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ABSTRACT

A numerical investigation was conducted of viscous, compressible
flow about a circular cylinder executing harmonic motion normal to the
free stream flow direction. The oscillatory motion of the cylinder led
to vortex shedding, and to a Karman vortex street. Calculations were
made at a Mach number of .20, Reynolds numbers of 100 and 1000, a constant
cylinder oscillation amplitude equal to 10% of the cylinder radius, and
a range of cylinder oscillation frequencies. The variation with oscilla-
tion frequency of the time-averaged-drag coefficient, root-mean~-squared
lift coefficient, and shedding frequency, are presented. In general, in-
creasing the cylinder oscillation frequency decreased the time-averaged
drag coefficient, increased the root-mean-squared lift coefficient, and

had very little effect on the shedding frequency.
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1.0 INTRODUCTION

1.1 Background

When launch vehicles are subjected to steady ground winds while
in the vertical position, unsteady aerodynamic forces are exerted on them.
These unsteady forces are associated with vortex shedding from the sides
of the vehicle,and appear to be influenced by vehicle geometry, Reynolds

Number, oscillatory vehicle motion, and surface conditions.

In the past, specific launch vehicle configurations have been
investigated by means of dynamically scaled wind tunnel models. However,
wind tunnels are limited in size. As a result, no direct tests can be
made of the aerodynamic characteristics of many vehicles of interest,
Instead, scaled-down models of large vehicles are examined in wind tunnels,
and the resulting data are extrapolated to full vehicle size on the basis
of gasdynamic scaling laws. For example, by increasing the wind speed in
a wind tunnel test of a scaled-down model, the Reynolds number is raised to
levels characteristic of the full-sized vehicle. For a Newtonian in-
compressible fluid, the two flows are then rigorously similar. However,
wind speeds cannot be increased indefinitely without generating large
perturbations to the flow field due to real-gas compressibility (in prac-
tice such effects are to be expected for Mach numbers greater than .3).
Since large scaling factors are needed for very large vehicles such as
Saturn V, it has often been necessary in wind tunnel programs to violate
the scaling laws. Typically, measurements are made at lower Reynolds
numbers than desired, in order to avoid drastic changes to the flow field
due to compressibility at high Mach numbers. A compromise is then struck
in which wind tunnel tests are conducted at lower Reynolds numbers and
higher Mach numbers than would characterize the true vehicle environment
according to the gasdynamic scaling laws. 1In the case of the Saturn V,
for example, wind tunnel tests have been conducted at Reynolds numbers of
about 4.5 x 106, while the corresponding full-scale Reynolds numbers should
have been about 15 x 106.1 Practical difficulties of scaling wind tunnel
test data for large vehicles provide a strong motivation for the develop-
ment of alternate procedures for determining flow fields, such as numerical

integration of the equations of gasdynamic motion.



To our knowledge, there are no adequate numerical or analytical
methods for calculating the complete three-dimensional flow fields about
such asymmetric vehicles as the Saturnm V. However, it is realistic, using
existing numerical tools, to attempt to calculate flow fields about full-~
scale launch vehicle configurations under conditions of plane two-dimensional
flow. It is also feasible in such calculations to simulate the wind-
induced motion of the vehicle by forcing the body cross section to oscillate.
In earlier work, vortex formation and shedding were computed around station-
ary body cross sections (right circular cylinders). The results were in
quantitative agreement with experimental observation and with available
independent theoretical calculations, to an accuracy which appeared to
depend only on the length of machine time expended in computation. The
numerical methods used for the computation were expected to be equally valid

for flow around an oscillating body cross section.



1.2 Objectives of the Program

- The primary objectives of this program were:

a) To extend the numerical methods by which vortex flow was prev-
iously computed around stationary right circular cylinders, 2,3 to the
case in which cylinders execute harmonic motion at right angles to the

free stream £low direction.
b) To calculate flow fields about oscillating cylinders.

c) To determine the effects of cylinder oscillation and Reynolds
number on the vortex shedding frequency and on aerodynamic forces around

the cylinder.



1.3 Technical Approach

The calculations of vortex shedding about stationary cylinders,
noted above, were effected using a computer code called "AFTON 2P" which
integrates the general equations of continuum motion subject to tHe assump-
tion of plane two-dimensional symmetry. The code is based on an "explicit"
3, by

which mechanical properties at a discrete set of points (known as a "finite

finite difference representation of the equations of motion,

difference mesh"), are updated from given initial conditions to any desired
later stage of motion, For this program, AFTON 2P was again applied to

the special case of time-dependent viscous compressible flow.

1.3.1 The Problem of a Moving Interior Boundary

In order to extend the AFTON 2P computer code to oscillating cyl-
inder problems, the AFTON 2P equations had to be modified to include a
closed Lagrangian boundary moving inside the region of flow. The motion
of a closed Lagrangian surface in the interior of an Eulerian domain pre-
sents a formidable numerical problem, to which two possible solutions were

investigated.

The first method considered was based on the unique capability of
the AFTON 2P code to employ arbitrary time-dependent coordinate systems.
Thus, it appeared feasible to define the surface of the cylinder as one
coordinate surface of a time-dependent coordinate system, with the rest of
the coordinate mesh topologically identical at any instant of time to the
meshes used to calculate flows around stationary cylinders. The coordinate
mesh near the cylinder would then have been almost stationmary with respect
to the cylinder, and would have included fixed points of the cylinder's
surface. At the same time, coordinate lines emanating from these surface
points would terminate at the space-fixed lateral boundaries of the system.
To satisfy these conditions in a simple way the mesh points would all undergo
periodic motion with the same period as the cylinder, but with amplitudes
decreasing smoothly to zero at the boundary of the region of calculation.
However, it was concluded after some study that the boundary wvalue problem
presented by the shuttling cylinder could be handled by a second method
which was as rigorous as that just outlined, but which entailed much less

computer programming effort.



The procedure adopted toaccanodatecylinder motion took advantage of
the fact that the system contained only one moving boundary; either the
Eulerian flow region boundary could be considered fixed while the cylinder
boundary moved, or vice versa. By making use of a coordinate system
stationary with respect to the cylinder, the entire problem of coordinate
motion was reduced (apart from the addition of a simple body force) to
that of calculating transport of mass, etc., across the flow region boundary;
variations from the conditions of free stream flow were relatively small at
that boundary. 1In addition, by fixing the boundary of the region of cal-
culation with respect to the cylinder, and not with respect to an external
reference frame, logical problems due to the flow of mesh points in and out
of the computational domain were avoided. Thus, all points of the finite
difference mesh were made to undergo the same periodic displacement with
respect to a fixed external reference frame as the center of the cylinder
itself; all mesh points were tied to the cylinder in rigid-body fashion.
While the AFTON 2P code had to be modified somewhat to provide it with a
mesh of this kind, the code changes were minimal; the required modifications

are discussed in the following sections.

1.3.2 Body Forces in the Frame of the Oscillating Cylinder

In the frame of the oscillating cylinder, the cylinder's acceler-
ation is superposed on the flow field as an apparent or "kinematic'" force,
and a term appears in the momentum equation to account for this force. At
any instant of time the resulting kinematic acceleration, which is constant
over the whole flow field, is just the negative of the acceleration of the

cylinder.

