 2 Pm sin2§>cos§¥cosza
dr r4 c ET n3 r sinaq
2t p . 2
+ n sin B cgsB cosa  _ 0 | (3)
C EI n
da_ ( sin4B) - (sin65> _ 21 Py sinzB cosB _ ,
dr A L2 dr 2 c ET n3 r sina J

These two equations allow the determination of the complete
geometry of the structure in terms of the loading and the section

properties of the rods.

Cylindrical Isostabiloids

A cylindrical case, such as is shown in Figure 5, can be
construed as the limit of an annular type of axisymmetric struc-
ture with indefinitely increasing radius.

The differential equations for the geometry of cylindrical




isostabiloids can therefore be derived directly from the equations
for axisymmetric structures, Egs. (3), by substituting (rl + x)

for r and letting ry approach infinity. Consequently dr be-

comes dx , and the spacing of filaments

is introduced. The limiting process yields the basic equations
for the cylindrical isostabiloid:

d . 4 2 2 s3 sinzs cosB cosza
ax (sin B cos B cos a) - P > sing
Am C EI
s3 2
+ pn —s sin B cosB cosa = O L (4)
4 C EI
3 . 2
%; (sin4B coszB) _ pm 2s 51nSEncosB =0
4n° C EI < J




GRAVITY LOADING

Consider the structure to be subject to its own weight with
the direction of the gravitational force in the z-direction, and
with g as the gravitational acceleration. Let p ©be the density
of the rod material and A Dbe the constant cross-sectional area.
Then, the loads per unit surface area in the meridional and normal

direction are, respectively,

cosa
= A —
pm P9 mr cosB
o n_  sing
P, = P g Tt cosP

Egs. (3) become

. 4 2 2
QL_(Sln B cos B cos a)_ 5D gaA sinzB cota _

dr 4
r C EI n2 r2

. 4 .

d sin _ 1 d 51n6 _ g D g A sinZB cota _

dr ) 2 dr 2 2 2 =0
; r C EI n r

r \ r

Introducing nondimensional coordinates,

1/3
CEIn
T(S)
1/3
CEIn J
and defining a variable
h = sinzB



yields the differential equations for the geometry of a gravity-
loaded axisymmetric isostabiloid

2 ' 2 h
d h”(1-h) cos’ g h
EE 4 - 2 cota —5 =0
R R
> (6)
Q_Gﬁ)_LAL(ﬁ)_ZC%QE__O
5 _ =
dr R4 R drR R2 R2

A parallel procedure can be applied to the cylindrical con-
figuration. If the lengthwise coordinate is defined as vy , the
appropriate nondimensionalization is

- p. g A s2
X = 5 X
47 C EI

2

p g A s
5 Y } (7)
4 C EI

=i
I

0 g A 32 ”
4ﬂ2 C EI .

~ |
Il

The resulting differential equations for the gravity-loaded cylin-
crical isostabiloid are:

4a [h2 (1-h) cosza] - 2h cota = 0

&)

(8)

(k2 (1-h)] - 2h cota =0

Sile



Domes

Equations (6) have to be solved numerically. Because closed
dome-shaped isostabiloids are of most interest, efforts are con-
centrated on this type of solution. The equations are clearly
singular at R = 0 , and careful attention must be given to the
behavior of the solution at this point. The differential equation
of the meridian is

dz
- = cot
dr «

If domes exist, that is, if o = 90° for R = 0 , it must be

possible to develop the meridian, Z , and conseqguently cota, as
well as h 1in power series in R:

o
cota = E Xi rR*
i=0

[ee]

- h. R’
Z 5

J=0

By applying the differential egquations (6) to these series
it can be shown that there is a unique solution

cota = XlR + O(R3)
h = h2R2 + 0(R4)
1
and that A, = —
1 h2

The meridional shape near the center, therefore, becomes

M
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Thus Xl represents the nondimensional curvature of the meridian

at the apex. Call it k .

For the purpose of numerical integration the differential
equations (6) are rewritten as

da _ h’ cota - R
dR Rh(1-h)

dh _ h(2-h) + R3 cota

ar 3
R(1 - 3 h)

and the first term approximations

cota = k R
1 2
h = X R
2 =72 + k R2
o 2

are used to start the process.

