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CHEMICALLY REACTING COLJETTE FLOW WITH HYDROGEN

INJECTION FOR TWO DIFFUSION MODELS

By

Randolph A. Graves, Jr.

ABSTRACT

This investigation deals with an analytical study of the effects of

hydrogen injection and chemical reaction on the flow properties of Couette

flow with special emphasis given the diffusion model assumed for the

calculations. The two aiffusion models chosen for the present analysis

are Fick's law diffusion and multicomponent diffusion. For most boundary

layer and Couette flow analyses the approximate Fick's law diffusion model

is used as it results in considerable mathematical and numerical simpli-

f ication over the more exact but cumbersome multicomponent diffusion

model. There is discussed in the literature the use of Couette flow to

simulate the two-dimensional laminar boundary layer, however, there is

no literature available ,:oncerning hydrogen injection into chemically

reacting Couette flow with property variations nor is there literature

available on the effect of the diffusion models used for the Couette

flow solutions. The purpose of this study was to obtain solutions for

the chemically reacting Couette flow with ^tariable transport properties

and hydrogen injection for the two diffusion models.

Solutions to the governing equations for*^ouette flow were obtained

^'or the two diffusion models over a range of hydrogen injection rates.

The results indicate that there are significant differences between the
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solutions for the two diffusion models and these differences are

manifested most in the concentration profiles and the lower wall

heating rates.
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I. INTRODUCTION

The reduction of intense aerodynamic heating encountered by reentry

and hypersonic flight vehicles through the use of mass transfer cooling

has become widely accepted. Whether this mass transfer cooling is

accomplished by ablation or transpiration, the gases injected into the

boundary layer are generally quite different from the main stream flow.

Since the heating reduction is greatest with low molecular weight gases,

molecular hydrogen is usually a major component of the injected gases

especially in the ablation of polymeric materials. The introduction of

hydrogen into boundary-layer flow complicates the analysis as large

property variations occur and molecular diffusion and chemical reactions

must be considered.

In most analyses Fick's law diffusion is assumed as it is an easily

applied approximation to the more exact but mathematically cumbersome

multicomponent diffusion model. However, since the Fick's law diffusion

model is an approximation the calculated diffusion velocities will be

in error, especially when there are large differences in molecular weight

of the diffusing species as is the case when hydrogen is present in an

airstream. Thus a comparison of the diffusion models is necessary to

provide an estimate of the errors incurred when using the approximate

model.

In making a comparison of the diffusion models any simplification

that can be used without concealing the important aspects of hydrogen

injection into an air boundary layer is desirable. In tree literature

1
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the one-dimensional Couette flow model has been used to simulate the

two-dimensional laminar boundary layer. However, the sources available

consider only hydrogen injection into an air Couette flew with constant

properties and no chemical reactions.

The present study is twofold in purpose: first the effects of

hydrogen injection with property variations and chemical reactions will

be considered and secondly comparisons will be made between two diffusion

models. As in the literature, the one-dimensional Couette flow model will

be used to simulate the two-dimensional laminar boundary layer. In this

Couette flow representation the velocity of the moving plate represents

the free-stream velocity, while the distance between the plates simulates

the boundary-layer thickness.

This investigation was conducted under the auspices of the

National Aeronautics and Space Administration at the Langley Research

Center, Hampton, Virginia.

x

^ ^ M



II. REVIEW OF LITERATiTRE

There exists surprisingly little information in the literature

concerning the effects of the diffusion model on the solutions obtained

for a chemically reacting airflow with hydrogen injection. There are

no direct comparisons between the approximate Fick's law diffusion model

avid the more exact multicomponent diffusion model available from the

literature, however, the analysis of Libby and Pierucci (ref. 1) does

consider hydrogen injection into a laminar boundary layer with variable

properties, chemical reactions and multicomponent diffusior_, but these

solutions are compared to rather limited constant property (Prandtl and

Schmidt numbers equal to one) solutions, making the comparisons somewhat

unrealistic and giving no insight into the effect of the diffusion model

utilized. Thi;^ thesis differs from the above analysis in several respects.

First, the solutions for the approximate diffusion model analysis will

employ the same assumptions as the .nulticompor^ent diffusion analysis,

except for the diffusion model itself; and secondly, the present analysis

uses the Couette flow model to simulate the two-dimensional laminar

boundary layer.

There are several sources of information in the literature on

hydrogen injection into Couette flow with the principal analysis being

that of Eckert and Schneider (ref. 2), but because of the assumptions

of no chemical reactions and constant properties their solutions are of

only limited usefulness. A variable property analysis is given by

Simon, et al. in reference 3 where Yydrogen is injected into an inert

stream with no chemical reactions. The present analysis differs from

3



these latter two references in that variable properties, chemical

reactions, and two diffusion models are considered. ^',lso, the present

analysis will not employ the flame sheet approximation as did Libby and

Pierucci to define combustion but instead a diffusion flame will result

from the solution of the governing equations.



III. ANALYSIS

Figure 1 shows the Couette flow model.

at y = 0, is stationary while the upper po

with a uniform velocity ^. The lower sur

Tw and the upper surface at Tom. The hydr

ature Tw, is injected perpendicularly into

the stationary surface, end remove^^ uniform

Basic Equations of

The basic equations governing motion i

reacting gas are taken from Scala, referent

continuity equation,

Dp + 
p^ v

Dt

and the momentum equation

p ^ = D r + p
Dt	 ^'

where n is the pressure tensor,
ti

and the energy equation,

p Dh =- pQ+^D+DP+^
Dt	 Dt

5

:-^	 _ ,



..

6

In this equation Q repre:^,ents the energy flux due to temperature and

concentration gradients anc. is given by

Q = - (nom) + PiVihi

i

T

n.t

	

	PSI l 1 j
i j ^i

The viscous dissipation function ^D in equation (3) is given by the

following relationship:

2	 2
1	 avi av •	 ^v

^ _ ^ µ^	
+ ^	 _ 2 ^	 k

D ax	 ax•1 J	 j	 1	 3	 k axk

and finally there is the species continuity equation

DKi
p Dt = cui - V	 (PiVi)

As s>^mptions for Present Analysis

For the present analysis the following assumptions are made:

1. The flow is steady.

2. The model is one dimensional.

3. Thermal diffusion effects are neglected.

^+. Diffusion stress effects are neglected.

5. No body forces cor_sidered.

.. —	 ^	 --^	 -air-...^-^^c.'—jq;, r	
rk.A,,,•>.. ^: , . 	 - .0 ^r r °=•	 " ^	 {

t

^^

(^)
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6. No pressure gradients.