The points of the cylinder were all displaced according to the

equation:
Ax = A Sin wt (¢Y)

where Ax is the distance of displacement transverse to the direction of the
free stream flow, and w and A are the frequency and amplitude of oscillation

of the cylinder, respectively. The code was modified to calculate the



kinematic acceleration implied by Equation 1, and that acceleration was
added to the acceleration terms previously taken into account in AFTON 2P.
The momentum equation in the moving coordinate system is discussed in detail

in Appendices A and B.

1.3.3 Boundary Flow in the Frame of the Oscillating Cylinder

The accelerated motion of the coordinate system also led to
changes in boundary conditions at the perimeter of the region of calculation.
Whereas frictionless sliding had been assumed at the lateral boundaries of
the system in previous calculations of flow around a stationary cylinder,
the fluid now had to be given a velocity component normal to those boundaries,
equal and opposite to that of the cylinder in the external reference frame.
Since this component of velocity varied periodically with time, finite dif-
ference equations were formulated and programmed which describe material
flow in either direction across each of the lateral boundaries. With
fluid moving out of the region of calculation across a lateral boundary,
that boundary became equivalent to the downstream boundary itself, and was
described by downstream boundary equations developed earlier; with a minor
modification for coordinate motion, exit conditions employed in this study
were derived from the characteristic boundary condition used in previous
stationary cylinder problems. Material entering the computational domain
was simply assigned free stream properties (see Section 2.2 and Appendix C
for a description of the lateral and downstream boundary condition routine

employed in this program).

1.3. 4 Conservation in the Frame of the Oscillating Cylinder; Summary of

Code Changes Due to Coordinate System Motion

In order to preserve the mass, momentum, and energy conservation
properties of the AFTON 2P equations in the moving coordinate system, two
additional modifications were required. First, transport of mass, downstream
momentum, and energy across lateral boundaries were included in the finite
difference equations for mass, momentum, and energy conservation; previously,
AFTON 2P was programmed for these effects at upstream and/or downstream

boundaries. Secondly, the work of kinematic body forces had to be included



along with the surface work of boundary stresses in an equation for total
energy conservation. Details of the energy conservation calculation are
presented in Appendices A and B. However, the cylinder velocity superposed
throughout the region of flow had no effect on the calculation of kinetic
energy, since the code in its original form placed no restriction on

material velocity in the interior of the calculational domain.

Thus, by viewing the flow from the frame of the cylinder, the
equation and code changes necessitated by the cylinder's motion were a
relatively slight generalization of the momentum and total energy calcula-
tions, and the application at lateral boundaries of conditions already

provided for upstream or downstream.



1.4 Summary of Results

The principal results of the moving cylinder calculations lie in

four areas.

a) The asymmetries introduced by the oscillating cylinder were suf-
ficient to cause vortex shedding without the introduction of artificial
perturbations; such perturbations were required in previous stationary
cylinder problems.2 As part of this program, the effects of asymmetries
due to trangverse cylinder motion were studied at a Reynolds number of
100, with particular reference to the shedding process. It was found that
when the period of oscillation was much greater than the time, t,, between
the start of cylinder motion and shedding, shedding first occurred on the
side of the cylinder which lay in the direction of initial transverse
motion. For example, when the period of oscillation was equal to 3tg,
initial transverse motion of the cylinder in the positive x-direction (i.e.,
to the right with respect to the free stream) resulted in shedding of the
right~-hand vortex first. More generally, it was observed that regardless
of the period of cylinder oscillation, vortex shedding first occurred on
the side of the cylinder which accumulated the greater time-averaged shear

stress in the interval t,.

b) On the basis of our numerical results for a Reynolds number of

100, it was found that after periodic steady-state flow was achieved, the
time-averaged drag coefficient, ED: decreased slightly, and the Strouhal
number, S, increased slightly, with increasing cylinder excitation frequency
¢ (see Appendix D). For instance, an increase in the dimensionless cylinder
excitation frequency from 0.17 to 0.70, produced a drag coefficient decrease

from 1.60 to 1.56, and a Strouhal number increase from S = 0.17 to S = 0.18.

c) Considerable root-mean-squared 1lift amplification took place when
the dimensionless cylinder oscillation frequency, #, was equal to or greater
than the stationary cylinder Strouhal number, S. At a Reynolds number, R,
of 100, the calculated value of S was .17, in agreement with experimental
observation. With R = 100 and ¢ = .17, a root-mean-squared lift coefficient

of .175 was calculated; the corresponding value computed for a stationary



cylinder (# = 0) is about .134. However, for ¢ = .70 and R = 100, the
calculated root-mean-squared lift coefficient was 1.78 - more than ten
times the corresponding stationary cylinder (¢ = 0) value. These results

are discussed more fully in Section 2.6,

d) On the basis of numerical results at é = .17, it was found

that the time-averaged drag coefficient, ED, decreased with increasing
Reynolds number. With @ = .17 the value of Cp, was 1.60 for R = 100 and
0.53 at R = 1000.0 - a result in qualitative agreement with experimental

data for stationary cylinders.



2.0 CALCUIATIONS MADE AND RESULTS OBTAINED

2.1 Summary of Problems Run and. Description of Mesh Used

Two stationary cylinder problems and three oscillating cylinder
problems are considered in this report. The stationary cylinder problems
were designated Problem 211.41 and Problem 131.0. The oscillating cylin-
der problems were denoted Problem 133.0, Problem 133.1, and Problem 133.2.
In Problem 211,41 the formation, development, and shedding of vortices from
a stationary cylinder was calculated at R = 100.0. Some results of Problem
211.41 were reported previously,2 but lift and drag data are presented for
the first time here. Problem 131.0 dealt with symmetric flow about a
stationary cylinder and was run primarily to generate initial data for the
moving cylinder problems. 1In Problems 133.0 and 133.2 the cylinder oscil-
lation frequency was varied at R = 100.0. The Reynolds number was 1000.0
in Problem 133.1, while the cylinder oscillation frequency was the same as
that of Problem 133.0. In each problem the cylinder radius was 1.5 cm, the
free stream Mach number was 0.20, and the amplitude of oscillation of the
cylinder was equal to a tenth of its radius. A summary of parameter values

for the problems of the program is presented in Table 1.

The finite difference mesh which was used in all moving cylinder
problems and in the stationary cylinder problem 131.0, comsisted of 3520
points and is shown in Figure 1. The upstream boundary is located 6.6
diameters from the cylinder center, where it has little effect on the flow
field in the neighborhood of the cylinder. The mesh was also used for
Problem 211.41, except that the upstream boundary was located 2.25 diameters

from the cylinder center.
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2.2 Boundary Conditions Employed

In all calculations the density, specific internal energy, and
velocity of material in the y-direction (the free stream direction; see
Figure 1), were given their free stream values at the upstream boundary.
For the stationary cylinder problems, the velocity of material in the x-
direction was zero at the upstream boundary. However, since the moving
cylinder problems of the program employed a mesh which was stationary in
the frame of the cylinder (see Section 1.3), the x-component of material
velocity at the upstream boundary was set equal and opposite to the cyl-

inder velocity in the laboratory frame.

As noted in Section 1.3.4, the method used to compute downstream
boundary flow for all problems of this program was developed for previous
stationary cylinder calculations,z’3 and is based on the method of charac-
teristics., The generalization to the case of interest here, in which the

boundary moves with respect to the lab frame, is given in Appendix C.