In the course of integration the independent variable is
switched from R to h in order to avoid a division by =zero

when h reaches the value of 2/3. This value is significant
because the meridian ends there (%% = %% = 0). Thus, on a

closed-dome axisymmetric isostabiloid, the filament angle, B ,
can vary only between 0° and 54.74°,.

Because of the closed-dome specification, the filament path,
B(R) , and the meridional shape, -a(R) , consequently also Z(R)

and the height-to-semispan ratio, zo/rO , are completely defined

if the nondimensional curvature at the apex, k , and the termina-
tion of the integration, RO ¢ Qg s or Bo , are selected.

For example, Figure 2 shows side and top views of a dome-
shaped isostabiloid, specified by the curvature, k = 2 , and

11



the filament angle at the rim, Bo = 54.74°.

The nondimensional curvature at the apex, k , is an inde-
pendent design parameter. It is needed for the numerical evalua-
tion, but it provides little information about the structural
configuration. For the selection of a particular dome, therefore,
a more practical design parameter, the height-to-semispan ratio,
zo/rO , is plotted in Figure 3 versus the integration limit, RO

with k as parameter. In addition, the values of oy and Bo
corresponding to each combination of RO and k are indicated

by lines of constant value. Therefore Figure 3 is a design chart
for dome-~shaped isostabiloid configurations because now any

desired combination of the parameters, oo , 8 , R , z /r , and
o] 0 o o "o

k , can be picked to select a unique configuration.
As an example, domes with a height-to-semispan ratio, Zo/ro

=1, 2, and 3, and Bo = 54.74° are seen to be characterized by

k-values of approximately 3, 6, and 10, respectively. Their
meridians have been computed and are shown in a normalized form
in Figure 4.

Tunnels
For the cylindrical configuration, attention is directed to

singly-connected tunnel-type shapes. Equations (8) can be re-
written as

a_ (hz (1-h) sinza) =0
ax

(h2 (l—h)) - 2h cotq = 0

Sl

The first differential equation can be integrated to yield

v° (1-b)
h? (1-h)

.2
sin a =

12



2
where b = sin Ba at the apex, where o = w/2 . Substitution

into the second equation yields

5 .
_g__i(hz (1_h))1 2h‘/1;2—:i—:—h]j—-1=o
_ by1-b (1—%h_)

or ax it dh

.

\fhz (1-h) - B2 (1-b)

If the integration starts at h = b , tunnels closed at the
apex are produced because the + sign in the differential equation
implies a symmetry with respect to the origin of the X-coordinate.

The cross-—sectional shape of the cylinder and the lengthwise
pattern of the filaments are determined by the two eguations

dZ = cota dX (1 - =h) dn

2

I
|+

and 3/2 3
— tan - h (L - 5 h)
dy = —; axX = + dh
sina - r

‘[;z(l—h) - bz(l—b)

!

The polynomial under the radical in the denominator of the form-
ulas for dX and dY¥ can be written as

n%(1-h) - b2(1-b) = (a-h) (h-b) (h-c)

where

13




1-b " 4b

Now the coordinates, X and Y , can be written in terms of ellip-
tic integrals

h
3
_ (L - < h)
X = b\/l-b 2 dh
‘l(a—h) (h=b) (h-c)
h
_ w32 (1 - —;— h)
Y = - dh
‘/(a—h) (h-b) (h-c)
b
h
while E:f (l-%h) dh

b

Note that a and b are exchangeable, and that further- _
more a =b for b = 2/3 . But this, too, is the point where X
and 7 reverse their directions in the integration. Therefore,
again, at h = 2/3 the rim is reached. For values of b
smaller than 2/3 , the filament angle, B , increases from its
value at the apex, Ba , to 54.74°, while for b larger than 2/3,

B8 decreases from the apex to the rim.

An investigation of the nondimensional curvature at the
apex, k , shows that

2__
d z - d(cota) dh _ 1

d-}-{'Z dh ax b(1-Db)

k =

and therefore can never be smaller than 4.

14



As in the dome structure, the geometry of the tunnel is
determined by specifying the behavior at the apex (it is B_ ,
b , or k whichever form is preferred) and the end of the
intergration (ao , BO , Or RB }. For example, Figure 5 shows

an isometric projection of a cylindrical isostabiloid specified
by the two values of the filament angle, B: 30° at the apex
(equivalent to b = 0.25 or k = 5.333) and 54.74° at the rim.

