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Abstract 

A general-purpose digital computer program (named ELAS) for the in-core 
solution of linear equilibrium problems of structural mechanics is described for 
potential and actual users in Volume I of this report, and is documented in 
Volume 11. The program requires minimum input for the description of the 
problem. The solution is obtained by means of the displacement method and 
the finite element technique. Almost any geometry and structure may be handled 
because of the availability of lineal, triangular, quadrilateral, tetrahedral, hexahe- 
dral, conical, triangular torus, and quadrilateral torus elements. The assumption 
of piecewise linear deflection distribution insures monotonic convergence of the 
deflections from the stiffer side with decreasing mesh size. The stresses are pro- 
vided by the best-fit strain tensors in the least-squares sense at the mesh points 
where the deflections are given. The selection of local coordinate systems when- 
ever necessary is automatic. The core memory is efficiently used by means of 
dynamic memory allocation, an optional mesh-point relabelling scheme, imposi- 
tion of the boundary conditions during the assembly time, and the straight-line 
storage of the rows of the stiffness matrix within variable bandwidth and the 
main diagonal. The number of unsuppressed degrees of freedom that can be 
handled in a given problem is 500 to 600 for a typical structure, but might far 
exceed these average values for special types of problems; the execution time 
of such problems is about four minutes in 32K IBM 7094 Model I machines. The 
program is written in FORTRAN I1 language. The source deck consists of about 
8000 cards and the object deck contains about 1400 binary cards. The physical 
program (standard ELAS) is available from COSMIC, the agency for the dis- 
tribution of NASA computer programs. 
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I .  Introduction 

Volume I, User’s Manual, of this report gives a general 
description of ELAS,* a general-purpose digital computer 
program for the in-core solution of linear equilibrium 
problems of structural mechanics, and contains the infor- 
mation necessary for input preparation, arrangement of 
the physical program, and interpretation of output and 
error messages. 

Volume 11, Documentation of the Program, is published 
in two parts: the present volume-the basic Volume II- 
which gives the theoretical background of the program 
and contains tables and figures describing the COMMON 
variables, their meanings, and their arrangement in 
COMMON; and an Addendum to Volume 11, which 

*First two syllables of the word Elasticity. 

contains program descriptions, flowcharts, and source 
program listings for all program elements of ELAS/Level 
3. (The original version of the ELAS program made 
available from COSMIC** in April 1968 is designated 
ELAS/Level 0. Subsequent program corrections made in 
January 1969, March 1969, and May 1969 updated the 
program to ELAS/Level 1, ELAS/Level 2, and ELAS/ 
Level 3, respectively.) 

In addition to the list of references cited in the text, 
a list of documented works related with the development 
of the ELAS program is given in the bibliography. A 
corrigenda for Volume I is given in the Appendix. 

**computer Software Management and Information Center, Com- 
puter Center, University of Georgia, Athens, Georgia, 30601, 
telephone 404-542-3265. 
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I I .  Theoretical Background 

This section summarizes the mathematical formulation, 
the numerical method of solution, and the design features 
of the program. 

A. Mathematical Formulation 

Let V denote the material volume of the structure 
within the closed boundary S. Let xa, (Y = 1,2,3, denote 
a fixed right-handed Cartesian coordinate system. The 
Greek subscripts always refer to these axes; therefore, uop 
is the stress tensor described in such a coordinate system. 
Let ua denote the displacement vector; pa the body force; 
m the unit mass; double dots above, the second time de- 
rivative; and comma in the subscript the partial differen- 
tiation with respect to the space variable represented or 
implied by the subscript following the comma. If it is 
assumed that repeated subscripts imply summation over 
the range, the equilibrium of any particle within V may 
be expressed as 

N .. 
upa,g + p a =  mua 

In the equilibrium problems, the loading is such that 

u a  = 0 (2) 

Therefore, substitution of ua from Eq. (2) into Eq. (1) 
yields 

spa,@ 4- p a  = 0 in V (3) 

Let S’ denote the portion of S where the tractions are 
prescribed. The equilibrium condition on S’ is 

where no is the unit normal vector and pa is the prescribed 
traction. The stress-strain relationship of the material is 

where qa is the prescribed strain tensor, cy6 is the strain 
tensor, and Dapy, is the material matrix, which is positive- 
definite and symmetrical, so that 

The strain displacement relationships are 
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Finally, the displacement boundary conditions may be 
stated as 

u, = u; on S" (7) 

where u; denotes the prescribed displacements on S". 
It should be noted that 

In an equilibrium problem, usually V ,  S', S", p,, U$ F,, 
D,pyb, np,  and are given and u,, E,S, and cap are 
requested. 

Equations (3) through (8) constitute the differential 
equation formulation of the equilibrium problem in three- 
dimensional continuum. A finite difference solution based 
on this formulation may be set up as follows. A regular 
mesh is placed in V such that S' and S" are determined 
by the mesh points. If S is not defined by coordinate 
surfaces, such representation of S' and S" is only approx- 
imate. The displacements u, at the mesh points in V and 
on S are taken as the primary unknowns. The prescribed 
u; displacements are assigned to the mesh points of S". 
With the use of Eq. (6), cap at the mesh points in V and 
on S are approximated by the first differences of U, and 
uz. Then, by the use of Eq. (5), the values of amp are 
expressed at the mesh points. Finally, depending upon the 
mesh point in V or on S', Eq. (3) or Eq. (4), respectively, 
is used to write the difference equations for the unknown 
displacements. After the unknown displacements from 
these equations have been computed, the strains and the 
stresses may be computed from the finite difference ap- 
proximations of Eq. (6) and Eq. (5). Such a solution 
method has the following drawbacks: 

To minimize the truncation errors, a regular mesh 
in V is used; however, this causes approximate 
representation of boundary S and, therefore, in- 
creases the truncation errors in the finite difference 
approximations of Eqs. (4) and (7). Since the errors 
in the finite difference approximations of Eqs. (4) 
and (7) dominate in the solution more (Ref. 1) than 
the errors in the finite difference approximation of 
Eq. (3), either an irregular mesh in V may be 
considered to represent S more accurately, or 
higher-order formulas for the boundary conditions 
are used, although neither scheme is desirable in 
a general-purpose digital computer program. 

Because of the symmetry and the positive-definite- 
ness of D.pys, the formulation given by Eqs. (3) 
through (8) is self-adjoint and positive-definite. 
However, the coefficient matrix of the unknown 

displacements in the h i te  difference equilibrium 
equations is, in general, neither symmetric nor 
positive-definite. The loss of the two desirable 
qualities of the problem in the numerical formula- 
tion increases the storage requirements and solution 
time. Because of these setbacks, the mathematical 
formulation given by Eqs. (3) through (8) is modi- 
fied slightly as explained in the following paragraph. 

