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R. K, Milley

1. Introductlion

The ;urpese of this poper is to study the behavior as
t -» o of solutions of a gystaa of two nonlinear equations of the
{Toxrm

t
) " .S Y s, ! &
i,al<t"”>él(s’xl(”>>“s

(1.1) x, (6) = 2, ()

t
f a’2 (t,s)gg(s,xe (S))@.S,
o

t
’ xg(t) = fg(t) £ ag(t-s)gl(s,xl(s))ds

b
al(tns)gz(s,xg(s))ds

/

Where fl(t) and ié(t) are asymptotically almost periodic and
both gl(t,x) and, ge(t?x) are almost periodic in t uniformly
for x on compact sets. We seek conditions which guarantee that
the solutions xl(t) and xg(t) of (1l.1) exist for all t = 0
and are asymptotically almost'periodic. |

System (L.1) arises in a natural way from the part;dl

differential equation -

(L.2) u, = u (t >0, 0<x<L)
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weooh dndtiel conditicns
(1.%) u(0,x) = F(x) (0 < x « 1)
and nonlinacor boundory conditvions of the fowa
(1.h) ux(t,o) = g (t,u(t,0)), w (t,1) = -, (t,u(t,0)),
for all t > 0. Indeed, if A, (%) = u (t,0) end. A, (%) s ux(t,L)
are assumed Lo be known functions and if Aj € C[0,e) N Cl(O,m)
with Aj(t) absolulely continuous in a neighborhood of t = O,
then well-known elementary methods imply that

o 2
(1.5) u(t,x) = FO/E DY P exp (- (/L) t)eos (nmx/I.)

n=1
1t - 2
+ L[ (142 2 exp (- (nr/L)” (t-s)}cos (nﬂX/L)Al(s)ds
o n=1 _
-1 t g n . 2
- L[ (142 2 (<1)"exp (- (nw/L)" (t-s)}cos (nmx/L)A,(s)ds
o n=1
where
L
(1.6) F_ = (2/1)] F(x)cos (nmx/L)dx (n=0,1,2,...)
o

is the sequence of Fourier cosine coefficients of F. Setting

x =0 and ther, x =1 in (1.5) and using (1.4) one obtains the
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interral egquatlions

. . )
(1.72) u(t,0) = ¥ /24 7 Fexp (- (mr/1)7t)
n=1L

At 8 2 |
LT (2422, exp (- (/L) (t~s)]gl(s,u(s,0))ds
0 n:zl,

[

1 n 2
2 (-1) exp (- (n/L)" (b-8) )8, (s,u(s,1))ds,

.
t J (a2
o ne=l.

and

(L.7p) u(t,nL) = FO/2 DY Fn(-l)nexp [~(nm/L)2t}
n=1

t

e 5 (1) exp (- /)2 (5-5)) 2 (5, (8) )ds
0 n=1 ’

-b )
—L'lf (142 3, exp (~(nwa)e(t~s)]g2(s,x2(s))ds.
o n=1

Equations (1.7) clearly have the form (1.1) with xl(t) = u(t,0)

and, xe(t) = u(t,L). On the other hand if u(t,0) and u(t,L)

are the known unique solutions of (1.7), then wu(t,x) may be ob-

"tained using (1.4) and then (1.5). This formal equivalence of

(L.2-4) and (1.7) will be made precise in section II below,

Equstions (l.2-4) and also our assumption of almost
periodiéity may be physically motivated using C. C. Lin's theory of
superfluidity of helium, c.f. [1]. 1In three dimcnsional space with

coordinates (x,y,z) let the planes x =0 and x = L represent

two infinite plates. Suppose the region 0 < x < L between these

.-y
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platen ds £ilied with ligquid heliwa Initially al rest. Tf the
boundary plates x = 0 ond x = I, are both given signosolid
oscillations in the y-4direction, then & one-dimensional flow will be
sel up in the Liguid, et u(l,x) be the velozity profile ol ting
t >0 of any point (x,y,z) with first courdinate x. Then u(t,x)
satislies (1.2) end (1.3%), ¥(x) = 0. Lin's theory implies boundary

conditions of the form (1L.4), indeed
(1.8) g, (6,0) = B(u-C sin (k,t))’

for 1= 1,2 where B and C are positive constants. For this

problem we prove the followings:

Theorem 1. Suppose F € CQ[O,L]. Let g;(t,u) be given by (1.8)

where B >0, C# 0 and k, # 0. Then (L.7) has unique continuous

solutions xl(t) = u(t,0) and x, (%) = u(t,L) defined for all

t 2 0. Moreover, there exist two almost periodic functions Xi(t)

with Fourier series of the form

. . ~ Z i
(1.9) | XJ(t) m,n:-a?mnexp (1(mkl+nk2)t)

such that

lim {x, (t) - Xi(t)) =0 as t oo, ¥
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This result follows as a specelial case of more general theoroms
which will be proveld belew. These nore genersl theorurns coucern a
two-dinensional, system of the form

-b
(%) x(t) = £(t) - [ A(t-8)G(8,x(s))ds,
)

where A(t) is a matrix of the form

al(t) ae(t)
A(t) = .

a,(t)  a, (t)

In section 3 we use the special form of A(t) to show that systen

(E) may be transformed into an equivalent system of the form

N
N

t
() y(8) = ] Ry(e-0)(v(e) - Gyle,v(e)))as

where RN(t) is a positive definite, diagonal matrix of class
Ll(O,w). Subsequent, work deals with equations of the form (EN)
rather than directly with (E).

