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A METHOD OF CHARACTERISTICS FOR STEADY
THREE-DIMENSIONAL SUPERSONIC FLOW
WITH APPLICATION TO INCLINED
BODIES OF REVOLUTION

By John V. Rakich

Ames Research Center
SUMMARY

Characteristics theory for three-dimensional compressible flow is
reviewed and the compatibility equations are derived in terms of pressure and
stream angles as dependent variables. The relative merits of bicharacteristic
and reference plane methods are discussed. A reference plane method is
developed and demonstrated for pointed and blunted bodies at angle of attack.

The fundamental complications arising in a three-dimensional method of
characteristics are that: (1) the compatibility equations contain ''cross-
derivatives'" in a noncharacteristic direction; and (2) there is an increased
need for interpolation to prevent the computed data surfaces from becoming
skewed. These problems are minimized by using a reference plane method with a
prescribed and uniform spacing of mesh points. The finite difference mesh
employed consists of an equal number of points between the body and shock sur-
faces in each reference plane. Numerical procedures for differentiation and
interpolation ensure second-order accuracy in terms of mesh spacing. Fourier
analysis is employed in the circumferential direction and is found to be effec-
tive in reducing the number of reference planes and computing times. A typi-
cal mesh consists of 7 planes with 15 points in each plane. The unit
computation time is about 0.0013 minute per point on an IBM 7094 computer.

Results for the flow around inclined, circular cones, both blunted and
pointed, are presented to demonstrate the method described. Predictions of
surface and pitot pressures are in good agreement with available experimental
results for a 15° sphere-cone at 10° angle of attack. Bluntness effects on
shock-layer properties far from the nose are reasonably well predicted.

INTRODUCTION

The method of characteristics has been well known for many years and
excellent theoretical developments can be found in numerous texts and reports
of which references 1 through 3 give the most complete reviews of multidimen-
sional theory. However, until recent years there have been relatively few
practical applications of the methods to three-dimensional flows. This is
probably due partly to the large number of operations involved in finite dif-
ference calculations in three dimensions, and partly to the extra degree of
freedom that results from the existence of characteristic surfaces rather than



characteristic lines. High-speed computers have made it technically feasible
to perform calculations for three-dimensional steady and unsteady flows and
several groups have reported such work. For example, many recent variations
on the method of characteristics are reported in references 4 through 10, and
a successful use of a noncharacteristic finite difference method is described
in reference 11. A number of the proposed characteristics schemes have been
described and discussed critically in reference 12.

All the proposed difference schemes for three-dimensional characteristics
can be placed in one of two broad categories: (1) reference plane methods
(called semi-characteristic methods in ref. 12); and (2) bicharacteristic
methods. In reference plane methods the characteristic lines are obtained
from the projection of Mach cones and streamlines onto a prescribed plane. In
bicharacteristic methods the characteristic lines are the generators of the
Mach cone and the actual streamlines. Since, in three dimensions, the equa-
tions written along these characteristic lines are partial differential equa-
tions, a numerical evaluation of '"cross-derivatives' off the characteristic
lines is necessary. (In this sense, three-dimensional characteristic methods
are similar to noncharacteristic methods for two-dimensional flow.) The prob-
lem encountered with most bicharacteristic methods arises from the need to
employ a two-dimensional array of data to evaluate the cross-derivatives and
to perform the required interpolation in the initial data surface. Further-
more, if a conventional characteristics mesh is used, the distribution of mesh
points in the data surfaces tends to become very nonuniform, which causes
additional complications. For these reasons one is led to reference plane
methods, where a better control can be maintained on the finite difference
mesh and where curve fits can be made with respect to a single variable.
Reference plane methods have been criticized on the theoretical grounds that
the initial data may be outside the domain of dependence of the calculated
point. However, problems related to this criticism have not materialized. 1In
fact, the use of such data is precisely what is required by the well-known
Courant-Friedrichs-Lewey stability condition.

In the present work, the compatibility equations of characteristic theory
are derived for both the bicharacteristic and reference plane methods. Prac-
tical difficulties with the bicharacteristic method are discussed and a finite
difference scheme based on the reference plane method is proposed. The
proposed method abandons the usual characteristic mesh and employs uniformly
spaced points along lines lying in equally spaced meridional planes. Numeri-
cal interpolation and differentiation are accomplished by means of second-
degree polynomials in the radial direction and by Fourier analysis in the
circumferential direction,

Preliminary results by the present method were described in reference 13
and compared with calculations by the method of reference 4. Extensive com-
parisons with experiment were shown in reference 14, establishing the reli-
ability of the numerical methods. In the present report the flow equations
and numerical techniques are described in greater detail than was possible in

references 13 and 14.
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PRINCIPAL SYMBOLS

speed of sound

bicharacteristic directions

characteristic directions in meridional planes
pressure coefficient

pitot-pressure coefficient

unit vectors along x, r, ¢

enthalpy

total enthalpy

smoothing constant (eq. (84))

coefficient of numerical diffusion term (eq. (84))
Mach number

shock normal and tangent vectors

pressure

body nose radius

projection of streamlines on meridional planes
streamline coordinates

velocity components along e s €., ©

r ®

~

total velocity V= Vs - VX,
axial distance from blunt nose (body axis)
unit vectors along s, n, t

cylindrical coordinates

unit vectors along characteristic coordinates
unit vectors along &, n, ¢

angle of attack, deg



ij

ij
g£,n,%

transformation matrix (eq. (16))

M2 -1

specific heat ratio

shock angle in cross plane (eq. (A6))
transformation matrix (eq. (Al8))
nonorthogonal shock-layer coordinates (fig. 3)
flow angle from x axis in meridional plane, tan-!(v/u) (see fig. 1)
angle between ér and n
Mach angle, sin~1(1/M)
projection of u on meridional plane
transformation matrix (eq. (Al3))

density

shock angle in meridional plane (eq. (A5))
crossflow angle, sin~! w/V (see fig. 1)

azimuthal angle, cylindrical coordinates (see fig. 1), deg

Subscripts
initial and new data lines

body

indices for radial position of mesh points
G=1,2, ... ,J3-1,7J) (see fig. 5)

index for circumferential position of mesh point

(k=1)2,°--’L_l,L)
body nose
shock

free-stream condition

e

s
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Superscripts

i index for axial position of mesh point
v index denoting variables p, 6, ¢, p for v=1, 2, 3, 4
* quantity or component referenced to meridional plane

unit vector
> general vector

Note: See equation (14) for definition of index notation.

THEORY

Basic Equations of Inviscid Flow

The derivation of the characteristic relations will be carried out in
this section starting with the equations for inviscid equilibrium flow written
in their intrinsic form with pressure and flow angles as dependent variables.
This choice of variables eliminates entropy derivatives from the flow equa-
tions, thereby simplifying the analysis. Following the development of refer-
ence 15, the combined continuity and momentum equations are written in vector
form.

—-E-s « grad p + div s =0 @)
pV
1 - - A
——E-n grad p + t curl s = 0 (2)
pV
1 - R -
—— t - grad p-n - curl s = 0 (3)

pV?2

~

where s, n, t are orthogonal unit vectors with s tangent to the stream-
lines. For rotational, inviscid, nonheat-conducting, and nonreacting flow,
entropy is conserved along streamlines and this requires

s - grad p - a?s . grad p = 0 (4)
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Conservation of total enthalpy everywhere gives
h +V%/2 = h, = constant (5) 3

Finally, the equation of state may be written as

=2
n

h(p,e) (6a)

or

a = a(p,p) (6b)

t

In the equations above, if n is chosen to lie in meridional planes through
the body axis, the unit vectors can be written as follows in terms of flow

deflection angles 6 and ¢ (see fig. 1).

A

(a) Rotatign about é¢. (b) Rotation about n.

Figure 1.- Cylindrical coordinates.
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S = cos ¢ cos © éx + cos ¢ sin 6 ér + sin ¢ é¢ (7)
n=-sin®e + cos B e (8)
X T
t = -sin c e - sin in e + e
¢ cos © e - si ¢ sin © e. cos ¢ s (9)

Using equations (7) through (9) with the standard vector formulas in cylindri-
cal coordinates, one can obtain the following from equations (1) through (4):

B2 3p 36 . 3¢ _ _cos ¢ sin 8

v s S tEmta T T (10)
s a2
1 %E_+ cos ¢ 38 _ sin® ¢ cos © (11)
pV2 n 9S T
1l 3p . 3¢ _ sin ¢ sin ®

R I T (12
9 _ 1 3p (13)

Characteristics Theory

Notation.~ Characteristics theory is most conveniently developed,
especially for the multidimensional case, if one uses index notation. There-
fore, the notation and development of Courant and Friedrichs (ref. 1, p. 75)
will be followed in this review. Summation convention is used wherein a sum-
mation symbol is implied by a repeated index. Thus equations (10) to (12) may
be written simply as

i su”
at 2= f (14)
uv axi u



where the indices refer to:

v dependent variable (p, 6, ¢ for v =1, 2, 3)

i independent variable (s, n, t for i = 1, 2, 3)
i equation (eqs. (10)-(12) for uw =1, 2, 3)

Coordinate transformation.- Equation (14) can be expressed in terms of
new coordinate directions Yj obtained by a rotation of the original coordi-

nates. Thus one can write .

)A(i = aij};j (15)

-

where ii and &- are unit vectors along xj and yj, respectively, and the
elements of the transformation matrix are the direction cosines defined as fol-

lows in terms of the scalar products of xj and §j:

X] Y1 X1 Y2 X1 Y3
%5 = X2 ¢ Y1 Xp Y2 X2 - Y3 (16)
A A R

With this transformation, equation (14) becomes

. auV
bl B o ¢ (17)
uv 9y. u
j N
where %
bl = a) (18) ;

uv auvaij

Characteristic directions and compatibility equations.- If initial data i

are given for uvV on the surface y; = 0, equation (17) can be solved for i
duV/3y; 1in order to generate data on an adjoining surface y; = Ay;. Plac- ;
ing derivatives with respect to y;, and y3 on the right side of equation (17),

one obtains

(1) su” _
ey ayl - gu (19)




where

v
g, = £, -bk = k=23

H HV ayk

Equation (19) can be considered as a set of algebraic equations for
ouv/3y1, with a solution by Cramer's rule giving

auv - pY

Cve (20)
9y
o2

. . 1 . .
is the determinant of b( ) and DV is the determinant

(

M
vanishes, then y; is normal to a characteristic surface and

where lb(l)
uv

H
obtained by replacing the vth column of b

1) .
N with g,

1

If b( )

uv

the flow equations give no information about derivatives in this direction;

that is, 3uV/3y; may be discontinuous. Therefore, the equation of the char-
acteristic surface is given by -

(1)}_
Ibuv =0 (21)

On the other hand, if equation (21) is satisfied, then the numerator of
equation (20) must also vanish in order for a solution to exist. Therefore,

D” = 0 (v =123 (22)

gives the so-called compatibility equations. It may be noted from equation
(19) that the compatibility relations contain one less dimension than the
original differential equations. For the three-dimensional problem the com-
patibility equations involve derivatives in two directions.

Bicharacteristic Method

The characteristic relations reviewed in the previous section can now be
specialized to the problem of equilibrium three-dimensional gas flow. Con-
sider equations (10) through (13) with the supplementary conditions (5) and
(6). Note that equation (13) is already in characteristic form since it
involves derivatives in one direction; the streamline, s, is a line across
which the density gradient, 3p/3n, may be discontinuous. Therefore, one need
only consider equations (10), (11), and (12) for which the i coefficient
matrices may be written



§1i —5  62i cos ¢ 831
pV
a1 _ s, —% §1i cos ¢ 0 (23)
BV
pV
1
831 —5 0 811
pV.
where aki is the Kronecker delta
0 k #1
Sxi =
1 k =1

The transformed coefficient matrix given by (18) becomes

52
1§ — % 0pj €os ¢ a3j
pV
j 1
bg&? = | 02§ —% a1j cos ¢ 0 (24)

oV

1

pV

Characteristic cone.- The characteristic determinant, equation (21), can
now be evaluated to give the equation of the characteristic surface in terms
of the coefficients of the governing differential equations, Using equation

(24) one obtains
G221 2 031 2 2. o -
= —_— <+ —_— - =
Qi1 011 ® (2%)

where B2 = M2 - 1, Now, from equation (16) the terms in equation (25) are
recognized as

L (1)
uv

a11 = X1 Y1 G221 = Xp - Y1 031 = X3 * Y1

10
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which are the components of y; along

ich teristi ~ N .
Y B veerion the x. coordinates. Thus, equation
Y2 (25) describes a cone around the x5

or s axis, as indicated in figure
2(a), making the angle 90 - u with
the s direction. This cone is nor-
mal to the characteristic cone. The

Characteristic

} cone vector y; lies along a generator of

& the normal cone, and the vanishing
determinant (21) means that the deriv-

Ntme atives with respect to y; may be

discontinuous; that is, the differen-
tial equations (1), (2), and (3)
cannot give any information about
Figure 2.- Characteristic coordinates. derivatives in this direction.