Consider the quantity x defined as 

1 
= z/ eolpuolpdV - uajj61dV - i, u,pmdS 

V 

(9) 

where dV is the volume element, dS the area element, 
and the other symbols are as previously defined. Consider 
the displacement fields satisfying Eq. (7). For each such 
displacement field, by means of Eqs. (9), (6), and (5), a 
scalar x may be computed. It can be shown that, for 
sufficiently smooth displacement fields satisfying Eq. (7), 
the stationary point of X ,  i.e., the point for which 

67r = 0 (10) 

also satisfies Eqs. (3) and (4). In fact, by the methods of 
calculus of variations, Eq. (10) yields Eq. (3) as the Euler 
differential equation, and Eq. (4) as the additional bound- 
ary condition. Therefore, Eq. (10) is an equivalent state- 
ment of Eqs. (3) and (4). The quantity x is known as the 
"total potential energy" of the system. Thus, the formula- 
tion given by Eq. (10) reduces the problem to that of 
locating the stationary point of the total potential energy 
functional. How the numerical solution is set up from 
this formulation (which is sometimes referred to as the 
extremum formulation of the problem), and its advantages, 
are discussed in the next subsection. 

B. Numerical Solution Method Based on the 
Extremum Formulation 

A random mesh is placed in V such that the mesh 
elements are line segments, triangles, quadrilaterals, tetra- 
hedrons, hexahedrons, conical segments, or triangular or 
quadrilateral tori. Some of the mesh elements are shown 
in Fig. 111-1 (Vol. I). The types of mesh elements that may 
be used in different structures are given in Table 111-2 
(Vol. I). The randomness of the mesh enables the selection 
of mesh points that are exactly on the boundary S. For 
clarity, the mesh points are labelled sequentially, with 
integer numbers starting from 1. If there are 2 number of 
mesh points, there are z! different types of possible label- 
ling. In the discussion that follows it will become obvious 
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that some of these labelling systems are more desirable 
than others. 

where the repeated index implies the summation over the 
range. Next, an attempt is made to select a family of 
displacement fields that are sufficiently smooth, but 

It is assumed that one of the possible ,s! systems is 
selected. Next, the mesh elements are labelled sequen- 
tially with integers. If there are _m number of mesh ele- 
ments, there are _ml number of different labelling systems. 
It is supposed that one of the possible m! systems is 
selected. In what follows, superscript m indicates the 
element label, and subscripts t or s indicate the mesh 
point label. To solve the equilibrium problem formulated 
in Section 11-A numerically, instead of computing Ua at 
every point of V and S ,  an attempt is made to find, at the 
mesh points, certain related quantities that define the 
distorted configuration of the structure in the same way 
as Ua. These quantities are called deflections, which are 
displacements/rotations at the mesh points. Given a mesh 
point, the total number of independent deflection com- 
ponents is the number of degrees of freedom of that mesh 
point. In Table 111-1 (Vol. I), the deflection components 
at a mesh point of different structures are shown as re- 
ferred to an overall coordinate system. Let & denote the 
number of degrees of freedom at a mesh point of a struc- 
ture. The value of & for different structures is given in 
the last column of Table 111-1 (Vol. I). I t  will be assumed 
that the deflection components at a mesh point are ordered 
as shown in the table. The subscripts k and I will be used 
to indicate the sequence number implied by this ordering. 
If a prime appears on k or 1, this implies that a local co- 
ordinate system is used in defining the degree-of-freedom 
directions. Let q k s  denote the kth deflection component 
at mesh point s. A mesh element may be defined by the 
mesh points that are coincident with its vertices. For 
clarity in referencing, the convention of Table 111-5 
(Vol. I) is adopted in ordering the vertices of mesh ele- 
ments. The type numbers shown in this table refer to the 
numbers shown on the shaded squares of Table 111-2 
(Vol. I). Subscripts g and h will be exclusively used to 
denote the sequence number of a vertex in the g number 
of vertices of an element. 

- 

With the preceding definitions, the method used to 
obtain the stationary point of the total potential energy 
functional may now be explained. This is the classical 
Ritz procedure (Ref. 2), where the undetermined param- 
eters of the problem are the unknown components of qks 
deflections, Equation (9) is first written as 

otherwise arbitrary, ignoring for the time being the 
essential boundary conditions of Eq. (7). A piecewise 
linear displacement field is acceptable in this sense (Ref. 3). 
Of course there are other piecewise continuous fields that 
are acceptably smooth. However, to simplify the under- 
standing of the procedure, it is assumed that the displace- 
ment fields are piecewise linear. Such a field may be 
described mathematically for the mth element in terms 
of the deflections of its vertices as 

rv 

u,. Bar z,h Q z r  I p; qZt  xp, + rigid body movement 

(12) 

where the primes indicate the local coordinate system 
of the element. The coefficients p g  constitute a binary 
array such that, for a given m and h, it is zero throughout 
the range of t ,  but 1 at the value of t corresponding to 
the hth vertex of the mth element. In fact, pg qz t  is the 
list of deflection components pergining to the vertices 
of the mth element. The matrix Q z ,  z in Eq. (12) is the 
coordinate transformation matrix, where, for fixed E', it 
represents the direction cosines of the local axis related 
with E' degree-of-freedom direction in the coordinate sys- 
tem associated with 1. The space variable x p  is the dis- 
tance measured along the p'th local axis. The coefficients 
Bar p' 1' h may be computed from the local coordinates of 
the vertices of the mth element. In Table 111-3 (Vol. I), 
for different mesh elements, the orientation of the local 
coordinate system relative to the overall coordinate sys- 
tem is given. It should be noted that Eq. (12) is an 
approximation of the true displacements in the mth ele- 
ment, even if the exact values of deflection components 
qLt are known. However, it may be shown that the error 
decreases with decreasing mesh size. With the use of Uar 

from Eq. (12) in Eq. (6), the strains in the mth element, 
as referred to the local coordinate system of the mth 
element, may be expressed as 

Let D a , p , r , s ,  denote the material constants of the mth 
element as referred to the local coordinate system of the 
rnth element. If 
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and 

are defined, x of Eq. (11) may be expressed as The operation implied by Eqs. (21) and (22) is referred 
to as the assembling of the elemental matrices. Because - 