Section 4 contains results concerning the global existence
and boundedness of solutions cf (EN). In section 5 we study the
existence and uniqueness of almost periodic solptions of a related

equation of the form




t
(1.19) Y(t) = [ Rx(t-s)(Y(s) - GN(S,Y(S))}ﬁS.
-

In the lact oecviou wo show thet the solutions vy (b ani Y(t of
J

() and (L.10) ave woypbosie, thot is
‘
lim {y(t) - ¥(t)} = 0  as t - o,

Transforming (EN) back to (E) then yields Theorem 1 as a corollary.
Section 6 also contains results concerning the mean values of the
solution x(t) of (E). This information on mean values is
important in any study of the behavior of the nonlinear problem
(L.2.4),

If L = +o and if the second boundary condition in (L.4)
is dropped, then (1.2-4) and (1.8) model the limiting case of a one-
dimensional flow in a half space. This problem has been studied by
Levinson [2]. Some of Levinson's results have been generalized in
papers of Friedman [3, 4] and Miller [5]. A similar problem in-
volving heat flow has been exﬁensively studied by Mann and Wolf [6]
and others [7, 8, 9]. The methods used in thié paper are extensions
of the methods used in {5]. The main tools in our analysis will be
the "variation of constants" equation (EN) and invariance results

similar to those used in [5, section V],




2. Fquivalence of the Prohlens
\2 * 5 1 . 1 - 4 e - - ¥
Let R depols real Buelid.oen two-dimonsies: frate o
colunnt voelorss x = col (xl,x?). Threowghewt the rasinder of this

. 2
peper the nex x| dn RT O will elwnes mosn

x| = mose (]x;], ENBE

Many of our results are explicitly dependent on the use of this norm

rather than scme other equivelent norm,

Define
(2.1a) £(8) = F /2 + ngan exp (- (mm/L)),
and
(2.1b) £,(t) = F /2 + niFn(—l)nmc.p (-(nTF/L)a‘G}

whers F = is defined by (1.6). Defire

(2.2a) a,(t) = (142 g;exp (-(Wn/L)Qt})/L
n=

(2.2b) ay(t) = (1+2 E'l(-l)nexp (- (/1) %8)) /1
n=

and

S O
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ry =
(’».j)

x{1) = ' Ly (L) = B .

Let A(T)  be the mebriz

(2.4)

a (6)  a (t)

A(t) = <a'l(t) ag('b) ‘

Then equation (1.7) has the form (E) where

(2.5)

Thxorem 2,

t,
G(t,x) = %/ xl)) :

Sg(t:xg_)

Suppose u(t,x) is a function which satisfies the

following conditions.

(1)
(i1)

(1i1)

u(t,x) is continuous on {0 st <w, 0= x = L},

u and uxx exist and are continuous for all

t~

(t,x) in the set {0 <t <w, 0<x<L}.

u(t,x) satisfies (1.2), (1.3) and also (1L.4) in the

sense that

lim ux(t,x) = gl(t,u(t,0)>
x - ot
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and

lim ux(t,x) g, (t,u(t,T)). (t > 0)
X =) I:

(iv) Phe funciions A, (t) = g(t,u(t,0)) and Ag(t) -

et 32 LI S R

-€p (tyu(t,L)) are of class C[0,») N CJ'(O,eo) and

arve absolulely continuous in & neighborhood of

t=0!

» 2 .
If T eC[O0,L] ana if 8s85 € Cl for all (b,»), then the functions

x, (6) = u(£,0), x,(6) = u(t,L)
satisfy (1.1) for all t =z O,

Proof. Define functions a(x) = ;xe/EL, K(t,x) = a(x)Ae(t) -

Ca(L-x)Al(t) and v(t,x) = u(t,x) - K(t,x). Then

<
]

<
I

Q(t,x) = a(x)Aé (t) - oz(L-x)A:'L(t)
+ [Aa(t) - Al(t)}/L)

vx(t,o) = vx(t,L) = 0,

and

v(0,x) = H(x) =F(x) - a(x)Az(O) + a(L-x)Al(O).
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The funetions H ondl @ are sufliciently smooth in order {o
uniquely solve for v(t,x) in tho usuvel wuy, c¢.f. [10, Thoorcas 1

and 2], Therefore

T
4

—~
nc
o

~r

u(t,x) = K(t,x) + v(t,x)

i

2]

- 2

K(t,x) + H /2 + 2 E exp {-(om/L)"t}eos (mnz/1)
' n=1

exp [-(117r/L)2(13.-s)}cos (nmy/L)
cos (nmx/I)}Q(s,v)dyds.

Here Hn is the seguence of Fourier cosine coefficients of H. By

the definition of q(x) it follows that

1

L/6 + 2 g (-l)nLL2 (n?r)-zcos (nmx/1L)
n=1

a(x)

and

a(L-x)

il

> 2 2
L/6 + 22 L (nr)” cos (nmx/L)
' n=1
vhen O < x < L. Therefore, the definitions of K,Q and H to-
gether with integration by parts suffice to put the above expression
for u{t,x) into the form (1.5). Since u(t,x) is continuous, then

setting x =0 and ® =1L in (1.5) yields (1.7). Q.E.D.

2
Theorem 3, Suppose (2.1-5) sre true, F € C [0,1] and the functions
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gl(t,u) and gE(t,u) ere of class O for ell  (t,u). If the

solution x{1) of egquution (B) exists for all + 2 0, then

u(t,0) = xl(t) and  u(t,n) = xe(t) are lhe boundary values of s

funcbicn w(b,x) which cotisfics conditions (1) - (iv) of Theorem 2,

D e L Y

Proof, The conditions F e C[0,T] and (2.1) are sufficient to in-

sure that £ € C[0,») N Cl(O,m) and that ' dis locally of class

1

L on 0=t <w Since and g, € Cl, then it follows from

€1

results in [11] that xl(t) gnd. (t) have these same smosthness

*2
properties, that is x(t) € C[0,») N Cl(O,w) and x'(t) € L' near
t = 0.

