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CHEMICALLY REACTING COUETTE FLOW WITH HYDROGEN
INJECTION FOR TWO DIFFUSION MODELS
By

Randolph A. Graves, Jr.
ABSTRACT

This investigation deals with an analytical study of the effects of
hydrogen injection and chemical reaction on the flow properties of Couette
flow with special emphasis given the diffusion model assumed for the

calculations. The two diffusion models chosen for the present analysis

are Fick's law diffusion and multicomponent diffusion. For most boundary

layer and Couette flow analyses the approximate Fick's law diffusion model

is used as it results in considerable mathematical and numerical simpli-
fication over the more exact but cumbersome multicomponent diffusion
model. There is discussed in the literature the use of Couette flow to
simulate the two-dimensional laminar boundary layer, however, there is
no literature available concerning hydrogen injection into chemically
reacting Couette flow with property variations nor is there literature
available on the effect of the diffusion models used for the Couette
flow solutions. The purpose of this study was to obtain solutions for
the chemically reacting Couette flow withHVQriable transport propefties
and hydrogen injection for the two diffusionxﬁodels.

Solutions to the governing equations f9?:Couette flow were obtained
“or the two diffusion models over a range of‘hydrogen injection rates.

The results indicate that there are significant differences between the



solutions for the two diffusion models and these differences are
manifested most in the concentration profiles and the lower wall

heating rates.
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I. INTRODUCTION

The reduction of intense aerodynamic heating encountered by reentry
and hypersonic flight vehicles through the use of mass transfer cooling
has become widely accepted. Whether this mass transfer cooling is
accomplished by ablation or transpiration, the gases injected into the
boundary layer are generally quite different from the main stream flow.
Since the heating reduction is greatest with low molecular weight gases,
molecular hydrogen is usually a major component of the injected gases
especially in the ablation of polymeric materials. The introduction of
hydrogen into boundary-layer flow complicates the analysis as large
property variations occur and molecular diffusion and chemical reactions
must be considered.

In most analyses Fick's law diffusion is assumed as it is an easily
applied approximation to the more exact but mathematically cumbersome
multicomponent aiffusion model. However, since the Fick's law diffusion
model is an approximation the calculated diffusion velocities will be
in error, especially when there are large differences in molecular weight
of the diffusing species as is the case when hydrogen is present in an
airstream. Thus a comparison of the diffusion models is necessary to
provide an estimate of the errors incurred when using the approximate
model. : .

In making a comparison of the diffusion models any simplification
that can be used without concealing the important aspects of hydrogen

injection into an air boundary layer is desirable. In the literature



the one-dimensional Couette flow model has been used to simulate the
two-dimensional laminar boundary layer. However, the sources available
consider only hydrogen injection into an air Couette flow with constant
properties and no chemical reactions.

The present study is twofold in purpose: first the effects of
hydrogen injection with property variations and chemical reactions will
be considered and secondly comparisons will be made between two diffusion
models. As in the literature, the one-dimensional Couette flow model will
be used to simulate the two-dimensional laminar boundary layer. In this
Couette flow representation the velocity of the moving plate represents
the free-stream velocity, while the distance between the plates simulates
the boundary-layer thickness.

This investigation was conducted under the auspices of the
National Aeronautics and Space Administration at the Langley Research

Center, Hampton, Virginia.




II. REVIEW OF LITERATURE

There exists surprisingly little information in the literature
concerning the effects of the diffusion model on the solutions obtained
for a chemically reacting airflow with hydrogen injection. There are
no direct comparisons between the approximate Fick's law diffusion model
and the more exact multicomponent diffusion model available from the
literature, however, the analysis of Libby and Pierucci (ref. 1) does
consider hydrogen injection into a laminar boundary layer with variable
properties, chemical reactions and multicomponent diffusion, but these
solutions are compared to rather limited constant property (Prandtl and
Schmidt numbers equal to one) solutions, making the comparisons somewhat
unrealistic and giving no insight into the effect of the diffusion model
utilized. This thesis differs from the above analysis in several respects.
First, the solutions for the approximate diffusion model analysis will
employ the same assumptions as the multicomponent diffusion analysis,
except for the diffusion model itself; and secondly, the present analysis
uses the Couette flow model to simulate the two-dimensional laminar
boundary layer.

There are several soufces of information in the literature on
hydrogen injection into Couette flow with the principal analysis being
that of Eckert and Schneider (ref. 2), but because of the assumptions
of no chemical reactions and constant properties their solutions are of
only limited usefulness. A variable property analysis is given by
Simon, et al. in reference 3 where hydrogen is injected into an inert

stream with no chemical reactions. The present analysis differs from

3
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these latter two references in that variable properties, chemical

reactions, and two diffusion models are considered. Also, the present
analysis will not employ the flame sheet approximation as did Libby and
Pierucci to define combustion but instead a diffusion flame will result

from the solution of the governing equations.




ITI. ANALYSIS

Figure 1 shows the Couette flow model. The lower porous surface,
at y = 0, is stationary while the upper porous surface, at y = s, moves
with a uniform velocity u,. The lower surface is at the temperature
Tw and the upper surface at T,. The hydrogen gas, initially at temper-
ature Ty, is injected perpendicularly into the flow uniformly through

the stationary surface, and removed uniformly through the upper surface.