1 of the positive-definiteness and the symmetry of DCrpYs, 
(16) Eq. (21) shows that = 2 qks P*FsK& lh P g  4 1 t - qks (P.g”Seg f Q k s )  

where Qks denotes the prescribed concentrated loads at 
the mesh points. The deflection components qks (or qlt) 
should be such that, on S’, they satisfy the essential bound- 
ary conditions of Eq. (7). Let di denote the portion of qlt, 
which is unknown. The essential boundary conditions may 
be expressed as 

qzt = eitidi + e;t (17) 
where the coefficients elti and e;t are quantities that may 
easily be determined from Eq. (7). For example, if there 
are no prescribed deflections in the problem, eltj is a 
binary array containing only one 1 in the whole range of 
i for a given It, and e;t is zero throughout. Actually, the 
di are the true undetermined parameters of the problem. 
If qzt is substituted from Eq. (17) into Eq. (16), the values 
of di corresponding to the stationary point of x may be 
obtained from the set of linear equations 

X , d j  = 0 (18) 

6rr = T,di sdj (19) 

(20) 

(21) 

since 

The equations given by Eq. (18) may be rewritten as 

&..d.  = Q i  
% 3  3 

where 
&.. 23 = eksi P ~ ~ K ? ~ ~ ~ ~  p$eltj 

and 

8i = eksi (pgpTg + Qks)  - eksi pgK;lblh p$e;, (22) 

The coefficients K g l h  constitute the element stiffness 
matrix of the mth element and Pkmg is called the mth ele- 
ment load vector. In Eq. (20), the coefficient matrix ,&j 

is the stiffness matrix associated with the directions of dj 
deflections, and the right-hand-side vector Qi lists the 
loads in these directions. Equations (21) and (22) indicate 
how the coefficient matrix and the right-hand-side vector 
of the governing equations can be systematically gener- 
ated from the element stiffness matrices and load vectors. 

and &ii is also positive-definite. Once the unknown de- 
flections di are solved from Eq. (20), the complete deflec- 
tions qit are obtained by substituting dj into Eq. (17). 
After deflections qks have been computed, the strains and 
the stresses at the mesh points may be computed as 
described in Ref. 4. 

The method of solution described in the preceding has 

(1) Since the mesh is random, the boundaries S’ and S” 
may be closely approximated, and thus minimize 
truncation errors. 

the following advantages: 

(2) Any a priori knowledge about the variation of uol in 
V or on S may be used advantageously by varying 
the mesh size accordingly to minimize the trunca- 
tion errors. 

(3) The self-adjoint character, as well as the positive- 
definiteness of the problem, is preserved, since 
is always symmetric and positive definite. 

C. The Program 

1. Criteria for Storage Allocation. All the input data 
previously mentioned (see Fig. IV-1, Vol. I) are stored 
permanently in COMMON after their validity is checked. 
No fixed-length block is assigned to these diversified data. 
The data are compactly stored as a string of variable 
length. This enables the program to compete in obtaining 
priorities efficiently in a multiprogramming environment. 
After reading the control card, the program determines 
the pointers of each of the data blocks relative to the 
beginning of COMMON. When the other input data 
become available, they are placed in the proper place in 
COMMON by the pointers. Although the locations of the 
data blocks vary from one job to another, the locations 
of the pointers and the control information provided by 
the control card have fixed locations at the beginning of 
COMMON. The remainder of the core is assigned for 
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the program instructions and temporary storage for the 
coefficient matrix and the right-hand-side vector of the 
governing equations. The program consists of four links, 
and since all the program instructions are not required 
simultaneously, only the instructions for each link in turn 
as needed are retained in the core. 

A sketch of the governing equations in Eq. (20) is given 
in Fig. 11-1 (Vol. I). Since the coefficient matrix is sym- 
metric, the program allows storage only for the shaded 
area shown in the figure. From Eq. (20) it may be ob- 
served that, for a fixed i, Dcii represents a vector listing 
the forces that may develop when a unit deflection is 
applied in the fixed i direction, while keeping all the other 
degree-of-freedom directions with zero deflections. The 
nonzero entries of this vector coincide with the deflec- 
tion directions of only those mesh points that are con- 
nected with the disturbed mesh point by means of mesh 
elements and deflection boundary conditions. This shows 
that the matrix is sparse and usually has a large zero 
area in the upper right-hand corner. 

Before generating the coefficient matrix and the right- 
hand side of Eq. (20), the program computes a pointer 
for each of the rows of the coefficient matrix, and a pointer 
for the right-hand-side vector so that the coefficients 
shown 'in the shaded area in Fig. 11-1 (Vol. I) can be 
stored compactIy in COMMON as a string. Actually, the 
pointers of the rows are the addresses of the words imme- 
diately preceding the diagonal elements. As discussed in 
Ref, 5, by the proper ordering of di unknowns in Eq. (20), 
the zero area may be increased in the upper right-hand 
comer of &ii. If the user chooses to assign zero into the 
ISHUF field of the control card, the unknowns are 
ordered as implied by the mesh-point labels; e.g., the 
unknown deflection components of the first mesh point 
are placed first, those of the second mesh point are placed 
second, etc. If the user assigns ISHUF = 1 or 2, the pro- 
gram first tries to find a better labelling system with the 
method given in Ref. 5, and uses these new mesh-point 
labels in ordering the unknowns di. For example, if mesh 
point with label 25 is the first mesh point in the new 
labelling system, the unknowns of this mesh point are 
listed first in di. If the user assigns ISHUF = 3, the better 
labelling system is required by the program from input 
data cards (number 17 in Fig. IV-1, Vol. I). The method 
for relabelling described in Ref. 5 requires the genera- 
tion of the mesh-point connectivity matrix Nst ,  which is 
a binary matrix. If mesh point s is connected to mesh 
point t by a mesh element or by a deflection boundary 
condition, N,,  = N t ,  = 1; otherwise, Nat  = N t ,  = 0. It is 
always assumed that a mesh point is connected to itself. 

q l t  = eltj dj +e;, q l t  = Eegn dja 

Fig. 11-1. Definition of E l t i p  augmented matrix 

If point s is completely constrained by the deflection 
boundary conditions, N S t  = N t ,  = 0 for all t, except t = s. 
The program generates N S t  from the information pro- 
vided by the element description data and deflection 
boundary conditions. The connectivity matrix N,t is 
always generated, since it is also used in determining 
the pointers of the rows of €Xii. 