Define Al(t) = gl(t,xl(t)), Ay () = -ge(t,xe(t)) and
define wu(t,x) by line (1.5). Condition (i) of Theorem 2 can
easily be verified directly using (1.5). Since Al(t) and. Ag(t)
are smooth, the steps in the proof of Theorem 2 can be reversed to

obtain (2.6). Therefore, the results in [10] imply (ii), (1.2),

(1.3) and the boundary conditions

lim u (t,%) = A (t), 1lim ux(t,x); A, (8).
x -»0 XL

Setting x = 0 in (1.5) and using the present definitions
and A 3 : e
of ‘Al and A, it follows that
t
u(t,0) = fl(t) - £ al(t-s)gl(s,xl(s))ds

t
- f a2(t-s)g2(s,x2(s))ds.
o



R v %
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(There is a similar formula for wu(t,L).) Comparing this with (L.la)
one sees that u(t,0) = x,(t) for all +z 0. similarly u(t,L) =

xa(t). Q.E.D.
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5. Prelininary Transfermations
Given any matrix A(t) the resolvent RE) of A(L) is

defined to be the golution of the linecar equstion

%
(%.1) R(t) = £(t) - [ A(t-s)R(s)ds.
@]

If the entries of A(t) are locally of class Ll or 0st<e

then it is known (c.f. [12, Chepter IV]) that R(t) exists a.e.,

is locally Ll on 03 1<, and R(t) also satisfies the equation
t

(3.1') R(t) = A(t) - [ R(t-s)A(s)ds

2.8, O 0 <t < oo

Let Q denote the symmetric, unitary matrix

5.2) @- 2-1/2(; _;) .

Then clearly Q diagonalizes any matrix of the form (2.4) , that is

QA(t)Q is diagonal.

Lemma 1. Suppose A(t) is any matrix of the form (2.4) where a; ()

and a, (t) are locally t on 0st<w Forany N>O0 define




1k

Ay (t) = IRA(t)Q

J

n the following

4

and let ILI,(ﬁ) be the resolvent of ;\I.(t). M
B it sttt e “ - “‘

v iy s nn ey e s A ®
statenonts are trie,

(1) Am(t) = W dlagonal (a, (%) + a,(%), a, (t) - a,(t)).
(ii) RN(t) = diagonal (%lN(t), %em(t)),

(iii) If a)(t) and a,(t) are defined by (2.2) then

%IN(t) and KQN(t) are positive and continuous

on 0<t <o and

({ A (B)at = 1, £ Agy(b)dt < 1.

Proof. The first two parts follow Iimmediately from (3.2) and

equation (3.1) for the resolvent. Indeed, klN(t) is the resolvent

of the scaler function
Wl(t) = N[al(t) + ag(t)}
and AQN(t) is the resolvent of the function
Wé(t) = N{al(t) - a2(t)}.
If (2.2) is true, then

W (t) = N2+ 4 ¥ exp (-(nTT/L)gt}}
n even



wg(ﬁ) = N4 T exp [-(nw/L)et}}.
n odd

These formulas ghow that W, and W, sare nonconstant, locully in-

1
tegrable, and completely monic on 0 <t < «, that is

(-1)7 () Dty >0 for 0<t<w §=0,1,2,... end k=010,

It follows from a theorem of Reuter [13] that KkN(t) is completely

monic on O <t < w, The results in section IT of [5] immediately

give the two integral integral estimates in (iii). Q.E.D.

Lemma 2, Suppose (E) satisfies (2.3-4), @ is defined by (3.2) and

both al(t) and ag(t) are functions which are locally L' on

0=t <o Forany fixed N> 0 let RN be the resolvent of the

matrix valued function AN(t) = NQA(t)Q. Then the transformation

y = Q{x-£(%)) (or x=Qy+ £(t))

may be used to transform (E) into the equivalent system

. |
| Ry(t=s)(y(s) - Gy (s,¥(s))}ds
(@)

By  ¥(t)

where

QG (t,Qy+£(t))/N.

(5:3)  Gylt,y)

Proof, Define &(t) = diagonal (Sd(t), Bd(t)) where Sd(t) is the
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Dirao delta functioen., Let ¥  denote the convolaticn ocveration.

Then the resolvent equation

t
(6) = A_(%) - t-5)R (s)ds
Ry(t) = Aplt) ({An(“ Jhy{s)d

may be written in the symbolic form
RN = AN - AN X RN
or, equivalently

(3.14) (8-Ryp)* (BrA) = B,

&

Equation (E) has the form x = f - AxG(x). If y = Q(x-f) then (E)

becomes

- (QA)*G (Qy+£)
-N(QAQ)x (G (Qy+1) /)

'A'i\I*GN (v).

<
n n

Adding .&N*y to both sides of this equation yields

v+ Ay = (BrA ¥y = A (y-G ()]

Applying B - RN to both sides and using (3.4) one obtains
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y = &y = (8-Ryjw (SrAy)#y = (8-Ry)xAx (y-Gy (v))
OI"
¥y = Rt (y-G(¥)} -

This is equation (EN). The calculation is completely reversible so

that (Ey) also implies (E).  Q.E.D.

s My




. Existence of Bounded Solutions
Assum: the funetions f£,G6 and A of equation (E) satisfy
the following conditions:
(A1) L£,A and G satisfy (2.2-kL),
(AR) £ e C[0,w) and f£(t) is bounded on [0,w).
(A3) @(t,x) e 0(1'{3) and G(t,0) = 0 for all t z O,
(Ah)  There exist positive numbers N and K such
that if |y| $ K then [y-Gu(t,¥) s K uni-

formly in T € Rl.