Basic Equations of Motion

The basic equations governing motion in a multicomponent chemically

reacting gas are taken from Scala, reference 4. These equations are the

continuity equation,

Dp
— +pVev =0 1
o=+ p (1)
and the momentum equation,
v
p=—=Vex +j{:p F (2)
i
where gzt 1s the pressure tensor,
and the energy equation,
Dh DP
p == ==VQ+ O + =— +§E:p V.7 (3)
Dt D" pt : $71°p8

R T ——




In this equation Q reprenents the energy flux due to temperature and

concentration gradients anc is given by

Q = - (Avr) ~|-Zpiv1hi

. 3
-my Y a2plG 5,
J i
%Ei: .;Miij

The viscous dissipation function ¢®p in equation (3) is given by the

following relationship:

2
op ={ku) 2(?_"3+3"_,1) _2,(Y ¥
D %o ox; ox 3 ox
3 =3 J 5 k k
and finally there is the species continuity equation
DKy -
D—D-;=C°i'\7‘(pivi) ()

Assumptions for Present Analysis

For the present analyéis the following assumptions are made:
1. The flow is steady.

2. The model is one dimensional.

3. Thermal diffusion effects are neglected.

L. Diffusion stress effects are neglected.

5. No body forces considered.



6. No pressure gradients.

7. No radiation heat transfer.

8. Chemical equilibrium exists throughout the flow.

9. Gas properties depend on local mixture concentration and
temperature. -

10. Both surfaces are impermeable to the main stream gas.

11. Prandtl's order of magnitude analysis is applicable (ref. 5).

Equations of Motion for Couette Flow

Using the above assumptions the basic governing equations of motion

can be reduced to the following forms for Couette flow.

Continuity equation,

[ev) -0 (5)

momentum equation,

ov du & (u d—“) (6)
dy dy dy
energy equation,
dh 4 ar du 5 d
-— e = b pl—] - = Z Vih 7
gs - dy( dy) ”(dy) d"(i s i) ;

species continuity equation,

dK
pv —d-;: + %—(Divj_) = Wy (8)



These equations are similar to the two-dimensional laminar boundary
"].ayer equations except for the Couette flow being one dimensional.

A further simplification of the energy equation can be obtained

h -Z hiKi

through the introduction of:

i
fT : (9)
h; = ar + 9
St Cpi he
Thus
dh =ZK ﬂ+2 dKy (10)
= 1%p1 o hy pod
i i
or
dh daT
— = f— % 5
Rl & (11)
where

The energy equation becomes:

o @S0 5) (@) - AYeom

-WMWMJ




A simplification of the species continuity equations can be obtained
through the introduction of the concept of "elemental" mass fractions
as expressed by Lees in reference 6. The "elemental" mass fraction
concept results from the fact that the mass of individual chemical
elements is preserved in any chemical reaction not involving nuclear
transformation. The "elemental" mass fraction is given by the

expression:

~ -Z MJ
Bl MsES
1

The species continuity equations for the elements can be obtained by
multiplying equations (8) by giJ Mj/Mi and summing over i, and there

results the "elemental" species equations
L afy ¢, h
ov —i+ L p;Vi]=0 13)
dy dyi, c:L,jM:L:I.:I. (

The introduction of the "elemental" mass fraction eliminates the species
production terms (w;) of equations (8) and reduces the number of
calculations to be made. There is now one equation of the above form
for each element as opposed to one equation of the form of equat:on (8)
for each chemical species.

In the present analysis there will be three elements H, N, and O,
and four chemical species Op, Hp, Np, and HpoO considered with one chemical

reaction of the form:
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324--;-02‘:, Hp0

This same chemical system was used by Libby and Pierucci in reference 1,
and while it does not consider dissociation or ionization,the species

considered do represent the major products of hydrogen combustion in an
airstream. Also, the species considered have the necessary variation in

molecular weight which is essential to the diffusion model comparisons.

Boundary Conditions

At the moving surface, (y = s), the following boundary conditions

apply:

T =T,
= Uy

ne ©

i Ein

In order to simulate the two-dimensicnal boundary layer the
"elemental" mass fraction for hydrogen must be very small. This creates
a correspondingly small "elemental" hydrogen density and since the
continuity equation must be satisfied (pv = cogstant) the transverse
velocity becomes very largé. This introduces some uncertainty as the
transverse velocity was assumed small in comparison with the main flow
velocity in order to accomplish the reduction of the general equations
of motion. This apparent contradiction is inherent in the use of the one-
dimensional Couette flow to simulate the two-dimensional laminar boundary

layer and arises primarily from the assumption of the porous surfaces

being permeable only to the hydrogen.




il

At the lower surface, (y = 0), the boundary conditions are:

u=0

T

Ty

The boundary conditions on the "elemental" species continuity equations are

derived as follows. Integration of the global continuity equation ylelds
pv = constant = (pv)w (14)

Using this relation the "elemental" species continuity equation

can be integrated to give:

M3
v Ky + 613 ﬁI’ini = constant (15)
p 3

The following subscript notation is adopted for the "elemental" species.

element - subscript
0 1
H 2
N L

Assuming Fick's law diffusion for illustration the diffusion velocities are
dK

and assuming the same relation holds for the "elemental" species

- = K.
pivi = = pD 'Ei (l5b)



12

Using the Fick's law relation, equation (15a), the summation term of

equation (15) becomes,

M ' M; &K
Z 61y i Py = - °DZ 13 (15¢)
- 3
~ M
Kj =z €ij —JKi (15a)

dK 5 _Z Mj Ky
= Ci,j Mi dy (153)

Substituting equation (15e) into equation (15¢) the following relation-

ship is obtained,

Z M3 &K ;
’ e Ao e

or from equation (15b),

. M- ~o
}: iyt PaVy = PyTs
7 "

Thus equation (15) becomes

~ o

pvﬁs + psVy = constant (15¢)
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Considering first the injected species, hydrogen, equation (15f)

becomes:

~

PV + Séﬁé = constant
Po(v + Vé) = constant
Sésé = constant (16)