2. Method of Assembly. To obtain the coefficient matrix 
and the right-hand-side vector of the governing equa- 
tions, the mesh elements are processed, one at a time, 
first to obtain the element stiffness matrix and the ele- 
ment load vector for each, and then to assemble these 
according to Eqs. (21) and (22) and the allocated storage. 
Let A' denote the vector in COMMON and Ri denote 
the pointer of the ith equation in Eq. (20). Let us assume 
that the right-hand-side vector is stored after the coeffi- 
cient matrix. Let Elc,i, (or E l t i t )  denote the augmented 
matrix composed of eksi (or e l t i )  and eES (or e; t ) ,  as shown 
in Fig. 11-1. Let a prime on the index indicate that the 
range of unprimed index is increased by 1, and let an 
underlined index indicate the largest value within the 
range. With this notation, the assembly procedure may be 
summarized as 

where 

if i' > j ,  i' I_i, and r = R j  + i' (26) I s;,,. = 1 if i 'L_j ' , j ' I i ,andr=Ri,  + j ' - i '  

qi, = -1 

q,$, = 0 for all other possibilities 

and 

y; ,  = 1 

y; ,  = 0 

if i ' d i a n d r  = Ri + i' 
for all other possibilities 
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In the program, only the nonzero Ekai. constants are 
computed by the deflection boundary condition input 
units and the connectivity matrix. For each ks the non- 
zero entries of EkaiI are stored with their values and i’ 
indices. The values and the indices of nonzero Q k a  entries 
are directly provided by the concentrated load input 
cards. The binary coefficients and y;, are not stored, 
but determined from Eqs. (26) and (27). If m and g are 
given, the s value of the nonzero entry of py8 is obtained 
from the element description data. Let ga and & denote 
the nonzero values and corresponding indices in E k s i  I 

for a given ks, and let g denote the maximum value of a, 
so that 1 L a  L a  (b  and _b are alternate symbols). Let _d 
denote the number of concentrated load input units. This 
notation is used in the %ow diagram corresponding to 
Eq. (25) given in Fig. 11-2. In the ELAS program, the 
summations implied by the first term in the right-hand 
side of Eq. (25) are implemented in Link 1 and the re- 
mainder in Link 2. 

3. Method of Solution of the Governing Equations. 
Since Q&i is a symmetric and positive-definite and band- 
limited matrix for the solution of Eq. (20), the Cholesky 
algorithm may be applied. In this method, the decom- 
posed stiffness matrix Bii  from DEii is first computed as 

Bij .  B j P j  = &ij (28) 

where the range of i’ equals that of i. Then, from 

(29) B . .  d‘. = Qi 
c3 I 

with a forward sweep, the auxiliary unknowns d; can be 
solved. Finally, 

(30) B . . &  = d’. 
23 

yields the unknowns with a backward sweep. In Fig. 11-1 
(Vol. I) the border of the zero area in the upper right- 
hand corner is not always defined by the last nonzero 
coefficient in each equation. This is because the shaded 
areas of aii and Bii are identical only when the border is 
selected as shown in Fig. 11-1 (Vol. I). In the ELAS pro- 
gram, coefficients in the shaded area of the figure are 
first modified to those of the coefficients of Bii, then &Pi 
constants are changed to d!,, and finally, d!, values are con- 
verted to the numerical values of the di unknowns. Then, 
from Eq. (17), qZt is computed on the same area as dj. 
These operations are carried out in Link 3 of ELAS. 

4. Computation of Stresses. The computation of stresses 
in displacement methods poses a harder problem in struc- 
tures of two- or three-dimensional continuum than that in 
truss and frame structures, which truly have a finite num- 

I ENTER 
t 

SET A‘ = 0 FOR 
r = R,, Rl + 1 ,..., R. +i - 

c 

FOR m 

t 

- _  _ _  
I COMFUTEKmANDPm I 

DETERMINE s OF 

SET COUNTER WITH 

Fig. 11-2. Flow diagram corresponding to the summations 
implied by Eq. (251 
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ber of deflection components for the determination of 
their distorted configuration. The difficulty arises from 
the fact that the structures of two- or three-dimensional 
continuum actually have infinitely many deflection com- 
ponents, and the relations of the type of Eq. (12) are only 
approximate. 

After computing the deflections as mesh functions, the 
problem of stress computation with acceptable accuracy 
in reasonable machine times still remains. Experience has 
shown that the use of Eq. (13) and then Eq. (6) presents 
the folIowing drawbacks: (1) the exact location of the point 
for which the stresses are computed is not known, and 
(2) the computed stresses may be largely different from 
the actual stresses. Despite these setbacks, stress compu- 
tation of this type is being widely used because it is modu- 
lar in elements, just as is the generation of the governing 
equations in Eq. (20), a feature that facilitates automa- 
tion. In the ELAS program, the best-fit stress computation 
method of Ref. 4 is used for structures of continuum. This 
method is just as easy to automate and has the following 
advantages: (1) stresses are computed at the points where 
the deflections are obtained, (2) the accuracy in stresses 
is comparable with that of deflections, and (3) the stress 
boundary conditions of Eq. (4) may be satisfied during 
the computation of the stresses of boundary points. This 
scheme was initially devised for triangular finite elements 
(Ref. 6). 

In the following paragraphs the stress computation 
in structures of two- and three-dimensional continua is 
explained. The computation of stresses in structures com- 
posed of elements of one-dimensional continuum is per- 
formed by multiplying element stiffness matrices with 
computed deflections. 

Mesh Line Set. Suppose that the deflections at the mesh 
points of a structure of three-dimensional continuum are 
available and that the stresses at mesh point s are re- 
quested. The question of how much deflection data should 
be included in the computation is of practical importance 
because the computation time rapidly increases with this 
quantity. Experience with the method of computing 
stresses in the element indicates that deflections of the 
set of elements meeting at mesh point 6 are sufficient for 
the Computation of its stresses with acceptable accuracy. 
The mesh points of the element set are called “mesh-point 
set” and the mesh lines meeting at the common mesh 
point s are called “mesh-line set.” The scheme adopted in 
ELAS is modular in the mesh-line set-the next-best unit 
after elements. The stress computation at a mesh point 
starts with the determination of the element set, and 

consequently, the mesh-line set associated with this 
mesh point. Then, if this mesh point is on the bound- 
ary, the average boundary surface area associated with 
this node and the direction cosines of the outer normal 
are computed. 

Selection of Local Coordinate Systems at the Mesh 
Points. In a given problem, it is desirable to have one 
fixed, right-handed coordinate system to express the 
stresses. However, this is not practical for structures com- 
posed of anisotropic material, at the boundary points 
where the outer normal is not coincident with the coordi- 
nate lines, and for shell structures. The following method 
is adopted in the ELAS program for the selection of local 
coordinate systems at the mesh points. 

At an internal node, the local axes may be taken as the 
material axes unless the material is isotropic, in which 
case they should be taken (1) parallel to the overall 
coordinate system in plates and three-dimensional solids, 
and (2) as the principal curvature directions and the nor- 
mal of the middle surface, or any other suitable system 
that the user inputs in shells. At a boundary node, the 
first local axis may be coincident with the outer normal, 
and the directions of the remaining local axes may be 
determined so that (1) the local third axis becomes the 
middle surface normal in plates and shells, and (2) the 
direction defined by the cross-product of outer normal 
with the overall axis, which makes the largest angle with 
the outer normal, then becomes the second local axis in 
three-dimensional solid structures. 