Note that more generally one could assume the existence of
a vector valued function r(t) such that G(t,r(t)) =0 for all

t 2 0. (This is the situation in Theorem 1 above.) However, the

transformation X = x - r(t) puts (E) in the form

t
X(t) = {(f(8) - r(t)} - [ &(b-s)G(s,r(s) + X(s))ds.
o

If r(t) is continuous and if |£(t) - r(t)| 4is bounded, then the

new equation satisfies (A3).

Theorem 4, Suppose (Al-U4), (3.2) and (3.3) are all true. Then there

exists a solution x(t) of (E) such that |x(t)| s K for all t z O.

Proof, Let C = C([0,x), R2) be the space of all continuous functions

. [0,) —>R2. Let C have the topology of uniform convergence on
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can;at subsols of the dntorval 0 © 4 € o, Define
S= (o cCl o) £K for all t = 0],
For eny ¢ ¢ 8 d~i'ine
t
() (6) = J Ry(4-8)(n(s) - Cu(s,(s)))ds.
O

Clearly, M! S -»C and M 1is ccompletely continuous. Since the norm
|z] = | (z,2,)| is defined by |[z]| = max (12, 1250}, then (ak),
Lemma L parts (ii) end (iii) and the definitions of S end M
easily imply that |(Mp)(t)| s K for all + 2 0. This means that
Mp e S if @ € S. By the Schauder fixed point theorem the operator
M has at least one fixed point x(t). This fixed point solves (EN)
on 0 st <o and thus alsc¢ =< lves (E). Q.E.D.
It can be shown that if 7 1is defined by (1.8) then (ak)
'is true., More generally assume!
(Alyr) G(t,x,%,) = col (g(t,x;), g(t,x,)) for all
(t,%,,%,) € 2, Moreover, g(t,z) is an odd,
nondecreasing function of 2z and is bounded

in t e R" uniformly for 2z on compact sub-

'sets of Rl.

Lemma 3. Suppose G satisfies (A3) and (Ak'). ILet B =

¢« t 2 0}. Then for any M >:/EB and for any € in the

sup {|£(t)




range QX € 2 B e exists >0 sueh that (AM) s treo with

K= M+Eg,

Prool, Mix any s h ve nuos of M oand €, Pick N> 0 so lerge

that  2|g(t,z)| <8 uniformly in t 2 0 anl |z = 5M. The map

W= U - GN(t ,u) may be written in the form

(+.1) w = uy = (e (s, () /42 4 £ (8))

+ g%, (u-w))/W2 + £,(5)))/ (W2N)

and

4.2) -, = -(g(t, (ul+u2)/‘f2-+ fl(t)) -

W, o

g(t, (u-uy)/ N2 + £,(%)))/ (V2w

for all t = 0.

If |u| = max {Ju], |ul} M then for any t one has

1l

| (u+u)/NB + By (8)], | (ug-uy)/VE + Fo(8)] = 4B+ v < 5.
Thus (4.1) and the choice of N imply
[, | < Jug] + (e/N2 + e/A2) /N2 s M+ €.

Similarly, |w,| <M + €.

S A GRS ool b D e Benia e



Dow econaldey Lhe region
1 b4 ? Y 1 « W b
D= {uck oM< |y su+el.

Ve mst shew e 3P0 w e D tben |w |, |wy| <Mee. Fer
j =3 O,}A’P,-co,ri] d@finrf
ie

. 2, . . .
8 = ((a,u,) € R72 uy + du, = re for somz r >0 and

some 6 in (j-L)(w/2) s @ s ju/2)

and define D, = DN Sj’ Since g(t,x) is an odd, nondecreasing
o

function of x with g(%,0) = O, then the map G(t,2,,2,) =

col (g(t,xl), g(t,x,) maps each region S;j into itself. Also re-

call that
GN(t,z) = QG(t,Qz+£(%))/N.

If wu e D,, then (3.2) implies that v = Qu € Dl' Since

l)
B <M/‘f2- and |f(t)] é‘B, then y = v + £(t) lies in 8,8, or

S Again Q maps Sl - Sl’ Sy - 88 and 88 -85, so thav

g
Z = Qx = QG(t,Qure(%))/N = Gy (t,u)

is in §,,§8, or Sg. Finally, (4.1-2) show that
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7 = GN(t,u)':: Vo~ U,

If Z::GN(t,u) is in 8, or 8,

sides of (4.1) and (2.2) both lie in the range (-€,0). Since

then the right hwnd

neD,, then M<u, s M+ € and 0 =u, s M+ €., Therefore,

1’ 1 2

lies in the range 0 <M -€<w, <M+ € and

lies in the range -€ <w, <M + €, Therefore, |w| s M + €,

2
Now suppose u € D; and z = Gy(t,u) e Sg. Since | £(t)]

< B <M/ N2 one must have M<u sM+¢ and Osu,s NZB < M

in order that Z e Sg. Therefore, the right head side of (k.1) is

in the range (-€,0) and the right hand side of (4.2) in the range

(0,6). Tiis and u, €D, mean that M -€ <w, <M+ € and

e <w,s 42B+e <M+ e,

The analysis of the other seven regions SQ’SB’“”SB

follow in a similar manner. The wvarious maps involved in the

analysis are illustrated in Figure 1. Q.E.D.




(Printers: Put Figure 1 near here.)

