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1. Introduct:I o

'JPnC! i UI' j)C S 0 Of (?;1.5 T)a1007' -L,,; to stucly the behavior as

t --> oo of solutions of a systow of two nonlinecar equations of the

forra

t
(1,01)	 xl(t) : fl (t) - f al(t_;,)gl(s,x1(s))O.s

0-

t
f a2(t,$)^2(s,x2(s))ds,0 

t
x2 (t-)-, f2 (t) - f a,(t-s)gl (s,x1 (s))ds

0
t

- f a,l(t.-s)g2(s,x2(a))ds
O

S7here fl (t) and f2 (t) are asymptotically almost periodic and

both gl (t,x) and g2 (t,x) are almost periodic in t uniformly

for r on compact sets. We seek conditions which gua-antee that

the solutions x1 (t) and x2 (t) of (lol) exist for all t ? 0

and are asymptotically almost periodic.

System (101) arises in a natural way from the partial

differential equation.	 -

(1.2) u t = ux,X	 (t>0, 0<x<L)

t

r

i r'g
a-



ti

r	 ImmW

( ,.'^) u(O,Y) -- F(x) (0 <

viii nona.:ix.otud, , bomdaiy condii:ion., of the fox::

(a..^)	 ux(t,0) - ga_(t,u(t,o)), a (t,Ij)	 g2(t,u(t,0)),

for all t > 0. Indeed, if Al (t) =. uY (t ) 0) an(]., A2 (t) .- U  (t, L)

are assumec! to be knuem functions and if A  e qo oo) n cl(0,00)

with. Ai (t) absolutely continuous in a ne:i gAnborhood of t = 0,

then well-I no-m elemmitary methods imply that

(1.5)	 u(t)x) = F0/2 + F Fn exp (-(n7r/L) 2t)cos (n7jx/I,)
n=1

t	 CO

a- L-1f (1+2 L exp (-(n7r/L)?(t-s))cos (n7tx/L)Al(s)ds
o	 n=1

t	 03

L l f (1	 (_l)nexp (- (rYTI L) ? (t-s)) cos (n7rx/L)A2 (s )ds
o	 n=l

where

L
(1.6)	 Fn = (2/L) f F (x)cos (nTx/L)dx 	 (n	 0)1)2.,.**)

i
o

is the sequence of Fourier cosine coefficients of F. Setting
Y

x = 0 and thr,1 e„ x = L in (1.5) and usin ry (1.4) one obtains the

r
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(l. 7€0	 a (t, 0)t)'ll''uo :^ ^ { _ (n1r/h)" 

--1.	
2

ry

^^J f {1:i'['. 	 0:,:p (.. (n—, /1j) (t^.;)}^;1( ,tt( ,0) )d;^
n	 Il:J-

k "I	 2f {:i:+	 , (-1)"exJ {_ (nrr/L) (^. ^) } €,^ Cs,u (N, r^) )d.,,
o	 n:=1

and
F

^F4

R

(1.7b)	 u(t,L) -- 1^ /2 +	 k' (-1.) nexp {. (ii1i-/L)2t}o	 rln--i 
t	 0

_ L`i f {1-i-2 Z (- l)nexp {_ (n1r/a^) (t- S ) }l(^x.(S) )d
o	 n=l

00L- if (1+2 F, exp {..(n'rr/L)2(t.-s)}g2	 x2(s))ds.
o	 n=1

F

Equations (1.7) clearly have the form (1.1) with x 1 (t) = u (t, 0)

and x2 (t) = u (t, L) . On the other hand if u (t, 0) and u (t, L)
i

r are the known unique solutions of (1.7), then u(t ,x) may be ob-

tained using (1.4) and then (1.5). This formal equivalence of

(1.2_4) and (1.7) will be made precise in section II below.
r

Equations (1.2_4) and also our assumption of almost

periodicity may be physically motivated using C. C. Lin's theory of

superfluidity of helium, c.f. [1]. In three dimensional space with
t

coordinates (x,y,z) let the planes x = 0 and x: L represent

two infinite plates. Suppose the region 0 < x < L between these
F

rz
F

.



pl,rtte„ ;; fA l i c-1 wl th l a.q i ci hol ? it.i a niti tal,l.y at rep tk 7Tf the

bU tI <l: t'J plate	 x m 0 rrlcl. X =. I, ar o 'boat': civen s^.4;x?e .;c«.^.d

oscxu.%t1 m,s in t1ne y- airecation) then e	 f1 oî r i: i 1.1 b c+

set .^ ..	 .,: ^ .,.t.	 7a^t	 tt t, ?c	 bo t1nc: yel,caxr:i,ty prof1,J,c.	 .14i .qu

t > 0 of ally' lea: ?'«; (x,y z) with first coord—mate x. Th`.,n u(t,a )

sat--*-zf-.i,e;; (1.2) -aid (1..3), F(x ) .-, 0. 1,in I s thooryl amj)Iies boun,,Iary

cond.it:irn; of the forrri (1. ), indeed

(l.i)	 gi(t,u) = B(u-C sin (kit))3

for i = 1,2 where B and C are positive constants. For this

problem we prove the following:

Theorem 1. Suppose F e C2 [0,L]. Let gi (t,u) be given by (1.8)

where B > 01 C 0 and ki / 0. Then (1.7) has unique continuous

solutions xl (t) = u(t,0) and x2 (t) = u(t,L) defined for all

t ? 0. Moreover, there exist two almost periodic functions Xi(t)

with Fourier series of the form

00

(1.9)	 Xi (t)	 s xmnexp (i(mkl+nk2)t)
m, n=-o0

such that

lim {xi (t) - Xi (t)) = 0 as t -4 oo.

F

i
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This result follo ro as a spacial case of wore gcmeral. theoroms

Srhich :•rill be prove J bolo •r. `. iicoo e more gon g'r O.	 cco:dee;rn a

two—di iiienk l on,A. syst eri of the form

t
(^)	 x(t) a f (t ) - f A(t-s)G(s,x(s)):ls,

0

where A (t) is a matrix of the form

a1 (t)	 a2 (t)
A(t) =

a2 (t)	 a1 (t)

In section 3 we use the special form of A(t) to show that system

(E) may be transformed into an eauivalent system of the form

t

(EN)	 y(t)	 f RN(t-s)(y(s) - GN(s,y(s)))ds
0

where RN (t) is a positive definite, diagonal matrix of class

L1 (0,w). Subsequent work deals with equations of the form (EN)

rather than directly with (E)o

Section 4 contains results concerning the global existence

and boundedness of solutions of (EN). In section 5 we study the

existence and uniqueness of almost periodic solutions of a related

equation of the form

t

R"
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t
Y(t)	 f Ejt-.,)(Y(S)

In tine 1kaC 11 r ,, u c xx t .,nl 7ho.r this t the soDA:%ons y(t) ani Y(t) of

( ,,) I	 (I.• ^.i,A	 P a. f.. Lvt 	 +t^^94 ^^ t.l 4 .4 R7

lim (Y(t) - Y(t)) = 0	 as	 t -4 oo.