Stress Computation at an Internal Mesh Point. Let i be 
the label of a mesh line in the mesh-line set, with Ap,, 
the position vector and At+, the diiplacement vector of 
the far end of the mesh line relative to the mesh point 
where the local coordinates are defined. As the first 
approximation of the strain along the jth mesh line, the 
following may be written: 

(31) 
A&, AI.+* 

E =  
APP‘ 4, 

The same strain may be obtained from the strain tensor 
of mesh point s as 

(32) 
Apa, App* €a,p, 

APP? APP’ 
E =  

Equating Eq. (31) to Eq. (32) and cancelling the denomi- 
nators results in the following expression: 
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The number of equations in Eq. (33) is equal to the 
range i. Usually the range of i is greater than the num- 
ber of independent components of the strain tensor. (If 
not, the mesh may be readjusted by repeating the deflec- 
tion computation.) Therefore, in Eq. (33), there are more 
equations than the unknown strain components. Such a 
set may be solved by least squares, first by multiplying 
both sides with the transpose of the coefficient matrix, 
then by inverting the new coefficient matrix. This leads to 

Ea*p* = [(Apw Appt)i( Ap6, Apv,)iI-’(Ap6’ Apv,)i (Apy’ A%,)i 

(34) 

where the range of i is equal to that of i. The stresses at 
the mesh point may be obtained by substituting from 
Eq. (34) into Eq. (5). If the problem is a plane-strain 
problem, one should first impose 

on Eq. (33). For plane-stress problems, Dolrpryt6. in Eq. (5) 
should be modified to guarantee 

For the bending of plates and shells, ~ ~ , p ,  should be inter- 
preted as curvature changes and, in Eq. (33), (Apy, At.+)i 
should be taken as the projection of the rotations vector 
of the far-end mesh point relative to the current mesh 
point in the ith mesh line on; X A; direction, whereTC is 
the unit vector of the third local axis. Also, the conditions 
in Eq. (36) should be imposed on D r u . p . y c ~ .  and Eq. (5) 
should be replaced by 

(37) 
t3 

Myp6,  = -- 12 Dy*6,wp, ~ w p ,  

where Myt6, denotes the bending moments and t is the 
thickness. The membrane case of shells is identical with 
the plane-stress case, provided that Eq. (5) is replaced 
with 

where NYr6,  denotes the membrane forces. 

Stress Computation at a Boundmy Mesh Point. The 
procedure for stress computation at a boundary mesh 
point is basically the same as the computation at an 
internal mesh point. Here, the stress boundary conditions, 
expressed in terms of the strains, are included in Eq. (33) 
before the application of the least-squares scheme for 
their solution. The stress boundary conditions may be 
written as 

where p a ,  represents the prescribed boundary stresses. 
If at the boundary mesh point the deflections, in place 
of the stresses, are prescribed, Rap reaction forces may 
be found from the equilibrium equations of the boundary 
node, and the following may be written: 

R, 
A 

p a ,  = -- 

where A is the average boundary surface area associated 
with the mesh point. In Eq. (39), the reason for division 
by D l r l ~ l ~ l ~  is to reduce the coefficients of strains in the 
stress boundary equations to the same order of magni- 
tude as those of Eq. (33). The procedure described here 
for a three-dimensional solid may be readily extended to 
other types of structures with the help of previous 
paragraphs. 
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111. COMMON Variables and COMMON Blocks 
of the Program 

The memory organization in each of the four links of 
ELAS is illustrated in Fig. 111-1. Table 111-1 lists the 
blocks of COMMON sequentially, and gives a short 
description of each block. In the table, the variable- 
address blocks are listed with increasing COMMON ad- 
dresses. It should be noted that the variable-address 
blocks in COMMON are packed in a string, one after the 
other, without any waste of core locations. Such blocks 
may be properly located by means of pointers, which are 
also in COMMON. A pointer is a word whose content 
is one less than the COMMON address of the &st word 

of the associated COMMON block. The constituents of 
Block Group 1 are listed in Table VI-3 (Vol. I), in the 
order in which they appear in COMMON. These con- 
stituents are alphabetically ordered with their symbolic 
names in Table 111-2. In Table 1113, the meanings of 
entries of important vectors, especially those defined by 
the pointers, are given. The additional COMMON vari- 
ables of Link 4 are listed alphabetically in Table 111-4, 
and with increasing COMMON addresses in Table 111-5. 
Table 111-5 also contains a short description of these 
variables. 
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Table 111-2. Alphabetical listing of the constituents of COMMON block group l a  

Symbol 

AA 

ACE1 

A11 

A12 

A13 

CONS 

DG 

DGY 

DGZ 

DT 

D21 

G1 

G2 

G3 

IA 

IARE 

IBB 

I BN 

I BO 

IBUN 

ICAR 

ICFl 

IC lX 

l C l Y  

lClZ 

ICOR 

IDEF 

IDEG 

IDS 

1 DT 

I DY 

IDZ 

Location in  
COMMON 

I-.** 

39 

83 

84 

85 

45 

82 

332 

331 

81 

86-106 

47 

48 

49 

I-... 

16 

59 

2 

60 

327 

66 

70 

67 

68 

69 

328 

75 

8 

36 

63 

64 

334 

Brief description 

Name of whole COMMON block for flooting- 
point references 

Body force per unit volume 

Thermal expansion coefficient of an element 
in first material axis direction 

Thermal expansion coefficient of an element 
i n  second material axis direction 

Thermal exponsion coefficient of an element 
in third material oxis direction 

Constant for element load vector 

Temperature gradient for an element in 
direction y (or I) 

Temperature gradient olong local y-axis for 
an element 

Temperature gradient along local z-axis for 
an element 

Value of temperoture change for an element 

Material constants for an element 

First direction cosine of acceleration vector 

Second direction cosine of acceleration vector 

Third direction cosine of acceleration vector 

Name of whole COMMON block for fixed- 
point references 

Number of cross-sectional area types 

Pointer for IBB array 

Total number of dbc input units 

Pointer for IBO orroy 

Indicator for boundary conditions input 

Pointer for cross-sectional areas array 

Pointer for angles array 

Pointer for torsional constants array 

Pointer for y-moments of inertia orray 

Pointer for z-moments of inertia array 

Indicator for coordinates input 

Pointer for unknown deflections array 
(initially loads array) 