Corollary 1. Suppose (Al-3), (ak'), (3.2) and (3.3) are true. If

G i1s sufficiently smooth to insure the uniqueness of the solution

x(t) of (E) then x(t) exists for all t 2 0 and satisfies

|Q{xkt) - £(6)}] =428 05t < w

where B = sup {|f(t)

c 05t <wl,
Proof., By Lemna 3 and Theorem L4 above the solution x(t) satisfies

sup {|Q{x(t) - £(t)}|: t 2 O} SM+ €

for each € >0 and each M > qr§Bo Q.E.D.
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5. Almost Pericdic Solutions

The purpose of this section is to study the existence and
wriquencss of almost periodic solutions of equations of the form
(1.19). PFirat, we give appropriate definitions and background in-
formation concerning almost periodic functions. The first result in
this section (Theorem 5) asserts that if Y(t) is an almost periodie
solution of (1.10) for some fixed N_ > O then it is also a solu-
tion of (1.10) for all other N > O, This result will be important
since one value of N will be needed to prove existence of almost
periodic solutions of (1.10) and a second value of N will be
needed to obtain uniqueness and prove the asymptotic relationships
between solutions of (EN) and (1.10).

The rest of section 1s devoted to the existence and
uniqueness of almost periodic solutions of (1.10). Lemma 4 is an
invariance theorem for bounded solutions of (1.10), Lemma 5 asserts

the uniqueness of bounded solutions of {1,10). The last result of
the section asserts that the unique bounded solution of (1.10) is

almost periodic.

Definition. A continuous function S(t,x) defined for all (t,x) €

+1 -
Rn is called almost periodic in t (uniformly for x on compact

sets) if and only if given any sequence {tn} of real numbers there

exists a subsequence (t and a function §%(t,x) such that

k)

lim S(t+tnk,x) = §%(t,x)

k5w



. . - l
with convergence wnifor in  (t,x) for all t ¢ R~ and x on

: n . .
compeet subsels of R°. In this cagse we write § ¢ AP,

The set of all functions 8§ which may be obtained in this

way is called the clogud bull of 8, writtca CH(S).

' As general references on almost periodic functions sce the
books of Favard [lh] and Besicoviteh [15] or the original papers of
Bohr [16]. The results listed below are well-known results in this
field,

Given a function S(t,x) which is almost periodic in %
uniformly for x on compact sets define FM(S) to be the set of
all A.P, functions f£(t) with range in the same space as § and
satisfying the following condition:

If (t,} dis any real sequence such that (S(t+tn,x)} is

a Cauchy sequence uniformly in % € Rl and x on compact

subsets of Rn, then {f(t+tn)} is a Cauchy sequence uni-

formly in t € Rl.

The set FM(S) is called the function module of S,

Given S € AP there exists a countable set of Fourier ex-
ponents [kn} CZRl and a set {Sn(x)} of continuous nontrival

functions such that S has Fourlier series

S(t,x) ~ nz.lsn(x)exp (1A ).

If S is independent of X, then so are the functions Sy e The

module of S, written M(S), is the additive group of real numbers
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generated by the sequence [An} of Fourier exponents., In other
words M(S) is ihe smallest additive subgroup of Rl containing the
set {%n}. An elmeost pericdic funclion £  is in the funciion
module FM(S) 4if and only if the Fourier exponents of f are con-
tained in the medule  M(S).

Let the functions £, A and G satisfy (AL-4) and in

addition some or all of the following conditions:

(A5) There exist almost periodic functions p(t) and

hj(t,x) such that

Lim (£(t)-p(t)} = 0, Lim (g, (t,%)-h, (t,%)} = O
t - o t w0 9 J

with the last limit uniform in x on compact sets
of Rl.

(A6) For each t e Rl and for j = 1,2 the function
hj(t,x) is nondecreasing in x.

(A7) The functions hl(t,x) and. he(t,x) are locally
Lipschitz continuous in x with Lipschitz con-

stants independent of t € Rl°

In Theorem 1 above gl(t,x) = g,(t,x) = hl(t,x) = hg(t,x)

= BX5. Moreover, (2,1) implies that

£,(t) + ¢ sin (5;(8) »F /2 +C sin (ksb)
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as t ->w, Thus (AY-7) arc all true for this special case. Note
that (AD) implies that G(ﬁ,xl,xg) has the specisal form (2.5).

Under the above agssumptions the invaerience theorem in

[17, Theorem 1] dmplies that the equation

t
(x y(t) = [ By(6-5) (7(s)-Gy (5,7 (s)))as

N
has the limiting form
t
(5.1) v(8) = ] Ry (6-) (¥ (5)-H (5, (s)) Jas
where H(t,y) = H(t,¥,,¥,) = col (hl(t,yi), h2<t:yé)) and

(5.2)  Hy(t,y) = QH(%,Qyrp(b))/N.

Theorem 5. Suppose (Al-5), (3.2) and (5.2) are true. Suppose Y(t)

is any almost periodic solution of (5.1) for some fixed N, If

Y € FM(H,p) then Y is also a solution of (5.1) for all other

values of N > O,

Proof. Pick any M >0 with M#£ N. Let Sy be the resolvent of

NA(t) and Sy the resolvent of MA(t). Write (5.1) in the form

t
(5.3) Y(t) = h(t) + [ Pw(t-s)[Y(s)-HN(s,Y(s))}ds
o]
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whoere
0
h(t) = [ Ry(t-s) (¥(s)-Ty(5,%(s))}ds
= {;‘ RN(S){Y(t-s)-HN(t-.s,Y(’c-s))}cls -0

as t -, Let 6d(t) be the Dirac delta function and let 8(t) =
diagonal. (Sd(t), 8d(t)). If % denotes convolution then (5.3) may

be written in the form

Y = b+ Rox(Y-QH(QY+p)/N).