(a) Characteristic cone and bicharacteristics.

R It follows, then, if the Y3 coordinates are orthogonal, that ¥, and
y3 are tangent to the characteristic cone. If y, is chosen to lie along a
generatrix of the cone, then y, is called a bicharacteristic direction.

Compatibility equations.- Any one of the three conditions given by
equation (22) can be used to obtain the compatibility equations. Consider the
case for v = 1.

g1 ap] €Os ¢ a3]
Dl =| g2 ay] COs ¢ 0 =0 (26)
g3 0 011
Expanding (26) one obtains
g1 - (az1/a11)g2 - (o31/011)g3 = 0 (27)
where
f 2 < —_— cos ¢ il
g1 = 1 - 5 \%12 13 3 - Cco %22 73 23 3
oV oy Y3 y Y3
9 0¢
- (0(.32 % + Q33 m‘) (28)

1 3p 3P 38 L
g, = £5 - ;;5 <?22 Syo + a3 5;;) - COs ¢(%12 s + 013 3y (29)

11



1 ap ap 09 3¢
= f3 - — (g ~—+ 0 -———) - (u —— + 013 T—
83 3 sz 32 ay2 33 By3 12 ayz 13 ay3
The bicharacteristic direction y, can be arbitrarily chosen to lie along any
ray of the characteristic cone. This means that an infinite number of equa-
tions can be obtained from (27). However, three equations are sufficient! to
determine the solution for the three dependent variables p, 6, ¢.

(30)

The bicharacteristics can be chosen so as to simplify the compatibility
equations. First it is noted from equation (16), identifying (x;, X», X3) 3
with (s, n, t), that ‘

S $ Yo S ys3 .
iy F{h N no-oy2 n - ys3
t-wn t - yo tys

Thus a number of the elements of «a..
will be zero if y, 1is in the s-n
plane, and y3; lies along the £
axis. In this case (see fig. 2(b))
there are two possibilities given by

sin u Cos u 0
.. = | Fcos *sin 0
alj + H U
0 0 *1
(31)
(b) Bicharacteristics in the s-n plane. where the upper sign refers to the

left-running characteristic C;, and
the lower sign to the right-running
= characteristic C,.

H s
i . ~ . .
Letting yp 1lie in the s-t
¥ plane so that §3; lies along the n

1 Cs axis gives g

sin p cos u 0
,!:
.. = 0 0 -1 ‘

(c) Bicharacteristics in the s-t plane. 1]
Figure 2.- Concluded. -C0s U sin u 0

where the signs correspond to the bicharacteristic direction Cj3 which
increases with increasing s and t as shown in figure 2(c).

o BEARE e v

lRedundant schemes which make use of more than three equations are
discussed in references 8, 10, 12, and 16.

12

SO P

SR

g R L

I i



Substitution of aij from equations (31) and (32) into equation (27)

results in three equations along the bicharacteristics C;, C,, and Cs.
Using equation (31) for C; and C,, one obtains

g1 fcotpgy, =20

where y, = C; for the upper sign and y, = C, for the lower sign. Simi-

larly, one obtains from equation (32) the following equation for the direction
C32

g1 + cot y gz =20

Straightforward substitution of the g5 defined in equations (28) to (30)
with appropriate elements of a from equation (31) or equation (32) yields,
with some rearrangement, the foliowing compatibility equations:

_B_3p %8 Y\ .
7 50, * oS ¢ 3y - (fl + Bf, - at) sin u (33)
pV
_B_35p 98 _ 39 ¢
pV2 35C, cos ¢ 5C, - (fl - Bfy - Bt) sin u (34)
B3P 3¢ ~( ~ _gg) .
pvz 5C3 + 3y - f, + Bf3 cos ¢ o ) sin v (35)

where, from the right side of equations (10) through (12),

. . 2 e
£, = - q9§4¢r51n 0 , £, = sin“ ¢ ;os , and f3 = -

sin ¢ sin O
T

For two-dimensional flow (¢ = 0), equations (33) and (34) reduce to the usual

compatibility equations and equation (35) becomes the streamwise momentum
equation.

Fundamental complications.- In comparison with axially symmetric flows,
equations (33) through (35) have two complicating features which were men-
tioned earlier. These are (1) the presence of 'cross-derivatives'" 93¢/3t and
36/3n on the right side, and (2) the need to perform a two-parameter inter-
polation for data in the initial data surface. The second problem arises

13



because bicharacteristics through a general mesh point (in a prescribed sur-
face) do not, in general, pass through mesh points in the initial data

surface.?

Many schemes have been proposed using equations of this form along
bicharacteristics (see, e.g., refs. 5-8 and 12). However, the programming of
such methods tends to be cumbersome, and the accuracy of evaluating the cross-
derivatives is in most cases less than that of the basic calculations. (An
exception is the recent work reported in reference 10.) These problems are
minimized if characteristics lying in prescribed reference planes are
employed. Then the interpolation for initial data and evaluation of cross-
derivatives can be reduced to a set of one-parameter curve fits with second-
order accuracy. In the next section, the compatibility equations will be
derived for characteristic lines which are the projections of bicharacteris-

tics C;, Cp, C3 onto reference planes.

Reference Plane Method

In the following development, the flow equations are written in terms of
two components lying in predetermined reference planes and a third component
directed out of these planes. For most problems encountered in external aero-
dynamics it is convenient to specify the reference planes as the axial planes,
® = constant, of a cylindrical coordinate system (see fig. 1). The solution
of problems with axial symmetry is determined by calculation along a single
plane, but three-dimensional problems require calculation along several
planes simultaneously. Characteristic theory is employed to calculate the
flow along each plane. To achieve this, the compatibility equations along
the projections of the bicharacteristics on the reference planes must be
derived. The procedure will be to find the pertinent characteristics and
compatibility relations from the intrinsic momentum equations applicable to
the reference planes. First, however, it will be necessary to discuss the
coordinate mesh which will be used to describe the shock layer.

Finite difference mesh.- The cylindrical coordinate system used to
expand the vector relations in equations (1) through (3), and to define the
reference planes, is not ideal from the computational standpoint. This stems
from the fact that special treatment would be required for bodies with non-
circular cross sections and, more importantly, for shock surfaces. One is
therefore led to a finite difference mesh which divides the shock layer into
a number of annular rings which include both the shock and body surfaces, as
shown in figure 3. The resulting mesh points are connected by a nonorthogonal
£, n, ¢ system of coordinates: ¢ and n 1lie in the reference plane with n
usually normal to the body surface; t is directed out of but not generally

normal to the reference plane.

2Conversely, bicharacteristics through known points on a plane initial
data surface will, in general, intersect at points lying in a nonplanar sur-
face. The subsequent data surfaces become increasingly distorted as a compu-

tation proceeds away from the initial data plane.

14
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. A related system is one in which
ééf weeworst & 1S replaced locally by the projec-
tion, s*, of streamlines onto the
reference planes. It is this s*, n,
z system which is used to express
- eference the intrinsic flow equations (10)

_ planes //// through (13) in a form needed for the
gi%f//7 Shock //// (s present reference plane analysis.
® Symmetry The unit vectors, X, = (s, n, t), in

plane

streamline coordinates are related to

the new system by direction cosines,
Figure 3.- Nonorthogonal shock-layer coordinates. g% s defined by

Y = % o %
x; = Eijzj (36)
where Qj* = (g*, ﬁ, i).

Written in terms of its components, equation (36) gives

o = * a% * % 7
S = €157 + E]pN *+ €750 (37)
Do %k Q% * .
n = €5;8" + €5,n + €33¢ (38)
2o % L% * 2 * 7
t = €3)5 * E3pN * €330 (39)

Appendix A describes how e;j is calculated in terms of the body and

shock-wave shapes. The detailed expressions for the direction cosines are
not needed for the development of this section but it should be noted that,
since the shock shape itself is obtained from a solution of the problem (i.e.,
a direct as opposed to an inverse approach), E;j is not known beforehand for

the entire flow. However, in a locally supersonic region, where the shock can
be calculated step by step, e;j can always be determined as the calculation

proceeds downstream from an initial data line.
Reference plane equations.- Recalling the rules for a directional

derivative, equations (37) and (39) yield the following expressions for
derivatives in the s and t directions.

15



Do o+ B s D
= €1 — =+ €13 5%
3s b * 12 3n 5L (40)
B e B e B, . B
5t~ 31 32 3n 7 %33 3¢ (41)

These differentiation rules allow one to write the intrinsic flow
equations in terms of the desired planar components. Substituting equations
(40) and (41) into equations (10) through (13) and regrouping terms, one
obtains

2 3p
* 8 I 36
€];] —5 — * €OS ¢ a5 = £ (42)
oV 3s
1 o9p % a6 *
2 + €77 COS ¢ N = £, (43)
oV 9s
ad *
P (44)
9s
ap *
w = (45)
9s

The left sides of these equations contain derivatives in the reference planes
and the remaining terms are all lumped into the fi*, which are given by

cos ¢ sin 9§ 2 op ap x  9¢ x  9¢ *  0¢
f1* = - U [~——-(%Yz an " €T3 5o ) *\E31 Tt €30 3, * €33 3¢ (46)

2
pv os

202
_ | sin® ¢ cos © x 06 % 06
£, = [_____;A-V- - cos ¢ (%12 a5 * €13 55)] (47)

1 sin ¢ sin © 1 Y % Op % 9P x 0¢ * 3¢
f3* = — [‘ T T T, <%31 “;;’* €32 3n T %33 37 ) T\ Fl2 3t 13 3

(48)

op 1 * 1 3p 3p * 1 3p 93
+ Eiol 5 3o - a2}t € _— - (49)
a® as” efl [ a’ on en b3 a’ 5z %t

Hh
-
*
I
NI"‘

16
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The fi* thus expressed contain derivatives along the n and ¢ coordinate

directions and, as a result, can be easily evaluated with standard one-
parameter differentiation routines. It will also be seen, when the finite
difference scheme is described, that the derivatives 23¢/3s* appearing in
fi* and 3p/ds* appearing in f3* and f,* are easily treated.

It is important to note that, although written in a simplified form,
equations (42) through (45) contain no additional approximations beyond those
in the original equations. Only the usual assumptions pertaining to viscosity
and heat conduction are made. The bracketed [ ] terms in the £.,* all vanish
for axially symmetric flows (i.e., for ¢ = 0), and the equation% reduce to
the familiar intrinsic equations for zero angle of attack.

Characteristic directions.- Characteristics theory, as outlined in a
previous section, can now be applied to equations (42) through (45). It is
first observed that equations (44) and (45) are already in the desired char-
acteristic form. These equations give no information asbout the normal deriv-
ative 3/9n; therefore, s* is a characteristic direction for ¢ and p. This
is in contrast to equations (42) and (43), which can be combined to give
derivatives in different directions. Writing the latter in the form of
equation (14), one has

axi 0T g (50)
uv axi* u

Expressed in terms of new coordinates, yi*, equation (50) becomes (cf. eqgs.
(17) and (24)):

j ou”
* - *
buv By * fU (51)
]
where
82
Otlja’i'l 5 apj cos ¢
oV
*j
uv
. ]- *
023 -7 0L1j€11 cos ¢
pV

and where aij are the elements of the transformation matrix relating X

and yj. The characteristic directions for equation (51) are obtained from

the determinant
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p=(1] =g
nv
which yields
s\ 2
() -

Writing o in terms of a rotation angle as in equation (31), one obtains

for this case

sin u* cos u*
a.s =
J FCOS p* fsin p*
" o where u* 1is the angle between the
streamline and the characteristics
P in the reference plane as shown in
s figure 4. Equation (52) shows that
# u* is related to the Mach angle
according to
c
Figure 4.- Characteristic directions for the cot u* = Ei]jl cot u (53)

reference planes.

Compatibility equations.- The compatibility equations applicable to the
directions C;* and Cp* can be obtained in the way previously described for
the bicharacteristics. For the present case, one has in place of equation (27)

G211 (54)
* _ * = 0
g1 a1 &2
where
(1) (2)
*(2) 3 *(2) 23
gl* = fl* _ blf ) u _ blz( ) u
9y 2 3y 2
and

e pr@ ) @)

21 P 22 Y2

g2

Algebraic details are straightforward and need not be repeated. The resulting
compatibility equations are:
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B oP 36

— - + cos ¢ " (£1* + Bf,*)sin u* (55)
oV_ aC, aC,
iz BP* -~ cos ¢ 36* = (£,* - Bfr*)sin p* (56)
pV™ 3Cy 3Cy

Equations (55) and (56), together with equations (44) and (45), are the final
set of differential equations programmed for numerical calculations. They are
supplemented by the energy equation (eq. (5))

h + V2/2 = H
and the equations of state ((6a) and (6b))

h = h(p,p)

and

a = a(p,p)

Details of the numerical methods used in the computer program are described
in the next section.