Evaluating the constant at the lower wall (y = O) the above equation

becomes:
pavp = (pgva) = (pv)y

Thus the boundary condition on the "elemental" hydrogen continuity

equation becomes:

= My
(ov) Koy +X 813 ™ PiVy, = (ev)y
i

or

& §
e = e (mlr)J\z i °*vi> o

w

A similar procedure is followed in evaluating the constant for the

main stream components where

;¥ = (By¥y)y =0

vy = (By¥y)y = 0
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The boundary conditions for these elements

v = - (ov)w@ i °1Vi> o
~ M
K).;w . - (pi)w(z gi,j M—i' °1V1> (19)

Nondimensional Form of the Governing Equations

The following new variables are introduced:

= L U=u——-
N - e
P - s o EV8 (ov)ys
" aee o = =
T o Heo

The governing equations in nondimensional form are:

momentum equation,

soill=.i(L d_U) (20)

energy equation,

2 2
Crr ae a( A de)+ Uy M (dU)

Op mmme e = e | — —_— | —
» CPRQ d‘f] dn CP&»“’& dn CPR”TQ% d‘l‘]

- I gaves oy (21)
dn o CpR Teo
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species continuity equation,

At

at

dk' a M; pyVys
So—dg-=-3]-(>: §1,jf;il .
i

Nondimensional Boundary Conditions

D
1}
D

Heat Transfer at Lower Wall

T ;
@y ay/., 140

i

(22)

(23)

(24)

(25)

(26)
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Transforming equation (26),

b o Qus A E) _Z piVis hi (262)
uwCP&'I‘N “coCPP\, dn Moo CP&T“

w W

Shear Stress at Lower Wall

du
v & S (27)
w = My dy) i
Transforming equation (27),
T. S
ety g8l (27a)
Moo Moo Moo d"l
W

Solid Wall Couette Flow

For the solid wall case, the mass transfer is zero. The continuity

equation integrates to:
pv = 0 (28)

The governing equations then reduce to:

momentum equation,

d du
;y-( Ey-) 0 (29)




L7
energy equation,
d daT du o
— )\ — | 4 — = O
L(rE)+u(z) (30)

On introduction of the nondimensional variables these equations become:

momentum equation,

d du
- =\ =0 1
an (u dn) (31)
energy equation,
d dae 2(du 4
AR, =]+ mioe] =0 32)
dJ m)"’%) ;

Integrating each eg:.iicn once and evaluating the constant at the
lower surface the equ::tions in nondimensional form are:

momentum equation,

4
4 ot (33)
dm  p

where
dau
C, = S
o )

energy equation,

T + = (34)

as 1 M 1) 92) . Co
) Mn) Vo T, \dn A1)
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where
dae
c=7\—)
2 W
dn -

BoundagyﬁConditions

U=20

9=9w

Heat Transfer at Lower Wall

.2 aT
“-nE)
Transforming,

Qus My de)
wg -

Shear Stress at Lower Wall

3 Con T C da
P "PRo"®  “PRebeo  V/,

(35)

(35a)

(36)

ST e
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Transforming,

TwS My QU
cfo T et Heo d_) .
rl w




IV. GAS PROPERTIES

The thermodynamic and transport properties are calculated by the
metnods listed below. The gas mixture is assumed to be at one atmosphere

prersure for all calculations.

Chemical Composition

The following reaction is considered for the present analysis:

H2+§02 :) HQO

In addition, Np is present in the main Couette flow giving a total of
four chemical species to be considered in the equilibrium calculations.
The chemical equilibrium equations will be formulated in terms of the
"elemental" mass fractions to facilitate calculation of the equilibrium

composition from the solutions of the species continuity equations.

K; = Mﬁl z 61 5% (37)

1
?O = M-ﬁ‘_l {exo2 + xHQ(} (38)
Ky = %i {axH2 + anzc} (39)
Ky = %!{zcna} (ko)
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Dividing equation (40) into equation (38) and rearranging one cbtains the

following equation for the mole fraction of Np:

X
e (1)

where:

Dividing equation (40) into equation (39) and rearranging one obtains:

where:
.1
My Ky

Substituting equation (41) into equation (42) the equation for the mole

fraction of Hp is obtained:

xH? = XH20(% - 1) + CXo, (43)

where:
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Using the relation z Xi =1,
i

= + X + X + X =1 Ly
0, © "Ny " TH0 © THy ()

Substituting equations (43) and (41) into equation (44) the followinrg

relationship results:

£ C 1
{L"'C'ﬁ; an"'{é""EA' XHQOSl (,45)
Letting
ES{L-!-C-D--];}
A
pailsd
g A
'G-}-
F
Xg,0 = (¢ - By ) (1)

Combining equation (46) and (43) one obtains:

C
XH2 {2 (¢ mxoa) CXo o (%7)
The equilibrium constant is related to the mole fractions by

g, o 120 (16

xﬂa(x%) 1/2
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Substituting equations (46) and (47) into equation (48) there results

the feollowing relation:

(¢ - EGXOQ)

Letting
I = pt/%
Y
2
the above relation reduces to
% (G - EGXOQ)

" (Ho - HEGXo,, + cxoz)(xoel/e)
IHGX021/2 ¢ IHEGx025/2 + ch025/2 = G - EGXo,

¢ 3/e , EG /7 .
(ii" )X02 " . I 20, * @, /

2

= (49)

Since all the constants (A through I) in equation (49) are known
quantities, equation (49) can be solved iteratively for the unknown mole
fraction xoz. With the mole fraction on the other mole fractions can

be easily determined from equations (46), (43), and (41). The equilibrium
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constant used in these calculations is taken from the JANAF tables,

reference 7, where it is tabulated in one hundred degree Kelvin increments

The molecular weight of the mixture is determined from:

i

The mass fractions are determined from the mole fractions by:

- (51)

K
- M

Thermodynamic Properties

The mixture density is obtained from the perfect gas law

(52)

A1E

and the enthalpy of the individual species is taken from the JANAF tables,

reference 7, and the mixture enthalpy is calculated by

by ’Z Keby (53)
i

where

T
hy -fTo cPi ar + h.gi (ref. 7)

The reference temperature for the present calculations is " k.
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The specific heat of the individual species is also taken from
reference 7. The specific heat of the mixture is obtained from the

relation
dK
Cer =Z 3 ! +Z . —é% (54)
i i

The derivative of Kj is found numerically by solving for the Ki's at

a temperature 25° K above and below the given temperature with:

T+25 T-25
dKi=Ki( ) 'K;( )

aT 20

(55)

A comparison of the present method and the method of Zeleznik and
Gordon, reference 8, is given in table I which shows very good agreement

between the two methods.

Transport Properties

Rigorous kinetic theory expressions for the viscosity and thermal

conductivity of gas mixtures have been developed and are presented by

Hirschfelder et al. in reference 9, but these expressions are mathemati-
cally cumbersome. Somewhat simpler relations, which are approximations
derived from the rigouous expressions are given by Brokaw in reference 10
and are used in the present analysis. These approximations are very accu-
rate at low temperatures but the accuracy is expected to deteriorate some-
what at higher temperatures due to uncertainties in the approximations
and molecular constants used, however, these approximations are of suffi-
cient accuracy for use in the expected temperature range of the present

analysis.



Mixture Viscosity

‘The mixture viscosity is calculated from the pure component

viscosities with the relation

T
m=z - (56)
X
j=1 *
J#L

The coefficients @335 are a function of the pure component viscosities

and molecular weight ratios

)
95 = (57)

a\rz(l ‘ (%))1/2

2
1/4

For use in the present analysis the pure component viscosities are taken
from Svehla, reference 11.

Mixture Thermal Conductivity

The mixture thermal cbnductivity is obtained from the relation:

M= Ayt g (58)

where }i is the transfer of energy due to the translational motion of

the molecules and ); is the transfer of energy between internal degrees

of freedom and translational motion in polyatomic molecules. The
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monatonic mixture conductivity is obtained from the pure component

monatonic conductivities with the relation

An =z e (59)
x
I Vi x_J
j=1 »
J#H

The coefficient WiJ is obtained from the viscosity coefficient °ij

by following relationship

- - 0.142 M
iy = 0{ 1+ 2.4 |2M1 )0 ck

60
: L Oy +my)2 e

The internal mixture conductivity is obtained from the pure component

internal conductivities with the relation

A = z i (61)
A +Z 04 5 2
Xy
3=l
J#L

The pure component thermal conductivities are obtained from reference 1ll.
The pure component transport properties used in the analysis are

calculated in reference 1l by:

Viscosity

= 26.693\15 x 10_6 (62)
a2 (2,2)*

o




Monatonic Thermal Conductivity

1o LR
A i (63)

Internal Thermal Conductivity

RfCP 5
m-1.32 8B _2 64
A 3M(R 2)u (64)

In calculating the viscosities and thermal conductivities using the

above equations the Lennard-Jones (12-6) potential was used to obtain

the reduced collision integrals Q(2,2)*. The reduced collision
integrals are given in table form in reference 9. The molecular force
constants (see table II) used in the Lennard-Jones (12-6) potential were
obtained from experimental viscosity and thermal conductivities where
possible and estimated by Svella in reference 1l using empirical
relations where no data was available. In the calculation of the reduced
collisionvintegral the molecules were all assumed to be nonpolar. This
assumption does not introduce appreciable error since the force constants
were obtained from viscosity measurements and since the dipole-dipole
interaction is negligible in higher temperature high energy collisions.

A more complete discussion can be found in reference 1l.

Diffusion Transport

The purpose of the present analysis is to compare solutions to the
governing equations for Couette flow using two different diffusion models;

the approximate Fick's law diffusion model and the more exact multicomponent
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diffusion model. As will be seen below, the more exact multicomponent

diffusion model entails a considerable number of mathematical operations

ebte el GRS e R Nk
% oate

and from a numerical analysis standpoint is not as desirable as the

simpler but approximate Fick's law model. These two diffusion models are i

presented in the following sections.

Multicomponent Diffusion
The multicomponent diffusion fluxes were calculated using the

following relations from reference 9.

Sy, - vy) (65)
J?‘i

Equation (65) is the Stephan-Maxwell relationship for the multicomponent

Vv
i=1

Equation (65) can be rearranged to a more convenient form:

diffusion velocities.

v-l,6 v=1

Xy XX XX

% le(.;.j vJ) - V1321 3= (67
JHL JH

Multiplying equation (67) by p/u, @and introducing the nondimensional

coordinates we have:

3 p 18 = xix
z o 4 Z L (68)
o QN K1) e jo K
I

J»‘i
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Similarly multiplying equation (66) by s/m,:

v
: v
Z L L. (69)
“’oo
i=]

For the v component gas mixture the diffusion fluxes, pivis/gn,
are obtained from the simultaneous solution of v - 1 relations of the
form of equation (68) and the relation given by equation (69).

The binary diffusion coefficients are calculated using the following
relation from reference 9.

3 -

1/2

(T’(M1 - MJ)>
2M; M5

P(Oij)2 ﬂij(l’l)*

— —

Di; = 0.002628 (70)

Again the reduced collision integral, Qid(l’l)*, is based on the
Lennard-Jones potential and is taken from reference 9. The molecular
constants used for these calculations and to obtain the reduced collision
integrals are given in table II. The binary diffusion coefficients

obtained from the above relation are shown in figure 2.