Since QR.Q = 8 = resolvent of NA(t), then the transformation

Z = QY puts the equation in the form

[N
i

Qn + Sp*(2-H(z+p)/N),

or

(3-5;)*Z = Qh - Sy*H(@E+p)/N.

Applying (S+NA) to both sides one obtains

Z = (5+NA)xQh - AxH(zZ+D)

= (5+NA)*Qh - (MA)xH(Z+p)/M.
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Add  (MA)#Z 1o beth sides and apply (5..SM):

Z = (6-8, )% (5+HA)xQR + 8, (Z-11(@+p)/i1} .

o
“M 1

Lebtting Y = @Z one obtains
¥ = Q(8-5))x (BKHA)xQh + R+ (Y-QU(Qy+p) /M) .

Note that

Q8- )% (BrNA)Q = Q[B-8,+NA- (N/M) (MA-S,)}Q

= &+ (L-N/M)QSQ = 8 + (L-N/M)R .

Therefore

Y=nh+ (l-N/M)RM*h + RM*[Y—HM(Y)] .

Writing this equation in the usual form one has

. .
(5.14) Y(t) = h(t) + [ (1-N/M)R,(t-s)h(s)ds
t ' |
+ [ Ry(t-5) (¥(s)-Hy(s,¥(s)))ds
for t =z 0.

Let tn — » be an increasing sequence such that p(t+tn) -

p(t) and H(t+tn,y) - H(t,y) as n >, Since Y e FM(H,p), then
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Y(tt ) - ¥(t) @ n - e. Note that h(4) 20 as t - e and
R, € 1} (0,0) implics that n(t) 4 (1-13/:-1)1314%11@;) >0 as t - o
Replacing ¢ by t+ t dn (O.4) ylelds

R 2 4 s -1 /00 :. . ‘t
Y(t4tn) h(u+tn) Fo(L N/h)Rméh(t+ n)
t
A ft RM(tus){Y(s+tn)..HM(s+tm,Y(s+ﬁn))}ds.
““n
Taking the limit as n —» o gives (5.1) with N replaced by M. Q.E.D.

We now turn to the existence-uniqueness problem. The fol-

lowing lemma will be needed.

Lemma 4. Suppose (5.2), (ALl-3) and (A5) are true. Suppose (5.1)

has a bounded solution y(t) on -o <t <, Then given any

sequence (tn] of real numbers there exists a subsequence [tnk},

a function (HN)* € CH(HN) and a function y*(t) such that

y(bre_ ) > 3% (8), Ho(bvt,¥) - B (t,7)

and

t
(5.5)  ¥() = [ Ry(t-s)(y" (s)-Hi(s,5%(s))}ds (- <t < ).

Proof, If {tn] conta;ns a subsequence which tends to a finite

limit point 1T, then the result is trivial with y*(t) = y(t+1) and
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Hﬁ(L,Y) 2 HH(L+T,y). Tirefore, sssmo Ln =yte,  Jinee p(t) and
H(H,v) arce oluopt povdolia dn 4, thoa there ds r svbsopyuce (which
;

we shetl eleo dwla by n) end functions p¥ e CH(p), W ¢ CH(H)

such thet plit)) - () end H{t+t ,¥) = "' (t,y). Then

Hy (bt ,¥) = QU(brt ,Qyep (et ))/10

- Q¥ (b, Qup* (6) ) /1 = H'])fI' L,7).

Since y(t) dis bounded and H is AP, then |y(t) -
Hﬁ(t,y(t))[ is bounded on ~® < 14 < o, The convolution of a func-
tion in Ll(~w,m) and a function of elass I (-e,0) results in a
bounded uniformly continuous function. Since y(t) solves (5.1),
then y(t) must be wiformly continuous. This in twn means that
the sequence {y(t+tn)} is a wniformly bounded, equicontinuous
family of functions on each finite subinterval of Rl. By possibly
taking a subsequence we may assume that y(t+tn) - y¥(t) as n - e
for some function vy*. Replacing t by t + tn in (5.1) one

_obtains

t
y(t+tn) = {WFN(t-s){y(s+tn) - HN(s+tn,y(s+tn))}ds

taking the limit as n -« gives (5.5). Q.E.D.

e

Lerma 5. Assume the hypotheses of Lemma 4. Assume (A6-7) are also
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Procs.  Smpaooe thoere exinl two distinel solutiecns y(u) anld  z(t)

of (v.l)e Fick & sequonce b swiho thet
]y(tn) - z(’cn)] - T = sup {|y(t)-z(t)]|: - <t < o},
By possib.y taking a subgequence we may assume lhat y(tn) - z(tn)

- U as n-ow where U, is some point on the boundary of the

square {(u:

ul £ I}. By possibly teking anothzr subscquence

. *
Lemma 8 insures that H (t+t ,¥) - H(t,y), y(t+t)) - ¥y () eand
z(’cd-tn) - 2% (4) where H;; € CH(HN) and y* eand 2" solve (5.5).
Clearly H;I' satisfies the same hypotheses as Hg. Moreover, u =

¥¥(0) - z¥(0) = lin {y(tn)-z(tn)} as n - o, Thus we have reduced

the problem to the case vhere |y(0)-2z(0)]| = L = sup {|y(t)-z(t)

-0 < t < o},

The two components of .b(t,y) =y - H.N(t ,¥) have the form

(5.72) by (6,) = vy - (0 (5, Gp+vp)/ M2 + by (8))