7. No radiation heat transfer.

8. Chemical equilibrium exists throughout the flow.

9. Gas properties depend on local mixture concentration and
s

temperature.

10. Both surfaces are impermeable to the main stream gas.

11. Prandtl's order of magnitude analysis is applicable (ref. 5).

Equations of Motion for Couette Flow

Using the above assumptions the basic governing equations of motion

can be reduced to the following forms for Couette flow.

Continuity equation,

d pv = 0	
( 5)

dy

momentum equation,

	

pv du = d µdu	
(6)

dy dy	 dy

energy equation,

2
dh	 d	 dT	 du	 d

dy dy	 dy	 dy	 dy
i

species continuity equation,

^i d
pv dy + ŷ (PiVi) = ^	 (8)

u

^..
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These equations are similar to the two-dimensional laminar boundary

gayer equations except for the Couette flow being one dimensional.,.r .f-
'

	

	 A further simplification of the energy equation can be obtained

through the introduction of:

h - ^ hiKi
i	 ';

/^T
hi = J Cpi dT + h f	 ( 9 )

T°

Thus

dh = ^ Ki`'Pi dT + ^ hi dKl	
(10)

dy	 dy	 dy
i	 i

or

dh	 dT
dy = CpR 

dy	
(11)

where

dKi
CPR	 CPM +	 hi dT

i

The energy equation becomes :

2
PvCPR dY dy ^ dy + µ dy	 Y ^ ^

1^1h1	(12)

i
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A simp^Lificatior. of the s pecies continuity equations car. be obtained

through the introduction of the concept of "elemental" mass fractions

as exp ressed by Lees in reference 6. The "elemental" mass fraction

concept results from the fact that the mass of individual chemical

elements is preserved in any chemical reaction not involving nuclear

transformation. The "elemental" mass fraction is given by the

expression:

ti	
^JK^ _ ^

i^ M1 Ki
i

The species continuity equations for the elements can be obtained by

multiplying equations (8) by 
^iJ 

M^^Mi and summing over i, and there

results the "elemental" species equations

ti

Pv ^ + d
dy dv

i

M
^i —^ iVi = 0J Mi p (13)

The introduction of the "elemental" mass fraction eliminates the species

production terms (cam) of equations (8) ar^d reduces the number of

calculations to be made. There is now one equation of the above form

for each element as opposed to one equation of the form of equat_on (8)

for each chemical species.

In the present analysis there will be three elements H, iV', and 0,

and four chemical species 02, H 2 , N2 , and H2O considered with one chemical

reaction of the form:

!^	
--^	

_.^
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H2 + 2 02 ^ H2O

This same chemical system was used by LibbS► and Pierucci in reference 1,

and while it does not consider dissociation or ionization, the species

considered do represent the major prod^.cts of hydrogen combustion in an

airstream. Also, the species considered have the necessary variation in

molecular weight which is essential to the diffusion model comparisons.

Boundary Conditions

At the moving surface, (y► = s), the following boundary conditions

apply

T = T^

u = u^
nr	 N

Ki = Ki

In order to simulate the two-dimensional boundary layer the

"elemental" mass fraction r'or hydrogen must be very small. This creates

a correspondingly small "elemental" hydrogen densi±y and since the

continuity equation must be satisfied (pv = constant) the transverse

velocity becomes very large. This introduces some uncertainty as the

transverse velocity was assumed small in comparison with the main flow

velocity in order to accomplish the reduction of the general equations

of motion. This apparent contradiction is inherent in the use of the one- 	 ^,{

dimensional Couette flow to simulate the two-dimensional laminar boundary

layer and arises primarily from the assumption of the porous surfaces

being permeable only to the hydrogen.

i
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At the lower surface, (y = 0), the boundary conditions are:

u = 0

T = Tw

Tree boundary conditions on the "elemental" species continuity equations are

derived as follows. Integration of the global continuity equation yields

pv = constant = (pv)
w

Using this relation the "Elemental" species continuity equation

can be integrated to give:

M^
pv K^ +	

^iJ M p
iVi = constant

1
i

The following subscript notation is adopted for the "elemental" species.

element	 subscript

0	 1

H	 2

N	 4

Asslunng Fick's law diffusion for illustration the diffusion velocities are

^i
piVi = - pD 

dy	
(15a)

and assuming the same relation holds for the "elemental" species

.L
ti r\•	 ^1
p iVi = - pD d
	

(15b)
y

^._
j

(l^+)

(15)
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Using the Fick's lsw relation, equation (15a), the summation term of

equation (15) becomes,

M	 M dKi

	^ ij M• piJi ^	 pD ^, ^ iJ M• d	 (i5c)1	 1 y
i	 i

The definition of the "elemental" mass fraction is

	

^' _^	
Mj

K j 	 ^ij	 Ki	 (15d)
Mi

i

Differentiating equetion (15d) one obtains,

dKj - ^ ^1J M
j dKi	

(15e)
dy	 Mi dy

i

Substituting equation (15e) into equation (15c) the following relation-

ship is obtained.

ti

^1J M^ p iVl -_ - pD dKj
Mi	 dy

i

or from equation (15b) ,

	

M•	 .., .,,

^ ij Mi A
iVi	 PjVj

i

Thus equation (15) becomes

^I	 ^+ N

	

pvKj + p jVj = constant
	

(15f)

^.	 _
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Considering first the injected species, hydrogen, equation (15f)

becomes:

N	 N N
p2v + p2V2 =constant

p2(v + V2) =constant

n+ N

p 2v2 = constant (16)

Evaluating the constant at the lower wall (y = C') the above equation

becomes:

N N	 N N
P2v2 = (P2v2) w = (Pv)w

Thus the boundary condition on the "elemental" hydrogen continuity

equation becomes:

,,,	 Mj
(pv) wK2w + ^ ^ij M PiViw = (Pv)w

i
i

or

^'	 1	 ^ijMj
v w

w

A similar procedure is followed in evaluating the constant for the

main stream components where

/V N	 N N

plvl = ( p lvl ) w = 0

p^v^ _ ( p^v^) w = 0

w.:^ :os^,:	 __



(21)

1^+

The boundary conditions for these elements

.,.	 1	
Mj

Klw	 (P )	 ^l^ M• PlVlv w	 i
i	 w

( 18)

ti	 1	 M

K4w	 ^ij ^ piVi
(Pv)w

i	 w

Nondimensional Form of the Governing Equations

The following new variables are introduced:

	

^l =^	 U =u

	

s	 u^

T^	 o ^	 u^

The governing equations in n^ndimensional form are:

momentum equation,

	

