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Abstract

The author's model for anisotropic solar cosmic ray propagation

gives 2 coupled, partial differential equations for the intensity and

anisotropy of solar cosmic rays propagating with finite speed V in

an inhomogeneous medium. The model is used to study the effect of

the solar shell on solar cosmic ray propagation. It predicts an

exponential decay, regardless of the observer's position. It predicts

that when the observer is near the center of the shell, tD /to-20 to

30,(tD=de(:ay time, t o=onset time) and 1- 15%, of tm/t o;=3 to 5

(tm time :)f maximum), consistent with observations of relativistic

particles or, Feb. 23, 1956. When the observer is between the shell

and the sun, the model predicts that oscillations might be observed

near maximum intensity. When the observer moves away from the sun

and the shell, the propagation is diffusive, but there is an increasingly

large presistent anisotropy which serves as a measure of the width

of the shell.
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I. Introduction

In a com;)anion paper, Burlaga (1969) presented a simple,

phenomenological, 1-dimensional model for anisotropic solar cosmic

ray propagation. This was used to study the general effects of a

diffusing region near the sun. In the present paper the mathematical

model is discussed further with emphasis on the limiting results for

a continuous medium, and it is applied to examine qualitatively some

basic effects of the diffusing region (solar shell) which is believed

to extend from somewhere near the earth to a few or several AU.

(Meyer, Parker and Simpson, 1956; Farker, 1963; McCracken et al.,

1967; Fan et al., 1968; Lanzerotti, 1969; Burlaga, 1967). Whereas

most of the earlier work emphasized the characteristics of the total

cosmic ray flux (I) measured at 1 AU, the present work examines some

of the qualitative results that might be seen by detectors which

measure the anisotropy and intensity of solar particle fluxes over a

wide range of distances from the sun.
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I
II. The Model

-	 Basic Equations. The model is as described in detail by Burlaga

(1969). We consider propagation in a 1-dimensional, semi-infinite
F

medium with a source at xL=O. The medium is represented by ar. infinite

number of point scattering centers which are equally spaced with

separation X and extend from the source to infinity. The basic

equations are

fL+?, T+1 - PL fL,T + (1-PL)f L,T

f	 = (i-P )f	 + P f+
L-1, T+1	 L L,T	 L L;i

where 
f+L,T 

is the probability that a particle is moving away from

the source after a collision at L-1, T-1 and is just approaching

point L after T-1 collisions, 
f-L'T 

is the corresponding probability that

a particle is moving toward the source, and P L is the probability

that a particle will be reflected when is encounters a scattering

center at 
XL -

The Equations in the Limit of a Continuous Medium. Consider

the limiting form of (1) when A—O. Since X = VT, where T is the

time between successive collisions and V is the particle speed, the

•	 limit X-0 implies that T—O. In this limit we can write f+L+1, T+1

f+ (rL +VT, tT+T) which can be expanded in a Taylor's series to give

(1)

r
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f- 	- f-(x, ,t	 + a f± (x	 t Vi + of ( , t )

	

L+1, T+1	 T)	
ax	

L	 T)	
at	

XL 	 T

Putting this into (1), rearranging terms, and introducing the finite

variable

2
D(x) = TV	 = `.V

2P(x)	 2P(x)

gives

a f+ + V 3f + = V 2	 ( f - f+)
at	 dx	 5(x)

of _ V df = V 2	 (f+ - f )

at	 2x	 2D(x)

Note that in the limit 7-•0, P(x) is on the order of	
2

since V and

D(x) remain finite. Thus, in the process of taking the limit, D(x)

has replaced P(x) as the basic function characterising the inhomogeneity

of the medium. Adding and subtracting (3) gives the following equations:

aI+aJ = 0
of ax

(4)
J = - D(x) oI - D(x	 aJ

ax V	 2t

where I = f++f	 (S)

and	 J = ( f+ -f - )v	 ( 6)

Clearly, I is proportional to the total flux and J is proportional

tc the net flux. From (4) one can show that

^i	 D	 _ a	 '.I	 1 ^J	 aD x
at + V	 at	 ax 

[D(x) 
ax^ - 	3t ' ax	 (7)

aJ + D( x) 	 _ D(x) a 1 = 0	 (8)
at	 v	 dt	 ax

In the limit V— , (7) reduces to the familiar equation for diffusion

in an inhomogeneous medium. In the case D = constant, (7) and (8)'

(2)
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reduce to the equations tha t Axford (1965) derived for anisotropic

propagation in a homogeneous medium. When D = constant, (3) are

identical to the equations which Fisk and Axford (1969) derived from

the Boltzman equation for bi-directional scattering with P(x) = 0.5.