NUMERICAL METHODS

The general theory of characteristics was developed in the previous
section, where it was shown that the three-dimensional problem can be reduced
to an equivalent two-dimensional form. A numerical solution of the problem
can then be accomplished in the usual way by numerically evaluating deriva-
tives in one direction in order to calculate a step forward in the second
direction. The problem is analogous to the numerical solution of two-
dimensional hyperbolic equations by noncharacteristics methods.

, Therefore, in formulating a practical method for calculating three-
dimensional flow, the numerical differentiation process is of primary impor-
tance. If the differentiation is to be performed efficiently and accurately
(i.e., at least second order in a typical mesh dimension), the mesh points
should be constrained to lie along simple coordinate lines. Secondly, the
boundary calculations are simplified if the coordinates lie on the shock and
body surfaces. These considerations suggest the shock-layer-oriented, non-
orthogonal coordinates shown in figure 3. The resulting computational proce-
dure is simplified significantly compared with previously proposed three-
dimensional characteristics methods (see, e.g., ref. 12).
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Presented next are the difference equations, computational logic, and
numerical differentiation procedures developed on the basis of this nonorthog-
onal (£, n, z) mesh. The problem may be stated as follows:

Given data on an initial n - ¢ surface at £, where the flow is
locally supersonic, it is required to generate, by means of the
flow equations and boundary conditions, new data on the adjacent

n - ¢ surface at g, + AE.

Finite Difference Equations

Figure 5 shows the mesh point arrangement for a typical reference plane
¢1. Identify with superscripts (i-1) and (i) the initial data line at &,
Shock and new data line at &g. Let the
subscripts j and k denote the radial
and circumferential positions of the
mesh points. However, the subscript
k will be omitted for brevity in
writing the difference equations.

The method adopted® to calculate
conditions at a typical mesh point
i,j on ¢&p makes use of interpolated
- data at the points of intersection on
e=host 2, £, of the characteristics through
o \":i point i,j. A three-point Lagrange
: interpolation is employed to determine
the necessary data from known condi-
tions at neighboring mesh points.

Body

Figure 5.- Finite difference mesh.

Three intersections are required for each field point on £gg. To identify

these points the convention is adopted whereby the subscript 7t represents
the intersection with £, of the streamline projection s* through point
i,j, and the subscripts <1-1 and 1+1 represent intersections of characteris-
tics C;* and C,*, respectively (see fig. 5).

With this convention the compatibility equations (55) and (56) can be
written in the following finite difference form:

i i1 i i—1) _
. - : : (58)
i i-1 i i-1\ _
Az(pj - le)- BZ(ej - 6”1) = F, ACy*

3This method is called the Hartree method (ref. 17) and also the inverse
method (ref. 12); it was used by Katskova and Chushkin (ref. 9).
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Equations (44) and (45) are similarly written as

i i-1
F3 As* (59)

-
!
©
~
1

and

©
i

O
1]

Fy As* (60)

The system of equations is completed by the energy and state equations, (5)
and (6). They apply to all of the field points - that is, for the index j
running from 2 up to J-1. For the body point, j=1, equation (57) is replaced
by the equation of the body,

= f(Xll,‘?k)

which permits the calculation of 611 by means of equations derived in
appendix C. It is shown there that

. i .
tan 611 = r..._‘_l._._ <§E_1_ + an - 3_2> (613)
1 2 oxX
- a
where
i i\ 2
8r11 arll
a = tan ¢ ;II'MSE_- and b=1+ %

For bodies of revolution equation (6la) reduces to

31‘11

oX

1

6, = tan” (61b)

At the shock, j = J, equations (58), (59), and (60) are replaced by the
oblique shock equations. The jump conditions for a general three-dimensional
shock surface are developed in appendix B and can be written in the following
functional form for fixed free-stream conditions:

v, 1 - oV i, (62)
(u )j G (c ,Gk,Qk,a)
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where u” represents p, 6, ¢, p for v =1, 2, 3, 4. Here o and § are

the shock-wave angles in the planes ¢ = constant and X = constant, respec-
tively, and o is the angle of attack. Equation (62) depends directly on the
unknown shock angle o!, and indirectly on the parameters &k, ¢y, and a. The
shock angle &y is determined by numerical differentiation of shock coordi-
nates as described in appendix A. The four equations obtained from (62) for

v = 1 through 4, together with equation (57), are sufficient to determine the

shock angle ol,

Computational Procedure

Local iteration.- The difference equations are solved by a standard Euler
predictor-corrector method in which the coefficients are treated as constants
locally and equal to their average value over the step. An initial guess, say

vy i Vyi-
(3l = (u)y
J I
values of (uv); are calculated using coefficients evaluated with the previous

1 . . . .
, is used to start an iterative procedure by which corrected

predictions. The iteration is continued until the pressure repeats to a
specified accuracy. For typical mesh points three correctors reduce the rela-
tive error to less than 1x107°, It is shown in standard texts that the iter-
ated result has a truncation error of the order of the step size cubed.

In this method the coefficients Ap, B“, and Fu in equations (57) through
(60) are averaged along the characteristic direction appropriate to each

equation. For example, the coefficient F; in difference equation (57) repre-
sents the average of the right side of differential equation (55), taken along

the characteristic C;*, and is written as
1

Fy = 1/2[(£1% + sz*)]§+ 1/72[(£,* + sz*)]i:i (63)

in the present notation. Similarly, averages are evaluated using data at
point 1t+1 for equation (58) and at point <t for equations (59) and (60).

Global iteration.- The set of equations (57) through (60) are solved
successively on L reference planes, ¢ (k =1, 2, . . . , L). The differ-
ence equations governing the flow along various reference planes are coupled
by cross-derivatives which are included in the functions F, appearing on the
right side of each equation and by the shock angle Jx appearing in equa-
tion (62). 1In order to solve these equations in an explicit manner, it is
therefore necessary first to approximate F, and 8§y with derivatives evalu-
ated on 5. Then, using calculated values on all of the L planes to
evaluate cross-derivatives on &g, one obtains the next approximation to F
and 8§k and the entire process can be repeated. This is referred to as a
global iteration, in contrast to the point-by-point iteration employed in the
local solution of the difference equations.
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Since computing times are generally large in three-dimensional problems
(see next section), test cases were run to determine the need for global
iteration. Table I shows that excellent results are obtained without itera-
tion, that is, using derivatives evaluated on £,. It is therefore expected
that this iteration would not be required in most problems.

Step Size

Since the mesh points are not constrained to follow characteristic lines
with the present method, the size of a forward step, AL = £ - Ep» can be
arbitrary to some extent. The only limitation is that, in order to have a
stable numerical process, the step should not exceed a certain maximum deter-
mined by the region of influence of the initial data. This stability condi-
tion will make AZ depend on the radial step An, smaller radial steps
requiring smaller forward steps. The lateral step Az does not affect the
stability directly, although it does, of course, affect the accuracy. The
effect of step size on accuracy is discussed after the following paragraphs
on stability condition.

Stability condition.- Although the
analysis of numerical stability has not
- C2 been performed for the general nonlin-

ear equations, the stability criterion
for linear hyperbolic equations (see,
e.g., ref. 17) is apparently sufficient
for the nonlinear equations. This is

Fhie £$g$£& the well-known C-F-L (Courant,
for poynt (v, 2} o Friedrichs, Lewey) condition which
— essentially states that the domain of
K dependence of the calculated point must
\_~£— be included in the initial data. This

means that the characteristic Cp*
SN through point (i,2) in figure 6 must

€, pass through or above point (i-1,1).
Similarly, the characteristic C,*
through point (i,J-1) must fall through
Figurc 6.- Step size limitation. or below pOil’lt (i—l,J) .

Strictly followed, the C-F-L condition would require testing every
shock and body point to determine the maximum allowable step size, AL, which
would insure stability. However, experience indicates that the condltlon is
not overly restrictive in the sense that steps slightly larger than Ag, do
not usually cause a violent instability. Therefore, it is adequate to test
only at the body and, for bodies with circular cross section, on the windward
side where Ag, is likely to be smallest, due to the low Mach number. The
step size is then taken slightly less than the maximum; a value of
AE = 0.8 Ag, works well in most problems.

Accuracy and computing time.- The accuracy of a numerical computation is
usually estimated by comparing results obtained with various mesh spacings.
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Since the exact solution is usually unknown, one can only compare with the
results of the finest mesh and observe how the error decreases. If the trun-
cation errors are second order in terms of the mesh size, then halving the
mesh size should reduce the error by one-quarter.

To test the accuracy of the present method, calculations were performed
from x/Rp = 2 to x/Ry = 3, using 3, 5, and 7 planes and 5, 10, and 15 points
along each plane. In each case the same starting conditions were used at
x/Rn = 2. The results of this study are shown in table II. Table II(a) pre-
sents the shock angles and the surface pressure on the & = 90° plane at
x/Ry = 3. These results show that the method is of second-order accuracy.
Also, it should be noted that the results with k = 5 and 7 agree very well
for J fixed (moving horizontally in the table). The good accuracy with only
a few planes is attributed to the use of trigonometric analysis for the
cross-derivatives.

The computing time naturally increases as the mesh is refined; this is
illustrated in table II1(b), which lists the total number of points computed,
the total execute time, and the time per point in minutes. The calculation
was performed on an IBM 7094 Model 1_in FORTRAN IV (version 13 IBJOB proces-
sor). A unit time of about 0.13x10 ° min per point was obtained with the
finest mesh. The unit time increases as the number of points decreases, prob-
ably because of fixed input/output times. The actual and unit times are
almost doubled when one global iteration is made at each station.

Numerical Differentiation

Discussed next is the problem of evaluating cross-derivatives appearing in
the equations. Partial derivatives in three directions appear in the functions
f;j* defined by equations (46) through (49). They are of the form 3/3s*,
3/3n, and 3/3z, in the stream, radial, and circumferential directions. Special
treatment is given to the circumferential derivative, following the discussion
of the first two.

Streamwise and radial derivatives.- These derivatives are taken together
since they are both evaluated by the standard polynomial approach. The main
idea is to employ a differentiation formula consistent with the accuracy of the
basic calculation.

For the streamwise derivative the approximation

u” T (u\))l_1
= J _— (64)
as* As*

is clearly equivalent to the form of the difference equations employed.
Equation (64) represents the derivative of uY at the midpoint of the inter-

val, As*/2, with an error of the order As*z. This derivative is evaluated at
each step in the local iteration process previously described.
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Because of the equally spaced coordinate mesh presently employed, the
radial derivative is similarly determined to the same accuracy by the central
difference

ONE] v, i
v u’). - (u)).
s’ @5, - 65 s
an 2 An

Equation (65) approximates the derivative at point (i,j) with an error of
order An?. The average radial derivative at the midpoint (i+1/2,j) between
Ep and gp can be obtained by means of the global iteration procedure
previously described.

Standard end-point formulas of equivalent accuracy are used at the body
and shock where central differences are not possible. These need not be
written out, as they can be found in many books (e.g., ref. 18).

Circumferential derivatives.- In the aerodynamics of bodies it is well
known, from linearized and perturbation theories as well as from experiment,
that the solution of most problems can be represented by a trigonometric
series in the meridional angle ¢. When information such as this is avail-
able it should be possible, by choice of an appropriate functional form, to
improve a numerical process. For example, with data known to have a nearly
cosine variation, it is clear that fewer sample points are required to
approximate the data with a cosine series than with a polynomial. A
Fourier-series approximation is therefore used to evaluate derivatives with
respect to 7. Symmetry conditions, which usually arise at & = 0 and ¢ = 7,
are easily satisfied in this way. This technique makes it possible to cal-
culate with fewer reference planes, thereby increasing the computational
efficiency (see ref. 13).

For the present application it is necessary to determine Fourier
approximations for pressure p, flow angle 6, crossflow angle ¢, and
density p from their values on L planes & (k =1, 2, .. ., L) with
¢; = 0 and ¢, = m. Symmetry conditions for three variables (represented by
ugV (v = 1, 2, 4)) are satisfied by a cosine series of the form

v a’ cos n o (v=1, 2, 4 (66)

Yo = n k

For the crossflow angle (v = 3), which is zero at ¢ = 0 and ¢ = 7, a sine
series

L-1
¢k = an sin n & (67)
n=]
is necessary.
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When equally spaced meridional planes @k =7n(k - 1)/(L - 1),
(k =1, 2, . . . , L) are used, the calculation of the Fourier coefficients
is particularly simple because the usual orthogonality conditions are
exactly satisfied by a finite sum (see, e.g., ref. 18 or 19). In this case
the coefficients are given by

L-1
AV AV
v_ 2 (u1 + FL cos nw) . Y coem 6
4y T L -1 2 k k
k=2

(n=0,1, . . ., L -1) (68)

and

2 % .
bn =T ,¢k sin n @k mn=1,2, .. .,L-1) (69)

Derivatives with respect to the angle ¢ are obtained by differentiating the
Fourier series, equations (66} and (67), to give

Vv L-1
du
-—Ji— = -na v sinn ®
de e k (70)
n=1
and

L-1

d¢k

a-q)— = ; nbn cCos T @k (71)
n=1

The desired derivatives in terms of distance along the ¢ direction are
obtained from equations (70) and (71) according to

3 1 (d
3 (8) "

where it is understood that the derivative on the right side of (72) is
evaluated using data on the ¢ coordinate. The scale factor g, relates
the distance along ¢ corresponding to an incremental change in ¢,
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and can be written in terms of the direction cosines developed in appendix A.
From these coordinate relations one has

and therefore,

r(de/dg) = e

o Z = V33
g = (r/v33) (73)

Starting Data

. The method of characteristics, being a method for initial value
problems, requires starting data which are usually obtained from boundary

- conditions or from an initial solution obtained by other methods. For pres-

. ent applications two types of starting conditions are of particular interest.
These are (1) the spherically blunted body with the sonic line located on the
spherical nose, and (2) pointed bodies which can be approximated by a cone in
some small region near the tip.