8 dU	
d , .L dU

o — - —

	

dr^	 d^ µ^ d^

energy equation,

8 
CPR d8 _ d	 T d6 + ^ µ	 dU 2

Cpl d^ dry Cp^µ^ dry	 Cp^T^µ^ dry

	

_ d	 piVis	 hi

	

d^	 µ^ Cp^T^

i

(19)

(20)

^..	 ^.,^
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species continuity equation,

ti
dK j -	 d	 Mj piVis	

^ )8o d^ - - d^
	 ^ij M1 

^	 22

i

Nondimer.sional Boundary Conditions

At	 r^ = 1

U = 1

a = 1

/V	 N

Ki = K^

at	 r^ = 0

U = 0

e=e
W

.,,	 1 ^	 M • piVi s
K^ = 1 - 8
	 ^ij M	

(23)
0	 1 1-^

i	 w

..,	 ^	 M p V s

	Klw - - S ^ ^1J 
Mj i i	

(2^)
o	 i ^

i	 w

^'

ti p V s
Kew = _ b
	 ^ij 

M`' 1 1	
(25)

o	 z u^
i	 ^w

Heat Transfer at Lower Wall

^a = ^ dT -^ piVihidy w	 i	
w

y:

(26)

!^	 ^	
- +^''
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transforming equation (26),

Qws	 T 36 _ ^ piVis hi

^Cp^^ ^CPl^ d'1	 i ^ Cp^To^

	

W	 W

Shear Stress at Lower Wall

^^ w

Transfc:^ning, oauation (27),

	

C _ Tws = µw dU	 (^7a)
f	

I-b^l-b^	 I-^ del

w

. solid Wall Couette F'l.ow

For the solid wall case, the mass transfer is zero. The continuity

equation integrates to:

	

pv = 0	 (28)

The governing equations then reduce to:

momentum equation,

d µ du _ 0	 (29 )
dy	 dy

r"'^^.-^^^	

"r...^	

,F.	 _	 .n ice... _ a"..	 4-:	 t	 ^	 ..^^?.
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energy equation,

d +µdu20^dT

dy dy dy
(30)

On introduction of the nondimensional variables these equations become:

momentum equation,

d µ dU = 0	 (31)
dry	 dry

energy equation,

2
d ^ TM d6 + µ^ 

dU = 0	 (32)
dry	 dry	 d^

Integrating each eg^^ .;,^:;:: once and evaluating the constant at t:^e

lcwer surface the equ^.!^tion^ in nondimensional form are :

momentum equation,

aU = Cl
	

(33)
dry	 µ

where

dU

C 1 = µw del W

energy equation,

d9	 _ _ 1	 Ti µ( el )^ dU d^ + C2	
(3'+)

d'1	 ^ ('1)	 0	 T^	 d'1	 ^ ('1)
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where

c2 = ^w ae
d^ w

Boundary Conditions

r^ = 1

U = 1

8 = 1 _;:^

r^ = 0

U = 0

e = ew

Heat Transfer at Lower Wall

^,, _ ^,, ay	 (35)
w

^,:
Transforming,	 ^ ^.^

+1^

@w s	 T ;^,•	 d B (35a)
qwo 

µ^^P^ l°° Cp^^ d^
w

Shear Stress at Lower Wall

T	
du	

(36)
w-^ dy w



Transforming,

1.9

^ _ Tw s _ µw dU

f o ^ ^ Noo d'1
w

^ 36a )

,r:.
^.



IV. GAS PROPERTIES

The thermodynamic and transport properties are calculated by the

met:iods listed below. The gas mixture is assumed to be at one atmosphere

prc:sure for all calculations.

Chemical Composition

The following reaction is considered for the present analysis:

H2 + 1 02 ^ H2O
2

In addition, N2 is present in the main Couette flow giving a total of

four chemical species to be considered in the equilibrium calculations.

The chemical equilibrium equations will be formulated in terms of the

"elemental" mass fractions to facilitate calculation of the equilibrium

composition frog. the solutions of the species continuity equations.

M
i

	

Kp - M^ 2X0 + XH G	 (38)
M	 2	 2

M

	

Kx - x 2Xx + 2Xx o	 (39)
M	 2	 2

	

KN = MN 2XN2	 (40)
M

20
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Dividing equation (^+0) into equation (38) and rearranging one obtains the

following equation for the mole fraction of N2:

X = 
XD2 

+XH2D	

41)N2	 A	 2A	 (

where:

ti

A = 
MN KO

MD KN

^.,

Dividing equation (^+0) into equation (39) and rearranging one obtains:

BXN2 =XH2 +XH2D	 (^+2 )

s

where :	 ^°
:4-':

nI

B = MN KH
,^,	 -

MH KN

Substituting equation (^+1) into equation (^+2) the equation for the mole

fraction of H2 is obtained:

(C
XH2 - 

XH2\2 l^ + CXD2	 (43)

where:

B
C = -

A

^_:.as^}	 '° .. W .	 -	 -^+•-••fir, ^ ^&:=,-J,,,,.;,_,.. _ . r..,..^; ^. ^	 ..

^.
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n

^i

Using the relation ^ X i = 1,

i

XO + XN + XH 0 + XH = 1	 (44)
2	 2	 2	 2

Substituting equations (^+3) and ( 41) into equation (^+^+) the following

relationship results:

1 + C + 1 XO + C + 1 ^H O = 1	 (^+5 )
A	 2	 2 2A	 2

Letting

1E = 1 + C +
A

c 1F = +
2 2A

1

1

„	 1
u = —

F

XH2O = (G - EGX02 )	 (1+6 )

Combining equation (^+6) and (43) one obtains:

XH^ = 2 - 1 (G - EGX02) + CX02 	 (^+7)

The equilibrium constant is related to the mole fractions by

Pl/2 =	
XH2O	

(^)
XH2(X02)1^2
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Substituting equations (^6) and ( Y+ 7) into equation ( 48) ti;N re results

the following relation:

P1^2K _	
(G - EGX02)

P

\C - 1J (G - EGX ) + CX	 (X 1^2)
2	 02	 G2	 02

betting

I = Pl ^2K
P

H = C - 1
2

the above relation reduces to

(G - EGX02)

(HG - HEGX02 + CX02)(X021^2)

IHGX0^1 ^2 - IHEGX023^2 + ICX023^2 = G - EGXp2

C - EG ! XO 3 ^2 + EG XO + GXO 1 ^2 = G	 (^° )
H	 / 2	 IH 2	 2	 IH

Since all the constants (A through I) in equation ( Y+9) are known	 ^'.

quantities, equation (^+9) can be solve3 iteratively for the unknown mole

fraction X02 . With the mole fraction X^2 tYie other mole fractions can

be easily determined from equations (^+6), (^+3), and (^+ l) . The equilibrium

I =

^^	 ^ v.__ _	 r	 _	 _.	 ^	 _..