The solutions of (7) and (8) with D = const. cannot give large anisotropies

except at early times, as Fisk and Axford have noted. This is because

there are scattering centers everywhere which always tend to reduce

the anisotropy.

Although it is customary to use solutions of the differential

equations to test the theory, it is worth noting that the basic

physics of the problem is contained in the expression for J in (4).

It would be worth testing this directly, since it does not inv,lve

initial conditions, boundary conditions or assumptions abc • ut D(x),

and it gives a value of D(x) at the observation point which could be

compared with the value computed from the power spectrum of the

magnetic field.

Numerical solutions of general equations for a homogeneous medium.

Although P = constant is not very realistic for the interplanetary

medium, it is worthwhile to consider solutions for this case because

it is the simplest case and thus t-asic for an understanding of the

model.

When P = . 5 the model reduces to the elementary random walk problem

(Chandrasekhar, 1943). In this case one finds from numerical computations

that

I = 2 ,1 —,7T exp(-Lo
2
/2T)	 (9)

where Lo is the number of scattering centers between the source and the

observer and T is the total number of collisions that each particle has

44
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experienced. This formula is valid only in the diffusion limit,

Lo <T and T large. In practice this is a remarkably good approximation,

as Lord Rayleigh (1919) has noted, and valid shortly after particles

first arrive at L . An improvement is obtained by using the solution
v

of the telegraph equation (Axford, 1965), but for a homogeneous

medium the principle difference between this solution and (9) is that

the telegraph equation gives I=0 when T<Lo.

When P<.5 we find that an equation like (9) describes the results

obtained from the model in Section II, as long as P and L C are not

too small. In particular,it is found that
1.0

-.2—rT
I = 2' 2	 e	 T> 1.2 L o	(10)

rrT

where

r = (1-P)/P,

and

A =- J /I = V I'm 1 , T >> Tm .	 ( 11)
2P To T

Here Tm is the number of steps corresponding to the maximum of I, and

:o  = Lo is the number of steps between, the source and the observer.

Thus, apart from a constant multiplier, the intensity-time profile in

a medium with P < .5 and a given X is equivale7- to propagation in a

medium with P=.5 and X' = rn. Axford (private communication) has

pointed out that a similar result was obtained analytically by Goldstein

( 1951) for P=constant.

To transform the above results to 	 dimensional form, let

x=L,k , t=TT , and

D = rnV	 (12)
2

J
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Then	 x 2

I _ 2	 4D
N=^ - Yr7D t 	 (13)

and

D tm 1

A = PrVx	 t	 (14)
0

In the diffusion limit k-0, v— , P-0, and Pr-1; thus, with the

2
relation t m = x0 /(2D), one obtains

A = xo = - D dN	 (15)
2V t	 N 3x

Equations (13) aced (15) are the usual result 3 for diffusion in

1-dimension.
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III. Solar Shell

The solar shell is the cosmic ray diffusion region in the

vicinity of the earth. A thorou gh mathematical study of the shell

requires a knowledge of P(x), inclusion of the effects of the solar

env%lope, and consideration of both parallel and transverse diffusion

(Burlaga, 1967, Bukata et al., 1969). Such an investigation involves

several parameters which are not knounexperimentally, so a parameter

study at this Lime is neither practical nor illuminating. Our approach

will therefore be to study an idealized model which contains what we

consider to be essential features of the real situation. The aim is

to obtain a qualitative understanding of the effects of a shell which

might be obscrved by spacecraft near and far removed from the earth's

orbit. When more measurements are available, particularly measurements

concerning P(x) (actually D(x)) which can be obtained by deep space

probes, it will be meaningful to apply the model to fit actual

observations in detail.