Transfonning (EN) back to (E) then yields Theorem 1 as a corollary.

Section 6 also contains results concerning; the mean values of the

solution x(t) of (E). This information on mean values is

important in any study of the behavior of the nonlinear problem

(1.2-4) .

If L = +co and if the second boundary condition in (1.4)

is dropped, then (1.2-4) and (1.8) model the limiting case of a one-

dimensional flow in a half space. This problem has been studied by

Levinson [2]. Some of Levinson's results have been generalized in

Papers of Friedman [3, 4] and Miller [5]. A similar problem in-

volving heat flow has been extensively studied by Mann and Wolf [6]

and others [7, 81 9]. The methods used in this paper are extensions

of the methods used in [5]. The main tools in our analysis will be

the "variation of constants" equation (EN) and :invariance results

similar to those used in [5, section V].

.



7

rf±^,	 del"A" real ^4'i°^1>^ t. , x.'21 '^"^^-;^:r"t',°2u;1 t ,, ' ^: `'^ `c? ^^'

00'L1ry XI	 x .- col, (xl) 7.2 ) . Thi- iLlic A tiv rk . . - .4ml.er of E;hS,r

Pit Cr thf-, 2, +;,,,	 ' x I	 j 21	 V: ; ,1 J. al:4, rV	 M -' 21

I x I : ml-C (I xl I ^ 1 x2 ).

Many of our re.aults a2"E explicitly dependent oxi the uue of this norm

rather tbnn some other equivalent norm.

Define

00

2.1a	 fl (t) =  F 2+	 F ex	 nv/"L 2t

and

(2. lb)	 f2 (t) = Fo/2 +	 Fn(-1)nexp (- (n7r/L)2t)
n=1

where Fn is defined by (1.6). Define

00

(2 . 2a)	 al(t) = (1+2 E exp (- ('rr2,/L)2t) )/L
n=1

o^

(2.2b)	 a2 (t) = (1+2	 (_1)neXp (- (n7r/L) 2t ) )IL
n=1

and
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x (t)
X9 (}	 '

f :^ (t)f(t)

Lr.t A (-u) be tbo 2^+;. ?^`.^'^m

(2.4)	 A(t)	 s'J. (t)

 a2 (t)

a2 (t

al (%)

Then equation (1.7) has the form (E) where

g (t,x )
(2.5)	 ^.(t^x) ;	 1	 1

^g2(tlxd)

Th orem 2. Suppose u(t,x) is a function which satisfies the

following conditions:

(i) u(t,x) is continuous on (0 s t < co, 0 s x s L).

(ii) ut and a xx exist and are continuous for all---	 ---	 —

(t,x) in the set (0 < t < oo, 0 < x < L) .

(iii) u(t,x) satisfies (1.2), (1.3) and also (1.4) in the

sense that

lim X(t,x) = gl(t,u(t,0))
x -+ 0+



u	 4

G4i^ t^

	

J,3 m it (t, x)	 (t;U (t, T))) •	 (t, > 0)

x -^ T1

(3.v)	 Thc ftuir l.- ^.ms Al (t) = €^ (tp u. (t ^ 0)) an:i A2 (E) _..,^........ w......^.	 ^..

-r 	 arc: of class C[0,co) n C (0 co) aro.

are absolutely continuoua in neaehborhooJ. of

t = 0.

If F c C2 [0 L] and if e , g E Cl for all (t, m), then, the funntions

xl (t) -- u, (t ) 0) , x2 (t) = u (t, L )

satisfy (l.l) for all t ^; 0.

Proof.Define functions a(x) = x2f2L, K (t, x ) a(x)A2 (t) -

a (L-x )Al (t) and v (t, x) = u (t, x) - K (t, x) . Then

vt - xx = Q(t,x) = a (x )A2(t ) - a(L-x)Al(t)

+ (A2 (t ) - Al(t))/L.9

X(t,0) = X(t,L) = 0,

and

v(O,x) H(x) = F (x) - a(x)A2(0) + a(L-x)A,(0).



1.0

x1m .` 1%eta onD H `can`. q are surflo.3 ^'ntly smooth in or"". ,2' to

un:l r LI LI Iy s olv r-' for ' (t, ..) J ri tbo usual. if%% Y, C.f.  [ 1.0, ` lia , orcxs' I

and 2j . Tho^ (,-'rorij

(2.6)	 u(t))") -- K(t,x) + v(t,x)
00	 42

= K(t,x) + Ho/`^ -t Y 1111 exp ( - (nrr/Tj) `"t)cos (i- rx1I,)
n--I

+ f 
t 

f 
L

( L
-1 

+ i exp (- (.17r/L)2 (t-s)) cos (nary/L ► )
0 o	 n-1

cos (n7rx/T,))Q(s,,.r)d.ycIs.

Here n is the sequence of Fourier cosine coefficients of H. By

the definition of a(x) it follows that

00

a(x) = L/6 + 2 E (-1) nL2 (nvr) -2cos (n7rx/L)
n=1

and

a(L-x) = L/6 + 2 Z L2 (n7r) 2cos (n7rx/L)
nil

when 0 < x < L. Therefore, the definitions of K,Q and H to-

gether with integration by parts .suffice to put the above expression

for u(t,x) J.nto the form (1.5). Since u(t,x) is continuous, then

setting x = 0 and	 = L in (1.5) yields (107 1/ . Q.E.D.

Theorem 3. Suppose (2.1-5) are true, F E C2 [0,1] and the functions



.	 Y

11.

gl (t) u) ayl̂l r2 
(t , u) are of 21112-Cl° for all (t ) Ii) . Tom.

X (t) Of ^'( rzy t.i Oil (R) O. is ', - for all 	 0 t}1F

u(t, O) --" xl.(t) vwl u(t 1 r,) ._ xO (t) are thr botiiiO sry va-l.u ris of a

ftlnct.' o'l u(t,^.) 1-1:34- 011 	 (i) - (iv) of 7.41lcore,m 2.