2^

constant use.: in these calculations is taken from the JANAF tables,

reference 7, where it is tabulated in one hundred degree Kelvin increments.

The molecular weight of the mixture is determined from:

M = ^ X iMi 	(50)

1

The mass fractions are determined from the mole fractions by:

Ki
 = X1Mi	

(51)
M

Thermodynamic Properties

The mixture density is obtained from the perfect gas law

PM
p = —

RT

and the enthalpy of the individual species is taken from the JANAF tables,

reference 7, and the mixture enthalpy is calculated by

hm = ^ Kihi
	

(53)

i

where

^T
hi = J o CPi dT + h fi (ref . 7)

T

(52)

The reference temperature for the present calculations is 0° K.
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The specific heat of the individual species is also taken from

reference 7. The specific heat of the mixture is obtained from the

relation

	

_ ^	 ^i
CPR	 KiCPi +	 h^ dT

	

i	 i

( 5^+)

The derivative of Ki is found numerically by solving for the Ki's at

a temperature 25° K above and below the given tempe rature with:

dK	 K ( T+25) - K.( T-25)

	

1	 1	 1

	dT 	 50
( 55)

ti comparison of the present method and the method of Zeleznik and

Gordon, reference 8, is given in table I which shows very good agreement

between the two methods.

Transport Propertie s

Rigorous kinetic theory expressions for the viscosity and thermal

conductivity of gas mixtures have been developed and are presented by

Hirschfelder et al. in reference 9, but these expressions are mathemati-

ca11y cumbersome. Somewhat simpler relations, which are appro^:imations

derived from the rigouous expressions are given by Brokaw in reference 10

and are used in the present analysis. These approximations are very accu-

rate at low temperatures but the accuracy is expected to deteriorate some-

what at higher temperatures due to uncertainties in the approximations

and molecular constants used, however, these approximations are of suffi-

cient accuracy for use in the expected temperature range of the present

analysis.
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Mixture Viscosity

The mixture viscosity is calculated from the pure component

viscosities with the relation

^ _ ^	 µi
M

i 1 +^ ^ij Xj
Xi

j =1

J#^1̀

The coefficients ^ij are a function of the pure component viscosities

and molecular weight ratios

µi 1^2 M 1/^ 2
1 +	 ^

^j	 Mi

^
ij =	 ( 57)

2^
/	 Mi 1^2

2i 1 + —
Mj

For use in the present analysis the pure component viscosities are taken

from Svehla, reference 11.

Mixture Thermal Conductivity

The mixture thermal conductivity is obtained from the relation:

IT

Tm = ^m + ^
	

(58)

where ^ is the transfer of energy due to the translational motion of

the molecules and ^n is the transfer of energy between internal degrees

of freedom and translational motion in polyatomic molecules. The

56 )

1
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monatonic mixture conductivity is obtained from the pure component

monatonic conductivities with the relation

1`i

Xj

1 +	
^1J Xi

j =1

j #i

i

(59)

The coefficient 
'^ij is obtained from the viscosity coefficient ^ij

by following relationship

(Mi - Mj )(Mi - 0.142 M^)

^ij - ^ij 1 + 2.41 - 	 "
(Mi + Mj)2

(60)

The internal mixture conductivity is obtained from the pure component

internal conductivities with the relation

i

^11
i

Xj
1 + ^ ^ij

Xi
j =1

j^i

(61)

The pure component thermal conductivities are obtained from reference 11.

The pure component transport properties used in the analysis are

calculated in reference 11 by:

Viscosity

µ = 26.693 ^^ x l0 -6 	 (62)

.:i+^
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Monatonic Thermal Conductivity

a' = 15R µ	 (63)

Internal Thermal Conductivity

CT" = 1.32 M R - 2 µ	 (6^+)

Ire calculating the viscosities and thermal conductivities using the

above equations the Lennard-Jones (12-6) potential was used to obtain
{:a

the reduced collision integrals S2(2,2)^. The reduced collision

integrals are given in table form in reference 9. The molecular force

constants (see table II) used in the Lennard -Jones (12-6) potential were

obtained from experimental viscosity and thermal conductivities where

possible and estimated by SveYll.a in reference 11 using empirical

relations where no data was available. In the calculation of the reduced

collision integral the molecules were all assumed to be nonpolar. This

assumption does not introduce appreciable error since the force constants

were obtained from viscosity measurements and since the dipole-dipole

interaction is negligible in higher temperature high energy collisions.

A more complete discussion can be found in reference 11.

Diffusion Transport

The purpose of the present analysis is to compare solutions to the

governing equations for Couette flow using two different diffusion models;

the approximate Fick's law diffusion model and the more exact multicomponent
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diffusion model. As will be seen below, the more exact multicomponent

diffusion. model entails a considerable number of mathematical operations

and from a numerical analysis standpoint is not as desirable as the

simpler but approximate Fick's law model. These two diffusion models are

presented in the following sections. 	 ^

Multicomponent Diffusion

The multicomponent diffusion fluxes were calculated using the

following relations from reference 9.

v-1

dXl	

X^(v j - vi )	 (65)
dy __ Dij

^ iJ^

Equation (65) is the Stephan -Maxwell relationship for the multicomponent

diffusion velocities.

v

piVi = 0	 (66)

i=l

Equation (65) can be rearranged to a more convenient form:

v-1	 v-1
dX	 XX	 ^	 XX•

	

dl ^ ^-- V^^ Vi ^	 (67)
y	 1J	 1Jj=1	 j=1

j ^i	 j ^i
i

Multiplying equation (67) by p^µ^ and introducing the nondimensional

coordinates we have:

p dXl v-1 
XyXJ pJVJs	 GlV,s 

v-1 X1X^

4-bo d^	 K J 1 j	 ^	 u^	 Kl i ^
j =1	 j =1
j #i	 j #i

^.^.__	 ^_ -	 -	 _



^i
p iVi = - pD

dy
(71)
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Similarly multiplying equation (66) by s^^:

v

piV1Jµ^ = 0

i =1

For the v component gas mixture the diffusion fluxes, piVis^F..to,,

are obtained from the simultaneous solution of v - 1 relations of the

form of equation (68) and the relation given by equation (69).

The binary diffusion coefficients are calculated using the following

relation from reference 9.

(69)

1^2
T3 (bii + M^}

2MiM^
D id = 0.002628

P(QiJ) 2 Sti^(l^l)^ (70 )

Again the reduced collision integral, SZi^(1'1)^, is based on the

Lennard-Jones potential and is taken from reference 9. The molecular

constants used for these calculations and to obtain the reduced collision

integrals are given in table II. The binary diffusion coefficients

obtained from the above relation are shown in figure 2.