Blunt body
data ftine —

Vo

Sonic line

(a) Wind axes.

Initial data
surface — 7Y

Shock
surface

(b) Body axes.

Figure 7.- Starting data for a

spherical nose.

Sphere.- Since a sphere does not have a
preferred orientation, the flow remains symmet-
ric around the wind axis for any angle of attack.
Therefore, axisymmetric blunt-body solutions
obtained, for example, by the inverse method of
reference 20 can be used to provide initial con-
ditions. It is necessary, however, to generate
these axisymmetric starting data on an initial
n-z surface which is defined in a body axis
system; the data will not be symmetric with
respect to the body axis.

The characteristics program is set up to
generate body axis data from wind axis data
obtained from a blunt-body solution. Given
these wind axis data on one body normal (see
fig. 7(a)) where the flow is supersonic, say
M > 1.05, the characteristics calculation is
performed in a wind axis system and for o =0
to the position xy ', locating the body normals
nk'. (Primes denote wind axes.) This is illus-
trated in figure 7(a). Since the flow is axi-
symmetric in terms of wind axes, the normals ny'
may be placed at an arbitrary circumferential
position. The values of x' are chosen so
that the normals ny' match the ring of normals
ng emanating from the sphere at (xqo,Trp) in
terms of body axes (fig. 7(b)). They are
related to the meridional angle &, and the
angle of attack o by

X' = Ry + (xo - Ry)cos o - ry, sin a cos oy
(74)
where R, 1is the radius of the spherical nose.
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Scalar data derived in this way on the body normals n
(k =1, 2, . . . , L) are ready for use in the general three-dimensional cal-

culation. However, the flow angles, 6 and ¢, must be recalculated in terms of
body axes by means of the transformation relationships for velocity components.
By the definition of 6 and ¢ (fig. 1).

.o=1 v
® = sin md; (75)
o = sin"t ¥ (76)
Vv :
»
The magnitude of the velocity is unchanged by the coordinate rotation, so -
that
v
V=V (77)
From reference 15, the velocity components v, w can be expressed as fol-
lows in terms of wind axis components:
v = (u' sina + v' cos a cos ®')cos ¢ + v' sin ¢' sin & (78)
w =vVv' sin &' cos & - (u' sin o + v' cos o cos 9')sin ¢ (79)
where &' 1s obtained from
(x' - Ry
cot & sin &' - cos a cos @' - ————?j~*¢xsin a =0 (80)
Equations (75) through (80) determine 6 and ¢, relative to body-axis
coordinates, from wu' and v' calculated in the wind-axis system.
Cone.- Conical solutions are defined as those which are independent of
£ - that is, all derivatives with respect to & vanish. Conical flows can
be obtained in two ways: (1) by solving the boundary value problem for the
reduced equations with 3/3f = 0 (see, e.g., ref. 21), or (2) by the asymp-
totic solution of three-dimensional initial value problem with a conical body »
(see ref. 11 or 22). The latter approach is presently taken since it fits
the general computation scheme with little change. ‘

Approximate initial data for a cone are specified and the calculation
downstream is carried on until the conical flow condition is met to a speci-
fied accuracy." This approach has the disadvantage of being generally more
time-consuming than the boundary value method, but it avoids many difficul-
ties inherent in boundary value problems. The situation is quite similar to
the calculation of the supersonic blunt-body problem by an asymptotic

“It is clear physically that the conical condition must be obtained
far downstream from the approximate starting condition.
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unsteady calculation. Approximate starting conditions are obtained either
from the perturbation solution for cones at small angle of attack (ref. 23)
or from a previous three-dimensional solution for a different Mach number or
cone angle.

Two modifications to the general computational procedure are required
to obtain the correct conical flow solutions for circular cones. First, it
was found necessary to account for the Ferri vortical layer (ref. 24) by
setting the entropy at all body points, except at the leeward plane of
symmetry, equal to the entropy at the windward shock point. The entropy at
the leeward body station, which is a singular point, must equal the entropy
at the leeward shock point.® Thus the following conditions apply to circular
cones:

92
|
92]
~
=
i
N

.
&

» L)

and | (81)

Secondly, as a result of the entropy singularity at the leeward body point,
the circumferential density derivative there is also singular. Therefore,
data from the singular point must be excluded in the numerical differentiation
for 93p/dC.

Smoothing

Under certain conditions where the density or crossflow angle develop
large radial gradients, the numerical calculation for these quantities appears
to be unstable. This situation can arise in the region of the vortical layer
on pointed cones and in the so-called entropy layer over blunted cones. A
stabilizing difference scheme similar to that known as the Lax, or Lax-
Wendroff method (refs. 26 and 27) is therefore used in these cases.

Equations (59) and (60) are modified for this purpose according to the
following difference approximation:

v, 1

v,i-1 vyi-1 vyi-1
- koan? (@030 - 2@ e @il

_ v,i-1 - j+l
5 W \)+2nJAE;

As* (82)
An2

where v = 3 or 4 represents ¢ or p, respectively. The second term in the
bracket is proportional to the second derivative of uV, so that the

5Additional singular points arise in more general conical flows (see,
e.g., ref., 24 or ref. 25).
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difference equation (82) approximates the differential equation®

\Y 2.V
Jdu —= Jd“u
= 83
s ¥ Fv v K an2 (83)
where
— k An3
= a— 84
K ZnJ AE (84)

and Ny is the value of n at the shock ny = (J - 1an.

The additional term in equation (83) represents a diffusion process and
is the stabilizing term in the type of difference scheme given by equa-
tion (82). The arbitrary constant k in equation (84) is included to allow
control of the diffusion term. If k = 0, equation (83) reduces to equa-
tion (59) or equation (60). For k = nj/An, equation (83) is essentially the
same as the Lax scheme (ref. 26).

It is known (this is demonstrated below) that the Lax difference scheme
provides too much diffusion; therefore, it is desirable to choose k between
0 and nj/An in order to provide numerical stability without undue loss of
accuracy. In most applications k has been set equal to 1, and this condi-
tion is presently termed a second-order Lax smoothing because in this case

M2 2
= sz G An 0(an<) (85a)

Thus, the second-order difference scheme approaches the differential equation
like An? as the mesh is refined, whereas the Lax method approaches linearly
in An. For large Mach numbers, an order-of-magnitude analysis reveals that

K = o(é) (85b)

which gives K a value of about 1/1000 for a typical mesh.

5This argument is not strictly rigorous, as pointed out in reference 27,
if the dissipative term is of the same order as the truncation error of the
other terms. Nevertheless, the analogy is qualitatively correct, especially
when the step size is not small. Also, when the integration is carried over
large distances the truncation error might tend to be random, while the
dissipative term is always additive.
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Second order
smoothing (k = [)

2 16 field points

20 ﬁmdpmms::::5§ o
D
=

No smoothing (k = O}
dGSfMdpmms

Stream function
method (Ref. 28)

5 6 7 8

Figure 8.- Effect of smoothing on density
distribution at x/R = 40; 15° sphere-
cone, M_ = 10, a = 0.

The effect of this difference approximation is illustrated in figure 8
for a 15° sphere-cone at zero angle of attack. The figure shows the density
distribution in the shock layer at a station 40 nose radii downstream from
the stagnation point.

Calculations by the present method are compared with the method of
reference 28 which accurately determines the density distribution in axisym-
metric flow by the use of a stream function. Present results with second-
order smoothing are shown in figure 8 by the broken lines for 15 and 20 mesh
points. It is seen that these curves differ from the more exact result only
where the second derivative, 3%p/9n?, is large, and that the error decreases as
the mesh is refined. Results obtained without smoothing and with 15 mesh
points are shown by the symbols. The calculations appear to be unstable
without smoothing.

It is emphasized that the need for smoothing arises only when the
computational mesh is coarse relative to the details of the flow field. Exper-
ience indicates that the smoothing can be eliminated if the mesh is refined
sufficiently. This, however, is not practical in three-dimensional problems
where computation time and computer storage limitations are important factors.
Therefore the proposed smoothing scheme provides a means for obtaining meaning-
ful results with a relatively coarse mesh of points.

Discontinuous derivatives.- The possibility of discontinuities in
supersonic flows presents a severe test for a numerical calculation. With the
present numerical method, characteristic lines are not followed and some smear-
ing of the discontinuities will occur because of the interpolation for data on
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n curve X/ the initial data line. This problem
3 g; 93;8 was therefore investigated and it was
2 ® 505 found that the proposed method does
':&//} - E% 545 provide an accurate resolution of known
Mo ® 670 flow details obtained with a standard
@ 735 method of characteristics for axisym-
I

metric flow (ref. 29).

Discontinuous derivatives arise
primarily on the body surface at points
where the surface curvature is not
analytic. As an example, figure 9
shows a map of the pressure in the
vicinity of the sphere-cone juncture
for a blunted cone at 5° angle of
attack. Each line represents the pres-
sure variation along a body normal, n,
(a) Leeward plane, ¢ = 0°. between the body and the shock wave.
The origin for each line is displaced
in proportion to the x coordinate of
the body point so that the circular
symbols represent the actual surface-
pressure distribution. The surface
pressure decreases uniformly on the
spherical nose until the sphere-cone
juncture is reached, at x, = 0.5,
where the pressure gradient, dp/3ds,
changes abruptly. The discontinuity
from that point moves out into the flow

solLL 1 |
OO0 0O

5 0 o
0RO®® © @

Zeros for curve ®

801 (1 1 1 1 ] ] i I
Shock point

'O field along a Mach wave. (The approxi-
g mate position of the wave is indicated
Zeros for curve @ .
' R by the arrows.) The pressure is nearly
(b) Windward plane, ¢ = 180" constant behind the wave and varies
Figure 9.- Pressure distribution on surface nor- according to the blunt-nose flow ahead
mals, n; 30° sphere-cone, M_ = 10, a = 5°. of the wave. The curves theoretically

should have a discontinuous slope there. As seen in the figure, the curves
are only slightly rounded by the quadratic interpolation presently employed.

RESULTS AND DISCUSSION

Many numerical solutions have been obtained with the described method of
characteristics, and these results compare favorably with other published
works (see, ref. 13). Presented in this section are the details of a typical
calculation for a 15° sphere-cone at 10° angle of attack and a Mach number
of 10. This is considered to be sufficiently nonlinear to provide a good
test of the theory. The dominant three-dimensional features of the flow are
illustrated and compared with predictions of perturbation methods for small
angles of attack. Bluntness effects are illustrated by comparison with a
pointed cone solution, which is described first.

32



Pointed Cone

The solution for a pointed 15° cone at a Mach number of 10.6 and 10°
angle of attack is presented in table III. Listed for each plane,
® = constant, are the shock angles, o and §. Below the shock angles are
tabulated the x,r coordinates of each mesh point running from the shock to
the body and the corresponding flow variables at those points, as labeled.
The quantity M* is the component of Mach number defined by the Mach angle
p* in equation (53). Remaining variables are defined in the list of

symbols.

This conical solution was obtained with a coordinate mesh consisting of
9 meridional planes and with 11 points on each plane. Second-order smooth-
ing was used on the density p and the crossflow angle ¢ (smooth constant
k = 1). Initial data for the present case were obtained from a previous
solution at M = 7 which agreed with the tabulated results of reference 11l.
The free-stream Mach number was changed from 7 to 10 and the computation was
carried downstream until the flow relaxed to the new conical solution. This
was accomplished in a number of stages, with each stage consisting of a com-
putation from x = 0.8 to 1.0, using the output of the previous stage as
initial data. '

Yo Storing The accuracy of the solution is
My =106 Mg 7 indicated by figure 10 which shows
200 | | -4 T

the shock angle in three meridional
planes as a function of the reciprocal
of the number of stages. It is seen
19 ® - 0° (leeward) that the approximate starting condi-
/ tions cause the shock angles to change
abruptly in the first stage with a
slow decay to a limiting value as 1/N
tends to zero. Conditions on the lee
side are slowest to approach a limit.
The shock angle at ¢ = 0 repeated to
an accuracy of Ac/c = 0.45x10” % in
the last stage of calculation and
Figure 10.- Relaxation of conical solution after repeated to an accuracy of 1X10—5

N stages of calculation from x = 0.8 to during the last step of the tenth
x = 1.0; 15° cone, M_ = 10.6, o = 10°. stage.