Proof. Dio, conrl:i,tions F c C 2 [O,Tj] earl (2.1) are sufficient to in-

sure; vi at f e C [ 0, oo) n C l (0, oo) and that f, is locally of class

L  on 0 = t <	 Since g1 and 92 s Cl, then it follows from

results in [11] that x1 (t) &aid x2 (t) have these same smoothness

properties, that is x (t) e C [ 0, ca) n Cl (0, oo) and x f (t) c L1 near

t = 0.

Define Al (t ) = gl(t,xl(t)),	 A2(t ) = -g2(tIx2(t))	 and

define	 u(t,x) by line (1.5).	 Condition (i) of Theorem 2 can

easily be verified directly using (1.5). Since Al (t) and A2(t)

are smooth, the steps in the proof of Theorem 2 can be reversed to

obtain (2.6). Therefore, the results in [10] imply (ii), (1.2),

(1.3) and the boundary conditions

lim ux (t,x) =.Al (t),. lim x(t,x) = A2(t).
x--0	 x-4L

Setting x = 0 in (1.5) and using the present definitions

of Al and A2 it follows that

t

u (t, 0 ) = fl (t ) - I al(t-s)gl(s,xl(s))ds
0
t

O a2(t-s)g2(s,x2(s))ds.



s

^I

12

(riliere i s a siml l,ar fo-r.mula for u (t, L) .) Comparing this with (1.1,a)

one secs that	 u(t,0) = xl (t) for all	 t ? 0.	 Sbai.l.arly u(t,L) =

x2 (t) . Q.E.D.

! S
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3. Preliminary Tran"-fonmatJon.-P

Given any matrix A(-,) th, r000l-vunt R('	 of A(I;) is

define ,3 to he the zoliiti.ou of the linear eqviation

t
Val R(t) -- A(t)	 f A(t-s)R(s)d,-,.

0

If the entries of A(t) are locally of class L on 0 :5 t < oo

then it is known (c.f. [12 ,, Chapter IV]) that R(t) exists a.e..,

is locally L1 on 0 ;5 t < w) and R(t) also satisfies the equation

t
R(t) = A(t) - f R(t-s)A(s)ds

0

a.e. on 0 < t < W.

Let Q denote the symmetric, unitary matrix

(3. 2 )	 2 -1/2 1	 1

Then clearly Q diagonalizes any matrix of the form (2.4), that is

qA(t)Q, is diagonal.

Lemma 1. Suppose	 A(t) is any matrix of the form (2.4) where	 a 1 (t)

and	 a2 (t) are locally- L1 on 0 -5 t < co.	 For any	 N > 0	 define



to

ANT (t) = N Q14(t)Q

and let N ,̂, (t) be tht,; reo olvcnt of N' (t) . ^^^^n the folio ::i^r`

	

(i)	 A1,(t) -- N d .	 (a,l(t) + a,2 (t), a1 (t) - a2(t))

	

(^ ^)	 ^T (t) = diagonal (T^ (t ), T2!q (t) )

	

(iii)	 If a1 (t) and a2 (t) are defined by (2.2) then_

?\1N(t) and T2N (t) are positive and continuous

on 0 < t < c* and

00

f ^\1N (t) dt = 1)
00

f A2N (t)dt < 1.

Proof. The first two parts follow immediately from (3.2) and

equation (3.1) for the resolvent. Indeed ., T1N (t) is the resolvent

of the scaler function

Wl (t) = N(al (t) + a2(t))

and '\2N (t) is the resolvent of the function

W2 (t ) = N ( al (t ) - a2 (t )) •

If (2.2) is true, then
1.

W1 (t) = N(2 + 4 E exp (-(n7r/L)2t))
n even



f	 ^
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W2 (t) = 1,1 ( 1+	 E exp (- (n7r/I,)2t)) -
n odd

These formul.,aR)- .;how that W, and. W2 are none onsta.nt, locaally Jn-

tograb'lo, and cct^r^l^ef^cl,y mon:i.c on 0 < t < oo, that is

I	 (J )(-1) (vi k )	 (t) > 0 for 0 < t < w, j = 0,1, 2 ^ ... and, k = 1, 2.

It, followu from a theorem of Reuter [13] that ?^kN(t) is completely

monic on 0 < t < co. The results in section II of [5] immediate^y

give the two integral integral estimates in (iii).	 Q.E.D.

Lemma 2. Suppose (E) satisfies (2.3-4), Q is defined by (3.2) and

both a1 (t) anal a2 (t) are functions which are locally Ll on

0 s t < co. Fol., any fixed N > 0 let RN be the resolvent of the

matrix valued function AN (t) = NQA(t)Q. Then the transformation

Y = Q(x-f (t))	 (or x = Qy + f(t))

may be used to transform (E) into the equivalent system

t
(EN)	 Y(t) = f RN(t-s)(Y(s) - GN(S,y(S)))ds

0

where	 -

(3.3)	 GN (tsY) = QG(t I QY+ f (t ) )IN.

Proof. Define 5(t) = diagonal (8d (t ), Sd (t)) where 
5  

(t) is the
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Diva.: delta fume C i on. Let	 dr-,notw the convolation oPeration.

t
4.R^4 (t) -, A-,^(v) - f 1^T1``'-s)^`I( s)7,

0

may be written in the symbol.i c form

RN = AN - AN * RN

or s equivalently

(3 • ZN )	 (8-RN)* (&FAN) = 8.

Equation (E) has the form x f - A-x-G (x) . If y = Q (x-f) then (E)

becomes

Y = - (QA)*G (Qy+ f )

-N (QAQ) * (QG (Qy+f )IN)

_ -AN*GN(Y)'

Adding AN*y to both sides of this equation yields

y + AN*y (B+AN)*y = AN* (y-GN (y)) -

Applying 8 - RN to both sides and using (3.4) one obtains

a



y = &XY = (5-N)*(&SAjj)*y = (8-R N) -X-Ae (Y-GN (y))

or

Y = R N% (Y- GM (Y) ) -

This is equation (EN). The calculation is completely reversible so

that (EN) also implies (E).	 Q.E.D.

17
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4. Ex! stuncu, of Bounded Solutiono

Asotaa , ', the	 fjG ana A of eqiurtioij (E) ksr-itisfy

the follc;ulllo Con,10 t-'Wn."j:

(Al) f,A and G satifil.'y (2.2-11).