Fick's Law Diffusion

The Fick's law diffusion fluxes are calculated according to the

following relation:
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Knuth in reference 12 states that a sufficient condition for the

applicability of equation (71) is that the binary diffusion coefficients

are equal to each other and to the Fick's law diffusion coefficient.

This assumption makes the Fick's law diffusion coefficient a pseudo

binary diffusion coefficient and in the literature Fick's law diffusion

is generally referred to as binary diffusion because of the appearance

of equation (71). The term binary diffusion will be adopted here for

discussion purposes.

Multiplying equation (71) by l^µ^ and introducing the riondimensional
s

coordinates equation (71) becomes

	

piVi s	 pD dKi

µ^ _ - ^ dry

The diffusion coefficient is considered to be the same for all species

and as such is a self-diffusion coefficient given by the following

relation from reference 9:

	

D = 0.002628	
(T3^M)1^2	

(72)F(s1J)^1J(l^l)^

where the molecular constants are an average of those in table II.

Again the Lennard-Jones collision integral is used. The mixture

molecular weight is used in place of an average molecular weight in

order to more accurately represent the diffusion process. although

not plotted on figure 2, the average diffusion coefficient lies abc,ve
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the lower set of curves and below the upper set. Thus at a given

temperature the average diffusion coefficient lies in a narrow band

of values depending on the mixture molecular weight.



dU = fu(^l)
dry

(73 )

V. COMPUTATION

The philosophy on the numerical analysis was to keep calculations

straightforward and as simple as possible. Some changes were made in

the numerical technique during the debugging proces" but overall the

numerical analysis is straightforward while not always simple.

Solid Wall Couette Flow

The governing equations for the solid wall Couette flow are arranged

as follows

momentum equation,

where

fu(^l)
	 Cl	 1:^

energy equation,

d6 
= f6(Tl)

dry
(7^+)

where

'1	 2	 2	 C

..

33	 z
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The solution of each individual equation is obtained using the

°'corrector" method given by Hamming in reference 13. This method is

based on an iterative finite-difference procedure using the following

equation:

FN+1 - FN + ^ FN+l + FTJ
	

(75)

where 0^ is the distance between finite-difference Stations. According

t o references 13 and 1^+ the iterated corrector process always converges.

In the evaluation of the fu(^) and fe(^) it is necessary to obtain

derivatives of several functions and this numerical differentiation is

accomplished through the use of the equations given in appendix A.

Initial starting profiles are obtained from constant property solutions

to the governing equations for Couette flow. TY:en solutions to the

energy and momentum equations are obtained by repeated (iterated)

application of the corrector equation until the following error criterion

is met:

IFNI+l - F^ZII ^ 0.000001

That is, the right-hand sides of equations (73) and (7^+) are evaluated

at each finite-difference station and the resulting functions integrated

using equation (75). This process is repeated until the above error

criterion is me±.. The simultaneous solution of the energy and momentum

equations is accomplished by the iteration technique of Smith and Clutter,

^,

a..^
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reference 15. This iteration process is shown in figure 3 and the block

labeled "Fluid Properties" is ;i:aply the determination of the transport

properties. The simultaneous solution is assumed to converge when the

momentum equation has satisfied t•he following error criterion:

^UN
I+l

 - UNI (< O.000OOl

The present method for the solid wall Couette flow Yeas been compared

to several calculations from the literature. Air Couette flow

comparisons have been made with the constant pro?^erty analytical method

of Eckert and Schneider, reference 2, for the following conditions:

T = 218° K

Mach No. = 12

Aw = 6

Only the temperature profile is compared as the velocity profile is

linear in both methods. Good agreement was obtained between the two

methods as shown in figure ^+. In the constant property solutions the

terms "edge" =end "wall" refer to the moving and statio^iary surfaces,

respectively, whEre the values of the properties were _°fixed for the

solutions. Also present in fig^.^re ^+ for general interest is the variable

property solution and it is seen that the constant property solutions

do not represent tde variable property solution to any great degree.

A variable property solution for nitrogen Couette flow was taken

from reference 3 an^^ is compared to the present method for a nitro^^^n

stream in figure 5. with good agreement again being obtained. The



dU = fu(^l)
d^

(76 )
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velocity profile (not shown) also showed good agreement. This comparison

was made for the following conditions:

T^ = 218° K

Mach No. = 12

Tw = 872° K

The nondimensional coordinate y is given by

ay=—
as

where

	1 d

	

,

^las =	
µ0

and the nondimensional temperature A l is given by

9 _ T - Tw
1

- ^,^

Couette Flow With Injection

Z^:e governing equations for Couette flow with hydrogen injection

are arranged as follows:

momentum equation,



1

^:	 ^	 ^	 -- ^	 T
.:.^	 ^^	 ^^

^	 _
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where

1
fu^ Tl)	 =

d	 u dU
^ 77)

8o d^ 
^

d^

energy equation,

d8 = fe^'1) ^ 78)d^

where

CPR_	 d	 ^
f ^^ ^^

36
8 C	 dry µ^ Co PR	 PIj^ dry

u^u	 dU 
2+	 —

d
- —

p1Vls	 hl
(79)C^T^µ^ dry dry µ^	 T^Cp^

i

species continuity equation

N

dKi	 d ^i''M^
Pivlss	 - _

^
( 80)

d	 d^	 ^ M•1
i

The "elemental" species continuity equation can be integrated to provide

a more easily applied form so that the "elemental" mass fractions can

be directly determined.
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3^

Integrating:

...	 ^i •M • PiVis
8o K^ _ - ^ ^ ^ —^— +constant

CLL^^^ Mi ►^
i

Evaluating the constant for the main stream components at

for nitrogen

constant = (p^v^) w = 0

for oxygen

constant = (p lv l ) w = 0

The constant of zero for both "elements" results diz•ectly from the

boundary conditions, equations (24) and (25).

Thus t.1e species continuity equation for the main stream components

.v	

1 L_
K^ =

-so
i

^iJMJ PiVis

Mi ^

Since there are three "elements" in the system only two species

continuity equations need be solved, for the sum of the "elemental"

mass fractions equal one.

Because some difficulty was encountered in the solution of the

governing equations, the presentation of the numerical analysis will

be somewhat in a reverse order from that of the solid wall case. However,

the initial starting profiles are again obtained from the constant

property solutions to the governing equations for Couette flow.
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The simultaneous solution of the governing equations is again

accomplished by the iteration technique of Smith and Clutter,

reference 15, but with one minor change. The iteration process is shown

in figure 3 and the block labeled "Fluid Properties" is expanded in

f figure 6. The "Fluid Properties" loop is necessary because the iterative

solution of the "elemental" species continuity equations requires a

new calculation of the chemical composition and diffusion velocities

after each iteration. The "elemental" species continuity equations are

assumed to be satisfied when the boundary conditions meet the following

c rite rior,

K1CAL K1B.C.
,^j	 C 0.002

1B.C.