In the stationary cylinder problems, fluid was allowed to
slide without friction along the lateral boundaries, i.e., at a lateral
boundary the normal component of material velocity, and the tangential
stress, were zero. For the moving cylinder problems, which were solved
numerically in a frame stationary with respect to the cylinder (Section
1.3), mass, etc., flowed across the lateral boundaries of the finite dif-
ference mesh either from the free stream to the mesh, or from the mesh to
the free stream. When the lateral boundary moved into the free stream,
transport took place from the free stream to the mesh, and free stream
conditions were imposed at the boundary. On the other hand, when the
lateral boundary moved away from the free stream, then the characteristic
boundary condition (Section 1.3.2) was used if mass flowed across the
boundary out of the mesh, and free stream conditions were used if mass
flowed into the mesh (see Appendix B for details of the characteristic
boundary condition). These rules led to stable numerical flow fields near
the lateral boundaries of the oscillating cylinder problems (see Section

2.5 for further discussion).

11




Finally, a no-slip boundary condition was imposed at the cylindrical
surface in all problems. For the stationary cylinders, the velocity of fluid
at the cylinder surface was then set equal to zero. For the moving cylinder

problems, the surface velocity was zero in the computational frame, which was

fixed with respect to the cylinder.
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2.3 Initial Conditions

Apart from the no-slip condition imposed at the cylinder surface, the
two stationary cylinder problems (Probkems 211.41 and 131.0) were started from
impulsive initial conditions, i.e., conditions of uniform velocity, density, and
energy. The flow field about a full stationary cylinder at a Reynolds number
of 100.0 (Problem 131.00; see Table 1), and at a characteristic time v of 2.7,
was subsequently taken as the initial field of flow for the moving cylinder
problems. At T = 2,7, a symmetrical vortex pair had developed in Problem 131.00,
with a rear stagnation point located about 3.2 cylinder radii downstream of the
cylinder center; the vortex centers were located about 1.855 cylinder radii from
the cylinder center. The flow field for Problem 131.00 at a characteristic
time of 2.7 is shown in the form of a velocity vector plot in Figure 2. The
vectors of Figure 2 are proportional to the particle velocities at the points
of the finite difference mesh; a mesh point is located at the tail of each

vector.
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2.4 Review of Numerical Results Obtained Previously for a
Stationary Cylinder at a Reynolds Number of 100

Vortex formation, development, and shedding were calculated about a
statipnary cylinder at a free stream Reynolds number of 100, and at a free
stream Mach number of .20 (Prdblem 211.41; see Table 1). This system, which
was otherwise symmetric about a plane through the cylinder axis, was perturbed
asymmetrically to induce vortex shedding. The calculation was then carried
through the shedding of five vortices. When a periodic state had been
reached, the computed flow field contained a vortex sheet with a shedding

frequency within 10% of the value measured for R = 100.0, namely, S = .17.

The time-averaged drag coefficient, time-averaged 1lift coefficient,
and root-mean-squared 1ift coefficient were also found from the stress field
of Problem 211.41. For this purpose, the instantaneous force of the fluid
on the cylinder was computed by integrating numerically the stress component
normal to cylinder surface and the stress component tangential to the cylinder
surface, over the cylinder surface. The component of the resultant force alomng
the direction of free stream flow defines the drag force, and the component
normal to the free stream flow direction is the lift force. The instantaneous

lift and drag coefficients were then determined from the relations

C _ Drag Force )

D 2
3pUs D

Lift Force

L = e 3)
3polo D

where P, is the free stream demsity, U, is the free stream velocity, and D

is the cylinder diameter. Finally, time-averaged lift and drag coefficients

were found by numerical evaluation of the following integrals
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where the time t is measured from the start of cylinder motion. The root-

mean-squared lift coefficient was determined by numerical evaluation of the

t ¥
CL(r.m.s.) =E:f C.f' dt'] (6)
o

For Problem 211.41, the time-averaged drag coefficient approached the

integral

value ED = 1.7, which is approximately 3% lower than the value of CD measured
by C. Wieselsberger6. The time-averaged lift coefficient was zero; the instan-~
taneous lift coefficient oscillates about zero in a periodic manner. However,

the calculated root-mean-square 1lift coefficient, CL(r.m.s.), was 134,
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2.5 Vortex Street Calculation for an Oscillating Cylinder
at a Reynolds Number of 100

) In the first moving cylinder problem attempted (Problem 133.0; see

Table 1) the flow field was calculated about a right circular cylinder at a
Reynolds number of 100.0. The cylinder was made to oscillate at a frequency
corresponding to a Strouhal number of .17. As previously noted, the initial
state of motion for Problem 133.0 was specified as the flow field of Problem 131.0
at a characteristig time of 2.7; the cylinder displacement was prescribed by
Equation (1), and the double amplitude of oscillation was 10% of the cylinder
diameter. Problem 133.0 was run to a characteristic time of 10.9, which corres~-
ponds to about 1.5 cycles of cylinder oscillation. As can be seen from
Equation (1), the cylinder moved initially in the positive x-direction (to the
right), and shedding began with the right-hand vortex at a characteristic time
of approximately 4.63 (about .85 msec after the start of the cylinder oscilla-
tion). When shedding took place, (T = 4.63), the cylinder had completed about a
third of its cycle of motion, with a time-averaged displacement, Kk, of .1085 cm

in the positive x-direction.

That vortex shedding took place first on the right side of the cylinder
is consistent with the fact that the shear stress was larger on the right than
on the left, in the period prior to shedding. A larger shear stress on the right
than on the left is a physically reasonable outcome of the cylinder's initial left-
to-right transverse motion; the right boundary layer is compressed while the left
layer expands, and the normal gradient‘of tangential velocity should therefore be
larger on the right than on the left. It can be seen from Figure 3 that the
numerical results bear out these observations; time histories of shear stress on the
right- and left-hand cylindrical surface are presented in Figure 3, at points
plus and minus ninety degrees from the forward stagnation point of the cylinder
(i.e., at the points x = 1.5 em, y = 0.0 em, and x = 1.5 cm, y = 0.0 cm respec-
tively). The time scale in Figure 3 is measured from the start of cylinder
oscillation, when t = 1.19 msec and T = 2.7. From Figure 3 it is seen that
the shear stress is greater omn the right than on the left up to a time of .85 msec,

or T = 4,1,
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Vortex shedding in Problem 133.0 is illustrated by Figures &4 - 7,
in the form of velocity vector plots. 1In Figure 4 (at a characteristic time
of 7.08), the first right-hand vortex has moved far downstream, and the first
left-hand vortex is also seen to be mbving downstream. The displacement of the
cylinder at T = 7.08 is also exhibited in Figure 4, since the cylinder's center
was initially coincident with the indicated space-fixed origin of coordinates;
velocity vectors and mesh points are all shown relative to the space-fixed frame.
At a characteristic time of 7.95 (Figure 5), the first left-hand vortex is still
propagating downstream, and a second right-hand vortex has begun to form. In
Figure 6 (T = 8.9), the first left-hand vortex has moved still farther downstream,
while the second right-hand vortex has become fully formed. The velocity vector
plot of Figure 7 (T = 10.45) shows the second right-hand vortex shedding, and
another left-hand vortex forming. As can be seen from Figures 4 - 7, the flow
at the lateral boundaries is essentially free stream flow, with no evidence
of numerical instabilities; the lateral boundary condition imposed in Problem

133.0 therefore appears satisfactory for flows of this type.

After many vortices have shed, the flow is experimentally observed to
be almost periodic; a vortex detaches itself first from one side of the cylinder,
then from the other side, and so on. Under conditions of near-periodic flow,
times of arrival of successive vortex centers along a given line normal to the

center line of the system, are almost equally spaced.