(A2) f c C[O ,,co) and f (t) iv bounded on [01w).

(A3) G(t j x) c C(1^	 and G(t,O) ---" 0 for all t ? 0.

(A4) I.-Piere exist positive numbers, N and K such

that if jyj 9 K then Jy-GN (t,y)j ;5 K uni-

formly in t c Rl.

Note that more generally one could assume the existence of

a vector valued function r(t) such that G(t,r(t)) =— 0 for all

t ? 0. (This is the situation in Theorem I above.) However, the

transformation X = x - r(t) puts (E) in the form

t
X(t) = (f(t) - r(t))	 f A(t-s)G(s,r(s) + X(s))ds.

0

If r(t) is continuous and if If (t) - r(t)l is bounded ., then the

new equation satisfies (A3).

Theorem 4. Suppose (Al-4), (3. 2 ) and (3.3) are all true. Then there

exists a solution x(t) of (E) such that jx(t)l :r- K for all t ? 0.

Proof. Let C = C([Oj w) ) R2 } be the space of all continuous functions
2	

4.

(p: [O ..co) —>R	 Let C have the topology of uniform convergence on



if

'o^'tL''^ J ►rr^lU.e^'.ti) t)f th^' iri$+iI'val	 Q , W < 000

I .. (^) C C	 (t) I `" K for aI-I t

For n ly q, c S cti°^ ntd;

t
(fib') (t)	 o RjT(t-s)((s) - CN(s^(s))}ds.

Clearly, M*. S --> C and M is completely continuous. Since the norm

z, = f (7-1,z2 )1 is defined by ' z) = m5x (1z 2.1 > 1 z2 1 ), then (A4),

Lemma l parts (ii) and (j,ii) and the definitions of S and M

easily imply that l (Up) (t) l 6 K for all t ? 0. This mewas that

MT e S if T e S. By the Schauder fixed point theorem the operator

M has at least one fixed point x(t). This fixed point solves (EN)

on 0 s t < w and thus a1sc , lees (E) .	 Q.E.D.

It can be shown that if G, is defined by (1.8) then (A4)

is true. More generally assume:

(A4 , ) G(t,xl,x2) = col (g (t,xl), g (t,x2 )) for all

(t,xl,x2 ) E R3 . Moreover, g(t,z) is an odd,

nondecreesing function of z and is bounded

in t e R uniformly for z on compact sub-

sets of Rl.

Lemma 3.	 Suppose	 G satisfies (A3) and (A4 1 ) . Let B =

sup (I f (t)	 : t ? 0) . Then for any M > rB and for any	 e	 in the



s	 ^'

2(a

ra,ntl^ °	 0 •`^ E . 1 1^	 t1a^ , x.,, ^ :•' ° R is	 ^^ ^ 0	 '^.^h ^,tf?t^. (^'^^^) ^ ^; ^;^.' ;_{ w^ th

K V! M. -1 e.

Proof. Ilx any	 vk,!	 " U" "i a%.a S	 Fick N > 0 so lar

that	 21 e (t ) z) I ''	 uni forml y in t^ 0 and I z I X 5M. The mrip

W = u .- GN (t )u) 1i v be ...,x .tten in the fort.

( .l)	 wl - ul = -(g(t I (ul+u2)/r2+ fl(t))

+ g (t ^ (ul-u2 ) /' 2 + f2 (t ))) / (' 2N)

and

(4.2)	 w2 - u2 = -( g (t -' (ul+u2 )/ 142-+ fl (t )) -

g(t., 
(ul-u2)/	 4' f2(t)))/(Al2N)

for all	 t ? 0.

If J u l = max (I u1 I , I 
u2 I) s M	 then for any 	t	 one has

I (ul+u2) 1hr2 + F l (t ) I I (ul-u2 ) / 2 + F2 (t) I s V72M + M s 5M.

Thus (4.1) and the choice of N imply

Iwl l < I u 1 I + _..(e/ flr2 + e/ N2)/Ar2 s_ M + e.

Similarly, 
I w2 I < M + e.
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to	 ::. : < I LI

^Yt'' .+.`^.ik 4 ^ti^ It$ k^..	 ^a f	 1.X	 17	 ^^,	
+ Y(I 1 ^
 i2 ; < Nt 4, P,.	 ^^O^y

S 
	 ((al"V2) e R2 . u  + iu2 reie for son i r > 0 and

some 8 in (J -1) (7r/2 )	 6 6 j7r/2 )

and define D3, = D n S
j

. Since g(t,x) is an odd, nondecreasing	 .

function of x with g(t ) O)  = 0, then the snap G (t, zl, z2 )

col (g(t, xl), g(t,x2) maps each region S^ into itself. Also re-

call that

GN(t,z) = QG(t,Qz+f(t))/N.

If u e Dl, then (3.2) implies that v = Qu e Dl . Since

B < M/4026 and If (t) 1 s_ B, then y = v + f (t) lies in Sl, S2 or

S8 . Again Q maps S  -a Sl, S2 -^ S8 and S8 --> S2 so that

Z = Qx = QG(t,Qu+f (t) )/N GN(t,u)

is in Sl,S2 or S8. Finally, (4.1-2) show that
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Z=G11(t)U) - .w - u.

If Z = GN (t,u) is in Sl or S2 , then the rid;►1t h^^n.:l

skies of ( 11.1) and O!.2) both lie in the rang: (-e,0),, Since

v e Dl, then M < u 	 M + e and 0 ;5 u2 5 M + e. Therefore,

wl = U  + z 

lies in the range 0 < M - e < wl < M + e and

W2 = U  + z2

lies in the range . -e < w2 < M + e. Therefore, jwj s M + e.

Now suppose u e Dl and z = GN (t,u) e S8 . Since jf(t))

s B < M1427 one must have M < ul s M + e and 0 s u2 s %r2 B  < M

in order that Z e S8 . Therefore, the right he-id side of (4.1) is

in the range (-e,0) and the right hand side of (4.2) in the range

(O,e) . Ta its and u  e Dl mean that M - e < wl < M + e and

e <w2 s q2B + e <M + e.

The analysis of the other seven regions S2,S3,...,S8

follow in a similar manner. The various maps involved in the

analysis are illustrated in Figure 1.	 Q.E.D.
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(Printers: Put Figure 1 near. here.)

