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ABSTRACT

SMITH, DEWEY M. A Comparison of Experimental Heat Transfer Coef-
ficlents in a Nozzle With Analytical Predictlons From Bartz's
Methods for Various Combustlion Chamber Pressutres Iln a ~»lid
Propellant Rocket Motor. (Under the direction of JOHN NOBLE
PERKINS.)

The experimental heet transfer coefficients measured in the
nozzle of a smell solid propellen motor are compared to the predice-
tions from D. R. Bartz's Nusselt . .uber correlatlion equaetion and his
technique of solving the boundary leyer momentum end energy equations
simdlteneocusly for the heat transfer coeffielient. The propellant was
a composlive of ammonium perchlorate and polybutadiene acrylie acld
and the average motor chember pressures were 220, 410, and Th2 psia.
The nozzle was made with a steel casing and a ZTA graphite throat
insert. Measurement locations were at a loecal to throat area ratlio
of 1.785 in the conmvergent section, at the throat and at a local to
throat area ratio of 2.369 in the divergent section for the chamber
pressures of 220 and 410 psia. The measurements were made at a
local to throat ares ratlio of 2.067 in the convergent section, at the
throat, and at a locel to throat ares ratio of 3.76k in the divergent
section for the chamber pressure of Ti2 peila. Test memsurements
consisted of tempersture responses of flve thermocouples mounted on a
line perpendicular to the heated surface »f the nozzle at each of
the messurement locations. The heating rates end the corresponding
convective heat transfer coefficients vwere determined by using the

thermocouple date as input to a finlte difference heat balance program.




"he results of the comparisons showed the experimental data from the
convergent reglon and throat to be consistently lower than the predie-
tions made using Bartz'e two techniques., It was found that the experi-
mental dats in the divergent sectlons could be correlated by

evaluating the spkin friction coefficient at the free siream temperature

and using it in the simultaneous solution.
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INTRODUCIION

During recent years, attempts have been made to aneslytically
predlct heat transfer rates in the combustion chamber and along the
nozzle wall of solld propellant rocket motors. The prediction tech-
niques vere developed by researchers in the liquid propellant rocket
engine field and they hnave been falrly successful in defining the
heating loads for thilis type engine.

The two most widely used methods for predicting the heat transfer
rates were set forth by D. R. Bartz. The first method is a Nusselt
number correlation equation which wes developed before the advent of
high speed computers and is stlll used today for rapid estimations.
The second method solves the boundary layer momentum and energy equa-
tions for the heat transfer coefficlient and requires the use of a
computer.

These techniques are nov being applled te solid propellant rocket
motor nozzles. The experimental data on heat transfer rates for this
type motor are not extensive and therefore it is difficult to determine
the applicabllity of Bartz's technigues to solid propellant motors.
Most of the nozzles on solid propellant motors are not externally
cooled and their design is based on the materials in the nozzle wall
belng sble to absorb the heat transferred from the exhaust gases.
During the times immediately after ignition, severe temperature
gradients are set up through the nozzle wall and this condition must
be taken into consideration in the design. Accurate prediction of the

heating loads ie desirable so that the nozzle may be designed

efficiently.




To provide additional experimental data, the heating rates in a
converging - diverging nozzle on a small solid propellant rocket motor
were measured at a polnt in the convergent reglon, at the throat, and
at a polnt 1ln the divergent region. The average chamber pressures were
220, 410, and T42 psia vwhich represent the range of chamber pressures
used in full scale motors. The heating rates were determined from
the temperature responses of five thermocouples mounted on a line
perpendicular to the heated surface of the nozzle at each of the
measurement locations. The experimental heat transfer coefficlents
were then compared with predictions from the two techniques of Bartz.
This thesiz presents these comparisons and the intention is to provide
some basls for applying the Bartz techniques to solid propellant rocket

motor nozzles.




REVIEW OF THE LITERATURE

Bartz (4) has documented in detail the developments of both the
analytieal and the experimental research ln rocket nozzle heat transfer.
Published in 1965, it provides a convenlent catalog of the most recent
experimental results and technligues and was referred to often in the
performence of the work for this thesis.