Fick's Law Diffusion

The Fick's law diffusion fluxes are calculated according to the

following relation:

pyVy = - pD —= (1)



p 3 §

Knuth in reference 12 states that a sufficient condition for the

e T I

applicability of equation (71) is that the binary diffusion coefficients |
are equal to each other and to the Fick's law diffusion coefficient.
This assumption makes the Fick's law diffusion coefficient a pseudo
binary diffusion coefficient and in the literature Fick's law diffusion
is generally referred to as birnary diffusion because of the appearance
of equation (71). The term binary diffusion will be adopted here for
discussion purposes.

Multiplying equation (71) by 1/u, and introducing the nondimensional
coordinates equation (71) becomes

piVys . pD dKi

Mo Mo N
The diffusion coefficient is considered to be the same for all species
and as such is a self-diffusion coefficient given by the following |

relation from reference 9:

(13 /iy*/2

D = 0.002628
P(aij)znij(l,l)*

(72)

where the molecular constants are an average of those in table II.
Again the Lennard-Jones collision integral is used. The mixture
molecular weight is used in place of an average molecular weight in
order to more accurately represent the diffusion process. Although

not plotted on figure 2, the average diffusion coefficient lies above
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the lower set of curves and below the upper set. Thus at a given

temperature the average diffusion coefficient lies in a narrow band

of values depending on the mixture molecular weight.




V. COMPUTATION

The philosophy on the numerical analysis was to keep calculations
straightforward and as simple as possible. Some changes were made in
the numerical technique during the debugging process but overall the

numerical analysis is straightforward while not always simple.

Solid Wall Couette Flow

The governing equations for the solid wall Couette flow are arranged
as follows:

momentum equation,

& = ) (73)
where

fu(n) = RC%)-
energy equation,

& = fol) (74)

where

dau

. ug [ a\? c
fg(n) = - X ﬂ)j:) u(n) ?(Eﬁ) dn + )
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The solution of each individual equation is obtained using the

oS

"corrector" method given by Hamming in reference 13. This method is
based on an iterative finite-difference procedure using the following

equation:

Fap = Fy + PPy + Fﬁ} (75)

where An 1is the distance between finite-difference stations. According
to references 13 and 14 the iterated corrector process always converges.
In the evaluation of the f,(n) and fg(n) it is necessary to obtain
derivatives of several functions and this numerical differentiation is
accomplished through the use of the equations given in appendix A.
Initial starting profiles are obtained from constant property solutions
to the governing equations for Couette flow. Then solutions to the
energy and momentum equations are obtained by repeated (iterated)
application of the corrector equaticn until the following error criterion

is met:

Py - - Fyt| < 0.000001

That is, the right-hand sides of equations (73) and (74) are evaluated
at each finite-difference station and the resulting functions integrated
using equation (75). This process is repeated until the above error

criterion is met. The simultaneous solution of the energy and momentum

equations is accomplished by the iteration technique of Smith and Clutter,
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reference 15. This iteration process is shown in figure 3 and the block
labeled "Fluid Properties" is riumply the determination of the transport
properties. The simultaneous solution is assumed to converge when the

momentum equation has satisfied the following error criterion:

I+l _

Uy I

Uy | £ 0.000001

The present method for the solid wall Couette flow has been compared
to several calculations from the literature. Air Couette flow
comparisons have been made with the constant provnerty analytical method

of Eckert and Schneider, reference 2, for the following conditions:

? =218°K
o0
Mach No. = 12

6, =6

Only the temperature profile is compared as the velocity profile is
linear in both methods. Good agreement was obtained between the two
methods as shown in figure 4. In the constant property solutions the
terms "edge" and "wall" refer to the mcving and stationary surfaces,
respectively, where the values of the properties were fixed for the
solutions. Also present in figure 4 for general interest is the variable
property solution and it is seen that the constant property solutions
do not represent the variable property solution to any great degree.

A variable property solution for nitrogen Couette flow was taken
from reference 3 and is compared to the present method for a nitrouen

stream in figure 5, with good agreement again being obtained. The
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velocity profile (not shown) also showed good agreement. This comparison

was made for the following conditions:

T, = 218° K
Mach No. = 12

T = 872° K
The nondimensional coordinate 7 1is given by
Q
7:—
Qg
where

1l
an
a,a-_-f—
0 M

and the nondimensional temperature 91 is given by

T-Tw

e D m————
1
T, -1

Couette Flow With Injection

The governing equations for Couette flow with hydrogen injection
are arranged as follows:

momentum equation,

gg = fu(ﬂ) (76)
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where

1 ad u dav
£,(n) = —
8o AN \peo dn) |
energy equation,
ae
an = £o(n) (78)
where
5 [d/ A de
oln) = 5, cqu \ieCpr_ a1
u_u ) a }:(
+ —
CpR,, Teokeo \ AN dn DY e Tmcp&o) e
species continuity equation
dg' 4 p:V:s
oope sy BT (80)
dn dn My Moo
i

The "elemental" species continuity equation can be integrated to provide

a more easily applied form so that the "elemental" mass fractions can

be directly determined.