Corollary 1. Suppose (Al-3)., (A4 1 ) ., (3.2) and (3.3) are true. Zf

G is sufficiently, smooth to insure the uniqueness of the solution

x(t) of (E) then x(t) exists for all t ^! 0 and satisfies

I Q {x(t) - f(t)}` g ^̀rB	 (0 ;^ t < 00)

where B= sup { (f (t) : 0 5 t < oo} .

Proof. By Lermiia 3 and Theorem 4 above the solution x(t) satisfies

sup	 (x (t) - f(t)}! ; t ? 0} s M + e

for each E > 0 and each M > 4127B.	 Q.E.D.

w
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5. ATPioNt Per'.icdic Solutions

The purpose of this section is to study the existence and

uniquonco—S. of almost periodic solutions of equations, of the form
(1.10). Fir --t, T.'re five appropriate definitions and bachgrozi,.A in-

formation concerning almost periodic functions. The first result in

this section (Theorem 5) assert^ that if Y(t) is an almost periodic

solution of (1.10) for some fixed No > 0 then it is also a solu-

tion of (1.10) for all other N > 00 This result will be important

since one value of N will be needed to prove existence of almost

periodic solutions of (1.10) and a second value of N will be

needed to obtain uniqueness and prove the asymptotic relationships

between solutions of (EN) and (1010).

The rest of section is devoted to the existence and

uniqueness of almost periodic solutions of (1.10). Lemma 4 is an

invariance theorem for bounded solutions of (1.10). Lemma 5 asserts

the uniqueness of bounded solutions of 11.10). The last result of

the section asserts that the unique bounded solution of (1.10) is

almost periodic.

Definition. A continuous function S(t,x) defined for all (t,x) e

Rn+l 
'is called almost periodic in t (uniformly for x on compact

sets) if and only if given any sequence (t n) of real numbers there

exists a subsequence (tnk) and a function S* (t,x) such that

l•

lim S (t+t
nk

,x) = S* (t,x)
k —+ oo

Is
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with convrjri;Fjricc: uniforti in (t,x) for all t e Rl mid x on

cG^?^1T:^'.ot su^.?w^. t of Rn . Tn this	 ore write S C Ap.

The set of all functions S* which may be obta.intxi In this

way is	 "Uhc, clo-O".,d hull of S, z,,rittc a CWS) .

As general reforences on alma ,—,t periodic functions s e the

book, of FavarJ. [3. 11] and Besicovitrh [15] or the original papers of

Bohr [16]. The results listed below are well.-known results in this

field.

Given a function S(t,x) which is almost periodic in t

uniformly for x on compact sets define FM(S) to be the set of

all A.P. functions f(t) with range in the same space as S and

satisfying the following condition:

If {tn} is any real sequence such that {S(t+tn,x)} is

a Cauchy sequence uniformly in t e R1 and x on compact

subsets of Rn, then {f(t+tn)} is a Cauchy sequence uni-

formly in t e Rl.

The set FM(S) is called the function module of S.

Given S e AP there exists a countable set of Fourier ex.,

ponents {n} C R1 and a set { Sn (x)} of continuous nontrival

functions such that S has Fourier series

00

S(t,x) OWE n(x)exp (i nt).
n=1

If S is independent of x, then so are the functions Sn. The

module of S, written M(S), is the additive group of real numbers
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generatea by the sequence (,\ n ) of Fourier exponents. In other

words M(S) is the smallest- aaraitive subgroup of R 1 
containing the

set	 An ^ ..Imo.-Jt porioJie function f is in the function

riodule Z'11(101) i- and only if the Fourier exponents of f are con-

tai nea- in the module 1,1(S) .

Lot t1io, functions f., A	 and G	 satisfy (Al-4) and in

addition some or all of the following conditions:

(A5) There exist almost periodic functions p(t) and

h 
i 

(t .,x) such that

lim (f(t)-p(t)) = 0,. lim (g.(t.,x)-h (tx)) = 0
t --4 CO	 t -4 OD J	 i

with the last limit uniform in x on compact sets

of R1

(A6) For each t e R1 and for j = 1 12 the function

h 
i 
(t,x) is nondecreasing in x.

(A7) The functions h 
1 

(t .,x) and h2 (t .,x) are locally

Lipschitz continuous in x with Lipschitz con-

stants independent of t c R1.

In Theorem 1 above gl (t,x) = g2 (t,x) = hl (t,x) = h2(t,x)

BX3 . Moreover., (2.1) implies that

1.

f j (t) + C s in (k 
i 
(t) -> F /2 + C sin (k 

i 
t

0
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as t -> co. Thus (A5-7) are all true for this special case. blote

that (A5) implies that G(t,xl,x2 ) haS the special, forrrz (2.5).

Under the above: a,-s umptions the invariance theoroii in

[17, Tileo2,^om la implies that the equation

t
(FN)	 Y(t) = f RN (t-s) {y(s)-GN(s,Y(s)))ds

0

has the limiting form

t
(5.l)	 Y(t) = f RN(t-s){Y(s)-%(s,Y(s)))ds

-00

where H(t,Y) = H(t,yl,y2 ) = col (hl rt ,yl), h2 (t,y2)) and

(5. 2 )	 % (t, Y) = 4,H (t, 4,Y+p (t )) /N.

Theorem 5. Suppose (Al-5), (3.2) and (5.2) arm.  Suppose Y(t)

is any almost periodic solution of (5.1) for some fixed N. If

Y c FM(H,p) then Y is also a solution of (5.1) for all other

values of N > 0.

Proof. Pick any M > 0	 with M j N.	 Let S 
be the resolvent of

NA(t) and	 S 	 the resolvent of MA(t). Write (5.1) in the form

t
(503)	 Y(t) = h(t) + f0 RN (t-s) {Y(s)-HN(s,Y(s)))ds
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where

0
h(t)	 1 1^1(t-s) (Y(0-1^^ ,Y(3) ) }d3

_CO

00_	 R1J () (Y(t-:)-^^^(t-^,y(t-)) }ds -^ o

as t --> co. Let 
5  

(t) be the Dirac delta function and let 5(t)

diagonal. (ad (t) ' bd (t)).
 If	 denotes convolution then (5.3) may

be written in the form

Y = h + P,,*(Y- QH(QY+P)/N) •

'	 Since QRNQ = SN = resolvent of NA(t), then the transformation

Z = QY puts the equation in the form

Z Qh + Se(Z-H(Z+P)/N),

or

(s-SN)*Z = Qh - SN*H(Z+P)/N.