~@ = 90°
@ = 180° (windward) -

I/N

The main features of this conical flow will be illustrated in conjunction
with the blunted cone results described next.

Spherically Blunted Cone

The calculation for a spherically blunted cone with a 15° semivertex
angle in air (y = 1.4) at M, = 10 used 7 meridional planes with 15 points in
each plane. Second-order smoothing, k = 1, was employed for the 10° angle-
of-attack solution when x/R, > 10; no smoothing was necessary for the other
solutions presented.
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Shock surface

1r /// v_-Shock trace

@ (Pointed cone)

i, T S 5 -
0] 2 4 6 8 10 12 14 16 I8 20 :
= I TR I R SR
n 0] 20 40 60 80 100 120 140 160 180
D, deg

Figure 12.- Shock trace on body-normal surfaces;

Figure 11.- Shock trace on meridional planes;
15° sphere-cone, M_ = 10, o = 10°.

15° sphere-cone, M_ = 10, o = 10°.

The shock profiles in three meridional planes are shown in figure 11 for
a cone length of 20 nose radii. Also shown on the figure are the pointed-
cone shock positions which the blunt-cone shock must approach as x/R, gets
large. The small difference in the Mach number of the two solutions of 10
to 10.6 does not significantly affect the comparison. It is observed that
the shock quickly approaches the pointed-cone shock for ¢ = 90° and ¢ = 180°,
while it does not appear to approach the pointed limit on the lee side,
¢ = 0°. This is further illustrated in figure 12, which shows the circum-
ferential shock shape for several axial stations. The slow decay on the lee

side is evidenced by the hump in the profile near & = 0. Note that the x
coordinate is not constant on the shock

traces shown, because the shock radial
position is measured at its intersection
with a cone normal to the body surface
(see sketch in fig. 12},

The axial distribution of shock
angle is shown in figure 13. On the

ot windward plane, ¢ = 180°, the angle
7 reaches a minimum value of 13.744° at
{ x/R, = 3.89. On the leeward plane the
4 Pointed angle has not reached a minimum by
1 mesioe X/Rp = 20 and is still well above the
@, deg pointed-cone value at that point.
,.‘-/'—i IZzT 98
. 180 In a three-dimensional flow the
- streamlines generally flow across the
P e T At N T meridional planes as a result of the
© 2 4 6 8 1012 14 16 18 20 asymmetrical pressure distribution.

X
. 5. - sn 1<R;1es in meridional planes This crossflow is described in terms of
re .~ Shock a H . .
1gu - & the angle which is related to the
g

15° sphere-cone, M_ = 10, o = 10°.
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Figure 14.- Axial distribution of surface cross-
flow angle; 15° spherc-cone, M_ = 10,
a = 10°, & = 90°.

-, deg

familijar crossflow velocity according
to ¢ = sin™ ! (w/V). Figure 14 shows
the axial distribution of crossflow
angle along the side meridian @ = 90°.
The crossflow angle is a minimum at the x/Ry = 20 __— Lineorized (Ref. 13
sphere-cone juncture and then rises to 301 -7 T~
a maximum value about 2.4 times the

angle of attack. Thus, the surface

upwash for blunted bodies can be greater 10

Three dimensional

than the maximum value of 20 given by R O
slender-body theory, which applies to 0 20 40 €0 %gdéfo 120 140 160 180
p011:1te(‘i bOdleS_at low supersonic Speeds' Figure 15.- Circumferential distribution of
It is interesting also to compare the surface crossflow angle; 15° sphere-cone,
result of the linearized characteristics Mo = 10, w0 = 10°.

method (ref. 15) which is in good agreement near the nose. Agrcement extends
to about x/Ry = 10, where the linear method starts to break down.

The reason for the breakdown is evident in figure 15 which shows the
circumferential variation of ¢ for o = 10° at various axial stations. Near
the nose the variation is nearly sinusoidal, as assumed in the linearized
method, However, the exact three-dimensional calculations show a large
deviation from the sinusoidal variation beyond Xx/Ry = 10.

Figure 16 shows the variation of crossflow angle normal to the body.
The curve for xy/R, = 20 approaches the pointed-cone solution near the
shock, n/ng = 1, but deviates by a large amount near the body. This is due
to the low density of the flow in the entropy layer which is generated near
the body surface by the blunt nose. The flow in this region has less momen-
tum that that away from the surface, and is therefore turned more by the cir-
cumferential pressure gradient. The situation is analogous to boundary-layer
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Figure 16.- Radial distribution of crossflgw
angle; 15° sphere-cone, M_ = 10, a = 10°,
¢ = 90°.

Peo

Figure 18.- Radial distribution of density;
xB/Rn = 16.7; 15° sphere-cone, M, = 1o,

w = 10°,

Rn ’ nzfét:>
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Figure 17.- Radial distribution of static pressurc;
xg/R, = 16.7, 15° sphere-cone, M_ = 10, o = 10°.

flow over an inclined body.” Therefore,
because of the entropy layer, the blunt-
cone crossflow does not approach the
pointed-cone distribution uniformly.

The entropy layer is characterized
by a nearly constant pressure, as is
shown in figure 17. On the other hand,
the density varies strongly on the wind-
ward side of the body as may be seen in
figure 18 for xp/Ry = 16.7. The thick-
ness of the entropy layer may be taken
as the distance to the point where the
density has a local maximum. This
entropy layer is similar to that found
in axisymmetric flow except that it
develops faster (i.e., closer to the
nose) on the windward side and more
slowly on the lee side of the body.
Smoothing, which was used to stabilize

the calculation, causes the peak in density to be rounded off. A theoretical
maximum for ¢ = 180° can be calculated by using the entropy corresponding to
the minimum shock angle and by making use of the fact that the pressure is
nearly constant. The theoretical maximum is about 15 percent higher than the
calculated value. It is estimated that the smoothing had negligible effect on
the density and crossflow angle for n/nS greater than about 0.3 (see fig. 8).

’Comparison is made in reference 14 between inviscid and experimental

(viscous) surface streamlines.
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Comparison With Experiment

Detailed experimental surveys of the flow field around blunted cones
have been previously reported by Cleary (refs. 30 and 31). Experimental
results from reference 30 are used to compare with the present theoretical
results in order to confirm the validity of the proposed numerical methods.
More complete comparisons between theory and experiment can be found in
references 31 and 14, for both air and helium flows.

T L S T N N R Figure 19 presents the surface

5| Experiment (Ref. 30} ¢ $:180° - pressure distribution along each of the

Al @b e T Popted 7 meridional planes along which the

’ Qaiy)g/ikﬂ}_fLD_£L_o_{p—w— calculations were made. Theory and

3 7 experiment are in excellent agreement

2 ®-150° | although the experimental data tend to

h o2 B D B B b n .- be slightly above the theory. This is

Q consistent with the usual boundary-

(@=180°) Of— layer displacement effect. At

N ®=120° | x/Rn = 20 the blunt-cone pressure is
@m0 oLy b B-& BB B B & L very nearly equal to the pointed-cone

value shown on the far right of

Co 4 h figure 19.
(@=120°) ©
l%iQA‘JL_A_A&—£%4Q_ALJA—A“t‘ Flow properties off the body
. @ =90° . .
surface are most easily studied
(@ =90°%) O?E experimentally by means of the impact
Gk $=60° - or pitot pressure, as shown in fig-
s W S . . - .
@ - 60°) Ol— ure 20. The pitot-pressure distribution
normal to the body is presented for all
"j1u\\qﬂ_{;Jl_@_ﬂ}_D;i:iE_: 7 meridional planes and for an axial
(®=30° Of— |~ station of xu/Ry = 16.7. The theory
"iia\\4ljo_{Lﬁo_ﬁo o 00 - extends all the way to the shock in
o o . each case, while the data do not, except
@=00 o 5 4 . & 10 12 14 16 T8 20 for ¢ = 60° and & = 150° where experi-
X /Ry mental shock positions are indicated by
Figure 19.- Surface pressure distribution; 15° a sharp drop in pressure.

sphere-cone, M_ = 10, a = 10°.

In the viscous boundary layer the pitot pressure is low, going to zero at
the body surface. Evidence of a very thick viscous layer is indicated by the
experimental data for the lee side of the body, @ = 0 and 30°. On the remain-
ing meridional planes the boundary layer is very thin. The entropy layer is
clearly indicated in the experimental data by the peak in the pitot pressure
just off the windward side of the body. The theory underpredicts the peak
value because of the previously described smoothing employed in the calcula-
tion. A theoretical maximum of Cpp = 9.03 for ¢ = 180° is determined by the

use of the total pressure at the calculated minimum shock angle (fig. 13).
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Figure 20.- Shock-layer pitot-pressure distribution; 15° sphere-cone, M_ = 10,
a = 10°, xB/Rn = 16.7.

Aside from the noted differences due to the boundary layer and the entropy
layer, the proposed numerical method appears to give an adequate prediction
of shock-layer properties.

CONCLUDING REMARKS

Characteristics theory for three-dimensional steady flow was reviewed and
the compatibility equations were derived in terms of pressure and stream
angles as dependent variables. It was argued that the major practical dif-
ficulty encountered in bicharacteristic methods results from the need for
numerical differentiation and interpolation of randomly spaced data. Further-
more, it was observed that shock-layer coordinates are essential to a simple
treatment of circumferential derivatives on the shock surface, A reference
plane method was therefore adopted in which an equal number of points are
equally spaced between the body and shock along each reference plane. This
mesh introduces the added complication of nonorthogonal coordinates into the
equations but allows the use of simpler numerical techniques.

With the constraint of a uniformly spaced mesh, particular characteristic
lines are not followed as in more standard characteristics methods. The
role of characteristics theory in the reference plane method is to determine
how the finite difference equations are to be locally solved. Since the
characteristics are not traced throughout the shock layer, the possible
coalescence of waves to form embedded shocks is not determined during the
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calculation. However, characteristic lines can be traced afterward, from the
numerical solution. Neglecting embedded shocks is not a serious deficiency
since the calculations are correct for weak shocks (entropy rise being third-
order in the deflection angle). In situations where strong shocks are sus-
pected or known to occur (such as on flared bodies) special treatment would
be required just as in standard two-dimensional methods.

Results for the three-dimensional flow around inclined blunted and
pointed cones were presented to demonstrate the methods described and devel-
oped in this paper. Comparisons with a linearized characteristic method
illustrated nonlinear angle-of-attack effects on crossflow parameters.

Major effects of bluntness, which persist at large distances from the nose,
were well predicted by the present methods. Predictions of surface and pitot
pressures were found to be in good agreement with available experimental
results for a 15° sphere-cone at 10° angle of attack.

While present examples were limited to bodies of revolution, the methods
are not so restricted, being generally applicable to smooth bodies without
axial symmetry. More complicated shapes typical of high-speed aircraft will
require additional development, primarily in the area of special boundary
conditions. For example, it should be possible, with special treatment of the
leading-edge boundary condition, to calculate the flow over wings with
supersonic leading edges. Finally, while there are no inherent limitations in
angle of attack, it is clear that the flow near the leeward meridian must
become wake-1like at a sufficiently large inclination. In this case, it is
essential to include the effects of viscosity and possible secondary shocks.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, July 7, 1969
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APPENDIX A
DIRECTION COSINES FOR NONORTHOGONAL COORDINATES

In the derivation of the compatibility equations for the reference plane
method it was necessary to transform from streamline coordinates to a non-
orthogonal system consisting of s*, n, and . The direction s* 1is the
projection of the streamline on the meridional plane, n runs from body to
shock in the meridional plane, and ¢ is the out-of-plane direction (see
fig. 3). This transformation is expressed as

y = ek o
X, Eijzj (AD)
where
X, = (s,n,t)
and
ij* = (s*,n,z)

It is the purpose of this appendix to write out the expressions for the
direction consines ei-. The analysis is made for the more general ¢£&,n,C
coordinates and is latér specialized to the case where § = s¥*.

The directions of the nonorthogonal ¢&,n,z coordinates are determined
step by step during the calculation as the shock shape is constructed (see
section on Computational Procedure). When the location of the shock is known
in terms of x,r,?, the locations of field points between the shock and body
are also determined by the prescribed spacing of the points along the body
normals. The direction cosines can then be obtained by numerical differenti-
ation as described below. This process is described for the shock wave but
applies generally to each ¢ curve,

Let the shock surface be given by

rg = Tg(x,0) (A2)

The intersection of the coordinate surface £ = constant with the shock
surface defines a curved line in space (a ¢ curve; see fig. 3). The x,r
coordinates of this space curve depend on the meridional angle, ¢, and on

the body station, Xy, which locates the ¢ = constant surface. For each body
station this dependence is denoted by

X = %g(0) (A32)

T (A3b)

1!
H
9]
~
o1
—

S
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Equations (A3a) and (A3b) define two angles

1 dis

tan AX = T ds (A4)
[
1 dis

tan Ar = —_r—' 'T© (AS)

S

which can be evaluated numerically.
(The Fourier method previously
described is used.) 1In figure 21 the
unit vector ¢ is related to &
through two rotations, the first rota-
tion by Ax and the second by §.