+ By (6, (v,-v,)/ M2+ 0y (6))1/ (N2 M)

and

ol . Rl et I T e
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(XN

(971v) by (4,¥) = ¥, - (0 (4, (74y,)/ W2 4 py (1))

SN NN ER S AONVIPEE
Set uwl(t) = y(t) - z(t) wl define

(56 my (8) = (b (5, (3 (6) % 7, (40)/W% + B (4)) - hy (8,
-1

(5y (6) + 2y (8))/N2 + 0, (1)) ((u () + uy())/NZ)

if wy () + uy(b) # 0 and ml(t) =0 if u(t) + uy(t) = 0. since
u(t) is bounded and (A7) is true, then m,(t) e I7(~0,%). Moreover,

m(t) 2 0 by (A6), Similarly define

(5.8b) my (6) = (hy (b, (v, () - v,(£))/ W2 + py(8)) -
-1

By (b, (2, (6) - 2,(6))/N2 + D, (6))) ((u () - uy(8))/W2)

if ul(t) # u,(t) and m3<h} = 0 otherwise. Since u(t) = y(t) -

z(t), then (5.1), ™.7) e.0 (5.¢) imply that

| (5.92) ry (8) fu?*m('bww({l'- (my (5) + my(s))/N}u, (s)

il

+ (my(s) - my(s))/N}uy(s))ds
and

t
(5.90) up(6) = [ Ay (-8 (((ma(s) - my (s))/N}u (s)

+ (1 - (my(s) + my(s))/N)uy(s))ds
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for €1 t din R, In sycten form (L.9) beecmes
t

(».9") u(t) = f RN(t..s)(J:,.:-z(s)/zes)u(s)as
-0

where M(s) is the sppropriate motrix.
Pick N >0 s0 lange that 0 s ml(t), me(ﬁ) s /%5 a.e.
on - <t <w For any fixed s the map U= (I-M(s)/N)u maps

the square

A

§ = ful lull: Iugl L)

into the region

s = (ul |wl, || = Lmex {l-em (s)/N, 1-2m)(s)}).

Since 0 s 2m,(s)/N = 2/% (by the choice of N), then §' C 8.
Using the properties of AEN obtained in Lemma 2, (5.6) and (5.9b)
it follows that

b .»
lup(6)] S [ Aoy (6-8)1ds = L [ A, (s)ds = L < L.

Letting t = O we see that |u,(0)] < L. Therefore, u(t) is in

the set

S, = (u |u | =1, lu| s},
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"~
Since w = (T-M(e)/L) u maps 8, strictly inside of the square §,

soy ] | 2 B0 < f < 1), then Dor any t line (5.9:) dmpiics that

&
|, (8)] = Ml. (b-g)fld, = (f A (8)48) (PL) = RL < L.

Therefore, IuJ(O)] <L and |u,(0)] <L which contradicts

|u(0)| = max {[ul(o)l, |u2(0)|} = L. Q.E.D.

Theorem 6. Suppose the hypotheses of Lemma U arve true. Then

y(t) e FM(H,p) so that in particular ¥y e AP. Moreover, y(t) solves

each equation of the (5.1) for all N >0 and for W sufficiently

large is the unique bounded solution of (5.1).

Proof, Fix N >0 and lage. Let (tn} be any real sequence such

that [p(t+tn)} and {H(t+tn,y)} are Cauchy sequences, p(t+tn) -
‘p¥(t) € cH(p) and H(t+t,,¥) - H*(t,y) € CH(H). It must be showm
that {y(t+tn)] is a Cauchy sequence uniformly in 1t ¢ Rl. Suppose

this is not true. Then there exists e > 0, subsequences n, and

k

m and a sequence The

[v(= +tnk) - y(t+t )| 2 e. Define

such that nk > mk =z k and

.= +%t., S = T + t

k k nk! k 'mk (k = 1,2,3,.0.).

By possibly taking a subsequence of the k!s it follows that
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H (67, ¥) -~ H (6,¥), D" (4r) - p (b)

for some fuuctions H e CH(I™) and P, € CH (p*). ‘Then p('L-l"L‘I,) =

p(t‘%-'rk-s"i.;nk) -3 po(i.) and
Hﬁmﬂkpy)=:H(GW3;¢nk)—oHoﬁ5y)

as k =, Similarly p(t-&‘sk) - po(t) and. H(t-l-sk,y) - IIO(t,y).
By Lemma L4 there exists a subsequence (which will again be
indexed by k) and functions y,(t) and y,(t) such that

y(b+8,) =¥, (t), y(t+T) -y, (t) and
t
5 (8) = J R(-9) 0y (6) = )y (o,v, ()))as

for j=1,2 and t € Rl. Since

|y,(0) - %,(0)] = im |y(s,) - v(7)| 2 €,
K—>o
then yl(t) £ Vo (t). But this violates the uniqueness asserted in
Lemma 5. This contradiction shows that y e FM(H,p). Theorem 5
shows that y solves (5.1) for all N > O. The uniqueness of ¥

is Lemma 5. Q.E.D.
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thon (D.1) his ¢ solution Y e BU(E,n).

Proof, By Tacorum b equation () hes a bounded solubion x(t).

Since (E) is equivalent to <EN) for &ll N > 0, then each (EN) has
the same bounded solution. The results in [17] imply the existence
of at least one bounded solution of (5.1) for any N > 0. Now apply

Thecren 6. Q.E.D.