The choice of 0.2 percent as the error criterion was dictated by the

economics of computer usage for it was found that the major iteration

(time-consuming calculations) were those in the "Fluid Properties" loop.

The overall simultaneous sol^^tion of the governing equations was said

to have been obtained when the following error criterion on the momentum

equation was met:

UrJI+l - UNI 

C 0.001
UNI +:L

The error criterion of 0.1 percent was again dictated by the computer

time used to obtain a solution. Within the major loops of the iteration

process in figure 2 the energy equation was assumed converged when:
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eI+1 eI
N	 - N

eNl+l
0.001

and again the error criterion was 0.1 percent.

Initially the solution of the energy, momentum, and species con-

tinuity equations was attempted using the "corrector" equation given

previously and the three-point derivative formulas. However, when the

simultaneous solution converged there were present large oscillations

in the solution, especially in the temperature (8) profile. An attempt

to alleviate the problem was made by attempting to use a more accurate

derivative formula, such as the five-point formula given below from

reference 16.

^,	 _ - FN+2 + 8FN+l - 8FN-1 + FN - 2	
(82)

d r^ 
N	

12^r^

where the error term was of order (o^)'^. The oscillations became worse.

Alt hough tree above formula is more accurate than the three-point formulas

of appendix A both formulas have the same feature; they do not include

the value at the point of calculation. In place of the three- and five-

point formulas a four-point formula was derived, see appendix B, which

considerably reduced the oscillations but did not completely eliminate

them. The "corrector" formula, equation (75), is but a two-point

(trapezoidal) integration relation and in the region of rapid changes

in the function to be integrated it is not very accurate. However,

reference 17 gives some six-point integration formu^..•^s that are more

^,,.r^j^•^y,.,i;..0 :.P'..._...r^7.	 -	 ^, -̂^-"•.^,w..":.ir s^ry^ --.a.+r^e"---^-X1r---•	 --	 -	 _ ^y^,^,,-,^
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accur:^te and these formulas, see appendix C, are used for the present

calculations resulting in a smoothing out of the oscillations in the

converged solution.

The solution to the individual momentum and energy equations was

obtained by iterating the six-point integration formulas until the

following error criterion was met:

I FNJ+l - FN`^ C 0.000001

That is, the right-hand sides of equations (76) and (78) are evaluated

at each finite-difference station and the resulting functions then

integrated using the six-point formulas of appendix C to obtain the

velocity (U) and temperature (9) profiles. This procedure is repeated

until the velocity and temperature profiles meet the above error

criterion.

The present method for Couette flow with hydroge n injection has

been compared with the solutions of Simon et al., reference 3, for the

following conditions:

T^ = 218° K

Mach No•. = 12

Tw = 872° K

Rev = 0.5

There :

^` ^
Rev = pvs J	 1 del

0 ^'

^.
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The stream is all nitrogen and has variable properties and binary

diffusion. In general very good agreement between the methods was

obtained. Figure 7 shows the temperature profile comparisons with

the agreement not as good as expected but within reason. Better

agreement was obtained between the velocity and concentration profiles

as shown in figure 8. On the basis of the comparison made here it

is assumed that the numerical technique is sufficiently accurate to

carry out the present investigation.



VI. DISCUSSION OF RESULTS

The following values of the independent variables were used to

obtain both binary (Fick's law) and multicomponent di^'fusion solutions:

T^ = 218° K^

Mach No . = o	 "r'or all case s

Tw = 872° K

and 80 = 0., 0.05, 0.1, 0.13, 0.2, 0.35, 0.5, 0 . 75, 1., 1.3.

In the numerical calculations fifty finite-difference stations were

used for all cases except the no injection case where forty stations

were used. The solutions were obtained on a CDC 6600 computer and run

times for a single case varied from a few seconds for the no injection

solution to about thirty minutes for the multicomponent diffusion

solutions at large injection rates. The convergence of the total

solution was fairly rapid, requiring generally about four iterations of

the momentum equation. Referring tof.igure 3, each. iteration of the

momentum equation required fewer iterations of the energy equation, wit h

the total number of energy equation iterations being about five times the

total number of momentum equation iterations. By far the most iterations

were made in the "Fluid Properties" loop of figure 6 wits a total number

of iterations varying from several hundred to several thousand depending

on the initial starting profiles and the magnitude of the in jec^;ion rat;e .

The numerical technique of this thesis i^ not very sophisticated in

terms of present day numerical analysis but there has not been a single

case of nonconvergence encountered with this technique.

^+3
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The no injection temperature and velocity profiles are given in

figure 9 and it should be noted that the stream temperature increases

only slightly above the wall value, indicating that for the present

conditions the wall temperature is less than but close to the adiabatic

wall temperature. The velocity profile is not a linear profile due to

the viscosity variation through the stream.

Velocity. Profiles

The nondimensional velocity profiles are given in figures i^J

through 1^+. There does not appear to be any major difference between

the solutions for the binary and multicomponent diffusion models,

especially at the lower injection rates where the amount of hydrogen

and water are substantially reduced in comparison to the oxygen and

nitrogen. Also, the binary and multicomponent diffusion model velocity

profiles in the region of the lower wall do not show any significant

differences and in most cases the differences are hardly detectable.

However, there is a difference in the nondimensional shear stress at

the lower wall as shown in figure 15. The shear stress for the multi-

component diffusion model is higher than the corresponding binary

diffusion model solutions for all injection rates. Tris shear stress

differen^^e results primarily from the mixture viscosity variations

between the two difflzsion models. The pure component viscosities for

hydrogen and water are lower than those for nitrogen and oxygen, result-

ing in decreasing mixture viscosity with increasing hydrogen and water

concentrations. As will be shown in the section on concentration

profiles, the hydrogen and water concentrations at the lower wall for

1. _ __- .
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the binary diffusion model are greater than the corresponding multi-

component diffusion model solutions, hence, the mixture viscosity is

less at the wall in the binary diffusion solutions. This decreased

viscosity causes the somewhat reduced shear stress for the binary

diffusion model as seen in figure 15.

In the present solutions the shear strPSS for both diffusion models

increases substantially over the no injection condition in the inter-

mediate injection rate range. This effect was not seen in the results

of Eckert and Schneider, reference 2, where the shear stress was shown

to decrease from the no injection condition for all hydrogen injection

rates. Since reference 2 did not consider variable properties nor

chemical reactions the increased shear stress of the present calculations

is attributed to the inclusion of these phenomena in the analysis.