In order to obtain a periodic flow field, Problem 133.0 was run far
enough to permit the shedding of four vortices. From a careful examination of
velocity vector plots, the trajectories of the centers of the four vortices
were determined. These trajectories are shown in Figure 8, where y/a is plotted
as a function of time("y" is the streamwise position coordinate and "a" the
cylinder radius). The time between the passage of Left Hand Vortex One (LHV1)
and Right Hand Vortex Two (RHV2) at y/a = 3.9 was 1.26 msec, and the time period

17



between the passage of RHV2 and LHV2 at y/a = 1.6, was 1.28 msec (see Figure 8;
shedding began on the right). Since these time periods are within 2% of each
other, it is assumed that near-periodic flow exists 2.32 msec after the start
of cylinder oscillation. By doubling the time differences cited, numerical
approximations to the vortex shedding period were obtained; expressed as
dimensionless Strouhal numbers (Appendix D) the period found at y/a = 3.9

was .175 and at y/a = 1.6 the period was .172. The measured Strouhal number

for a stationmary cylinder at R = 100.0 is .17,

Based on Equations (2) through (6),values of the coefficients of
time-averaged drag, time-averaged lift, and root-mean squared lift were computed
for Problem 133.0. The time-averaged drag coefficient was 1.60 - about 6% less
than that calculated for a stationary cylinder at a Reynolds number of 100.0
(see Section 2.4). The time-averaged 1lift coefficient was zero. The root-mean
squared lift coefficient was .175, a value approximately 307 greater than the
root-mean~squared 1ift coefficient calculated for a stationary cylinder at a
Reynolds number of 100.0 (Problem 211.41; see Section 2.4). The lift amplifica-
tion calculated for a cylinder oscillation frequency equal to the stationary
cylinder shedding frequency, is consistent with available experimental results.
Cincotta1 experimentally investigated unsteady aerodynamic lift forces on
oscillating cylinders over a range of Reynolds numbers from .4 x 106 to 10.7 x
106. Root-mean-squared lift amplication was observed when the model oscillation

frequency was approximately equal to the stationary model shedding frequency.

18



2,6 The Effect of Cylinder Oscillation Frequency on
Vortex Shedding, Drag, and Lift

To determine the effect of the cylinder oscillation frequency on the
shedding frequency, time-averaged drag coefficient, and root-mean-squared
lift coefficient, the frequency of oscillation of the cylinder was increased
to an equivalent Strouhal number value of .70 (Problem 133.2, see Table 1).
Initial conditions were again those of the flow field of Problem 131.0 at
a characteristic time of 2.7 (see Section 2.3), and the Reynolds number was
100.0. For Problem 133.2 vortex shedding is illustrated in the velocity
vector plots of Figure 9 - 12; at the increased cylinder oscillation fre-
quency of Problem 133.2, the velocities of the mesh points on the cylindrical

surface are large enough to appear in the vector plots.

Although the cylinder moved initially in the positive x-direction
(to the right, as in Problem 133.0), the left-hand vortex ished first in Problem
133.2, at a characteristic time T of 5.30. In the velocity vector plot of
Figure 9 (T = 7.17), the left-hand vortex is displaced slightly downstream
of the right-hand vortex. Shedding of the left~hand vortex first, despite the
initial left-to-right cylinder motion, is comsistent with the fact that the time-
averaged shear stress was greater on the left than on the right at the time
shedding took place. The possibility of such shear stress history arises when
the transverse oscillation frequency exceeds the vortex shedding frequency.
Other things being equal, if vortex growth is slight over a period of transverse
oscillation, then circulation will accumulate on the left and right in about equal
amounts in one cycle. Since the cylinder starts from its mean position, right to
left motion begins after a quarter of a cycle is complete; circulation on the
left will then tend to exceed that on the right during the third quarter-cycle,
and any shedding in that interval would take place on the left. Actually, the
initial incidence of shedding is complicated by vortex growth, and by other
transients arising from both the initial conditions of flow and cylinder motion;
circulation does not accumulate on the right during the first and fourth quarters
of a cycle, in just the same way as on the left during the second and third quarters.
As a result, to give a convincing account of initial shedding on the left may
require a detailed understanding of relatively minor aspects of the motion, par-
ticularly if the oscillation frequency is much greater than the shedding frequency.

In Problem 133.2 the frequency of oscillation was about twice that for shedding.
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Figure 13 shows shear stress histories for Problem 133.2 at points
on the right- and left-hand cylindrical surfaces; the points are located ninety
degrees (plus and minus) from the forward stagnation point of the cylinder (see
Figure 1). The time axis of Figure 13 is measured with respect to the start
of cylinder oscillation. Based on the results presented in Figure 13, time-
averaged shear stresses $Xy(£) and ;xy(r) were determined on the left and
right sides of the cylinder, respectively,by numerical evaluation of the follow-

ing integrals:

t

- ]_ 1

'rxy(,e) = E/ 'rxy(z) dt 7
(o]
t

%Xy(r) = %./. Trey () at’ (8)

where Txy(Z) and Txy(r) are instantaneous shear stresses at the left- and right-
hand points, and t is the time. Shedding occurred 1.146 msec after the start
of cylinder motion (i.e., at a characteristic time T equal to 5.30),when the
time-averaged shear stresses on the right and left, respectively, were

?xy(r) = .00420 and %Xy(z) = .00455. 1In Problem 133.0 (see Figure 3) the
instantaneous shear stress was always greater on the right prior to shedding,
and the right hand vortex shed first (see Section 2.4). Thus, the results of
Problems 133.0 and 133.2 are consistent with the idea that vortex shedding will
occur on the side of the cylinder having the greater time-averaged shear stress

at the time of shedding.

Based on Equatioms (2) - (5), time-averaged lift and drag coefficients
were computed for Problem 133.2. The time-averaged lift coefficient was zero,
i.e., the instantaneous lift coefficient oscillates about zero. The time-~
averaged drag coefficient was 1.56 - about 117 less than that of a sta-
tionary cylinder at a Reynolds number of 100.0. The time-averaged drag co-

efficient is shown in Figure 14 as a function of cylinder oscillation frequency.
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It can be seen from Figure 14 that the drag decreases with increasing oscillation
frequency, a dependence that appears qualitatively correct. Due to the trans-
verse velocity of the cylinder, which is directly proportional to the amplitude,
A, and frequency of oscillation, ®, (see Equation (1)), the instantaneous

speed of free stream flow relative to the cylindrical surface will be equal to

or greater than the free stream speed relative to a laboratory frame. Thus,

the instantaneous Reynolds number, R', relative to the cylinder, and based on

the cylinder's diameter, will always be greater than or equal to the Reynolds
mumber, R, relative to the laboratory frame. Therefore, if the time-averaged

Reynolds number, ﬁ', relative to the moving cylinder is defined as

2m
=1 1 1
R = > R dé 9
o
where 8 = wt, then R'2 R. Experimentally it has been found that the drag

. . 6
coefficient for a stationary cylinder varies inversely with Reynolds number.
Therefore, the numerical result that at constant oscillation amplitude the
drag coefficient decreases with increasing cylinder oscillation frequency

appears at least qualitatively correct.