We consider one-dimensional propagation as described in Section II.

This will be a reasonable approximation if the flare is near a

magnetic field line which passes through the observation point. Recent

calculatiut,s of the diffusion constant based on magnetic field observations

suggest that diffusion is essentially 1-dimensional near 1 AU, (contrary

to the assumption of Burlaga (1967)), but *transverse diffusion may

still occur in tha envelope and give rise to East-West effects i.n

essentially the same way as calculated by Burlaga). It is well known

that the effect of additional degrees of freedom in diffusive

propagation is manifesL^d by a power-law dependence in time. For

example, the Green's function for 1-dimensional diffusion is
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proportional to t l-exp(-x2 /4Dt) while for 3-dimensional diffusion it

is proportional to t -3 2exp(-x
2
/4Dt). Thus, the important qualitative

features of the propagation will not be lost ay considering 1-dimensional

propagation.

As in previous work (Burlaga 1967, 1969), we shall assume an

instantaneous point source and a non-absorbing boundary at the

sun. We shall assume that the sun's surface refle ,_ts particles,

but replacing the sun. by interplanetary scattering centc_s would not

qualitatively change the intensity-time profiles. To avoid specifying

parameters characterizing the solar envelope, we shall neglect the

envelope altogether. ,.ow, it is known that the envelope tends to

store particles and thus acts as a modified source (Burlaga, 1969;

Shishov, 1966). For the >1 by particles on Ma y 4, 1960 the characteristic

"injection time" fnr this source was t i:-15 mill. Fcr the muc:t lower

energv p articles on `3arch 24 ; 1966, the sage type of analysis gives an

injection time t1 60 mil:. When the characteristic times of the observea

intensity-time profiles are much greater than t;, o-ie can assume an

instantaneous source with little error. When the characteristic

times approach t,
1 
the "snanothing" effects of the envelope will be

seen, and when the characteristic times are >t 	 the approximation isi.

invalid.

The geometry of the solar shell is poorly unders~co . At *_imes

there seems to be little scat-*_ering between the sour envelope and

the earth ( McCracken :t aL,1967; McCracken, 1962) and iii general the

diffusion seems to ceas-_ beyond ---2 AU (&.rlaga 1960. As a zerot',

approximation to ?(x) we shall take C_'exu(-(L-Ls)/Lw) 	 The essurption of

symmetry is =.ntroduced solely for simplicity and has no basis in
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observational facts. This is a point which must be examined by deep-

space probes. The shell is centered at L s and contains —2Lw effective

scattering centers. The characteristic diffusing length is determined

by putting the observer at Lo . (Note that Lo is now independent of

the solar envelope). For simplicity, we set C=.5. Equivalant

qualitative results could be obtained for smaller C by increasing Lo

and Lw , but the case C=.5 will serve to reveal the basic features of the

propagation.

With the above approximations, the model is rather simple. The

results will n ,w be discussed for three different cases: LL
s	 o

L s L 	 L > L
U

Lo = L s . First consider Lo = I. 5 , corresponding to an observer

in the middle of the shell. A typical intensity-time profile is shown

in Figure 1, which gives the solution for Lo=20, L S =20 and Lw=10.

The sunward flux rises gradually, reaches a maximum at T_
u , and tlieni

decays exponentially with an e-Colding time T D . The anti-sun flux does

the same, with the sane TD but a larger Tm . The results can be summarized

by the parameters T M/To , TD/To, Ant and A,,, where T o is the onset

if
	 (the number of steps required to reach L o

	 m
), A is the anisotropy

at the time of maximum intensity of the total flux, and A o, is the

anisotropy at eery large T. Here anisotropy is defined by the equation

A -7 
f+ - f
f+ + f -

Several models were examined, with Lo=10, 20, 40, and L
w 

ranging from

3.33 to 40. It was found that the parameters describing the intensity-

time profiles are determined primarily by L 
w

. Figure 2 shows

T /To , TD /To , and Am -1	 versus Lw for the various cases. NoteM
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the linear relationshi p s. Also note that I-V determines each of the

3 observable quantities. Conversely, measuring these 3 quantities

provides a strong test of the applicability of the model since they

must all be related as required by the inferred L w . For example,

TD /To = 15 implies that Lw = 10 which in turn implies that Tm/To=5.5,

and A ^30% .
m

When the shell is very thin (L w<5) the profile is similar to that

in Figure 1, except that there is a "precursor". This is caused by

the relatively large number of particles which arrive at T o without

scattering because of the small Lw.