Figures 6 and 7 present the design charts for the configura-
tion of cylindrical isostabiloids, with filament angles at the
apex, Ba , smaller than 54.74° in Figure 6 and larger than

54.74° in Figure 7. Again, from this chart the design parameters
are chosen which pertain to cross-sections of tunnels with a
height-to-semispan ratio, zo/xo , of 1, 2, and 3, shown in
Figure 8.

15



MASS OF THE GRAVITY-LOADED STRUCTURES

Because gravity is the only external load,the mass of the
structure can be determined from the forces exerted upon the edge
support. Each filament contributes to the total vertical load
the amount, Pcr cosa cosBO , where Pcr is defined by Eqg. (2).

Thus the average structural mass per unit planform area, m , is,
for domes,

2n P cosqa_ cosB
cr o 0

mr
El O

and for tunnels,

2 P cosqa_ cosB
cr ) o

S X
g o

Let the moment of inertia of the individual structural
member be related to its area by the formula

where Kf is a shape factor. Also replace P by Eq. (2), then

for domes,

2n3 CE Kf A2

_ . 2 8
m = 4 sin BO cos o cosao (9)
g mr

O

and for tunnels,

8ﬂ2 CE Kf A2 5
m = sin Bo cosBo cosonO (10)

16



Now, from Eqg. -(5), for domes,

= (11)
CE Kf n o]
Also, from Eg. (7), for tunnels,
2 X
__bgs _2
A = 2 X (12)
47 C E K o

£

If these expressions for A are substituted into the appro-
priate formulas for mass, and the spacing at the rim of the dome

is introduced, the following results are obtained.

For domes,

92 gs_ T
O ©
m = - fD (13)
m CE Kf
and for tunnels,
2
p- g s xo
m = . fT (14)
m CE Kf
The functions, fD and fT , are expressed in terms related to

the structural configuration alone and, therfore, are called
weight form factors:

17



. 2
sin B cosB cosa
o le) o

£ =
D R 6
o
, 2

sin B cosB cosa
£ = °) ®) e)
T % 2

o

They are plotted in Figure 9 versus the height-to-semispan
ratio zo/rO or .zo/xo , with the nondimensional radius of the

dome, R _ , and the nondimensional semispan of the tunnel, X
respectively, as parameter (full lines). For easier interpre%a—
tion, lines of constant k-values are also indicated (dashed) in
the two graphs.

It has been found above that for constant k-values the
filament angle at the rim, Bo , increases or decreases steadily
with growing Ro- and X - values. Consequently, Figure 92 shows
that for constant values of %k the weight form factors of gravity-
loaded axisymmetric isostabiloids become a minimum when B
reaches its maximum possible value of 54.74°. The global minimum
of the weight form factor, = 6.07 , is achieved for an iso-
stabiloid dome with a height—go semispan ratio zo/rO of approxi-
mately 0.53. A view of this "minimum weight" isostabiloid is
shown in Figure 10.

In the case of cylindrical structures, only values of f
for Ba smaller than 54.74° are shown because for larger valles
the factor, fT , i1s considerably larger. Note that unlike fD ’
the minimum of £ for constant k-values is not always coupled
with the largest possible filament angle at the rim. The global
minimum, fT = 3.6 , however, does belong to a configuration

min
with an angle, Bo , of 54.74° and a zo/xo of 0.6.

Examination of Egs. (13) and (14) shows that the operative
parameter for material efficiency is E/p< .

of particular interest is the fact that the structural mass
is proportional to the spacing of the filaments. This implies
a weightwise advantage of finely textured structures. However,
a limit is provided by the lowest order failure mode of general

instability.

18



DESIGN LIMITATIONS

Recall the intrinsic assumptions of the foregoing analytical
design procedure, i.e.,

— The instability failure takes place in the fully linear,
elastic range, and

- The instability failure mode of the structure which

characterizes the design consists of nodes at each filament
intersection.

Hence, for the procedure to yield a valid design it is necessary
that

—- The stress at ultimate loading must remain at or below the
proportional limit of the structural material, and at or
below the local crippling stress of the structural section
employed, and

- No "general" instability failure modes occur at loading
levels below that which corresponds to the postulated design
failure mode.

The two design limitations resulting from these requirements will
be discussed separately below.