The increase in the Reynolds number, ﬁl, with the cylinder oscillation
frequency, W, can be used to establish a qualitative relation between ® and
the time-averaged boundary layer thickness, 8, on the cylindrical surface,
Since R' increases with W, the local Reynolds number per unit length around a
cylindrical cross-section also increases as W increases. Recalling that the
boundary layer thickness, is inversely proportional to the square root of the
.local Reynolds number, it follows that 5 should decrease with increasing cylinder
oscillation frequency. For an infinite flat plate executing simple harmonic
motion with frequency w along the direction of free stream flow8, the effective

boundary layer at the plate has the thickness

5o~y )2
5 e (10)
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where v is the kinematic viscosity; similar results apply for other solid
surfaces oscillating in a fluid at rest or for a fixed surface in an oscilla-
ting streamg. Thus, the decrease in boundary layer thickness with oscillation
frequency, found in the results of Problems 133.0 and 133.2,is not only
physically understandable, but also has a firm theoretical basis in unsteady

boundary layer theory.

After a periodic steady-state was achieved, the vortices in Problem
133.2 shed at a Strouhal number of .18. The variation of Strouhal number with
cylinder oscillation frequency, for a constant double amplitude of oscillation
equal to 10% of the cylinder diameter, is shown in Figure 15. As can be seen
from Figure 15, increasing the cylinder oscillation frequency causes a slight
increase in shedding frequency, as one might expect; the effective Reynolds

'

mumber R increases with frequency, and the Strouhal number is known experi~

mentally to increase with Reynolds number.

To establish a relation between transverse cylinder motion and the
direction of the instantaneous lift force on the cylinder, the instantaneous
1ift coefficient was studied as a function of time for Problem 133.2 after a
periodic state had been achieved. The time variation of the instantaneous
1ift coefficient, cylinder displacement, and cylinder acceleration are shown
in Figure 16. A positive lift coefficient indicates a force in the positive
x-direction (see Figure 1). Aside from a small phase angle, it can be seen
from Figure 16 that the aerodynamic 1ift force on the cylinder gemerally
opposes the cylinder acceleration, a result believed to hold for any cylinder

oscillation frequency.

From the instantaneous coefficients of Figure 16 and Equations (3) and
(6), a root-mean-squared lift coefficient of 1.78 was computed for a cylinder
oscillation frequency corresponding to a Strouhal .number of 0.70 (Problem 133.2).
The root-mean-squared lift is therefore about ten times larger for a cylinder

oscillation frequency corresponding to a Strouhal number of 0.70 (Problem 133,2),
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than for an equivalent Strouhal number of 0.17 (Problem 133.0)--a tremendous

1ift increase. The rapid growth of lift with oscillation frequency reflects

a corresponding growth in the transverse pressure difference across the cylinder,
as the oscillation frequency increases. The pressure distribution on the
cylindrical surface, at a c&linder oscillation fréquency corresponding to

$= 0.17 (Problem 133.0),and at a time when a periodic motion was achieved

(T = 10.45; see Figure 7), 1s presented in Figure 17. 1In Figure 17 the pressure
is greater on the right-hand cylindrical surface than on the left-~-hand surface,and
the 1ift force is therefore in the positive x-direction. The area between the
curves defines the pressure force contribution to the 1ift and corresponds

to a positive pressure 1lift coefficient, C

LP?
mately 24 percent less than the total instantaneous lift. The pressure distri-

equal to 0.127, a value approxi-

bution on the cylindrical surface at a cylinder oscillation frequency corras-
ponding to #= 0.70 (Problem 133.2),and at a characteristic time T of 10.05,

is shown in Figure 18. A velocity vector plot of the flow field at this tinle
is presented in Figure 12. In this case the pressure is generally higher on
the right-hand surface than on the left, and the 1ift force is in the negative
x~direction. The area between the right- and left~hand curves now corresponds
to CLP = - 0.804, a value which is about 23 percent smaller than the total
instantaneous 1ift, but about 6.3 times that cited above for Problem 133.0. Such
a result is qualitatively reasonable; as the cylinder oscillation frequency in-
creases, the maximum compression of fluid increases on the side of the cylinder
in the direction of motion, while the minimum compression decreases on the
other side. Lift forces should therefore grow with cylinder oscillation fre-

quency, as the numerical results indicate.

The variation of the root-mean-squared lift coefficient,CL(r.m.s.), with
cylinder oscillation frequency is presented in Figure 19. The curve faired
through the data is based on the experimental results of Cincottal, which show a
peak value of CL(r.m.s.) at the aerodynamic shedding frequency for a stationary
cylinder (S = 0.17); CL(r.m.s.) then decreases with S reaching the stationary
cylinder root-mean-squared 1ift coefficient at approximately twice the aerodynamic
Strouhal number for a stationary cylinder. Cincotta's data are also shown in the

figure.
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2.7 Effects of Reynolds Number Variation For an Oscillating Cylinder

To investigate the influence of Reynolds number om the shedding
frequency, drag, and root-mean-squared 1lift, the flow field about an oscilla-
ting cylinder was calculated at a Reynolds number of 1000.0 (Problem 133.1).
The cylinder oscillation frequency and amplitude were the same as those of
Problem 133.0. The finite difference mesh consisted of the two~dimensional
array of 44 x 80 points shown in Figure 1. The initial flow field was again
identical to that of Problem 131.0 at a characteristic time of 2.7, when a
symmetrical vortex pair had already developed. The sudden increase in
Reynolds number caused apparently random oscillations in the pressure on the
cylindrical surface, and subsequently in the instantaneous drag coefficients.
After approximately 250 timesteps of calculation these oscillations appeared
to have damped out, and the flow was assumed to be that appropriate to a

Reynolds number of 1000.0. The calculation was continued for 1.5 shedding

periods.

Vortex shedding in Problem 133.1 is illustrated by the velocity vector
plots of Figures 20 - 23. As in the case of Problem 133.0, the right-hand
vortex shed first, but now at a characteristic time T of 4.63. 1Initial shedding
on the right was due to initial transverse motion of the cylinder in the
positive x-direction with a period much longer than the time needed to induce
shedding (see Section 2.6). A comparison of the wake at a Reynolds number of
1000.0 (Figure 23, T = 9.08) with that at a Reynolds number of 100.0 (Figure 7,

T = 10.45), indicates a more random set of velocity vectors for R = 1000.0.

The turbulent character of the wake at R = 1000.0 is consistent with our previous
results regarding pressure oscillations recorded on the leeward side of a cylinderB,
and with the experimental results of Roshkos. Earlier numerical calculations
resulted in pressure variations which were smooth at R = 100.0, but exhibited
elements of randomness at R = 1000.0; Roshko found that the vortex street from

a cylinder was laminar at a Reynolds number of 100, and turbulent at a Reynolds

number of 1000.0.
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Based on the mumerical results of Problem 133.1, the effects of
Reynolds number on the shedding frequency, drag, and lift were determined.
When a periodic steady state had been achieved, the vortices shed at a
Strouhal number of 0.21, which corresponds to the Strouhal number measured
for a stationary cylinder at R = 1000.0. The time-averaged drag coefficient
was 0.53. A drag coefficient of 0.53 is approximately half that of a sta-
tionary cylinder at R = 1000.0; this result is consistent with the drag
dependence found at R = 100 as the cylinder oscillation frequency increased.
The time-averaged drag coefficient is presented in Figure 24 as a function of
Reynolds number for a cylinder oscillation frequency corresponding to a
Strouhal number of 0.17. The statiomary cylinder data presented in Figure 24
were used as a basis for fairing the curve shown for the oscillating cylinder.
It can be seen from Figure 24 that, as in the case of a stationary cylinder,
the drag coefficient decreases with Reynolds number. 1In the oscillatory case,
the computed root-mean-squared lift coefficient was about 0.18; the calculation
for a stationary cylinder at R = 1000.0 was part of an earlier program in which
CL(r.m.s.) was not computed, nor to our knowledge have root~mean-squared lift

data been measured.
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3.0 CONCLUSIONS AND RECOMMENDATIONS