TRVUTINEITRE W Trprp TRy —
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Integrating:

~ §1JMJ iniS
- + constant
Mp M

Evaluating the constant for the main stream components at n = 0

for nitrogen
constant = (BLGL)V =0

for oxygen
constant = (Si;i)w =0

The constant of zero for both "elements" results directly from the

boundary conditions, equations (24) and (25).
Thus tae species continuity equation for the main stream components

becomes:

o 1T Sy Vs
By = §<E - (81)

i

Since there are three "elements" in the system only two species

continuity equations need be solved, for the sum of the "elemental"

mass fractions equal one.
Because some difficulty was encountered in the solution of the

governing equations, the presentation of the numerical analysis will
be somewhat in a reverse order from that of the solid wall case. However,
the initial starting profiles are again obtained from the constant

property solutions to the governing equations for Couette flow.
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The simultaneous solution of the governing equations is again
accomplished by the iteration technique of Smith and Clutter,
reference 15, but with one minor change. The iteration process is shown
in figure 3 and the block labeled "Fluid Properties" is expanded in
figure 6. The "Fluid Properties" loop is necessary because the iterative
solution of the "elemental" species continuity equations requires a
new calculation of the chemical composition and diffusion velocities
after each iteration. The "elemental" species continuity equations are
assumed to be satisfied when the boundary conditions meet the following

criterion:

Ry - R
CAL B.C. _ 0.002
ﬁq -

B.C.

The choice of 0.2 percent as the error criterion was dictated by the
economics of computer usage for it was found that the major iteration
(time-consuming calculations) were those in the "Fluid Properties" loop.
The overall simultaneous solution of the governing equations was said

to have been obtained when the following error criterion on the momentum
equation was met:

I+l I
Uy~ "~ - Uy

Uh1+l

The error criterion of 0.1 percent was again dictated by the computer

< 0.001

time used to obtain a solution. Within the major loops of the iteration

process in figure 2 the energy equation was assumed converged when:
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I+1 I
O - O

5 0.001
eNI+l

and again the error criterion was 0.1 percent.

Initially the solution of the energy, momentum, and species con-
tinuity equations was attempted using the "corrector" equation given
previously and the three-point derivative formulas. However, when the
simultaneous solution converged there were present large oscillations
in the solution, especially in the temperature (8) profile. An attempt
to alleviate the problem was made by attempting to use a more accurate
derivative formula, such as the five-point formula given below from

reference 16.

=" (82)

ar\ _ ~ Pyee * Oy - Oy + oo
N 12An

where the error term was of order (Aq)u. The oscillations became worse.
Although the above formula is more accurate than the three-point formulas
of appendix A both formulas have the same feature; they do not include
the value at the point of calculation. In place of the three- and five-
point formulas a four-point formula was derived, see appendix B, which
considerably reduced the oscillations but did not completely eliminate
them. The "corrector" formula, equation (75), is but a two-point
(trapezoidal) integration relation and in the region of rapid changes

in the function to be integrated it is not very accurate. However,

reference 17 gives some six-point integration formuias that are more




L1

accurate and these formulas, see appendix C, are used for the present
calculations resulting in a smoothing out of the oscillations in the

converged solution.

The solution to the individual momentum and energy equations was
obtained by iterating the six-point integration formulas until the

following error criterion was met:

|FNJ+1 - Fy’| < 0.000001

H
i
§

:
1
H
i
i
{
3

That is, the right-hand sides of equations (76) and (78) are evaluated
at each finite-difference station and the resulting functions then
integrated using the six-point formulas of appendix C to obtain the
velocity (U) and température (8) profiles. This procedure is repeated
until the velocity and temperature profiles meet the above error
criterion.

The present method for Couette flow with hydrogen injection has
been compared with the solutions of Simon et al., reference 3, for the

following conditions:

T, = 218° K
Mach Ne. = 12
T, = 872° K

Re, = 0.3

where:

1
Re, = pvs f L an
g P
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The stream is all nitrogen and has variable properties and binary
diffusion. In general very good agreement between the methods was
obtained. Figure 7 shows the temperature profile comparisons with

the agreement not as good as expected but within reason. Better
agreement was obtained between the velocity and concentration profiles
as shown in figure 8. On the basis of the comparison made here it

is assumed that the numerical technique is sufficiently accurate to

carry out the present investigation.



VI. DISCUSSION OF RESULTS

The following values of the independent variables were used to

obtain both binary (Fick's law) and multicomponent dj"fusion solutions:

\
T, =218° K

Mach No. = 6 > For all cases

o}
T, = 872° K

and %, = 0., 0.05, 0.1, 0.13, 0.2, 0.35, 0.5, 0.75, 1., 1.3.

In the numerical calculations fifty finite-difference stations were
used for all cases except the no injection case where forty stations
were used. The solutions were obtained on a CDC 6600 computer and run
times for a single case varied from a few seconds for the no injection
solution to about thirty minutes for the multicomponent diffusion
solutions at large injection rates. The convergence of the total
solution was fairly rapid, requiring generally about four iterations of
the momentum equation. Referring to figure 3, each iteration of the
momentum equation required fewer iterations of the energy equation, with
the total number of energy equation iterations being about five times the
total number of momentum equation iterations. By far the most iterations
were made in the "Fluid Properties" loop of figure 6 with a total number
of iterations varying from several hundred to several thousand depending
on the initial starting profiles and the magnitude of the injection rate.
The numerical technique of this thesis is not very sophisticated in
terms of present day numerical analysis but there has not been a single

case of nonconvergence encountered with this technique.

3
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The no injection temperature and velocity profiles are given in
figure 9 and it should be noted that the stream temperature increases
only slightly above the wall value, indicating that for the present
conditions the wall temperature is less than but close to the adiabatic
wall temperature. The velocity profile is not a linear profile due to

the viscosity variation through the stream.