OLservations of relativistic solar particles on Feb. 23, 1956,

reported by Meyer et al. (1956), show an intensity-time profile which

is similar to tnose in Figure 1 and a rapid approach to anisotropy

as implied by the model for L o=L 
s

. Furthermore the flare was nLar

the base of the field line passing through the earth (Burlaga, 1967),

and the smallest characteristic time, tm 130 min, was much larger

than the time of escape from the envelope (15 min) for similar particles

on May 4, 1960, so one might expect the above model to apply. Table 1

shows tm/t0 and tD/t0 for particles monitored at Ottawa (>1 bv),

Chicago (>1.9 bv) and Wellington (>3.4 bv). The values of t  and t 

are from Webber (1964) and the values of t
0 

are rectilinear propagation

times to earth for protons of the indicated rigidities. For the given

tm/to one can find the L
w

from Figure 2 and then a predicted tD /t o,

and Am . Table 1 shows that the observed and predicted values of

tD /t0 are in reasonable agreement. (Exact agreement would be

coincidental because of the assumptions in the model). The quantity

J



- 12 -

A
m 
was not measured directly, but the values shown in Table 1

are consistent with the observed rapid approach to near isot- oy

(Meyer et al. 1956, Lust and Simpson, 1957). Thus, the observations

suggest that the middle of the solar shell was near the earth on

Feb. 23, 1956.

L o < Ls.

Now c3nsider the case of an observer -.•jho is between the =>>n and

the center of the shell. Figure 3 shows f+, f - , and A versus T for

Lw=20 and L s=30. This illustrates the general case which shows a

strong beam of particles arriving at To

region. Particles are reflected from t

sun were they are again reflected. The

observes a damped train of oscillations

and moving toward the scattering

he shell and move toward the

process continues so that one

in f+ and f which are out of

phase such that the anisotropy also fluctuates. t.t lzte times the

decay is exponential and the anisotropy tends to zero. The deca y time

is much larger than in the case L o=Ls , and it depends appreciably on

L as well as L . This is shown in Table 2.
s	 w

The'period'of the oscillations is essentially constant. It

equals 2(L s- -, w ) when L w <<C and is somewhat smaller for larger L 
W,

The damping is simply the result of diffusion. Thus a thicker shell

gives smaller amplitude oscillations and the amplitude of the oscillations

is smaller when the observer is closer to the center of the shell.

As one would expect, the oscillations are found to be very small when

Lo Lw ; in this case the shell extends to the sun and particles

diffuse everywiere.
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In order to observe these oscillations their period, which is

approximatel y twice the time required for a particle to move from the

sun to the shell, must be larger than the time for particles to escape

from the envelope. If the shell center were at —2 AU the period would

be -45 min. for 1 by particles so one might expect to see the oscillations

at the earth. Even if the shell were centered at ^-1 AU, the period

would be ^-12 min. which is probably comparable to the ejection time

for the envelope, and weak oscillations might be seen by instruments

movin; close to the sun. The real beam is not mono-energetic, as

assumed in the model, and there will be complications arising from

pitch angle scattering, mirroring, patches of turbulence, etc. All

of these effects tend to damp the oscillations, so one cannot say

from our model that the oscillations will be seen, only that they

mi<ht be seen. If they are seen they can be used to probe the shell.