Applying (&-NA) to both sides one obtains

Z =	 - A*H(Z+p)

= (6+NA)*Qh - (MA)*H(Z+p)/M.
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Add (1.!&) xZ to both	 and apply (15-S m ) :

z _- ('^sM) (&4-!M)-hQv.. + 014Y (Z_Fi(Z-I,P)/14) .

Letting Y --- QZ one obtains

Y -- Q(&-SM)a;• (&I•NA) x•Qh -r gMu,{X-Qi(Qyt-p)/Iy1)

Note that

Q(5_SM)-X-(3+XA)Q = Q(3-Sg4-NA-(N/M)(MA-SM))Q

8 + (1-N/M)QSMQ = S + (1-N/M)RM.

Therefore

Y = h + (1-N/M)RM*h + RM* (Y-HM (Y)) .

Writing this equation in the usual form one has

t
(5.4)	 Y(t) = h(t) + f (1-N/M)RM(t-s)h(s)ds

0

t	 -

+ f RM(t-s)(Y(s)-HM(s,Y(s)))ds

for t ? 0.
s•

Let to -+w be an increasing sequence such that p (t+tn ) -^

p(t) and H(t+tn,y) -^ H(t,y) as n -+ oo. Since Y e FM(H,p), then
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Y (t+tn) -> Y (t) as n -> co. Notee that h (t) > 0 as t -> oo ana

H1, c L1(0, oo) imr ;)UG,	 th! t h (t) - ► (l-1 / ^) 	 h (t)	 0 as t -> oo.

Repla,cinf, t by t + to iii (5.4) y:iel.d

Y(t+tn ) --. h(-'Ll+tn) •i• (l-i ^t^i)^ ^a^h(t+tn)

t
^• f

t 
RM (t- )(Y(s+tn)-"M(s+tm,Y(s-i.tn)))ds.

n

Taking the limit as n -4 oo gives (5.1) with N replaced by M. Q.E.D.

We now , turn to the existence-uniqueness problem. The fol-

lowing lemma will be needed.

Lemma 4. Suppose (5.2) , (Al-3) and (A5) are true. Suppose (5.1)

has a bounded solution y(t) on — oo < t < oo. Then given any

sequence (t 
n
)of real numbers there exists a subsequence (tnk),

a function (HN)* e CH(%) and a function y* (t) such that

y(t+tnk ) -^ 3T* (t ), HN (t+tnk ,y) -j HN(t,y)

and

t

% • 5)	 Y*(t) = f RN(t-s)(Y*(s)-HN(s,y*(s))}$s ( —co < t < co).

Proof. If (tn} contains a subsequence which tends to a finite

limit point T, then the result is trivial with y * (t) = y(t+T) and

Is
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Fig ('L^y)	 ^^ (t+	 `^ 	 °^^ r ^<^ +t^: ^^ 3•?	 t - >	 Ile	 (^,)	 as xl

3yV	 a: C., V,1 1. ok, 	1 , _"r o_ ." 	 -A"'.I tx VJ oil `f AI-ro ift f5 E;L^I7;;! ..vtt A^C' (v.-Wellell

Yf . l.lo- ^4 N`• - .i . `YO O o	 +1)	 M j flul st:Loas,	 1)"' C YII (V ! li	 C C#i (I-1 )

s^&X i j tzc^; ta(t ^r1 ) -°> f; (t)	 4^xflI{,; t'jY)

	

n^ 	 •	 T^i^eY^

STN (t ;•tn^ y) ... Q^I (t+t11 J ^S'`^ • t̂ (^%` f 't^^) )^T

Since y(t) is bounded and H is AP) than Iy(t) -

%(L,y(t) ) ( is bounded on -oo < t < co. The convolution of a func-

tion in L  (-c*a oo) and, a function of r;laNs LOO(-cyo) results in a

boi-tnded uniformly continuous function. Since y(t) solves (5.1),

then y(t) must be uniformly continuous. This in turn means that

the sequence {y(t+tn)} is a uniformly bounded, equicontinuous

family of functions on each finite subinterval of R i
. By possibly

taking a subsequence we may assume that y (t+tn ) -4 y* (t) as n -*w

for some function y* . Replacing t by t + to in (5.1) one

obtains

t
y(t+tn) = f RN (t-s) (y(s+tn ) - HN.(s+tn,y(s+tn ) ))ds

o0

taking the limit as n --> oo gives (5-5).	 Q.E.D.

a•

Lemma 5. Assume the hypotheses o f Lemma 4. Assume (A6-7) are also
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I

t 0 jj p r	 -,- k ,	 I
•

Y(t) 5 Iii	 t,

-1 	 UU'o; ^t o *-,c	 ,̂,,t t vl ro d--'- 	 ino , 	 rJ11-	 Y (-' )	 z (t)

to 
su-:11 th!^.t

jy(t ri ) - z (t n ) I --) T-j = sun ( I y (t) - Z (t) I : -C* -S t < 00) .

By aosr	 y tah.i-n- a stib-c qj u •iace wc., may assumo that y(tn
 ) - Z(t n)

-) U 
0 

as n -> co whore u 
0 

is some point 
on the boundary of the

square  (U9. I ul r, 1.)	 By possibly taking anothrr subsequence

Lemma 8 insures thatH
N (t' tnly) -4 N* (t I Y) I Y (t+tn) -> Y:* (t) and. 

z (t-1-t n 	 z* (t) where 1
^lj
 e CH (N) and y^ and z* solve

-Y..
Clearly 1T satisfiessatisfies the same hypotheses as NT.  Moreover, uo

Y* (0) - Z* (0 ) = lim, (Y (t n 
)-z(t n )) as n -4 oo. Thus we have reduced

the problem to the case where ly(0)-z(0)l = L = sup (l y(t)-z (t) l :

-00< tt < 00).