It may also be verified from this fig-

Shock surface
r=rg (x, ®)

’f ure that
8
| T dr
A tan § = cos AXx
& r do
Ax .
and, by equation (A4),
Figure 21.- Coordinate vectors and angles. tan § = tan Ar cos AX (A6)

The remaining two unit vectors are defined by angles A and o; n is rotated
by A from e. and & 1is rotated by o from ex. Thus, one may write

£ = cos o e, * sino e. (A7)
n = -si e+ 8 8
n sin A e+ cos ) & (A8)
a = cos § sin AX éx + sin ¢ e+ cos § cos Ax é® (A9)

The angle X, which determines the direction of ﬁ, may be arbitrarily
specified. It is usually selected so that n is normal to the body surface.
The angles o and § are determined at the shock by the calculated shock
shape, and at the body by the given body shape. At intermediate points
between the body and shock, o and & can be similarly calculated from the
X,r,® coordinates of the mesh points. These coordinates are known for any
specified mesh spacing once the shock position is determined.

It must be noted, however, that & is distinct from the angle § which
is used in the shock conditions developed in appendix B. From figure 21 it
is found that
dr - dx tan ¢

tan § o de

(A10)
or

1l

tan § tan Ar - tan o tan AX

~

When n is chosen to be normal to the body axis, Ax = 0 and § = §.
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Having specified the directions of é,ﬁ,i by equations (A7), (A8), and
(A9), the task of determining e;., appearing in equation (Al), can now be
completed. Equations (A7), (AS),Jand (A9) are more conveniently written with

index notation as

~

z; = vinj (A1D)
where
cos © sin o 0
‘\;‘ ) = -sin A COoS A 0 (AIZ)
1] - .
cos 8§ sin Ax sin 6§ cos § cos Ax

The inverse transformation may be written

X; = vy (A13)

where

1
~
f—

v, . = (v,.
ij ij

Although the matrix inversion can be performed numerically, for this problem
it is more efficient to do the algebra beforehand, once and for all. This is
done by taking scalar products of equation (All) with Xj to obtain terms
like z; + Xy = vy1, z3 * X2 = vip, and so on. On the other hand, the scalar
products of equation (Al3) with 2j give expressions such as

z1 - X1 = vip + vip(E + n) + viz(€ - T)
2, X1 = vii(n ¢ E) + vip + vig(n - D)

and so on. In this way, one obtains nine equations for the nine unknowns

vii. The solution of this set of equations by Cramer's rule can be formally

written as (see, e.g., ref. 18)

- il (A14)

where fZj represents the cofactor matrix of the coefficients of Vij'

[1-(v - 221 [E - D0 - -] [E-nm - D-(E - D]
£,. = £21 [1-(€ - ©)?] [(E - mE - -G - )]
f31 f32 [1-(E - 2]
(A15)
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where

f,. = f

1j jl

and the determinant D is given by
D=1-(-02-(E -mM2-(€-02-2E -ME- D0 -2) (A6)

Equation (Al4) provides the direction cosines between £,n,z and
X,r,® coordinates. The corresponding relationships with s,n,t coordinates
are obtained by use of equations (7}, (8), and (9) which express the stream-

line directions in terms of e €po s and may be written

>

X, = Tij j (A17)
where
cos ¢ cos 6 cos ¢ sin © sin ¢
Tij = -sin 6 cos 6 0 (A18)
-sin ¢ cos 6 -sin ¢ sin 6 cos ©
The substitution of equation (Al3) into (Al7) yields
X, = e %y (A19)
where €11 is obtained from
€y = Tijvjk (A20)

Equation (A20) gives the direction cosines between ¢£,n,z and s,n,t coordi-
nates. The explicit expressions for these direction cosines are involved, so
the final combination of terms indicated by equation (A20) is left for the
computer. The procedure is as follows. The matrix ;ij: defined by (A12), is
calculated with equations (A4), (A5), and (A6). The various scalar products
in equations (Al1l5) and (Al1l6) are calculated from Gij, and the matrix Vij

is then calculated from equation (Al4). Finally, e; 1is determined from
equations (A18) and (A20).

The procedure described applies to general nonorthogonal coordinates
£,n,z. The transformation used in equation (36) is a special case where the
£ direction is the streamline projection s*. In this case, equation (A9) is
replaced by
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~ ~

S*¥ = cos 6 e_ + sin 6 e (A21)
X T
Then the subsequent relations will be modified accordingly and there is

obtained

*

— *
efy = Tijvjk (A22)

which determines the desired transformation relationship indicated by
equation (Al).
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APPENDIX B
SHOCK-BOUNDARY CONDITIONS FOR THREE-DIMENSIONAL FLOW

Consider an elemental portion of the shock surface with an outer unit
normal N, as shown in figure 22, and with unit vectors T and I completing
an orthogonal set. The tangent vector T can be chosen such that the N-T
plane is parallel to the direction of the
free~-stream velocity. This choice will
permit evaluation of the jump conditions
in the N-T plane with two-dimensional
shock relations. Let §_ be a unit vec-
tor parallel to the free-stream velocity
vector and with components

=7 . - .
S S = COs O €y + sin a cos ¢ er
fee)

® =

Figure 22.- Shock-wave normal and tangent

vectors. - sin a sin © éq) (B1)

in a cylindrical coordinate frame. The desired tangent vector T can be

~

constructed from s_ and N by means of two vector- or cross-products. The
first product

~ A~

al. = s x N (B2)

[ee]

i}

produces a vector parallel to L, and the second product
T = fAxL (B3)

results in a vector which is normal to both N and ﬁ, and which lies in the
s.,-N plane. The factor a in equation (B2) is equal to the sine of the
angle between s_ and N and may be evaluated from the scalar product

b=s5 +N-= cos (s_,N) (B4)

oo

to give

a =l - b2 =JJ.— (s - N2 (B5)

Combining equations (B2) and (B3) and expanding the resulting vector triple
product one obtains

T == [RxG_ x 0]
or (B6)
(5. - bN)

-
I}
W
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In terms of components T,, T, and Ty, equation (B6) becomes

N s_ - bN s _ - bN s. -~ bN
A < x x> 8 o+ (L‘__E> & o+ (.‘b___@) 2 (B7)
a X a r a ®

Equation (B7) permits evaluation of the true inclination of the shock surface,
and therefore allows the jump conditions to be determined with standard planar
shock relations (see, e.g., ref. 32). The angle o' between s_and T is

given by

cos o' = §w . %
or
(B8)
| -
cos o' = SxTx + SrTr + SQT@

In the following development o' 1is expressed in terms of two angles
measured in the cylindrical coordinates.

Let o be the angle between ¢&_ and the trace of the shock surface on
the plane ¢ = constant, and let & be the angle between é® and the shock
trace on the plane x = constant as illus-
trated in figure 23. The shock angle & 1s
obtained by numerical differentiation as
described in appendix A (see eq. (Al0) and
fig. 21). It is easily verified that the fol-
lowing relations hold between the angles
shown in figure 23.

NX = —Nm sin ¢ (B9)
&, N =N coso (B10)
. T m
Shock % -
ex N® Nm cos o tan ¢ (B11)

where Ny 1is the projection of N on the
x = Constant @ = Constant . p .
x-r plane and satisfies the relation

Figure 23.- Shock angles.
N2 +NZ?-=1
m ®

Substitution of N® from equation (B11) gives

N o=t (B12)

n .
Jl + cos2 o tan? §
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RS =1

and the shock normal vector may finally be written in terms of o and § as

(-sinoc e+ cos o e_ - cos o tan § e_)
X T 7 9

N = (B13)

Ji + cos? o tan? §

The true shock angle can now be evaluated in terms of o and § by equations
(B1), (B7), (B8), and (B13), and the jump conditions can be calculated.

It is now necessary to determine the flow angles & and ¢ measured
relative to the meridional planes.

The streamline direction, measured in
the N-T plane (fig. 24), is turned from the
free stream by the angle 6,'. Since the
streamline tangent S, lies, by definition, in
the N-T plane, one may write

5, = -sin(o' - 62')N + cos (o' - 62’)%

Figure 24.- Shock and flow angles in the
n-t plane. (B14)

~ ~

Using equations (B7) and (B13), the vectors N and T can be written in terms
of their components to give

S, = (AN + BTx)éx + (AN + BTr)ér + (AN, + BT)&, (B15)
where
A = -sin(o' - 65,'")
B = cos(o' - 65")

~

Equation (7), on the other hand, gives s, in terms of 6 and ¢ as
follows:

§2 = cos ¢o cos 6, éx + COS ¢o sSin By e. sin ¢, e (B16)

®
Thus, by equating components of equations (B15) and (B16) one obtains finally

-sin{o' - 65')N_ + cos(o' - 6,")T
tan © = r L (B17)
-sin(oc' - 92')NX + cos(o' - 62')Tx
and
sin ¢ = -sin{oc' - 62')N® + cos(g' - 62')T¢ (B18)

If for given free-stream conditions, Pos Pos Vs the standard planar shock
conditions are written in the form (see ref. 32):
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p=p(e")
p =p(o") (B19)
8 = 8(c")

then the equations developed in this appendix allow the three-dimensional
shock conditions to be functionally written as

p = p(o;8,9,0) )
o = 0(0;8,0,0)
. (B20)
6 = 6(0;8,0,0)
¢ = ¢(0;8,0,a)

J

This is the form of the shock conditions employed in equation (62).

The overall shock calculation is performed in a straightforward iterative
manner. This procedure is started with known field data, including o and §,
on an initial data surface. A shock point on the new data surface is
determined by the average value of o between the initial and new shock
points,

o = 1/2(0] + 05)

To begin, o, 1is set equal to o; and then subsequent estimates are made
(either by the Newton method or by the bisecting method) until the pressure
from equation (B20) agrees with the pressure calculated from the compatibility
equation (57). During each iteration the current value of o = g, and the
old value of § = 87 are used to determine the true shock angle o' by
equation (B8). The pressure and other variables are then calculated from
equations (B19). When this has been done for all the shock points on the

new data surface, new values for & can be determined by numerical differen-
tiation with respect to & as described in appendix A. The entire process
can then be repeated to refine the results; this is discussed in the section
on Global Iteration.
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APPENDIX C
SURFACE BOUNDARY CONDITIONS FOR BODIES WITHOUT AXIAL SYMMETRY

For noncircular bodies the surface boundary is complicated by the fact
that the surface normal is not in the meridional plane. This means the
boundary condition will involve both flow angles 6 and ¢. (In terms of
velocities, all three components, u, v, w, enter into the conditions since
none of the components are parallel to the body surface.) In this appendix
the boundary condition for 6, which was given previously in equation (6la),
is derived from the tangency condition on the velocity vector.

Let the equation of the body be given by
g(x,r,®) = r - £(x,0) (c1H)
The unit outer normal to the surface may be expressed
N= Y8 (c2)

|vg |

where V is the vector gradient operator. In terms of cylindrical
coordinates, one obtains

(€3)

The derivatives of f 1in equation (C3)
are related to the surface inclination

8 | angles, figure 25, according to
é
ro. of
P /(\\Sx tan GX = <B—)Z) (C4)
) - 4]
!
and
(P constant)
( tant)
x conson N tan s, = = (3%) (c5)
Figure 25.- Surface inclination angles. P r \0d X

From equation (7) the streamline direction is expressed in terms of
flow angles 6 and ¢

S = cos ¢ cos 6 éx + cos ¢ sin © ér + sin ¢ é® (C6)
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The tangency condition, s - N = 0, may now be obtained from the scalar product
of equations (C3) and (C6). This gives

Nx cos ¢ cos O + Nr cos ¢ sin 6 + N® sin ¢ = 0 (c7h)

A

where Ny, N, Ny are the components of N along ey, ér’ é@, and are
identified by equation (C3). Equation (C7) may be written as a quadratic

relation in tan ©

2 N 2 $an2 2 2 _N 2 $an2 4) =
(Nr N® tan4 ¢)tanc 0 + 2NXNr tan 6 + (NX N® tanc ¢) 0 (C8)

The solution is

N N. tan ¢ N_\? N \?
- Nz(—- * ._CD__N_—_ 1 + <N§) - <ﬁi¢_) tanz (1)
Tr

tan 8 = r r r (C9)

[1 - (N/N)? tan® ¢]

Rewriting equation (C9) in terms of the surface inclination angles given
by equations (C4) and (C5), one obtains

tan 6+ tan §_ tan ¢ J1 + tan? &_ - tan?® §&_ tan? ¢)

tan 0 =
(1 - tan? 6® tan? ¢)

where the positive root is chosen so that 6 1is decreased when ¢ < 0 and

6¢ > 0.