Stress Limits

The stress limitation of isostabiloid design is subject to
rigorous analysis. It can be shown that the maximum stress is
reached at the rim. Using Egs. (2) and (11), and (2) and (12)
yields for domes:

6 =pgr £ (15)

and for tunnels

o =P gx £ (16)

19



with the non-dimensional parameters

sinZB
_ o

fD~ 3

The functions Eb and fT are stress form factors because

they depend, again, on the configuration alone. They are plotted
in Figure 1l1. Note that fT is presented only for values of

Ba smaller than 54.74° because, as in the case of the weight form
factor, E& for Ba larger than 54.74° assumes considerably

higher values.

No distinct global minimum for fD and E& appears in

Figure 1l. 1Indeed, a closer examination shows that for decreasing
parameter values of Ro or X , as well as for increasing k-
values the corresponding minima of £ approach a value of 1.5

at zo/rO or zo/x0 equal to 0.75. But, as it may be checked

in the design charts, Figures 3 and 6, in the same process the
filament angle at the rim, Bo , becomes very small and the

corresponding isostabiloids theoretically degenerate into domes
with plane, non-intersecting radial members and into tunnels
consisting of plane arches perpendicular to the tunnel axis.

In addition, Figure 9 shows tremendously increasing weight form
factors for the corresponding configurations. Consequently, in
cases where the stress limit really might be reached, a compro-
mise between weight and stress consideration has to be sought.

A look at the stress equations provides an idea when the

stress becomes pertinent: the semispan of isostabiloid structures
will be stress limited at

20



1
r = - (17)
o pg =
max fD
° 1
and % = Max o (18)
o pg =
max fT

g
max

Note that is the specific working stress, and that l/f

assumes a value of 2/3 or less. Hence, the largest, stress
limited structure will have a span of approximately 4/3 times
the specific working stress.

For example, an earth based aluminum construction

(pgearth = 0.1 lb/in.3) operating at a maximum safe stress

level of 10,000 psi would yield a span of 130,000 in. or

approximately two miles. On the moon surface (pgmoOn = 0.0165

lb/in.3) a similar structure would be stress limited at a span
of almost 13 miles. Even with only half the values of 1/f ,

assuring weight form factors close to the global minimum, the

stress limited structures assume enormous proportions.

General Instability Limits

For the cylindrical structure, it is evident that the lowest
instability mode will tend to have nodes only at the foundations
and at the apex. Thus, the only "isostabiloid" would be the
extremely degenerate case where the filaments do not intersect
at locations other than at the apex; auxiliary braces will be
required to prevent premature general instability failure. Since
the dead weight loading associated with these braces has not been
considered in the analysis, the design procedure will at best
vield a first approximation to the desired optimum structure.

For domes, the situation is more complex. Let n be the
number of rod sections contained in each filament between apex
and rim. Then for a structure with 2n filaments, the number
of unrestrained filament intersections is

21



N=ni(n-1) +1

The elastic properties of the structure thus can be expressed by
a stiffness matrix of order 3N or 6N , depending on the nature
of rotational constraints at the intersections. Eigenvector
extraction yields the buckling modes for the corresponding 3N
(or 6N ) critical loads. The associated computational problem
for any but the simplest structures is enormous and a rigorous
parametric treatment is beyond the scope of this study. However,
one simpler way to determine approximately the conditions under
which general failure occurs is explored in the appendix.

22



APPLICATIONS

Two sample designs are given to demonstrate the applications
of the isostabiloid design procedure.

Consider earth based isostabiloid domes. One dome shall have
the optimal proportions for minimum structural weight, shown in
Figure 10, the other shall be a design characterized by a low
stress form factor and the same height-to-semispan ratio as the
minimum weight dome. Its configuration is shown in Figure 12.
Both domes shall be constructed from aluminum alloy tubing. An
ultimate design factor of 4 shall be applied to the gravity
loading, and the design shall be balanced to produce local crip-
pling of the tubing at the materials proportional limit, O
in the most severely stressed rim members. At the same limit
stress, Euler buckling of all members is to occur. The size
and detail construction of domes meeting these conditions shall
be determined.