Temperature Profiles

The nondimensional temperature profiles are given in figures 16

through 20. The differences between the binary and multicomponent

diffusion models are greater for the temperature profiles than was the

case for the velocity profiles with these differences being greatest at

the intermediate hydrogen injection rates. Trie over^,ahelming effect of

chemical reaction is seen by comparing the no injection temperature

profile of figure 9 with figures 16 through 20. The increase in peak

stream temperature over the no injection solution approaches a factor	 ^

of three at the higher injection rates. Referring to figure 21 it is

apparent that at low and intermediate injection rates the lower wall -

heating substantially increases but the heating ^^ate then decreases as

'	 _	 '^.r.r.-^..	 _^^a^°a^.:^a^rrr-mac+	 -^-_



the injection rate is increased further. These heating rate curves

point out one of the largest differences between the diffusion model

assumptions. The heating rates for the binary diffusion model are

always larger than the corresponding multicomponent diffusion model and

are positive, whe reas the multicomponent diffusion_ model lower wall

heating rate is negative at the largest injection rate.

The no chemical reaction results of Eckert and Schneider,

reference 2, do not show the large tempe nature and Heating rate increases

that result when the exothermic hydrogen o^^ Tgen reaction is considered.

Aside from this large effect of chemical reaction oi: the temperature

profiles, the differences between the two diffusion models is more

apparent especially in the heat transfer rates where the binary diffusion

model generally predicts much larger heating rates than the multicomponent

diffusion model.

Concentration Profiles

The differences between the two dif^Rzsion models is best seen in the

concentration profiles of figures 22 through 30, where not only are there

differences in the relative amounts of species but there are also some

profile shape variations. The biggest difference occurs in the hydrogen

concentration profile with the wall concentration reflecting this

difference the most. Figure 31 gives the hydrogen concentration at the

wall for both diffusion models and it is readily seen that the binary

diffusion model concentration is much larger than the corresponding

multicomponent model. This large difference alters the mixture transport

properties at the wall, for hydrogen has a larger thermal cond^^ctivity
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and lower viscosity than tY,e ether species. This alteration of transport

pro^:erties is the primary cause of the heating rate differences of

figure ^1, for the temperature profiles of the . two diffusion models are

very close at, the wall whereas the heating rate due to conduction alone

is less for the multicomponent modP1 due to the lower hydrogen

concentration.

The differences between the concentratioz^ profiles for the two

diffusion model is primarily due to the increased diffusion velocities

of the multicomponent model which means that a smaller chemical species

gradient is needed to produce the same diffusion velocity as the binary

model. This lowers the hydrogen concentration at the wall and also

causes the reaction zone to be at a greater distance from the lower wall.

This is best seen in figure 29 for ar. injection rate 8 0 = 0.1 where

for the binary diffusion model the reaction zone is away from the surface.

The concentration profiles point out the area of greatest difference

between the two diffusion models, with the concentration of hydrogen at

the lower wall best representing these differences.

.. ...	 =	 ^^	 `^^Y'^"Y_'la •a	 ^ 1. .^y..^^^^.	 "^,.^^R	
^	 -',^1^
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VII. CONCLUSIONS

The foregoing analysis has resulted in the following conclusions:

1. Hydrogen injection into air Couette flow with chemical reaction

alters the stream properties and causes changes in the major flow

variables.

2. T:^ere are significant differences between the two diffusion

models, and the approximate Fick's law diffusion model should be avoided

except where gross approximations to the flow variables are needed.

3. The injection of hydrogen into air Couette flow with chemical

reactions generally results in an increase in skin friction and heating

rate.

^+. Major differences between the two diffusion models is manifested

in the concentration profiles where not only are the concentrations

different but there is some variation in profile shapes.

5. The multicomponent diff^.ision model solutions for the lower

wall shear stress show an increase in the shear stress over the

corresponding F'ick's law diffusion solutions.

6. The multicomponent diffusion model solutions for the lower wall

heating rates generally show a decrease in heating rate over the

corresponding Fick's law diffusion solutions.

^+8



VIII. RECOMMENDATION

It is recommended that a study similar to this one be carried out

for the two-dimensional laminar boundary layer to establish the validity

of using Couette flow with hydrogen injection and chemical reactions to

simulate a chemically reacting two-dimensional laminar boundary layer

with hydrogen injection.

^9
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2 d^ 2
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dF
FN-1 - FT1 - ^'^ d^

N

_ ( ^1) 3 d3F'
6 d^ 

3 N

APPENDIX A

THREE-POINT DERIVATIVE FORMULAS

Figure 32 shows the finite-difference stations in the Couette flow

and for the present analysis these stations are evenly spaced. The

distance between stations is 0^. The finite-difference form of the

first derivative is obtained by a Taylor series expansion about station N

evaluated at stations N+l and N-1, with

FN+1 - FN + ^^ d
N

+ (^^) 2 d2F
2	 d,^2

N

+ (0^) 3 d.3F

d,^3
N

Solving for the first derivative ^
d^ N

dF	 FN+l - FN-1	 (o,^) 3 d3F

dry 
N	

20^	 6 d^ 3 
N

The first derivative is thus correct to teems of order (0^)3.

The first derivative at the lower boundary (N = 1) is also

determined by the Taylor series expansion about station IV but is

evaluate at stations N+l and N+2, with

dF	 (0^)2 d2F	 (L^)3 d3F
FT,1+l - FN + pry —	 ^^	 +

d^ N	 2	
d^ 2 

TJ	
6	

d^ 3 TJ
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5^+

and

FN+2 = FN + ^'^ ^ + ^ (a'1) 2 d2F + 8 (^'1) 3 d3F
d^ N 2	 dr^2 N 

6	 d^3 N

3o.lving for the first deri^^ative ^
d^ N

+ — (^1) 3 d3F'
d^ N=1	 `^^	 3	 3r13 N-1

The first derivative is again correct to terms of order (pr^)3.