Velocity Profiles

The nondimensional velocity profiles are given in figures 10
through 14. There does not appear to be any major difference between
the solutions for the binary and multicomponent diffusion models,
especially at the lower injection rates where the amount of hydrogen
and water are substantially reduced in comparison to the oxygen and
nitrogen. Also, the binary and multicomponent diffusion model velocity
profiles in the region of the lower wall do not show any significant
differences and in most cases the differences are hardly detectable.
However, there is a difference in the nondimensional shear stress at
the lower wall as shown in figure 15. The shear stress for the multi-
component diffusion model is higher than the corresponding binary
diffusion model solutions for all injection rates. This shear stress
difference results primarily from the mixture viscosity variations
between the two diffusion models. The pure component viscosities for
hydrogen and water are lower than those for nitrogen and oxygen, result-
ing in decreasing mixture viscosity with increasing hydrogen and water
concentrations. As will be shown in the section on concentration

profiles, the hydrogen and water concentrations at the lower wall for
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the binary diffusion model are greater than the corresponding multi-
component diffusion model solutions, hence, the mixture viscosity is
less at the wall in the binary diffusion solutions. This decreased
viscosity causes the somewhat reduced shear stress for the binary
diffusion model as seen in figure 15.

In the present solutions the shear stress for both diffusion models
increases substantially over the no injection condition in the inter-
mediate injection rate range. This effect was not seen in the results
of Eckert and Schneider, reference 2, where the shear stress was shown
to decrease from the no injection condition for all hydrogen injection
rates. Since reference 2 did not consider variable properties nor
chemical reactions the increased shear stress of the present calculations

is attributed to the inclusion of these phenomena in the analysis.

Temperature Profiles

The nondimensional temperature profiles are given in figures 16
through 20. The differences between the binary and multicomponent
diffusion models are greater for the temperature profiles than was the
case for the velocity profiles with these differences being greatest at
the intermediate hydrogen injection rates. The overwhelming effect of
chemical reaction is seen by comparing the no injection temperature
profile of figure 9 with figures 16 through 20. The increase in peak
stream temperature over the no injection solution approaches a factor
of three at the higher injection rates. Referring to figure 21 it is
apparent that at low and intermediate injection rates the lower wall

heating substantially increases but the heating ratz then decreases as
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the injection rate is increased further. These heating rate curves
point out one of the largest differences between the diffusion model
assumptions. The heating rates for the binary diffusion model are
always larger than the corresponding multicomponent diffusion model and
are positive, whereas the multicomponent diffusion model lower wall
heating rate is negative at the largest injection rate.

The no chemical reaction results of Eckert and Schneider,
reference 2, do not show the large temperature and heating rate increases
that result when the exothermic hydrogen oxygen reaction is considered.
Aside from this large effect of chemical reaction on the temperature
profiles, the differences between the two diffusion models is more
apparent especially in the heat transfer rates where the binary diffusion
model generally predicts much larger heating rates than the multicomponent

diffusion model.

Concentration Profiles

The differences between the two diffusion models is best seen in the
concentration profiles of figures 22 through 30, where not only are there
differences in the relative amounts of species but there are also some
profile shape variations. The biggest difference occurs in the hydrogen
concentration profile with the wall concentration reflecting this
difference the most. Figure 31 gives the hydrogen concentration at the
wall for both diffusion models and it is readily seen that the binary
diffusion model concentration is much larger than the corresponding
multicomponent model. This large difference alters the mixture transport

properties at the wall, for hydrogen has a larger thermal conductivity
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and lower viscosity than the other species. This alteration of transport
properties is the primary cause of the heating rate differences of

figure 21, for the temperature profiles of the two diffusion models are
very close at the wall whereas the heating rate due to conduction alone
is less for the multicomponent model due to the lower hydrogen
concentration.

The differences between the concentraticn profiles for the two
diffusion models is primarily due to the increased diffusion velocities
of the multicomponent model which means that a smaller chemical species
gradient is needed to produce the same diffusion velocity as the binary
model. This lowers the hydrogen concentration at the wall and also
causes the reaction zone to be at a greater distance from the lower wall.
This is best seen in figure 29 for an injection rate 8y = 0.1 where
for the binary diffusion model the reaction zone is away from the surface.

The concentration profiles point out the area of greatest difference
between the two diffusion models, with the concentration of hydrogen at

the lower wall best representing these differences.



VII. CONCLUSIONS

The foregoing ana.iysis has resulted in the following conclusions:

1. Hydrogen injection into air Couette flow with chemical reaction
alters the stream properties and causes changes in the major flow
variables.

2., There are significant differences between the two diffusion
models, and the approximate Fick's law diffusion model should be avoided
except where gross approximations to the flow variables are needed.

3. The injection of hydrogen into air Couette flow with chemical
reactions generally results in an increase in skin friction and heating
rate.

4. Major differences between the two diffusion models is manifested
in the concentration profiles where not only are the concentrations
different but there is some variation in profile shapes.

5. The multicomponent diffusion model solutions for the lower
wall shear stress show an increase in the shear stress over the
corresponding Fick's law diffusion solutions.