1’

The pertinent non-dimensional parameters are tabulated below:

TABLE T
Minimum Weight Configuration Low-Stress-Factor
Configuration

R 0.59 0.39

o

Z 0.31 0.20

o

B 54.,7¢° 18.3°

o

a 47.1° 42.3°

o)

. 20.

fD 6.07 0.2
£ . 1.68

fD 3.21

23



The materials properties are assumed to be

E = 10’ psi
. 3
ng = 0.101 1b/in.
o = 40,000 psi
p P

To meet the required design factor of 4, the maximum per-
missible working stress under simple gravity load is

o = 10,000 i
° 10, psi

The size of the dome is now determined by Eqg. (17)

This yields

r 2,570 £t for the minimum weight configuration, and

o

r 4,890 ft for the low-stress-factor configuration.

(o}

The diameter, D , and wall thickness, t , of the tubing is
chosen such that local crippling of the wall will occur at the
proportional limit. Hence, from Reference 3:

o =0 = 0.4 E t/D = 40,000 psi
cr P
or t/D = 0.01
.1 __D _
and Kf = A2 = ame - 3.98
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The structure shall be built such that its members will
buckle at a load equal to 4 times that which is produced by its
own gravity. Equation (5) can be rewritten to yield the diameter
of the structural tubing which will satisfy this condition:

. 3
2
]_D_.=I/A=io_éi_pﬂ
& R CEn2
o

and, assuming C = 1l:
6750 . . . .
= __H— for the minimum weight configuration, and
D = 22299 for the low-stress-factor configuration.

The weight of the structure is found from Eq. (13),
which can be rewritten, by substituting

21 ro
g =4 gE . and S, ~ 5
which yields:
2
v rzn_Sr (ng) £,
S nceEK
£
or
10
W = L.13 : 10 1b for the minimum weight configuration, and
47.9 lO10
W= - z 1b for the low-stress-factor configuration.
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Table ITI and III below summarize the properties of isosta-

biloid domes for various values of n ,

TABLE TI

MINIMUM WEIGHT CONFIGURATION

n 36 72 100 250
D (in.) 187.5 93.75 67.5 27
t (in.) 1.875 0.9375 0.675 0.27
w (106 1b) 313.5 157 113 45.2
TABLE IIT
LOW-STRESS-FACTOR CONFIGURATION
n 24 36 60 100 180 360
D (in.) 1400 937.5 560 336 187 93.7
t (in.) 14 9.375 5.6 3.36 1.87 0.93
W (lO9 1b) 20 13.3 7.98 4.79 2.66 1.33

Moon Structure:

500 1000

13.5 6.75

0.135 0.0675

22.6 11.3
720

5 46.9

75 0.47
0.665

Future bases located on the surface of the moon will require

shelters for personnel, material and equipment. An

isostabiloid

dome may be employed as a scaffold in the initial phase of the
construction of such shelters. Since the structure will be
transported from the surface of the earth, minimum weight and

storage volume will be required.
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As an example of such a structure, consider a "minimum weight"
isostabiloid dome with a diameter of 333 feet (r, = 2000") and
apex height of 88 feet. It is to be designed with a load factor
of 3 for operation in the moons gravitational field of 1/6 g_ ,
and the dome is to be made from flattenable and coilable
"Sintes-Tubes" (Ref. 5).

The cross section of this type of structural member is shown
in Figure 13. As material of construction 17-7 PH Stainless
Steel is selected with the following properties:

6 . y
E = 28 x 10 psi, (ng) = 0.28 lb/ln.3, oy = 180,000 psi
The maximum working stress at the rim is given by Eqg. (15)

1 = .
OO = ro 5 (ng) fD = 300 psi

This structure will obviously not be stress limited.

The wall thickness/convolute diameter ratio of the structural
tubes, /4 , is determined by the condition for flattening:
Allowing a maximum strain of .33% during the flattening process
requires 4/t = 300 and yields a stiffness form factor Kf = 15.6.