Ina similar manner solving for the first derivative at the upper

boundary (N = TJT j

^	 = 3Frl + FN-2 - ^FT1-1 + 2 
(p^ )3 

d3F

d^ N=NT	
^^	 ^	 d^ 3 N=NT

Likewise the first derivative at the upper boundary is correct to terms

of order (pry )3,

Thy above formulas are used in the solid wail calculations wherever

a first derivative is needed.
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APPENDIX B

FOUR-POINT DERIVATIVE FO^.MULAS

As in the case of the three-point derivative formulas the finite-

diffe re nce points are evenly spaced as shown in figure 32. The finite-

difference form of the first derivative at station N is obtained by a

Taylor series expansion about station N and is evaluated at stations

N-1, N+l, N+2. Thus:

FN-1 = FN - ^ d
N

FN+1 - FN + ^l a
N

+ (^^)2 d2F

2 d^ 2
N

+	 2 d2F

2	 d^ 2,i N

3 d%F

v 
d^ 3 

N

+	 3 a3F

6 d^ 3 N

+----

+----

FN+2 - FN + ^ ^ + 1} (a'1) 2 d2F + 8 (d1) 3 d3F + - - - -
dr^	 2	 d 2	 6	 d 3	 ^.

11	 ^ T1	 ^ N

Solving for the first derivative ^
d '1 N

3
d	 S^^ 

oFN+l - 3FN - ^N-1 - FN+2 + 112 d ^+
N	 ^ N

The first derivative is coz • rect to terms of order (^)3. The above

equation applies in the interval 2 ^ Tl ^ NT - 2.

At station N = NT - 1 the first derivative is again obtained fz•om

the Taylor series expansion but is evaluated at stations N-2, N-1,

and T1+1, giving:
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2	 ^

FN-2 FN - 2^ 
d	

+ ^ (prl) 2 d 
2 

_ 6 (^^^) 3 ^^ 
+ - - - -

	

N	 N	 N

F	 -- r - prl dF + `^ ) 2 d2F ^ -	 ) 3 d3F	 - - - -N-1	 N	 —	 ^d^ 
N	

2 d^ 2 ^N	 b d^ 
3 N

dF	 (^) 2ja^F 	(a^)3 a3F
FN+l = FN + ^^ — + -----7	+	 + - - - -

d^ N
	 \dr12 N	 dr^3 P1

Solving for the first derivative ^
dry r^

d	 o.^ 2F
Nyl + 3FN - oFN-1 + FN-2 + 12 ^

^ N	 ^	 ^d^ N

1
Again the first derivative is correct to terms of order (L^i^)3 and

the above equation applies only at N = NT - 1.

At the lower boundary (N = 1) the first derivative is again obtained

from a Taylor series expansion about station 1 but evaluated at stations

N+l, N+2, and N+3. Thus:

FN+l - FN + ^^ ^ + ^ c dLF + . ^T 3 d3F + - - - -

	

d^ N	 d^ 2	 d^^ c N	
d^3 N

	

2	 ^F

F'N+2 - r'N + ^'1 ^	 + 2 (G^l) 2^ d 2	 + 6 (^^) 3 d^ 	 + - - - -

	

^l N
	

^ d^ N	
d^3 N

	

2	 3
FN+3 = FN + 30^ (^ + 9 (^,^) ^ --^1 + ^ 7 (^^ 3 d F + - - - -

^dr^	 2	 d^^^	 6	 a

	

N	 N	 ^	 N
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Solving for the first derivative ^
d^ N

^ = 1 - 11FN + 18FN+1 - 9FN+2 + ^ 'N+3 + (^> d^F
d^ N 

6^^	
4 d^^ N

Again the first derivative is correct to terms of order (0^) 3 . In a

similar manner solving for the first derivative at the upper boundary

(N = NT) .

—I -	 3 ,^d /
	 ^^ 11TN - 18TrJ-1 + ^N-2 - ^N -3 + ^^) 

a 
^

N	 d'1 N

Likewise the first derivative at the upper boundary is correct to terms

of order (^^) 3 .

The above equations are used in the calculation of a first derivative

wherever one is needed in the solution of th° equations governing Couette

flow with injection.
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SIX-POIr^'I' INTEGRATION FORMULAS

The six-point integration formulas given by Milne in reference 17

and rearranged for the present analysis are:

N = 2

F2 = F1 + ^^^	 x+93 • f1 + 1337 . f2 - 618. f3 + 302. f^
1^+^+0 .

- 82. f5 + 9• f6

where the error term is:

-862. (^) 7 d7F

60, X80 .^ a^ 7
N

N = 3

F3 = F2 + - `,r	 - x+050. fl + 65+30 • f2 + 75780 • f3 - 7020. f^
129600.

- 1170. f5 + 630. f6

with the error being:

- 77+81. 
(0^1) 7 

d 7F

60+8 .	 ^
`^ 7 N
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From N = 4 to NT - 2

a

.	 .,	 FN - FN-1 + 1^^+00 . 110. fN_3 — 930. f N-2 +8020. f N-1

+ 8020 fN — 930. fN+l + 110. fN+2

the error term is:

+ X6975 • ^^1) 7 d7F

	

x+2336 .	 d^ 7 N

N+NT - 1

FN = FN-1 + 1400. - 110. fN-^+ + 770 . fN _ 3 - 2580. fN-2

+ 10220. f T1 _1 + 6370. fN - 270. fN+1

the error term is:

- 8015. 
^o^l) 7 

d7F

	

42336.	 d^ 7
N

N = NT

FN - FN-1 + ^^	 486. fN_ 5 - 3114. fN_4 +8676. fN_3
25920.

- 14364. fN-2 + 25686. fN-1 + 85^' fN

1^
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the error term is:

+
 250^7. (

pTl) 7 a^016o	 a,^
N
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Units Initial conditions

h =Cal/gm p = 1 atm

T = oK

CpR = Ca1^gm-°K
ti

KO = 0.2318

ti

Kg = 0.0021

ti

KN = 0 .7661

CF^EEMISTRY RESULTS

'I'em^ . 1000 2000 3000	 4000

Ief.	 8
Present
method Ref. 8

Present
method

^
Ref. 8

Present
method Ref. 8

Present
method

h 123 12, 419.8 420.0 740.8 740.9 1093.7 1094.5

CpR 0.2800 0.2799 0.3091 0.3088 0.3379 0.3382 0.3561 0.3566

xH2 ^ o 0.00002 0.00002 0.00276 0.00277 0.01653 0.01659

xx2o 0.02967 0. 02961 0.02965 0.02959 0.02686 0.02679 o.c1289 0.01278

xN2 0.71885 0.77886 0.77884 0 . 77885 0.77777 0.77778	 0.77241 u.77240

x02 0.19148 0.19153 0.19149 0.19153 0.19260 0.19265 •0.1917 X0.19823

.^.n^^
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TABLE II . - MOLECULAR CONSTANTS

j	 ^^...... ^_.-

ie s E ^IC a^ M

low . 7 3 , x+67 32.00

59 . 7 2.827 2.016

^0 809.1 2.6+1 18.02

71. ^+ 3.798, 28 . C2

Units

M = ^^gm-mole

Q =angstrom