Degrees of freedom at a node 

Order of the subelement stiffness matrix 

Pointer for temperature changes array 

Pointer for temperature gradients array 
(y-direction) 

Pointer for temperature gradients array 
(z-direction) 

Symbol 

IELT 

IERR 

IGEM 

IH 

IIA 

IIC 

IID 

I IS 

IMAT 

IMES 

IMET 

IMFl 

IMMX 

IMMY 

IMMZ 

IMS 

IN 

IND 

INP 

I N X  

IORD 

lODl 

I P  

IPBG 

IPEN 

IPIR 

I PR 

IPRS 

ISDT 

ISDY 

ISDZ 

ISHUF 

IST 

ISTR 

!SUM 

IT  

.ocation in 
COMMON 

28 

79 

78 

10 

62 

74 

61 

77 

7 

326 

31 

15 

12 

13 

14 

34 

1 

33 

42 

9 

37 

38 

4 

43 

44 

329 

333 

5 

348 

347 

346 

35 

76 

27 

32 

3 

Brief description 

Element type number 

Error indicator 

Indicator for structures inscribed in 
(Z = 0)-plane 

Maximum number of vertices 

Pointer for thermol expansion coefficient array 

Pointer for dbc unit constanfr array 

Pointer for materiol constants array 

Pointer for subelement stiffness matrix 
(11s = 350) 

Number of material types 

Indicator for mesh topology input 

Material type number 

Number of angle types 

Number of torsion constants types 

Number of y-moment of inertia types 

Number of z-moment of inertia types 

Number of vertices of current element 

Total number of nodal points 

IND = IDEG * IN 

Indicator for output level 

Number of last link to be executed 

Number of words ollocoted for the reduced 
stiffness matrix 

IORDl IORD -k 1 

Total number of nonzero concentrated load 
components 

Integer constant for element load vector 

Integer constant for element load vector 

Indicator for local coordinate axes selection 

Pointer for pressure array 

Number of pressure types 

Number of temperature change types 

Number of temperature gradients olong local 
y-axis 

Number of temperoture gradients along local 
z-axis 

Relabeling indicotor 

Pointer for reduced stiffness matrix of the 
whole structure 

Indicator for plone-strain case 

Number of equations in the reduced system 

Total number of elements 

*See Table 111-1 for saquence and dercriptions of COMMON blocks. Table 111-2 i s  a reordering of Table VI-3 (Vol. I), in both of which the "General Descriptors IV" sec- 
tion of the block i s  partly excluded. 
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Table 111-2 (contd) 

Symbol 

ITAP 

I TAS 

ITE 

ITEM 

ITIC 

ITYPE 

IU 

IXX 

IYY 

IZZ 

18 

JARE 

JMFl 

JMMX 

JMMY 

JMMZ 

JPRS 

JSDY 

JSDZ 

J1 

J2 

J3 

location in 
COMMON 

41 

335 

65 

29 

30 

6 

46 

71 

72 

73 

11 

340 

15 

339 

338 

337 

343 

342 

341 

50 

51 

52 

~~ 

Brief description 

Chain program tape number 

Scratch tope number 

Pointer for thicknesses orroy 

Temperature change type number 

Thickness type number 

Indicator for material type 

Pointer for diagonal-element count vector 

Pointer for X-coordinates array 

Pointer for Y-coordinates array 

Pointer for Z-coordinates array 

Moximum number of words to describe an 
element 

Type number of cross-sectional area 

Number of angle types 

Type number of the torsional constant about 
local x-axis 

Type number of the sectional moment of inertia 
about local y-axis 

Type number of the sectionol moment of inertia 
about local z-axis 

Type number of pressure 

Type number of temperature gradient along 
local y-axis 

Type number of temperature gradient along 
local z-axis 

Pointer for J1 W arroy 

Pointer for J2W array 

Pointer for J3W array 

Symbol 

J4 

J5 

J6 

J7 

J8 

J9 

J10 

M 

N, 

NTlC 

P 

PRES 

S 

TE 

Location in  
COMMON 

53 

54 

55 

56 

57 

345 

344 

25 

17-24 

349 

107-130 

330 

351- - * * 

00 

131-154 

155-162 

179-1 85 

163-1 70 

186-192 

171-178 

193-1 99 

40 

~~ 

Brief description 

Pointer for J4W array 

Pointer for J5W array 

Pointer for J6W array 

Pointer for JNV array 

Pointer for JEW array 

Pointer for J9W array 

Pointer for JlOW array 

Label of current element 

labels of vertices of an element 

Number of thickness types 

load vector of a subelement 

Pressure value for an element 

Subelement stiffness matrix 

Value of thickness for an element 

Deflections due to temperature changes for 
an element 

Overall X-coordinates for vertices of an elemen 

X-coordinates of vertices, other than the first 
vertex, of an element relative to the first 
vertex 

Overall Y-coordinates of vertices of an element 

Y-coordinates of vertices, other than the first 
vertex, of an element relative to the first 
vertex 

Overall Z-coordinates of vertices of an element 

Z-coordinates of vertices, other than the first 
vertex, of an element relative to the first 
vertex 

Floating-point equivalent of IGEM 
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Meaning of rth entry of the vector (all divisions are in integer arithmetic sense) Vector in COMMON 

AA vector 

D21 vector 

IA vector 

188-pointer-related vector 

180-pointer-related vector 

ICAR-pointer-related vector 

ICFl-pointer-related vector 

ICIX-pointer-related vector 

ICIY-pointer-related vector 

ICIZ-pointer-related vedor 

IDEF-pointer-related vectors 

IDT-pointer-related vector 

IDY-pointer-related vector 

IDZ-pointer-related vector 

IIA-pointer-related vector 

I IC -pointer-related vector 

IID-pointer-related vector 

IIS-pointer-related vector 

IPR-pointer-related vector 

ET-pointer-related vector 

The rth component of the total COMMON vector in floating-point mode 

The rth component of a row-listed upper 6 X 6 moterial matrix (see Fig. Ill-Zb, Vol. I), if it exists 

The rth component of the total COMMON vector in fixed-point mode 

IBB value of Jth degree of freedom direction at ith node (user's label); i = 1 + (r - l)/IDEG, 
J = r - (i - 1)* IDEG (see Table VI-2, Vol. I) 

IBO value of Jth degree of freedom direction at ith node (user's label); i = 1 f (r - l)/IDEG, 
J = r - (i - 1)* IDEG (see Table VI-2, Vol. I )  

Value of rth-type cross-sectional area, i f  i t  exists 

Value of rth-type angle defining principal axes of cross section, if it exists 

Value of rth-type torsional constant, i f  i t exists 

Value of rth-type y-moment of inertia, i f  i t exists 

Value of rth-type z-moment of inertia, i f  i t exists 

(1) Value of prescribed concentrated load in Jth degree of freedom direction at node i (user's 
label); i = 1 f (r - l)/IDEG, J = r - [i - 1)* IDEG 