The two components of b(t,y) = y - HN (t jy) have the form

(5 . 7a ) . 	 b, (t ; y) = yj - 
(h, (t., (yi+Y2)/ 

Ar2 + p, (t) )

I-0
+ h2 (t, (yl-y,,)/ rOF + p2 (t)))/ ( q 2 N)

0

and
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IN)	 bi (t) Y) Y2 	
(h.L (t, (yj:l-Y2)/ 42— p, (t)

-b2 (t,

set'd	 1-,(t) -.- Y(t) - 2,(t) 	an"L Llf.^Pjzl^^

(5,88 )	 nil (t) r- (h, (t, (Y, (t) + Y2 (t) ) /	 + P, (t) ) - hl (t,

	

Z2 (t))/	 + P'L(t)))((Ul(t) + u2(t))/AIP7 )

if u1(t) + u'2 (t) / 0 ar"a ml (t) = 0 if. U3. (t) + u2 (t) = 0. Sine e
u(t) is bounded and (A7) is true , then nil (t) e L *(-cyo). Moreover,

mj, (t) ?. 0 by (A6). Similarly define

(5.8b)	 m2 (t) = [h1	 2 (t: (YI (t) - Y2 (t)	 r2 + P2 (t)

h (t, (z	 z	
' -12	 1	 2	 + p 2(t)))((Ul(t) - U2(t) ')/ ^[2 )

if ul (t) ^ u
2 
(t) and -IT,(t \	 0 otherwise. Since u(t)	 y(t) -

z(t), then (5 4.x«,1 	 imply that

(5. 9a)	 14 it	 (ml ( s ) + M2(s))/N)ul"c.

ml(s))/N)u2(s))ds

and

t
(5.9b)	 u 2 (t)	 f T2N(t-s)(((M2(s) - ml(.-))INIU,(S)

-00

(ml (s) + m2(s))/N)u2(s))ds



fox al.I t in .Cti^, • in syb-a ;F-- r form (coq) bwaao

t
(>.^')	 u(t)  	 f Ru(t—s) (a:—A (^ )/w )^a(s)i a

where M(s) is the applopr i,tatc,

Pick N > 0 so lar t;c, that 0 s nil (t) : m2 (t)	 1113 a. e.

on - w < t <	 For any f ,xe;l s the map u = (I-M(s)/T7)u maps

the sgiaaxe

S= fu: l ull, Ju21 ;5L)

into the region

S' = {u: lul l,  l u2l 6 L max {1-2ml(s)/N, 1-2m2 (s))) .

Since 0 s 2miWIN s 2/3 (by the choice of N), then S' C S.

Using the properties of 
T2N 

obtained in Lemma, 2, (5.6) and (5.9b)

it follows that

t	 00

1 U2 (t)1 ^9 f ?^,211 (t-6)Lds = L f T2N (s)ds = Lo < L.
-CO	 0

Letting t = 0 we see that u2 (0) 1 < L. Therefore, u(t) is in

the set

z I
J

1.

F	 S0 = {^;lul l s L, I u2 1 s Lo} .

x
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.,
S'' 	I u`	 r'3',i(O <r <	 t'n	 Gi' faly''	 t	 l i7IF, (J. ^;) ;l ti D a.;i 0 't. l ^ t;

	

t	 00

	

—CO 	 p

Theri:fciro' I u1y (0) ( < L and j u2(0)1  < L which contradicts

I u (0)1 - max (I -a (0) 1 ^ I'u2 (0)I } = L. Q.E-D.

rneorcx ►i G. 5,i.ppose the hypothesc;s of Leipm^a, 4 are true. Then

y(t) e F1 (H,p) so that in particular y c AP. Moreover, y(t) solves

each equation of the (5. 1.) for all 1-1 > 0 and for N sufficiently

large is the unique bounded solution of (5.1) .

Proof. Fix N > 0 and 7.':.a.3e. Let (tn ) be any real sequence such

that (p (t+tn) } and (H(t+tn,y)) are Cauchy sequences, p (t+t n) -4

p*(t) E CH(p) and H(t+tn,y) -4 11 x (t,y) e CH (H) It must be shown

that, (y(t+tn) } is a Cauchy sequence uniformly in t E R l . Suppose

this is not true. Then there exists e > 0, subsequences n  and

mk, and a sequence Tk such that nk > mk ? k and

ly(Vtnk) - y(Tk+t.k) l ? e. Define

Tk = 'tk + tnk, Sk = zk + tmk (k = 1, 2 ,39 ... ) .

By possibly taking a subsequence of the k t s it follows that
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H X (t+Tk,Y) -> HO (t ,Y), P (tl-'rk ) -> Po (t)

for same :f't?^! : ^^ on a Ho e GII(IJ") and po c GII(j)x ) . 'Iftion p (t-f• "Id ._

II(t-F q-k^ y) :- H(t-F 
`k^

-tnk) -> FIo (t.,Y)

as	 k > w. Similarly	 p(t+Sk ) -a> po (t) and	 H(t+Sk ,y) > Ho (t,y).	 1

By Lonzaa 4 there exists a subsequence (which will. again be

indexed by k) and functions y l (t) and y2 (t) such that

y(t-1-Sk) > yl (t )) y (t4-T1, ) -> y2 (t) and

t
yj (t ) = f RN(t- s) (yj ( s ) - (Ho )N ( s ,Yj ( s ) ))ds

-CO

for j = 1,2 and t c Rl . Since

I y1 (0) - y2 (0)1 = lim Y(Sk) - Y(TO I ? e
k > oo

then yl (t) A y2 (t). But this violates the uniqueness asserted in

Lemma 5. This contradiction shows that y e FM(H^p). Theorem 5

shows that y solves (5.1) for all N > 0. The uniqueness of y

is Lemma 5.	 Q.E.D.
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6.	 0.a..—	 _	 v _ a :. C: ^u. k3Q

Tt	 ..	 ^.	 C' ♦ 	 ^ ,;;. f 	i 4aJ;.^à '	 (,ti^, • 	()	 c' ? .,	 („^ .t.)  yr	 ray
ar ê ^rti'.?^ •	 ^.tlkz fo.r.'	 4'k'	 If	 > 0

o; onr. b 4 .";	 J1,:, 	 orl. 1'. t	 ''',i lr	 t^	 i4_}y1

V .. t̂	 (,•	 •) gm...'.	 ^)^,l',t4.0 pl 	 Y c d'A(H'

Proof..	 $	 1'11c" ci-,.;M i t eqt-4 ,wlu' t on	 (E) ha l	 d br.,u i^:iviJ X(t) .

Since (F,) is equivalent; to (ETJ ) for all N > 0, -then each (Erb ) has

the same; bounded solution. The results in [171 imply the existence

of at least one bounded solution of (5.1) for any N > 0. Now apply

Theorem 6.	 Q.E.D.

Theorem 7. Suppose (Al-7) and (3.2) are true. Then there exists a

unique function X c FM(HP) such that if x(t) is any bounded

solution of (E) then x (t) - X (t) —4 0 as t -4 W.