6. The multicomponent diffusion model solutions for the lower wall
heating rates generally show a decrease in heating rate over the

corresponding Fick's law diffusion solutions.
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VIII. RECOMMENDATION

It is recommended that a study similar to this one be carried out
for the two-dimensional laminar boundary layer to establish the validity
of using Couette flow with hydrogen injection and chemical reactions to

simulate a chemically reacting two-dimensional laminar boundary layer

with hydrogen injection.
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APPENDIX A

THREE-POINT DERIVATIVE FORMULAS

Figure 32 shows the finite-difference stations in the Couette flow
and for the present analysis these stations are evenly spaced. The
distance between stations is An. The finite-difference form of the
first derivative is obtained by a Taylor series expansion about station N

evaluated at stations N+1 and N-1, with

. aF )2(a%F An)2[a3F
oo =+ o)+ 9GS - S

N N

and

Fy-1

@) ), ),

Solving for the first derivative %E)
M/ N

g:) _Fya1 - Py (Aq)3/d5r)

The first derivative is thus correct to teims of order (An)3.
The first derivative at the lower boundary (N = 1) is also
determined by the Taylor series expansion about station N but is

evaluated at stations N+1 and N+2, with

Py = Fyy + 0 (g.r;) x S%E(%)N + 19_'612(&)

My and/ y

23



and

Feg = Fy + 2”!(% )N'f g (M)Q(ﬁg) + g (M)’(-dip-)

N an’/y
Solving for the first derivative g%)
N
ARt EL S
dn 2An 3 d'l3
N=1 N=1

The first derivative is again correct to terms of order (an)3.
In a similar manner solving for the first derivative at the upper

boundary (N = NT):

EE) _OFy + Fyp - WPy, = g_(An)3(92§)
dn N=IT 2An 3 d"l} Nt

Likewise the first derivative at the upper boundary is correct to terms
of order (an)2.

The above formulas are used in the solid wall calculations wherever

a first derivative is needed.




APPENDIX B

FOUR-POINT DERIVATIVE FORMULAS

As in the case of the three-point derivative formulas the finite-
difference points are evenly spaced as shown in figure 32. The finite-
difference form of the first derivative at station N is obtained by a
Taylor series expansion about station N and is evaluated at stations

N-l bl N“’l, N+2 . ThuB:

| 2
e =< ) ) (o)
Vy Ny T~ Wl

2[ .2 3( 43p
= g .d_F d— - e -
Fiie1 -FN+Aq(dn) +%L(d 2) +1£6LL(d 5) +
N TN N/ x

. aF| b 293) 8 B(QF_) i
P2 Fn"'?ﬁl(dn)n'*z(ﬁl) (dn2N*6(Nl) quN"'

Solving for the first derivative 9!

an y

aF) . e & sl = }Am)é )
d")n é,‘l{ w1 - Fy - Ty - Fee 12 aqt)y

The first derivative is correct to terms of order (An)3. The above
equation applies in the interval 2 S NS NT - 2.

At station N = NT - 1 the first derivative is again obtained from
the Taylor series expansion but is evaluated at stations N-2, N-1,

and N+1, giving:

25
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(m)a(del’) 3 (a.)i(d"‘) Yl s

N ,1,'2 N 6 d"l5
aF 2( a2 (an)3]adF
FN_I“FN-AT(d—-) + - > -—5> - 3 —5-) P o .- -
Vy an~'y an“/y

= ar\ . (an)3/a%rF ( )3d_3_lt) s
i FN+A“(“'I)& —Ag_(dn )N+—L%—(dn3n+

Solving for the first derivative %!)

2
%)N : '5%,‘ {”Nﬂ + 3Fy - 6Fy; + FN-Q} ‘L'\"')—(%)

Again the first derivative is correct to terms of order (An)3 and
the above equation applies only at N = NT - 1.
At the lower boundary (N = 1) the first derivative is again obtained

from a Taylor series expansion about station 1 but evaluated at stations

N+l, N+2, and N+3. Thus:

2/q2 3
FN,,_l:FN-l-A'q( ) +1%L(d_3) +1Ar.6)_(ﬁ) £: -2

Pyao = Fy + m(%’;)” ‘2 <m>z(§g)n+ - (An)3(§i§)n+ =

P = Py + Bﬁn( ) (a.)e( ) (an’(ﬁ)n $ieas



Solving for the first derivative QE)
N

3%
dF 1 d'F
dn )N 64n { N N+1 N+2 N+3 b \gqh .

Again the first derivative is correct to terms of order (An)3. In a
similar manner solving for the first derivative at the upper boundary
(N = NT):

(gE)B(
%F;'_)N _.. %q’{nTN - 18Ty.) + 9Ty.2 - ETNJ} . :%FE)N

Likewise the first derivative at the upper boundary is correct to terms
of order (an)3.

The above equations are used in the calculation of a first derivative
wherever one is needed in the solution of the equations governing Couette

flow with injection.



APPENDIX C

SIX~-POINT INTEGRATION FORMULAS

The six-point integration formulas given by Milne in reference 17

and rearranged for the present analysis are:

N =2

F. ol +=20.0408, 2. & 1337, 2, - 618. £2 + 302. ¢
2 1 1&1&0.{93 1 . - 2 4 2 3 30 L

- 82. f5+9. f6}

where the error term is:

-862. (m)7{d7r>

60,480. \dn7 .

Pa s Py + —A]. 4050, £, + 65430. £, + . £3 = TOR0. 2
3 2 129600.{ 20. £, 5430. fp + 75780 g =T N

- 1.170. fg + 630. f6}

with the error being:

e
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From N =4 to NI -2

FN = FN-l : E-A%B— 110. fn_3 - 930. fN_2 + 8020. fN-l
+ 8020 fy - 930. fy41 + 110. fn.'.a}

the error term is:

T
, 1695. (M)7(ﬂ)
42336,

N+NI' -1

FN = FN_l + i%.-{- 110. fN-h’ + 770. fN"} i 25&. fN_2

+ 10220. fy_; + 6370. £y - 270. fN+%}

the error term is:

_ 8o15. 7( F)
12336, (an) 5-7

Fy = F - W86, £ - 3114, £ + 8676. fy_
¥ Ty * e {: N-5 = 3 N-k N-3

- 1436k, £ 5 + 25686. £, + 8550. fé}



the error term is:

Eretes
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Figure 1l.- Schematic of Couette flow.
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Figure 9.- Temperature and velocity profiles for air Couette flow
with no injection.
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