Theorem 7., Suppose (AL-7) and (3.2) are true. Then there exists a

unique function X e FM(H,p) such that if x(t) is any bounded

solution of (E) then x(t) - X(t) 20 as t —w,

Proof, Let Y e FM(H,p) be the function given by Lemma 6. Define

X(t) = QY(t) + p(t) and y(t) = Q(x(t) - £(t)). We must show that
x(t) - X(t) 20 as t - o or equivalently that y(t) - Y(t) -0,
If this is not true, theﬁ there exists an e >0 and a sequence

t, = such that Iy(tn) - Y(tn)l = €, By Lemma 3 we may assume
that p(t+t ) - p*(t), H(t+tn;y) - H¥(t,y) and Y(t+t ) - Y(t) as
n -« where p* € CH(p), H* e CH(H) and Y* solves (5.5). write

(EN) in the form ;



t
y(t) = 1(t) + [ Ry(t s)(y(s) - Hy(s,v(x))ds,
o]

where

t
B(t) = [ Ry (6-8) (I, (5,7(5)) - G (5,5(¢)))ds.
(@]

Asgumption (A5), (3.3) and (5.2) insure that Hﬁ(t,y(t)) - GN(t,y(t))
-0 as t - o Since RNeLl(O,oo), then E(t) -0 as t - «,
Therefore, Theorem 1 of [L7] implies that by possibly taking a sub-
sequence of t ~ one has y(t+tn) - y*¥(t) where y*(t) solves

(5.5) for the same value of N. By uniqueness of sclutions of (5.5)

for large N, y*(t) = ¥¥(t). On the other hand

|y*(0) - ¥Y¥(0)| = Lim |y(t)) - Y(t )| 2 e> 0.

. This contradiction proves the theorem, Q.E.D.

Theorem 8. Under the hypotheses of Theorem 7 the function H(t,X(t))

has mean value zero. Moreover, if the mean values of p,(t) and

e TS o e

Pe(t) are equal then the two components of X(t) have equal mean

values.

Proof. Recall that for any ¢(t) € AP the mean value of ¢ is

defined to be



N
<

O

Q) = lin [ o(8)d
> o

Since Y(U) = QX{t) - p(t)), then Y solves (5.1) o -0 <<t < o,

Peduiviowaen velaen of both sides of (D.1) cun cbiatus
(6.1) () = Bo(0) (m(Y) - m(iy)),

where R.N((,D) is the Fourier transform of R‘N By Lemma 1 above

R;;:(O) = diagonal (1, NB(lJrN;B)—l)
where
o0
B8 =£ {al(t) - ae(t)}dt.

Write Y(t) = col (¥;(%), ¥, (t)). Then the equation in the

first component of (6.1) is

m(Yl) = m(Yi) - m(HNl).

Therefore, m(HNl) = 0, that is the first component of
QH(t,QY(t) + p(t))/N = QH(t,X(t))/N has mean value zero. The second

component of (6.1) is

n(¥,) = ¥ (1+38) Tm(Y,) - m(Hy),



or
(6.2) nH 5) = B Tn(Y,) (0 < F < w).
Since the left hond side of (6.2) is independent of N, then (6.2)

can be truac for all N >0 only if m(Ye) = m(HNQ) = Q.

We have shown that the mean value of

Hy (6, ¥ (6)) = Qu(t,Q¥(t) + p(t))/N
QH(t,X(t))/N

1l

is the zero vector. Since Q is not singular and N # O, then

H(t,X(t)) also have mean value zero. We have also shown that
m(Yz) = m(Xl—Xg-pl+p2)/ N2 = o,

that is m(Xl-Xé) = m(pl-p2).' Since m(pl-pg) = 0, then m(Xl) =
m(X,). Q.E.D.

Theorem 1 follows as a special case of the results in this
section. In this special case g(x) = Bx5 is smooth so that the
solution of (E) is unique., Assumpticns (Al-T) are easily verified
with p(t) = col. (p,(t), p,(t)) having components pj(t) = Fo/2
+ ¢ sin (kjt). If k, and k, are linearly independent over the
integers then p(t) 18 quasiperiodic with fundamental frequences

(kl,k2). If kl and k2 are linearly dependent then there exist
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integers M.L end M, such that k5 £ Mlkl 4 Mg}‘g and 1:3/«3,; is
the least conaon poriod of p(t). In this case the funcetions X,j

in (L.©) will have the form

[s¢]

If u(t,x) dis the function defined by (1.5) and X the

functions defined by (1.9) then

(6.3a) u(t,0) = xl(t) + El(t)
and
(6.30) u(t,L) = X,(6) + By (t)

where Xl and X2

cl(o,m), d/dt Ej(t) is L

both have the same mean value, *_ (%) € C[0,») N
J

! near t=0 and EJ.(t)—aO as t - o,

‘Therefore, one would conjecture that

lim u(t,x) = U(t,x)
t > o

where U solves the problem

(6.4) Uy = U, (o<t <w 0<x<L)

U(t,0) = X (t), U(t,L) = Xy(8) (- <t < w).

Similarly wu(t,x) satisfies boundary conditions of the form




(6.5:) 3/:(1,0) = B, (6) - ¢ sin (5;1)})° + By (L)
and,
(6.5) 3/ dz(L,L) = -B(X,(t) - ¢ sin (kgt)}5 + Ee(t),

for all t =z 0. Here El and E2 have the same propertics as the
corresponding terms in (6.3) and the two functions

B[Xj(t) - C gin (I{J.(t)}-j have mean value zero. If it is truec that
u(t,x) tends to a solution U of (6.4) then U(t,x) should also

satisTy the boundary conditions

il

A/ (5,0) = BIX, (6) - C sin (k1))

and

1

W/ (t,L) = -BE,() - € sin (k,(8)),

for -0 <t < o,
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