Oscillations in solar cosmic ray fluxes have been observed (see

the review by Williams, 1969), but they are usually non-dispersive

or have the 'wrong' period. (It is conceivable that the period could

be velocity independent if the characteristics of the shell were

appropriately velocity dependent, but this would require a special

coincidence.) McCracken (1962) has reported particularly interesting

observations of relativistic particles on Nov. 12, 1960 from several

stations which view in various directions. Fluctuations in intensity,

which could be interpreted as oscillations with a period —20 min were

observed at 2 stations which looked toward the sun, but the anti-sun

flux d o es not show oscillations with the proper phase. The very large

anisotropies for the first 30 min. sug gest that particles were stored

for nearly this time in the envelope, which would also argue against
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the detection of 20 min. oscillations. Thus, there is as yet no

convincing evidence for the oscillations predicted by the model.

However . t he shell is probably near the earth and, as noted above, this

situation is not ideal for detecting the oscillations. They are more

likely to be seen by instruments at —.5 AU. Relatively long decay

times are likel y to be observed at such distances even if the oscillations

are not seen.

Lo > Ls.

Finally, consider an observer who is beyond the center of the

n
shell. Models with Lo=L s+Lw , where Lo=10, 20, 40 and Lw=L

0 
/2 show

that f+ and  f rise gradually to a maximum and then decline exponentially.

A typical profile is shown in Figure 4. Figure 5 shows that the 	 4J4

ratio Tm/To varies linearly with L  in essentially the same way as

shown in Figure 2 for L o=Lw . However, the decay time is much larger	 z,

when L 
J
=L s + Lo /2 than when L o=L y , and it depends on L s as well as

Lw . The anisotropy is large, ranging from 30i; when. Lw=20 to 80%

when	 =3.3, and ES=A . Figure 5 shows that A varies linearly withlta	 m
i

Lw . When Lo=L s + aLw where a>l, the anisotropy increases because

there is less backscattering beyond the observer.

The observations at ? AU never snow a large anisotropy at late

times, although small anisotropies have been observed (McCracken et

al. 1967), and aLtributed to effects other than geometry. However, when

instruments are carried toward the outer planets, large anisotropies

at late times and large decay times should be observed. Clearly,
i

measurements of the anisotropy would provide a means of determining

the relative position of the shell and are thus highly recommended.
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TABLE 1, Parameters for the February 23, 1956, Event

tm/t o	 LW tD/to cD/to(th_) Am(th.)

1	 by 	5.2	 10.5 21 27 —15%

1.9	 by 	4.4	 9.3 21 24 15%

3.4 by	3.8	 8.5 15 22 15



- 17 -

TABLE 2.	 Decay 'time' versus L W and L s for L s < Lo

i

L Lw s 1,D

3.33 13.33 130

16.33 165

20 200

5 20 210

30 285

40 260

10 30 805

40 1095

50 1390

20 40 2020

60 3140

80 4280

100 4635

40 80 5680

120_ 7,785

160 9200
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FIGURE CAPTIONS

Figure	 1. 'Intensity-time'	 profi?es	 for	 'sunward'	 (+)	 and

'anti-sun'	 ( -)'fluxes' for an observer at 	 the center of a

shell who-! thickness is comparable to the distance

between its	 center and	 the sot+rce.	 Specifically,

f(L,T)	 is the probably of finding a particle at the

L th scattering center from the source after it has

made T collisions.	 Note the gradual rise to maximum,

the exponential decay, and the small persistent

anisotropy at late times. 	 The anisotropy is shown

at the bottom of the figure.

Figure 2. For events with L o=Lw , such as that in Figure 1,

-1
T /T , T /T	 and Am

	determined primarily by L
m	 o	 D	 o	 m	 w

and vary with Lw as shown here.	 The subscripts m,

D and zero refer to the times of maximum, decay, and

onset,	 respectively.

Figure 3. When the observer is between the shell and the source,

the model predicts oscillations in the fluxes and

anisotropy,	 as	 illustrated here. 	 Note that the shell

has the same thickness and the observer is at the

same position as the case in Figure 1, but the shell

is farther removed from the source.

Figure 4. When the observer is beyond the shell,	 the	 'intensity-

time'	 proiiles are	 'diffusive', but a large anisotropy

is predicted dur; g the decay because there is little
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backscattering beyond the shell.

Figure 5.	 When the observer is beyond the shell, T /T
o 

and
m 

the anisotropy at maximum intensity and during the decay

are linearly related to Lw as shown here.

r
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