Equations (C10), (C4), and (C5) determine the flow angle © in terms of
the crossflow angle ¢ and the body geometry. It is easily verified that
for zero crossflow, ¢ = 0, equation (Cl0) reduces to

tan © = tan §
X

which is the usual condition for circular bodies.
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TABLE I.- EFFECT OF GLOBAL ITERATION ON SHOCK ANGLE
[15° sphere-cone; M = 10, o = 10°, 15 points and 7 planes]

(a) Calculation from x/Ry = 2.0 to x/Ry = 3.0

- .
Iterations

Plane, +—F-—

e, 0 | 1
deg o, deg at x/R, = 3.0

0 29.0763 29.0763

30 27.6271 27.6275

60 23.7124 23,7137 .

90 18.8404 18.8417
120 15.5193 15.5194
150 14.2633 14,2633
180 113.9813 13.9813 |

(b) Calculation from x/R, = 10.0 to x/R, = 11.0

Plane, ~ Iterations |
¢, 0 L
deg ogiéeé‘ét>_;}Rn =.11_;9_4
0 21.2083 21.2083
30 19.5249 19.5273
60 16.1617 16.1651
90 16.0245 16.0260
120 17.4741 17.4756
150 17.4404 17.4407
180“ ] »A71724§}§ o] 17.4415




mE=

e

TABLE II.- ACCURACY AND COMPUTING TIME

[15° sphere-cone; M = 10, o =

(a) Shock angles and surface pressure on ¢ =

Points

5
10
15

Points

10
15

g

19. 3114
18,9847
18.9138

Total
points,
N

90
420

1035

Planes B
K=23 K=5 K =7
8 Py o] 8 pb o I pb
~10.3313|840.42]19.5919]-10.1783]834.02119.2893|-10.3555}| 828.85
-10.3961|861.15(18.9337{-10.5549]849.52(18.9318|-10.5644}849.36
-10.4090|864.56|18.8482{-10.6017!853.39{18.8404|-10.6294|853.44
(b} Computing time
) Planes
K=23 ) K=5 K =7
min time, t{N N nin time, t/N N nin time, t/N
0.36 |0.400x10"2] 150 |0.5710.380x1072] 210 |0.7 ]0.333x10"%
.75 | .179x1072) 700 |[1.17| .167x10°2] 980 |1.70 174x1072
1.35 .130%10-2| 1725 {2.30| .133x1072| 2415 |3.34 138x10~2

10°.

Calculation from x/R, =

90° plane, x/R, = 3

2 to x/Ry = 3.]
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TABLE III.- 15° POINTED CONE SOLUTION

PERFECT GAS

GAS CONSTANT = 0.17160E 04 GAMMA = 0.14000E 01

FREE-STREAM CONDITIONS

M= 0.1D6D0E 02 V= 0.39662€ 04 P= 0.10000€ 01 RHO= 0.100D0E-04 T= 0.58275E 02
EQUISPACED STARTING DATA 131 POINTS 9 PLANES

PLANES EQUALLY SPACED

STARTING DATA NORMAL TO BCDY SURFACE

ANGLE OF ATTACK = 10.00 DEG

CHARACTERISTEC METHOD

IN(21)= D COR, N22 = 0 ITRy, IN{25)= 2 BC, INX{6}= 3 BODY DENSITY
FLI4)= D.1800E 01 STEP SHZE, FL(B}= O0.1002E 01l SMOOTH

PLANE 1 ANGL = 0.00 DEG
LEEWARD PLANE
FIELD DATA
SHOCK ANGLES, DEG SIGMA= 18.51l24 DELTA= -0.000)
X R THBTA PHI L4 RHO

0.98395¢ DD 0.32785E 00 0.2476%E 00 -0.00000£~38 0.27055E 01 0.19796E-04
0.98555k 00 0.32186E 00 0.264%45SE 00 -0.00000E-38 0,27456€ 01 0.,19989E-24
0.98716€ 00 0.31587E 00 0.25107¢ 00 -D.00D00E~38 0.2778lE 01 0.20145E-2¢
0.98876E DO 0.30988E 00 0.25257E 00 -0.00000E~38 0.28047E 01 0.20269E-04
0.99037¢ DO 0.30389€ 00 0.25400E 0D -0.D00QDE-38 0.28266E Ol 0.20366E-04
2.99197¢ 00 D.29790E 90 D0.25543E 00 -0.00000E-38 0.28445E 01 0.20441E-0¢4
0.99358L 00 0.29191E D0 0.25690€ 00 -D.000Q0E~38 D.2858%E 01 0.20505€-04
0.99518E 00 0.28592E 00 0.25844E 00 -D.00000E~38 0.28701E Ol 0.20570E-04
D.9967%E 00 D0.27993E 00 0.25994E 00 -0.00000E£~38 0.28786E D1 0.20640E-04
0.9983% 00 D.27394E 00 0.26L16E 00 -0.0Q0000E~-38 0.28855E 01 0.20706E-04

0.10002€ D1 D.26795€ 00 0.,26180E 00 -D,000DDE-38 0.28922€E 01 0.20762E-34
PLANE 2 ANGL = 22.50 DEG
FIELD DATA
SHDLK ANGLES, DEG SIGMA= 18,5966 DELTA= 1.3917
X R THETA PHI P RHO

0.9833% 00 0.32995E 00 0.24B898BE 00 -0.69236E-01 0.32071€& 01l 0,21986E-04
0.98505E 00 0(.3237SE 00 0.24930E 00 -0.69743E-01 0.31767E Ol 0.21793£-04
0.98671E D7 0.31755E 00 0.24990E 00 -0.70020E-21 0.31529%E 01 O0.21615E-04
0.98837€ 00 0.31135E 00 0.25075€ 00 —0.70021E-31 0.31339E 01 0.21439E-04
0.99033€ 00 0.30515€ 00 0.25182E 00 -D.69673E-01 0.31182E O1 0.21239E-04%
0.9916%E 00 0.2989SE 00 0.25312E 00 -0.688B4E-0L 0.3)1043E 01 0.20962E-04
0.99335€ 00 0.29275E 00 0.25461E 00 -0.56772DE-01 D.30911E 01 0.20447E-0%
0.99501lE 00 0.28655E 00 (.25629E Q0 -0.66943E-01 0.30774E 01 0,.19309E-04
0.99668E 00 0.280356 00 0.25811€ 00 -0.68538E-01 0.30619E 01 0.17025£-04
0.99834€ 00 0.27415E 00 0.2600DE 00 -0.74793E-01 0.30438E 01 0.13579E-04
0.10000€ 01 0.26795E 00 0.26180E 00 -0.85422E-01 0.30238E 01 0.10202E-04

PLANE 3 ANGL = 45.00 DEG
FIELD DATA
SHUCK ANGLES, DEG SIGMA= 18.5775 DELTA= -1.5278
X R THETA PHI P RHO

G.98332E 00 (.33025€ 00 0.25504E Q0 -0.12197E DO D.50977E 01 0.2B462E-D4
0.98497E QF 0.32402E 0D 0.25413FE 00 -0.12138E 00 0.49424E 01 0.27594E-D%
D.98664E 00 0.31779€ 00 0.25357€ 00 -0.12055E 00 0.48026E 01 D0.26739e-04
0.98831€ 00 0.31156E 00 0.25335E 00 -0.11942E Q0 D.46769E 01 0.25879E-D4
0.98%98E 00 0.30533E 00 0.25349E 00 -0.11793E 00 D.45640& 01 0.24991E-04
J.99165E 00 D,29910€ 00 0.25399E 00 -0.116D4E DD 0.4%624F Ol 0.24043E-06
0D.99332€ 0D D.29287E 00 0.254B5E 00 -0.11385E 00 D0.43708E 01 0.22985e-D4
0.95499%c 00 O0.28B664E 00 0.256D8€ 00 -0.11203E Q0 0,42Z875E 01l 0.21705E-04
0.99666E Q0 0.28041E 00 0.25766E 00 -0.311237E 00 O0.42097E 01 0.19913E-04
0.99833E 20 0.27418E 00 0.25959E 00 -0.11741E Q0 0D.41346E 01 0.17061E-24
0.10003E 01 D.26795t 00 0.26180€ 00 ~-0.12786E 00 D.4D623F 01 0.12596E-04

PLANE ® ANGL = 67.50 DEG
FIELD DATA
SHOCK ANGLES, DEG SIGMA= 18.2994 DELTA= ~2.5439
X THETA PHI P RHOD

R
D.98464E 00 0.32526E 00 0.251l40E 00 -0.15815€ D0 0.82016E 01 0.35355£-04
0.98618k 00 0.31953F 00 0.25099€ 00 -0.15560E 00 O0.79933E OL 0.34195E-04
0.98771E 00 D.31380£ 00 0.25086E 00 -0.15280E 00 0.78012E 01l D0.33D49E-D4
0.98925€ 00 ©0.30806E 00 0.25103E 00 -0.14971€ 00 0.76251E 01 D.31909E-04
0.9907%t 00 0.30233E 00 0.25150€ 00 -0.14630E 00 0.74638E 01 0.30759E-04
0.99232 DO D.2966DE 00 0.25228E 00 -0.14252E 00 O0.73160FE 01 0.29566E-04
0.99386& DO 0.29087€ 00 0.25339€ 00 -0.13845E 00 0.71800€ 01 0.28239E-04
0.99539E 00 0.28514E 00 0.25484E 00 -0.13460E 00 0.7T0548E 01 0.26552E-0&
0.99693E 00 D.27941E 00 0.25670E QO -0.13230€ 00 0.6938%E 01 0.24175E-06
0.99846E Q00 [.27368E 00 0.25901E 00 -0.13318E 00 0.68305E Ol 0.21092€-04
0.10000€ 01 D.26795E 00 0.26180E 00 -D.13705E 00 0.672758 01 0.18061E-04

56

H= 0.35000€ 06

H
0.47836E
0.480T74E
0.48267E
0.48432F
0.48577¢€
0.48704E
0.48799E
0.48836EF
0.48813¢€
0.48774¢
0.48757E

H
0.53055€
0.51019E
0.51052E
D.51163E
0.51385E
0.51832€
0.52910E
Q.557B1E
D.62948E
0.78452¢
0.10374E

H
0.626B7E
0.62689E
0.62864E
0a63253E
0.63918€
0.64960E
0.66556E
0.69138€E
D0.73992E
0.84818¢E
0.11287¢

H
0.81193€
0.81815E
D.B82617€
0.83637E
0.84930E
0.86607E
0.88991E
0.92994E
0.10046E
0.11335€
0.13037¢

06
06
Qs
06
[T 3
06
06
06
05
06
07

e
06
06

06
Q6

a6
06
06
o7

v
0.39337E
0.39331€
0.39326E
0.39321F
D.39318E
D.39315¢
0.39312¢
0.39311E
0.39312€
0.39313¢
0.39313¢

v
2.39255E
D.39256EF
0.39255¢
D.39252E
D.39246F
0.39235E
0.39207¢
0.39134E
0.38951F
D.38550E
0.37889E

v
0.38957E
0.38957€
0.38953E
0.38943E
D.38926E
0.38899E
0,.38858€
0.38791€
0.38666E
0.38385F
0.3764TE

v
0.38479E
0.38463E
0.3B442E
0.38416€
0.38382E
0.38338¢
0.38276E
0.38171E
G.37975E
0.37634E
0.37179E

04
04
04
04
04
04
04
04
0%
04
04

+23
D4
24
0%
04
04
04
04
D4
04
04

04
04
04
04
04
(23
04
04
04
04
04

[+13
04
04
‘23
04
Os
04
0%
04
D4
04

HT= D.82152E 07

M
0.89927E
0.89690€
0.89499E
0.89337E
0.89196E
0.89072E
0.88980E
0.88944E
0.88966F
0.83004¢
0.89021E

M
0.B6BOSE
0.86897€
0.86867€
D.86T6TE
0.86567E
D.86168F
0.85225€
0,82848E
0,77623F
0.68817E
0.58817¢

M
0.77738E
0.77797E
0.77680E
0.77420E
0.76983E
D.76311E
0.75311¢
D.T3T64E
0.71073€
0.465900E
0.56028€

M
D.67521¢E
D.67236E
0.66872E
D.66417€
0.65852€
0.65137¢
D.64154F
0.62586€
0.59907¢
D.55892E
0.51485€

01
ol
ot
ot
ol
0i
01
ol
0l
Gl
ol

01
01
01
23
01
01
01
01
0i
0l
01

M*
D2.89927¢
0.89690E
0.89499€
0.89337E
0.89196E
0.89072E
0.88980¢
0.88944E
0.BB966E
J.89004E
0.89021E

m*

0.86659E
0.86689E
0.8665T7E
0.86557E
J.86360¢
3.85966E
0.85032E
0.82665E
D, 77444
3.68629E
J.58609E

M*

0.77230¢
0.77234E
0.77125E
0.76878E
0.76457C
0.75806E
0.74831E
0.7331)¢
J.70633E
0.65456E
2.55585€E

i

0.66697E
J.66440F
0.66109€
0.65690E
J.65164E
0.64491E
D.63554E
J.62034E
0.59398E
J2.55413E
0.51020¢

01
21
1
21
01

Jl
21
o1
1
21
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TABLE III.- 15° POINTED CONE SOLUTION - Concluded