(2) Value of rth component of reduced load vector (the right-hand-side vector in Fig. 11-1, Vol. I )  
(3) Volue of rth component of reduced deflection vector [ { d }  vector in Fig. 11-1, Vol. I) 

(4) Value of deflection at the Jth degree of freedom direction at node i (user's label); i = 1 f 
(r - l)/IDEG, J = r - (i - 1)' IDEG 

For (2) and (3) the node i (user's label) and direction J associated with the rth entry may be obtained 
as follows: let  r" be the entry number of the word, in IBB-pointer-related vector, where the abso- 
lute value i s  r and r"th entry of IBO-pointer-related vector is -1. Then i = 1 f (r" - l)/IDEG, 
and J = r" - ( i  - 1)' IDEG 

Value of rth-type temperature increase, if i t  exists 

Value of rth-fype temperature gradient in y-direction, i f  i t  exists 

Value of rth-type temperature gradient in z-direction, i f  i t exists 

Value of thermol expansion coefficient in the Jth material axes direction in element i; i = 1 f 
(r - l)/kz, J = r - kt* (i - l), where kz i s  1, 2, or 3, depending upon whether ITYPE i s  0, 1, 
or 2, respectively 

Volue C of Jth degree of freedom direction at ith node (user's label); i = 1 -I- (r - l)/IDEG, 
J = r - (i - 1)' IDEG (see Table V1-2, Vol. I) 

Value of Jth material constant of material type i; i = 1 4- (r - l)/ka, J = r - kl* (i - l), where 
&I i s  2, 9, or 21, depending upon whether ITYPE i s  0, 1, or 2, respectively 

Element kmn of the free-free subelement stiffness matrix, m = 1 f (r - l)/lDS', n = r - IDS'* 
(m - 1); m corresponds to m'th degree of freedom direction (m' = 1 f (m - l)/lMS') at 
vertex m" (m" = m - IMS'* (m - 1); n corresponds to n'th degree of freedom direction 
(n' = 1 + (n - l)/IMS') at vertex n" (n" = n - IDS'* (n' - 1); IMS' i s  the number of verfices 
of subelement, and IDS' = IMS'* IDEG 

Value of rth-type pressure, i f  i t exists 

(1) Element K,, of the stiffness matrix of the supported structure. To find mth direction, enter IBB- 
pointer-related vector with the entry number r' of the word, in Ill-pointer-related vector, which 
i s  closest to, but not greater than r. let r" be the entry number of the word, in IBB-pointer- 
related vector, whose absolute value i s  r' and the r"th entry in 160-pointer-related vector i s  

-1; mth direction corresponds to m"th degree of freedom direction at node m' (user's label); 
m' = 1 f (r" - l)/IDEG, m" = r" - (m' - 1)' IDEG. To find nth direction, determine s' by 
adding to r' the difference between r and the r'th entry of IU-pointer-related vector. let  s" be 
the entry number of the word in IBB-pointer-related vector, whose absolute value i s  s' and the 
d'th entry in IBO-pointer-related vector i s  - 1; nth direction corresponds to n"th degree of free- 
dom direction at node n' (user's label); n' = 1 f (s" - l)/IDEG, n" = s" - (n' - 1). IDEG 

(2) Value of residual force acting at node i in direction J, where i = 1 f (r - l)/IDEG, J = c - 
(i - 1)* IDEG 

JPL TECHNICAL REPORr 32- 1240 17 



Table 111-3 (contdl 

Vector in COMMON 

ITE-pointer-related vector 

Ill-pointer-related vector 

IXX-pointer-related vector 

IW-pointer-related vector 

IZZ-pointer-related vector 

J1-pointer-related vector 

J2-pointer-related vector 

J3-pointer-related vector 

J4-pointer-related vector 

JS-pointer-related vector 

J6-pointer-related vector 

J7-pointer-related vector 

JB-pointer-related vector 

J9-pointer-related vector 

J 10-pointer-related vector 

N vector 

MAX-pointer-related vector 

P vector 

S matrix 

UV vector 

X vector 

XD vector 

Y vector 

YD vector 

Z vector 

ZD vector 

Meaning of rth entry of the vector (all divisions are in integer arithmetic sense) 

Value of rth-type thickness, i f  it exists 

Entry number in IST-pointer-related vector of rth diagonal element of the reduced stiffness matrix 

X-coordinate of node r (user's label) 

Y-coordinate of node r (user's label) 

Z-coordinate of node r (user's label), i f  i t exists 

J l W  value of rth element (see Table IV-3, Vol. I) 

J2W value of rth element (see Table IV-3, Vol. I) 

J3W value of rth element (see Table IV-3, Vol. I )  

J4W value of rth element (see Table IV-3, Vol. I) 

JSW value of rth element (see Table IV-3, Vol. I) 

J6W value of rth element (see Table IV-3, Vol. I), i f  i t exists 

J7W value of rth element (see Table 1V-3, Vol. I), i f  i t  exists 

JBW value of rth element (see Table IV-3, Vol. I), i f  it exists 

J9W value of rth element (see Table IV-3, Vol. I), i f  i t  exists 

JlOW value of rth element (see Table IV-3, Vol. I), i f  i t exists 

The label (user's) of the rth vertex of an element 

Number of nonzero entries above rth diagonal element of the decomposed reduced stiffness matrix 
(see Fig. 11-1, Vol. I) 

Element load acting in direction J of ith vertex of a subelement; J = 1 f (r - l)/lMS', i = r - 
(J - 1)' IMS' (IMS' = number of vertices of the subelement) 

See IIS-pointer-related vector 

Deflection in direction J of ith vertex of a subelement subjected to temperature change in local coor- 
dinates; J = 1 4- (r - l)/lMS', i = r - (J - I)" IMS' (IMS' = number of vertices of subelement) 

X-coordinate of rth vertex of an element 

X-coordinate, relative to the first vertex, of (r f 1)st vertex of an element 

Y-coordinate of rth vertex of on element 

Y-coordinate, relative to first vertex, of (r 4- 1)st vertex of an element 

Z-coordinate of the rth vertex of an element 

Z-coordinate, relative to the first vertex, of (r 4- 1)st vertex of an element 
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Table 111-4. Alphabetical list of additional COMMON variables for link 48 

Symbol COMMON location 

IWG 14660-14749 
JMl 293 
JPl 292 

JS1 294 

LM 202 

MAC 14400-14659 

MSET 15596-1 5695 

MB 215 

NB 214 

NBAN 278-287 

NE1 34000-14399 

NES 295-297 

NSET 15496-1 5595 

Symbol COMMON location 

A 14786-15415 
ANGLE 21 1 
ARE 205 
AST 203 
B 15416-15479 
BAS 271-273 
SIR 220-222 
BST 217 
C 15480-15495 

DIN 226-234 
ETA 229-23 1 
FF 14000-15704 
IC 209 

DD 14750-14785 

"See Table 111-5 far meanines of variables. 