The (earth) weight of the structure is derived from Eg. (13)

r (pg )2
2 (o) E 4360
= T = = ]_
WE ro ng n CE Kf n b

and the cross sectional dimension of the tubing (see Fig. 13)
become
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Reasonable structural sections are obtained by choosing
n =72 . The structural properties and dimensions for this
design are given in Table IV below:

TABLE IV

333 FT DIAMETER MOON DOME STRUCTURE, n = 72

Design Factor 3
Weight (lbm) 60.5
dl (in.) 0.69
d2 (in.) 0.63
t (mils) 1.1
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CONCLUDING REMARKS

A mathematical formulation suitable for analytical design
of structural networks with uniform local instability margins
has yielded solutions for specific, idealized cases of simple,
two-family "axisymmetric" and "cylindrical" networks. Such
structural configurations may form the basis for the design lay-
out of practical structures. Not considered were the effects of
unavoidable local and general imperfections upon the optimal
choice of design configurations, and the effect of multiple
loading conditions. In addition, only one type of loading was
treated in detail, and the influence of general instability
phenomena was only shortly discussed. A fertile field for further
theoretical and experimental studies is indicated.
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Figure l. 1Isostabiloids - Geometry and Forces of an Element
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Figure 4. Gravity-Loaded Axisymmetric Isostabiloids
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Figure 7.

Configuration Design Chart for Tunnel-
Shaped Isostabiloids
(Ba > 54.74° or b > 2/3)
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Figure 13. Cross Section of Flattenable, Coilable "Sintes Tube"
for Moon Dome (I = T )
X Y
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APPENDIX
GENERAL INSTABILITY OF DOME-SHAPED ISOSTABILOIDS

The lowest general instability mode of a dome-shaped iso-
stabiloid may be determined approximately by replacing the network
structure with an "equivalent" uniform shell of revolution. Solu-
tions to shell buckling problems of this type are available in the
published literature.

For a dome-shaped shell of uniform wall thickness, tg , and
subject to axial loading, the lowest instability failure mode
seems to be inextensional, according to Reference 6, and it will
generally exhibit meridional node lines (see inset of Figure A-1).
The number of node lines, ¢q , depends, among other parameters, on
the wall thickness~to-semispan ratio of the shell, ts/rO . Fig~
ure A-1, derived from data of Reference 6, shows this dependence
for the particular case of a paraboloidal dome with a meridional
angle at the shell rim, ay » Of 45° .,

Now, by defining an "equivalent" wall thickness for isosta-
biloids the data of Reference 6 may be applied to these gridwork
structures provided the meridional shapes of the shell and the

isostabiloid are similar.

From inspection of the buckling mode it appears that the
bending stiffness in circumferential direction i1s the dominant
elastic shell property controlling the buckling mechanism. While
the bending stiffness per unit transverse width of the isotropic
shell is uniform

3

EI' = —>——— (A-1)

l2(l—v2)

it varies with location and direction for an interconnected grid-
work of rods, forming an isostabiloid, and becomes in the circum-—
ferential direction

Vo n__. 3 GJ -
EI! = EI _— sin B (tans+EEcots) (A-2)
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EI and GJ are the bending stiffness and the torsional stiffness
of a single straight rod. '

The equivalent wall thickness of an isostabiloid, teq is
now defined by combining equations (A-1) and (A-2) and integrating
over the complete structure to obtain an average value

r
(@]
S 2
€ 3=12(1-v)L—f1
eq r,
O

Using Eg. (5) to substitute r, the equivalent wall thickness is

found in its final general form as

R
1/3 o ., 4 GJ 2
2 2 —si
3 _120-v") (pa1’a 1 Sin Bigrsin BdR (A-3)
eq T CE R R cospB

O

For the special case where the structural members are made
from circular tubing Eq. (A-3) reduces to

R
1/3 0 2
3 12 QgIZA / 1 (1-v )sin4B+(l—v)sin28
T -~ == — dR
eq ﬂ CE Ro R cosB
©

which, using v = 0.3 , yields for the minimum weight configuration

—3 12 nng2A1/3
- CE

Referring to Figure A-1, it can now be postulated that if
g 2 2n then the corresponding isostabiloid will indeed fail in
the assumed manner. If g S n it may be suspected that the low-
est instability mode of the corresponding isostabiloid involves
motions of joints normal to the surface and that the isostabiloid
design will not be valid, unless additional constraints (such as

braces, stay wires, etc.) are used to prevent such failure modes.
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The foregoing approximations must be used with caution since
they do not account for unsymmetrical instability modes that may
be caused by unavoidable geometrical imperfections and by side
load components; nor do they account for failure modes that are
associated with tangential strains.
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Figure A-1l. Number of Meridional Node Lines for Lowest Buckling
Mode of Parabolic Dome Shell (Ref. 6)
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