b PLANE 9 ANGL = 90.02 DEG

‘ EIELD DATA

: SHUCK ANGLES, UEG  SIGMA= Lb.01"6  DELTA= —-2.3858

d X R THETA PHI P RHO H v # M*

s 0.78591 33 0.32052E 00 0.24354C 00 -0.17324E G 0.125226 02 0.41104E-24 D.10663E 97 2.37812E 54 35.27d99e 21 J.57°5AE 31

v 0.987326 00 0.31526E D00 0.24160E 90 -D.16915E D0 0.12337€ 02 0.40064E-04 0.10778€ 07 7.37782& 04 0.57542E N1 J.56744E 31
h 0.98873E 20 D.31009E 00 J.24287E 03 -9.16489€ 00 0.12162€ 02 0,39019E-04 DJ.10910F 07 D.37747€ 04 J.57141€ Ol 0.56388E 71
0.39014E 90 0.30475E 00 0.24%433E 09 -0.160642E 30 0.11996€ 02 0.37958E-04 OD.11061E 07 D0.37ID7E D& D.566B7¢ 01l D.55987E 21
i 0.99155€E 00 J,29949E 00 0.24599E€ 0D -0.15575E 50 D0.11838& 02 0.306868E~04 D.11238E 07 D0.37660E 04 J.56169E 21 2.5551°E 31
: J.99296E 00 D.29423E 00 0.24786E 00 -0.15C85E 20 0.11688E 92 0.35739E-24 DJ.11446E 07 9.37605E D& 0.55576E Ol D.54964E Il
§ 0.99436€ 20 D.2889BE 00 D.2459TE 00 -2.14568E 00 0D.11544F 02 0.34566E-04 0.11689E 07 D.37540FE 0% 0.5%4899E 0l J.54336E Dl
3 0.99577c 00 O0.2B372E J0 0.25235€ 00 -0.14026E D0 D.11408E 02 0.33317E-04 D0.11984E 07 D.37461& D4 D.54127E 0! 9.53593E 31
0.99718E 30 0Q.27846E 20 0.25506€ 00 -0.13503E 00 0.11277E 02 O.3)777E-)4 D.12421E 07 7.37345E 0¢ 0.52981€ Ol 0.52515%€ Il
0.99859E N0 0.27321E 20 0.25818E 00 -0.13121E 20 O0.11151E 02 0.29391E-D34 0.13279 07 N.37114E 94 0.95%924E 71 0.50522€ Il
0.10032E 91 D.2679S5E J0 0.26180t JI2 -D.12965E 22 DJ.11930E 02 0.25711E~04 0.15015E 07 0O.36643E 04 0.47282€ 0l 0.46923E Il

PLANE 6 ANGL =112,50 DEG
FIELD vATA
SHOCK ANGLES, DEG SIGMA= 1T7.7465 DELTA= ~-1.9369

x R THET A PHI P RHO H M m*

v
0.98712E 00 0.31577E 20 0.22634E 00 =7.1627T3E 33 J.17628E 22 D.45187€E-24 0.13654E 07 0.3TID13E 24 0.50083E 0l 2.49448c I
0.98847E 2O 2.31099E 00 0DJ.22929E 00 -0.15826E D0 0.17593E 02 D0.4463TE-D4 D0.13795E 07 0.36975€ 04 D.49776E 01 D.49177€ Ol
0.98%75¢ A0 0.30620E 00 0.23230E 00 ~0.153659E 00 0.17547€ 02 0.44049E-24 0.13942¢ 07 0.36935E 04 0.49459€ 01 D.48898F )JI
0.99103k 00 0.30142E 00 0.23539E 00 -0.14886E& 00 J.17492E 02 0.43428E-04 0.14097E 07 J.36893€ D& 0.49130F 01l 2.486D7E 11
7.99231E IO 0.29664E 00 0.23860E 00 -2.16386E 00 D.1T431E D2 N.427T4E-D4 Q.14263E 07 0.36848E 04 03.48784¢ 21 0.48320E 21
0.99359%E 00 D0.291B6E 00 0.24193E 03 -0.13859E 00 2.17363E 02 D.42076E-04 0.14443E 07 036799t D& 0.48415€ 01 0.47973€ 01
0.99487¢ 20 0.28708€ 00 0.24543E 00 -0.13299E 00 O0.17288E 22 D.41296E-D& 0.14653E 07 0.36742E 04 J.47993E 0L J.47586E Il
U.99616& 20 0.28229t 20 0.24913E 00 -J.12706E DO D.17210FE 02 D0D.40302E-D4 0.14946E 07 0.36662E D4 0D.47416€ 31 2.47253c )1
0.99744€ QO 0.27751E N0 0D.25305E 00 -N.120395€ 00 D,17127E D02 0.3d857€-04 0.15427€ 37 D.36531E 04 0.46503E CL 0.46179E J1L
©.99872r X0 D.,27273t 00 0.25724F 20 -0.11478E 00 O0.17238F 02 0.36921E-04 0.16151€ 07 0.36332€ 04 0.45222€ 01 D.44919€ 91
0.10022e Ol 0.2679%E 00 0.26180L 73 -0.10845F 20 J.16937E 02 0.34927€-74 J.16973E J7 3.36105t 04 3.43819€ 11 J.43575% 1}

PLANE 7 ANGL =135.00 DEG
FIELD DATA
SHUCK ANGLES, DtG SIGMA= 17,5849 LELTA= -1.1334
X R THETA PHI P RHO H v M M*

J.98792E J0 0.31302E D50 0.212R4E 03 -0.12801E 00 0.2260B8t 02 0.47766E-04 0.16566k 07 0.36218t 06 0.46492€ 21 DJ.44147E 51
0.98913L 00 J,30852¢ 00 D.21758t 920 ~-0.12421F U0 DJ,22765E 02 D.47737E-04 D.16691E 07 2.36183k 24 D.44283E J1 D.43958F Il
3.99034k 30 D.30401E 00 2.22229E 0D -0.12027F U0 0.22893E 02 0.47652E-D4 0.16814E 27 7.36L49F 24 0.4427BE Ol J1.43775%: 91
0.99154F 02 0.29950& 20 0.22700E 0D -D.11617F 20 J.22995F 22 0.47512E-24 J.16939E &7 N.36L14E J4 C.43874t Gl 0.43592¢ 31
0.59275E 30 0.2%4%9E 00 0.23172E 00 -0.11187¢ GO0 0.23273f 02 0.47316E-04 0.17067¢ 7 0.36J79E 04 J.43666& Ol J.434706E J1
0.99396L 00 0.29049C 00 0.23649c 00 -0.10735E J0 0.23129E 02 0.47062E-24 0.17201E D27 ".36J428 04 0.43451F 01 2.43214€ )J1
0.99517E 30 9.28598F 00 0.24132E 00 -D.10253F 00 2.23165E 02 92.46751E-04 w.17342E 07 2.36203k 04 0.,43227F 0L J.43711€ )1
D.79638E 20 0.28147€ J0 02.24623E 3D -N.97272E-UL1 0.23179& 02 0.46387E-04 0.17489E 47 04359628 J4 3.42996F 21 J.42873¢ 91
0.99758t 20 0.27696k 00 D2.25126E 00 -0.91283E-01 0.231728 02 0.4%929&-04 0.17666E 07 2.35313E 34 D.62722¢ Gl J.4255%%t Jl1
0.9987%L 3> 0.27246FE 00 0.25644E 00 -0.84510E£-01 0.23144E 22 2.45049E-D4 O.1798B1E 07 0.35B25€ 24 0.42242E 41 DJ.4213%E D1
0.17020t 0! 0.26795E 00 0.26180E 0% -2.77380E-01 J.23097E 02 0.43589E-34 0.18546E 27 0.356678 U4 N.61411€ 21 J.al224t D1

3

PLANE g ANGL =157.50 DkG
F1ELD DATA
SHUCK ANGLES . DEG SIGHMA= 1T7.4726 DELTA= =7.6073
X R THETA PHI P RHO H v M M*

0.98845E 00 0.31105E 00 0.20345E 00 -D.70028E-U1 0.26303FE 02 0.49165E-D4 0.18725t 07 3.35617E 04 0.41154F 21 2.41059: J1
Q.98%62E I 0.30674E 00 ©.20951t 87 ~2.6785TE-31 3.266“\& 32 D.6995328-34 O0.18B25%E 37 0.35589k 04  F.41212F Gl J.40923:c 1
0.%9276E 00 0.3D243E 20 (0.215645F 03 -0.65606E-31 0.26935¢ 02 0.49837E-34 0.18916k C7 0.35563F 04 0.40884g 01 D.40871¢ Ot
0.99191c¢ 00 D0,29812t 00 0.22131t 0D -0.632676-01 0.27189€ 02 2.50083t-D¢ 0.19023k C7 D.35539¢ 04 D3.40766E Il 5.40689E Il
0.99397¢ Or 0.29381E DO 0.227128 00 -2.60827t~01 0.27404F D2 0.50272€-04 0.19079F 07 1.35517¢ D4 DJ.40656E Il  N.4I585E )1
3.99422¢ 20 02.28950€ D20 2.2329%E 00 -0.58263E-01 0.27584t 02 0.50434t-04 0.19154F 07 0.35496E 04 0.40553FE Ol DJ.4d488t& Il
0.99538¢ 00 0.285193t OO0 0.23868t 20 -0.55927E-01 0.27728E 02 0.50474E8-D4 0.19227€ 07 0.35475€ 04 0.40452€ Ol DJ.43374t O1
0.99653t 20 0.28388f 00 0.24445E 20 -0.525641E-01 0.27837€ 22 0.504628-04 J.19337E C7 J.354%93k 04 3.40342€ 21 2.4729%c 11
0.997690 30 D2.27657€ 20 0.2502%E 00 -D.49196E-01 D.27912E 02 0.50334E-04 0.19409F 07 0.35424E D4 0.40224E 21 J.40158t Il
0.978%4E 92 D.27226E 00 0.25601t 02 -0.45313€-01 DJ.27955€ 02 0.50129E-24 0.19518f 07 0.35393E 04 0.43056€ 01 J.49718E J1
0.10000€ 01 D0.26795¢ 00 (©U.26180E 00 -D2.40884E-01 J.27959t D2 0.49963E-04 0.19586F 07 0.35374t 04 J3.39965t Cl  J.39934t Dl

PLANE 9 ANGL =180.0D0 DEG
FLELD DATA
St K ANGLES, DEG  SIGMA= 17.4467 DELTA= 0.9000
X 3 THETA PHI P RHO H v [ M *

0.98854E 90 0.31070E Q0 0.20J719E OD -J.58750E-09 0.27683E 02 0.49609E-04 0.19531t 07 2.35390E T4 D.40339€ 01 2.40239¢ J1
0.98%6% 00 D.30643E 00 C.20b66E 00 -0.57174E-09 0.280287¢ 02 0.50114E-04 0.19617E 07 D2.35365& 04 2.39924E 31 J.3%924& Il
0.99083€ 0 0.30215E 00 0.21300f N0 ~0.55485E~09 DJ.28444E 02 0.50556E-D& 0.19692E C7 D.35344E d4 0.39824E 01 D2.39824E 91
0.99198E 20 0.29788E DO 0.21923E 0D -D0.53696E-09 D.28756F 02 0.50942€-D4 DJ.19758BE 77 2.35325t D4  0.39737€ 1 D.33737€ I
D.99313E 0O 0.2935)E 20 0.22538E 00 ~0.51904E-09 0.29025E 02 0.51206£~04 0.19816E C7 D.35309¢ ‘4 D.39660€ 01 D.39667E J1
Te99427€ 27 0.28933¢ 00 0.23149E J0 -0.50234E-09 0,29252€ 02 0.515356-04 0Q.19B&7€ 37 7.35295c 0& D.39593F A1  2.335938 <1
0.99542E J0 0.28505E 00 0.23756E Q0 -0.48757E-09 2.29439E 02 D.5L743E-04 0.19913E 07 2.35281E€ 94 0.39531F C1 DJ.39531€ 21
0.99656€ J0 D.2B8078E 00 0.24361E 90 -D.47286E-09 0.29587E 02 0.518B6E-04 0.199%8F 07 9.35269E 24 92,39473E 01 J.39473E D1
D.99771E 00 D.27650E 00 0.24967€ 00 ~03.45122E-09 0.29694E 02 D0.51983E-04 0.19993E 07 0.35259¢ 04 D.39427& 0L 0.39427¢ 01
0.99885E OO 0.27222E 00 0.25574E 00 -0.4159BE~09 0.29762E 02 0.521206-24 0.19994E 07 2.35259c U4 3.39426E 01 J.39426E 91
0.12002€ 01 D0.26795E 0 0.26180E 00 -0.37021£-09 D.29793E D2 0.52282E-24 0.19945E 07 2.35272t 04 O5.3949CE 01 7.39492E )1

THETA s0DY =D.261799%E 00
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