Symbol COMMON location 

NU 292-294 
QF 253-258 
QN 247-252 

RED 265-270 

RES 259-264 

SIR 223-225 

SR 235-240 

W 15696-15704 

XF 244-246 

XN 241-243 

XI1 226-22a 

ZTA 232-234 

Symbol COMMON location 

ICAS 212 
ICLA 206 
ICLAS 274-277 
ICN 20 1 
IC01 295 
ICON 210 
IDR 297 
IE 213 
IM 208 
IMEL 207 
INBON 204 
ION€ 200 
IRlG 296 
IROT 216 

location in  COMMON 

1-199 

200 

201 

202 

203 

204 

205 

206 

207 

208 

209 

210 

21 1 

212 

213 

214 

215 

216 

217 

220-222 

Table 111-5. List of additional COMMON variables for link 4a 

Symbol 

IONE 

ICN 

LM 

AST 

INBON 

ARE 

ICLA 

IMEL 

IM 

IC 

lCON 

ANGLE 

ICAS 

IE  

NB 

MB 

IROT 

BST 

SIR 

Brief description 

This portion of COMMON is as in Table VI-3 of Vol. I 

Total number of one-dimensional elements in the structure 

Label of current mesh point (ICN varies from 1 to IN] 

Total number of non-one-dimensional elements meeting at mesh point ICN 

Indicator containing * or BCD blank, depending upon whether mesh point ICN i s  on boundary or not, 
respectively 

Indicator containing 1 or 0, depending upon whether mesh point ICN i s  on boundaryor not, respectively 

Average boundary surface area for mesh point ICN, i f  i t is  on boundary 

Total number of classb types for elements of material type group IM at mesh point ICN 

Total number of material types at mesh point ICN 

Current material type group number (IM varies from 1 to IMELJ 

Current classb type group number (IC varies from 1 to ICLA) 

Sequence number of current strain-deflection equation at mesh point ICN for material group IM and for 
classb group IC 

Angle between XI1 local axis ond the 1-2 line of the lowest labeled shell element ottached to mesh 
point ICN 

Classb type number of lCth classb group of lMth material group at mesh point ICN 

Number of mesh elements (of clossb group IC of material group IM) plus 1 at mesh point ICN 

Total number of mesh points in node set at mesh point ICN 

Number of boundary points ottached to mesh point ICN 

Indicator contoining 0 or 1, depending upon whether local axes at mesh point ICN are parallel to overall 
axes or not, respectively 

Indicator containing BCD blank or **, depending upon whether local oxes at mesh point ICN are parallel 
to overall or not, respectively 

Direction cosines of outer unit normal vector ot mesh point ICN, i f  i t is  on boundary 

"This fable i s  not applicable to subroutine D I M  of Link 4. 

bClass types are those of Table VI-6, Val. 1. 
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Table 111-5 (contd) 

location in COMMON 

223-225 

226-234 

235-240 

241-243 

244-246 

247-252 

253-258 

259-264 

265-270 

271-273 

274-277 

278-287 

292-294 

292 

293 

294 

295-297 

Symbol 

SIR 

DIN 

SR 

XN 

XF 

QN 

QF 

RES 

RED 

BAS 

ICLAS 

NBAN 

NU 

JP1 

JM1 

JSl 

NES 

IC01 

IRlG 

IDR 

FF 

NE1 

MAC 

I WG 

DD 

A 

B 

C 

NSET 

MSET 

W 

Brief description 

Vector heading towards structure at mesh point ICN, i f  it i s  on boundary 

Direction cosines of local axes in overall coordinate system at mesh paint ICN (the columns of DIN are 
named as XII, ETA, and ZTA) 

Independent components of stress tensor for lCth classb group of lMth material group at mesh paint ICN 

Overall coordinates of mesh point ICN 

Overall coordinates of 11th vertex of 11th element of lCth class' group of lMth material group at mesh 
point ICN 

Deflection components in overall coordinates of mesh point ICN 

Deflection components in overall coordinates of mesh point whose overall coordinates are in XF 

Residual forces' in overall coordinates at mesh point ICN, i f  on boundary 

Relative deflections (in overall coordinates) of mesh point related with XF vector with respect to mesh 
point ICN 

Direction cosines of 1-2 line of the lowest labeled element of classb group IC of material group IM at 
mesh point ICN 

Number of classb groups in each material group (maximum 4) of mesh point ICN 

List of labels of boundary mesh points attached to mesh point ICN 

Vector containing the sequence numbers of the vertices after (JPl), before (JMl), and above (JS1) mesh 
point ICN in the Ith mesh element of the node set (with Table 111-5, vol. 1) 

See NU (1) 

See NU (2) 

See NU (3) 

Vector containing number of independent strain components (ICOL), number of right-hand sides (IRIG) 
and indicator of right-hand-side arrangement (IDR) (IDR = 0 means lineal strains first, IDR = 1 means 
rotational strains first) for current ICN/IM/IC 

See NES (1) 

See NES (2) 

See NES (3) 

This portion of COMMON i s  as shown in Table VI-3, Vol. 1. See also Fig. 111-3, Link 4 

See Fig. 111-1, l ink 4 

Vector containing information for stress conputation at mesh point ICN 

Element set information of mesh point ICN (see Table VI-7, Vol. I )  

Table for classes and material of element set at mesh point ICN (see Table VI-7, Vol. I) 

Vector of weights of strain-deflection equations for current ICN/IM/IC 

Material matrix for current ICN/IM/IC 

Augmented matrix of strain-deflection equations for current ICN/IM/IC 

Coefficient matrix (or its inverse) of the least-squares equations for strain for current ICN/IM/IC 

Right-hand-side vector(s) of the least-squares equations for strains for current ICN/IM/IC 

List of labels of mesh points on the boundary and attached to mesh point ICN 

Auxiliary array for NSET 

Direction cosines of new material axes in the old for current ICN/IM/IC 

295 

296 

297 

329449 

349-1 3999 

14000-15704 

14000-1 4399 

144oO-14659 

14660-1 4749 

14750-14785 

14786-15415 

15416-15479 

15480-15495 

15496-1 5595 

15596-15695 

15696-15704 
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Appendix 

Corrigenda for Volume I 
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