The work summarized in this report constitutes our first attempt
to extend the AFTON 2P code, and the numerical methods it embodies,
to problems of viscous, compressible flow about accelerating structures,
The principal conclusion reached in the work reported here is similar
to that of our stationary cylinder calculations3; up to a Reynolds
number of 5000 complete flow fields about accelerating bodies can, at
feasible cost, be predicted quantitatively by AFTON 2P with an accuracy
sufficient for almost any practical purpose. Furthermore, by incorpor-
ating a variable timestep into the numerical techmnique, it is quite
likely that an accuracy comparable to that obtained in the problems
reported here can be achieved up to a Reynolds number of 15 x 106
(the Reynolds number for a full scale Saturn V vehicle) and for a
class of two-dimensional accelerating bodies which includes most shapes
of practical interest.

These conclusions rest both on numerical results obtained previous-
ly for stationary cylindersz’3, and on the specific results discussed
in detail in Section 2.0. The basic supporting facts will now be

summarized.

Our previous stationary cylinder calculations were performed in
two separate programs. In the first program, it was established that
for right cylinders of fairly simple shape, important gross para-
meters such as 1lift, drag: and Strouhal number could be calculated up
to Reynolds numbers of 1000,0, For example, at a Reynolds number of
100, the calculated drag coefficient was within 3% of the experimental
value and Strouhal number was within 10% of the measured value (see
section 2.4)., However, no significant effort was devoted to determin-
ing the accuracy of the numerical predictions for the pressure and
velocity fields. 1In the second program, detailed calculations were

performed at Reynolds numbers of 100 and 1000, with finite difference

26



meshes that were much finer than any used in the first program. The AFTON
boundary layer profiles along normals to the cylinder were nowhere in
error by as much as 1%, as determined by comparison with the known exact
solution. The pressure coefficient distribution around the cylinder at

a stage of substantial vortex cevelopment, for a Reynolds number of 100
and a Mach number of .2, was within 15% of an independent incompressible
viscous flow calculation; the AFTON 2P fluid is compressible. Furthermore,
a study of the numerical solution error showed that the mesh point density
could be made sufficiently large in practice to reduce the maximum pressure
coefficient error for the entire cylindrical surface to no more than 1.4%.
Thus by employment of finer meshes, any desired solution accuracy can be

obtained.

In the oscillating cylinder problems presented in Section 2.0,
vortex shedding was initiated by the asymmetries introduced by the shut-
tling cylinder, without the introduction of artificial perturbations.

This result conforms to experimental observation. The finite difference
mesh employed in these oscillating cylinder problems was identical to
that employed in the stationary cylinder problems of our first program.
Thus, it is reasonable to assume that the accuracy of the calculated lift,
drag, and Strouhal number in the oscillating cylinder problems is appro-
priate to the corresponding stationary cylinder parameters calculated in
the first program. Furthermore, the calculated relationships between the
cylinder oscillation frequency and the root-mean-squared lift coefficient,
time-averaged drag coefficient and Strouhal number are qualitatively con-
sistent with clear and simple physical considerations (see Section 2.6).
Finally, since increased accuracy was achieved at feasible cost by mesh
refinement in the stationary cylinder problems of our second program, it
appears that a similar increase in accuracy can be attained by employing

finer meshes in the moving cylinder problems.
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A development important to future calculations lies in the discovery
of finite difference equations which preserve all the properties of
self-consistency of the present equatiomns, but in which the time-step
can be varied from zone to zomne. In this way, the variables of motion
need only be calculated for a given zone as often as required by con-
siderations of stability for that zonme and its immediate neighbors,
rather than for the least stable zone of the finite difference mesh,
The increase in speed of solution of problems like those reported here
was potentially so great that variable timestep (VTS) equations were
investigated in one space dimension. An increased speed of solution
by a factor of five was obtained. This factor should be even greater
in two dimensions, using a two-dimensional counterpart of our one-
dimensional VTS scheme, It is therefore recommended that a variable
timestep be incorporated into the AFTON 2P computer code for moving
cylinders, and that a numerical investigation be conducted of flow
fields about oscillating cylinders in the higher Reynolds number regime
(i.e., 106 to 15 x 106). The experimental data of J.J. Cincotta could
be used to establish the accuracy of the numerical results in this

range of Reynolds number,.
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APPENDIX A
EQUATIONS OF MOTION IN A MOVING COORDINATE SYSTEM

In this section the integral equations of motion are developed
in a coordinate system fixed relative to a moving obstacle immersed

in a viscous, compressible fluid,

The integral equatious of motion in the moving coordinate
system will be derived in Cartesian tensor notétionlo, where the
position vector is defined by X, and the velocity vector is defined
by u; (i =1, 2, or 3). Consider a volume T of three-dimensional
space having a surface area I which is a fixed relative to a labor-
atory frame., In partial differential form, the conservation equations

are as follows relative to the laboratory frame:

Continuity

% , o -
ot ¥ xp (pug) = 0 (11)

where t is the time, p is the density, and, by the summation conven-
tion, the repeated indices indicate the summation
o
o%g

©ug) = gi—l' (uy) + g‘i; ®uy) +a—f:; (0uy)

First Law

d(pugk) du
3(pE) B -
at + Bxﬂ - Pﬂa axB a2z

where E is the specific internal energy and PBd is the stress temsor,
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Momentum

B(qu) 3 oP
ot oEg P T m (13)

The transformation equations relating the laboratory and
moving frames will mow be presehted. Consider a moving
coordinate system with a position vector x5 and velocity
vector u, measured relative to this system. Let the velocity of
the moving coordinate system be denoted Vi(t) (i =1, 2, or 3). The
relationship between the laboratory frame and the moving frame can

be defined by the following Galilean transformation:

X, = X; +./.Vi(t) dt
(14)

1
t = ¢t

where t' is the time in the moving frame. Based on the transformation
equations (14 ) the partial derivatives in the laboratory and moving

frames may be related as follows:

(15
o Sy S
ot' ~ ot? i axi

Finally the particle velocities in the laboratory and moving frames

are related as follows:

u, = u, +V, (t) (16)
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Based on the above transformation equations, the conservation laws
relative to the laboratory frame Equations (11), (.127) and (13),
can be transformed to the moving frame, The conservation equations

relative to the moving frame are as follows:

lConfinuitz'
P ]
%o+ S ) = O an
First Law
ou!
S(PE) , 3 'y = <
Yl +axB' (PEUB) PBQ’ axsl (18)

where the stress tensor Pﬂz remains unchanged since it is proportional to
Suy
which is unaffected by the transformatiomn.
. y

B
Momentum
pu! av 3P,
o 2 - o B
3T + axﬂ' (puBuQ,) + P dt axBI (19)

It is seen from the transformed Equatioms (17), (18) and (19) that,
as discussed in Section 1.3, only the momentum equation has changed
in the moving coordinate system. From the Gauss Theorem, relating a
volume integral to a surface integral, Equations (17), (18) and (19)

can be transformed to integral form. The Gauss Theorem is as follows:

‘ >3 (20)
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where T' is the fixed volume T defined relative to the moving coordinate
surface (T' =T),I'" is the surface area of I' defined relative to the
moving coordinate system (I™=I'), g is any tensor defined within T'

and whose derivatives are continuous there, and lé is the direction
cosine of the normal to the surface I'' in the direction B. Based on
Equation (20) the final integral equations of motion relative to

moving coordinate system become:

Continuitx
a%/ pdr’ =/ Pug 4" dr" (21)
I__‘l
First Law
- o)
9 [ pEar' + pu,'EL Al = [ P Sar (22)
at' B B . Ba de'
T! I T
Momentum
2 pu 'dT + pughy'u ' dr!
At Jo. T o BB "o
av,, .
[ S, T
+ /T' pdT'] 7 /F' PBQ,ZB ar (23)

av
The body force term /‘ ' @ in Equation (23) is the only te
y (Tp ar'y o quation (23) i y term

which must be added to the equations of motion to make them valid in

the moving frame.