Proof. Let Y e FM(H,p) be the function given by Lemma 6. Define

X(t) QY(t) + p(t) and	 y(t) = Q(x(t) - f(t)). We must show that

x (t) - X (t) -a 0	 as t -+ oo	 or equivalently that y (t) - Y (t) -+ 0.

If this is not true, then

Wo -^ 00 such that y (tn )

that p (t+tn ) -4 P* (t) , H(

n -4 co where p* e CH (p) ,

there exists an

- Y(tn) ? e. B

t+tn)y)	 H*(t,y)

He e CH (H) and

e > 0 and a sequence

y Lemma 3 we may assume

and Y(t+tn) -^ Y* (t) as

Y* solves (5.5). Write

(N) in the form
1'
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Y(t) 
_• "" (t)	 I f1,,,r(lt s ) (Y(^S) — L1.nT(S'Y (w) }d;,,

where

tE(t) -- f KN (t--s) (Ili (' ,y(,-')) -- GN (s,y( ))}a .

Assumption (A5), (3.3) and (5.2) insure; that 11N (t,y(t)) - GT,J(t,y(t))

-a 0 as t > co. Since RN e L 1 (0, co), then E (t) -a 0 as t -3 co.

Therefore, Theorem l of [171 implies that by possibly takin3 a sub-

sequence of to one has y(t-Ftn) > y*(t) where y^'(t) solves

(5.5) for the same value of No By uniqueness of solutions of (5.5)

for large N, y* (t) = Y'x* (t) . On the other hand

f Y* (0) - Y* (0) = lim I Y(tn) - Y (tn ) I ? E > 0.
n

This contradiction proves the theorem. 	 Q.E.D.

Theorem 8. Under the_ hypotheses of Theorem 7 the function H(t,X(t)) 	 .

has mean value zero. Moreover, if the mean values of p l (t) and

P2 (t) are equal then the two components of X(t) have equal mean

values.

Proof. Recall that for any y(t) e AP the mean value of	 is

defined to be



,	 •

Ja'

r^(^a) .- l^^l T-I f
T -> c	 o

.i r.	 Y(10^(	 (^:}	 -	 '(t}}, 'h	 .1 Y	 solve (	 .'.)	 o^	 ..^ < t < Co.

o.. l f,. ,t wi	 )."-L , 11	 of (5. 1)	 oii SJ 3 ~1r ...^S J

m(Y)	
J7z(0) (L", (Y) - i'^ O F3 ) ),

.here N(w) is thc! Fourier tra.nsfona of RIj . By Levu a, 1 above

RN (0) = diagonal (L, r ,(3 (l+1 T̂ ) -1)

where

C*

= f (a1 (t) - a2(t))dt.
0

Write Y (t) = col (Yl (t), Y2 (t)) .	 Then the equation in the

first component of (6.1)	 is

m(Yl ) _ m(Yl) m(HNl)

Therefore, m(%,) = 0, that is the first component of

QH(t :QY(t) + p(t) )/N = QH(t,X(t) )/N has mean value zero. The second

component of (6.1) is

m (Y2 ) = NP ( l+Np ) m( 2) - mN'2),P

F	 ^

}



or

(	 ^)	 ( ^ ^;)	 — r' (^,ajT^ ^) 
-1 

M(Y2 )	 (0 < N < co) .

Since the left, hand side. 
of 

(6.P) is inci ependent of Rt , then (6.2)

can he trap for all, N > 0 on-ly if m(Y2 ) = m(HIT2 ) = 00

We heave ,,hown that the mean value of

11N (t , Y (t )) = Q^I (t , QY (t ) + p (t )) /N

= QH(t,X(t) )/N

is the zero vector.. Since Q is not singular and N ^ 0, then

H(t,X(t)) also have mean value zero. We have also shown that

m (Y2 ) = m (X1-X2 -pl+p2) / 4-2 = 0,

that is m (X 
y-
	 m (p1-p2 ) . Since m (p1-p2 ) = 0^ then m (X1 ) =

m(X2 )	 Q.E.D.

Theorem 1 follows as a special case of the results in this

section. In this special case g(x) = Bx3 is smooth so that the

solution of (E) is unique. Assumptions (Al-7) are easily verified

with p(t) = col. (pl (t), p2 (t)) having components p
i 

(t) = Fo/2

+ c sin (ki t). If kl and k2 are linearly independent over the

integers then p(t) is quasiperiodic with fundamental frequences

1^0

(kl,k2 ). If kl and k2 are linearly dependent then there exist



.

)a

into,-car	 Ml E•ir.3 Pf2 .:uoh tract k• z, M kl + 1 2}:2 and k 12' 1, i .

the	 colz:T,Ion por: o" cal 3)(t), x,n this ca.^e:; the 	 X
J

in (1 . () ) 1."0 3 11")'V f-- thy ' f C rla

00

X (f;) .r Y X exp ( in (MIk1+142-k2 ) t) .
n--: co in

If u (t, x) is the function defined by (1.5) and X^ the

functions defined by (l.9) then

(6 e 3a)	 u(t)0) = x
i (t ) A- F"l(t)

and

(6.3b)	 u(t,L) = X2 (t) -t- E2 (t)

where X  and X2 both have the same mean value 71 j (t) s C [ 0, oo) n

C1 (0, 00), d/dt E  (t) is L  near t	 0 and E  (t) -> 0 as t -a oo.

Therefore, one would conjecture that

lim u(t,x) = U(t,x)
t -+ 00

where U solves the problem

(6.4) Ut Uxx	 (-00<t< 00, 0<x<L)

U(t,o) = Xl (t), U(t,L) = x2 (t)	 (-co < t < oo) .

Similarly u(t,x) satisfies boundary conditions of the form

r



4L)

(6.; ^^)	 2.1/x-:^ O) -. 13(X (t) - r sill (k,t)) + F
J (L)

8-11J

-B(X2(t) - C sin (k2t)}' + ^,,2(t)

for all t ? 0. 11cre E1 and E2 have the same properties as the

corrc,-) ondinr; terns in (603) and the two functions

B(Xi (t) - C sin (ki (t)) 3 have mean value zero. If it is true that

u(t,x) tends to a solution U of (6.4) then U(t,x) should also

satisfy the boundary conditions

_W/cx(t,0) = B(X1 (t) - C sin (k,t))3

and

dJ/^K(t,L) = -B(X 2(t) - C sin (k2(t))3I

for -W < t < W.

w
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