In order to preserve the energy comnservation property of the

AFTON 2P equations in the moving coordinate system, a kinematic work
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term must be subtracted from the surface work term in the total energy
conservation equation. The total energy conservation equation in the
moving frame can be derived from the Momentum equation (Equation 19)

and First Law Equation (20). First the kipetic energy equation in the

moving frame is derived by multiplying Equation (19) by q&, i.e.,

Kinetic Energy Equation

] ] 1 1
ulu u,u av, . aPﬂ,

'a%-‘(p%ﬁ) + a}(p“a' 2a> Ty g T Sa gt (24)

Adding Equations (18) and (24) yields the total energy equation in

partial differential form
T ] 1 1
u u UQ, U-Q,

e oo ) .
-é?fl(E+——2 }+ |8 & +— )]

a 1)
t e T T Sy Pt @5)

By utilizing the Gauss Theorem, Equation (20), Equation (25) can be

put into the integral form

u'u' u.u
d oo o
—-—at,'['P (E + ——) ar’ +/l:, puy (E +——2°' ) ' dr'

' dv,
= ' - 1 '
L, Pcz Yo ar [T, Py ar dt (26)

33




where it can be shown that By dI* =p&yge'drﬂ. Equation (26) is the
required integral formulation of total energy conservation in the
moving coordinate system, It is seen.from Equation (26) that the term
aVy
' dam! must be subtracted from the surface work te
(L.Pua, at') —ag— urface work term
in order to make the present total energy conservation relation for a

Eulerian coordinate system valid in the moving frame,
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APPENDIX B

AFTON 2P FINITE DIFFERENCE EQUATIONS AT INTERIOR MESH POINTS
RELATIVE TO A MOVING COORDINATE SYSTEM

Based on Equations (21), (22), (23), and (26) of Appendix A, the
AFTON 2P finite difference equations for an Eulerian coordinate system may
be converted to the moving coordinate system. The field of motion in
AFTCN 2P is actually covered with two closely related finite difference
me;hes -- one for the calculation of thermodynamic variables such as stress,
i.e., quadrilateral zones, and the other for the calculation of kinematic
variables like momentum, i.e., momentum zones.3 Figure 25 illustrates
the two types of meshes in two space dimensions. The continuity and first
law equations are applied to calculate properties on a quadrilateral zone
while the equations of momentum and total energy conservation are used to
calculate properties on a momentum zone. The finite difference equations

relative to the moving coordinate system are as follows:
Definitions:

R = R(x,V) Cartesian coordinate position relative to the
moving frame

=
]

Uu,v) material velocity relative to a coordinate point
in the moving frame

internal energy

P> =

unit vector in the x-direction (i.e., the plane of
flow, and normal to the free stream flow relative to
the laboratory frame)

total energy

rate of work

A< =

velocity of the moving frame relative to the
laboratory frame

material density

I=>©

unit vector normal to (x,y) plane
mass

volume

R < B8

momentum
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o viscosity
At timestep
ratio of specific heats
P fluid pressure
', o', T.! viscous stresses
X ¥y xy
P <P o)
o P
1 ]
a" Ox Txy
o-l o-l
Xy ¥
g P_o-ll '}
&z (t) displacement in the x-direction of the moving
coordinate system relative to the laboratory frame
(displacement of cylinder relative to laboratory
frame)
A amplitude of cylinder displacement
w frequency of cylinder displacement
Equations:
A = Asinwt
A
v, = iwAcos wt
d!c f A 2 .
e - rTAw sinwt
R = B = &°
u = U(u,v)
A
Az = (R - R) xk
A
Ase = (Rs - Re) x k
Wiz = 5 + U)
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Waz = %(Us + Uz)

(PWA)12 = p12 Wiz * Aag

(PWA)az = Paz Waz * Asz

v = v = v°

m o= m® 4 Ae[-(pWA) 12 + (PWA)zz + (PWA)4z - (PWA)4q ]

pt = mt/v

Y =% (V51 = Viap) *¥ioq (Yiaa - i) X (V1 7 Yioa)

where: 1i=1,2,3,4 and, for example, when i=l, i-l=4
d, = -d,
iy ix

Aix = % [(yi-l T Vi) it Oho T Vi) i «
t Gigp T V- i x]

Ay T % [(xi—-l T X iy TGy X )M gy
Oyt Xy, y}

gu A u, +A, u +A u,+A u

9x Ix71 2x 2 3x 3 4x 4

du = A, u, +A u, +A u, +A u

dy 1y'1 2y 2 3y 3 4y 4

v A, v, + A +A, v, +A v

ax 1x'1 2x72 3x 3 4x 4
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av

ay ly1 2y 2 3y 3 by 4
. 20v_ 4 g
X L3 dy 3 90x

= 29u _4gv
Gy K13 ox 3 9y

= -, |81, 9V
xky T 7H [ay * GX]
P o=(v-1) p*E°

A
Agz = % Re - Ra) x Kk
E}z = (00 + p° - o) * Asp
(PWAE);2 = (pWA)12 Eqp
E, = -(oWAE)12 + (PWAE)az + (PWAE)ga - ( PWAE) s,
E = [m E” - (F42°U1 + F13-Us + Fae'Us + Fa1°Ug
_ 1
Et) At] /m
T = (v-D o' E
2 o ~
Faz = %(P - P) - A4o
~ ~ I~ ~ ~ ~
E = E- [A t- (g2 Uy + F153°Up + Fae-Us + Eal‘U:;.)]/m1
P = (y-1)p*E
o 1

Faz = %(0 +07) - Ago
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Hep = Ilg [(pWA)43 + (WA) , + (pWA) g, + ("WA)61] @, + 21)2 - 02

1 7 2
+-R [(pr)l2 + (pWA)89 + (pWA)61 + (pWA)78_ @1 + gg)

1 2
+ 76 [(pWA)56 +(pWA) )+ (BWA) oy o+ (PWA) g | (Ug * Uy)

1 “ 2
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APPENDIX C

DOWNSTREAM AND LATERAL BOUNDARY CONDITIONS

The downstream and lateral characteristic boundary conditions used
in this program were based on two principal assumptions, namely, that each
streamline of the flow field in the neighborhood of the boundary at any
instant of time constitutes a region of transient one-dimensional slab flow,
and that the sound speed has its free stream value at the downstream boundary.
For the case of the moving cylinder, this characteristic boundary condition
was applied relative to a laboratory frame., The flow field variables can then

be calculated at either the downstream or lateral boundaries as follows:

First, knowing the velocity field at an instant of time, the position
of any particle can be updated by one timestep from an "earlier time" to a
"later time'. 1In particular, a particle position can be found at an earlier
time such that one timestep later the particle will arrive at a given boundary
mesh point. For this purpose the discrete velocity field is assumed constant
during the timestep and is made spatially continuous by interpolation; we
interpolated linearly. Thus, one can calculate the direction of the streamline
along which that particle travels which arrives at the given boundary point
at the later time. Let the boundary mesh point be denoted as point "B", and
the particle position at the earlier time as point '"P"; also, let the super-
script "o'" define a property at the earlier time, let the superscript "1"
define a property at the later time, and let the absence of a superscript
indicate a property defined at a time halfway between the earlier and the later
times. Due to the transverse motion of the cylinder, the x-component uz of the

velocity of the moving coordinate system is given by

uz = WA Coswt (75)
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where A is the amplitude of the oscillation and @ is the frequency. The
required streamline direction can be specified in terms of the components
u, v of the average velocity vector(relative to the laboratory frame)

between points B and P,as follows:

u = [(1 + @v/dy)°(at/2) (ug + u2> - (3u/3y)° v°B (At/Z)] /g (76)

<
i

[( 1+ (Bu/ax)o(At/Z)vg) -(av/ax)°(u§ + uz) (At/Z):] /g an

L
]

[1 + (au/ax>°(At/2)] [1 + (av/ay)o(At/Z)]- (3v/3x) ®(du/3y) °(At/2)2  (78)

where u is the average velocity component in the x-direction, v is the

average velocity component in the y-direction, ug

is the y-component of velocity at point B, At is

is the x-component of
. . o
velocity at point B, Vg
the time increment, and (au/ax)°, @v/3x)°®, (du/dy)° are the velocity
derivatives evaluated at the zone centroid (see Appendix B). The direction

cosines of the required streamline are then:

XDIR = u/U 79)
Yorm = v/U (80)
where U = ﬁz + §2 81)

Assuming that sound signals travel along the streamline as in omne-
dimensional slab flow, it is also possible to calculate from the known
earlier-time flow field both the particle velocity and the sound speed at
a point S from which a sound signal would have to depart at the earlier

time in order to reach the boundary point at the later time. Based on the
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zone sound speed (which is assumed uniform in each zone) and the average
velocity vector between points P and B, the location of the point S cam be

determined approximately from the following relationms:

-{@ +0) Xpop AL (82)

(xg = %p)

-+ 0 Yorr At (83)

(g = vp)
where C is the zone sound speed. From the Equations (82), (83) and the
discrete velocity field at the earlier time (i.e., time "o') the components

of the velocity vector at point S at the earlier time are

o _ o o _ ° i o 84
ug = up + ul (U + C) At [XDIR(au/ax) + YDIR (Ou/3dy) ] (84)
o o = o o
vg = vp = (U +0)at [xDIR (Qv/3x)" + Yy (v/3y) ] (85)
o o o o
v - (vs) +<us + u(j (86)
where ug is the x~-component of the velocity at S, vg is the y-component of
the velocity at S, and Ug is the magnitude of the velocity vector at S.

Based on the assumption that the sound speed has its free stream
value at the downstream boundary point B, the sound speed at the point S can
be determined at the earlier time by linear interpolation. TFor the downstream

boundary, the relation is as follows:

o = C-¢
Cg = Cp+2 (U+C) Yy At %3_—&) (87)

At a lateral boundary Equation (87) is replaced by the equation

o _ = C-C
Cg =G, +2 (U+C) X At <———H°—XB = (88)
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where Cg is the sound speed at 5, C, is the free stream sound speed, C is
the sound speed of the zone containing the point S, and Ya is the y-coordinate

of the interior mesh point "A" adjacent to the boundary point B.

According to the method of characteristics as applied to the one-

dimensional linear isentropic flow of a polytropic gas, the Riemann variable
R = U+ 2C/(y-1) (89)

is conmstant along any sound signal trajectory, where Y is the ratio of heat
capacities for the gas. By hypothesis here, each streamline in the neighbor-
hood of the downstream boundary is a region of one-dimensional, linear isen-
tropic flow during a timestep of the numerical calculation. Hence, the Riemann
variable R has the same value at the point S at time o, as it has at the point B

at time 1, namely

o o
R = US + 2CS/(Y-1) (90)

From the assumed free stream speed of sound at the boundary point B, and
the known Riemann invariant, the particle velocity in the streamline direction
can then be computed at the point B at the later time, as follows:
ol = 1® + (€ - )/ (¥-1) 91)
B S S @©
Assuming the direction of flow to be the same at times o and 1, the particle

velocity can be found as a complete vector quantity according to the equations

1 1
vg = Uy Zpg (32)
1. 1
vg = Uz Ypmr (93)
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To complete this déscription of downstream boundary flow, mass and
internal energy are transported across the boundary at the densities charac-
teristic of the interior of the zome containing the point S, This boundary
condition has now been applied downstream in many calculations of viscous
compressible flow around obstacles, where it appears to provide a good approxi-

mation to flow out of the region of calculation.
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APPENDIX D

NOMENCILATURE

Cylinder radius

Amplitude of oscillation of the cylinder

YP

Local speed of sound, ¢ = >

Free stream speed of sound, c

«©

Instantaneous drag coefficient,

Time-averaged drag coefficient,

Instantaneous lift coefficient,

Time-averaged 1lift coefficient,

. .. _1Ll¢T 2
Root mean square lift coefficient, CL(r.m.s.) = [TJ; CL dt]

Root mean square lift coefficient for a stationary cylinder

Local pressure coefficient, C

L

Specific heat at constant pressure

Specific heat at constant volume

46
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0?

n,

u,

w?

Cylinder diameter

Mach number, M = U/a
Free stream Mach number, M_ = U /c
«© [-- - -
Shedding frequency
Pressure
Free stream pressure
. . . 2
Riemann invariant, P = v - 1 a+ U
Reynolds number, R = —Eﬁi—
Arc length
Strouhal number, S = —%é—
Strouhal number for stationary cylinder
Time
Temperature

Time integration interval for evaluation of time averages

Local velocity component in the boundary layer parallel

to the wall
Magnitude of free stream velocity vector

Magnitude of local velocity vector
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S

s

Y

Local velocity vector
Coordinate normal to free stream velocity vector

Coordinate parallel to free stream velocity vector
Ratio of specific heats, vy = Cp/CV

Boundary layer thickness

Density

Dimensionless cylinder oscillation frequency, @ = -——

Free stream density

Angle measured along the circumference of the cylinder from

the forward stagnation point.

Characteristic time; the number of cylinder diameters that
a particle traveling with free stream velocity would move

in a given time.

Angular frequency of cylinder oscillation
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Dimensionless Cylinder Oscillation Frequency, §

Figu

Time-averaged drag
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oscillation double amplitude 10% of the

cylinder diameter.
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Figure 24
Variation of time-averaged drag coefficient
vs. Reynolds number; numerical data from
Problems 133.1 and 133.0; experimental data
of Wieselsberger,
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Figure 25

Schematic Diagram of an AFTON 2A or 2P Space
Mesh, Showing a Momentum Zone and the Four
Quadrilateral Zones Whose Corner Pieces Make

Up the Momentum Zone.
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