The initial predictlon method of rocket nozzle heat transfer was
based on the turbulent pipe flow heat transfer correlatlon equations
of McAdams (13). This method assumed the flow in the nozzle to be
fully developed wit). each point on the nozzle contour assumed to be
preceded by a long pipe. Sibulkin and Bartz (15, 2) were the first
to treat the nozzle heat transfer problem with a boundary layer
approach by meking use of the integral momentum and energy equations
{8ibulkin's was an incompressible flow amalysis). These itreatments
vere an ilmprovement over the McAdams equetions since the flow in
rocket nozzles 1s not usually fully developed. The main difference
in Bartz's initial boundary layer analysls and the one used today is
the method of solving the boundary layer equations. The original
analysis was done before the advent of high speed computers. Bartz
pointed out the equations were interdependent upon the ratios of wall
temperature to stagnation temperature, EE s and the temperature to

T
veloclity boundary layer thickness, % . :Iowever, to simpllfy the
mechanics of solution of the equations, he agsumed inltlal values for
these ratios and solved the two equetlons seperately. The boundary
layer equations were reduced to linear ordinary differential equations

with varlable coefficlents.
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The other basic assumptions in the anelysis were:

(1) 1/7 power law profiles of both velocity and the difference
between stagnation temperature and wall temperature in the turbulent
boundary layer,

(2) the local skin-friction coefficients along the nozzle are
the same as those on a flat plate for the same boundary-layer thick-
ness, and

(3) Reynolds analogy between momentum transfer and heat transfer
applies for the nozzle boundary-leyer flow. Elliot et al. (8)
developed & computer program in 1963 that solves the boundary-layer
equations simultaneouvsiy by an iteratlve method which allows the
ratios, ;—2—:— and %,

A Nusselt number correlation equation was also developed by

to vary along the nozzle wall.

Bartz (3) for the purpose of making calculations of the local heat-
transfer coefficients by hand. This method was based on the solution
for the heat-transfer coefficient from the original boundary-layer
analysis which showed the local coefficient to be strongly dependent
upon the local mass flow rate. The boundary-layer solutions also
showed that the local dismeter should be used as the characteristic
length in the correlation equation. The proportionality constant was
obtained by matching the heat-transfer coefficlents at the throat of
a particular nozzle with the coefficient that was calculsted from the
boundary-layer analysis. This correlation equation is still used

today for rapid calculations of the locel heat~transfer coefficient.
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Numerous experiments have been performed to determine the accuracy
of the methods. These experiments, for the most part, have involved
heat transfer measurementeg in nozzles with heated air or various liquid
propellant exhaust gases as the working fluld. The heated alr experi-
ments are unique in that the inlet conditions to the nozzle can be
controlled thus eliminating such combustion effects as secondery flows,
oscillations in pressure, or free stream turbulence that can occur in
rocket motors. OFf particular interest are the data of Back, et al. (1)
which are from heated air experiments with stagnatior pressures ranging
from 30 to 250 psiae and stagnation temperatures over the 1000 -2000° R
range. The nozzle was a 350-degree half-angle convergent, 15-degree
half-angle divergent nozzle which 1s similer to the nozzles used in the
set of tests reported on here.

The boundary layer analysis predicted the heat transfer coefficient
accurately throughout the nozzle whereas the correlation equation was
approximately 50 percent high for chamber pressures ln the range 75 ~
250 psia. One other interesting point was the indication that the
brundary layer turbulence seemed to decasy back toward transition of

laminar flowv near the throat in the lower stagnation pressure tests

and was reflected in the heat transfer results.

The data obtained by Kolozsli (10), using air at stagnation pres-
sures of 225 and 370 psia and stagnation temperatures of 1100 - 1200° R
in a convergent~-divergent nozzle, lndicated the correlation equation
predicted coefficlents too hig£é2h5 percent high at the throat) and

the boundary layer equatlons were accurate throughout the nozzlie.

Fortinl and Ehlers (9) found that both methods predicted the heat




transfer coefficlents accurately in a Reo-design divergent section
nozzle using air at a stagnation pressure of 300 psla and a stagnation
temperature of 1600° R, Thelr results also showed that two-dimensional
flow must be consldered in this type nozzle instead of one-dimensional
flow that can be used in most convergent~-divergent nozzles.

Welsh and Witte (19) used a N,0p - hydrazine liquid propellant

rocket engine to gather heat transfer data and compared 1t with only

the correletion equation for stagnation pressures between 80 - 290 psia.

They found the predictions to be congiderably lower in the convergent
region when compared with the experimentally determlned coefficient,
from 80 percent above to 45 percent below in the throat region, with
the bhest correlation in the divergent section. They theorized that
the effects of combustion in the vicinity of the nozzle inlet
influenced the flow in the convergent and throat region. Convergent-
divergent nozzle configurations were used 1n these tests w'tn varying
contraction ratios.

Witte and Harper (20) used the seme liquid propellant engine used
by Welsh and Witte (19) with nozzles over an extended range of contrac-
tion and supersonic area ratlos. They had the same general results
a8 in (19)., They also concluded that the wide variation of data in
the throa’ reglon of (19) wag due to the transitlonal tendencies of
the turbulent boundary layer here. This tendency was felt to be
caused by the acceleration of the flow.

Lee (12) obtained experimental heat transfer data from a solid
propellant motor with an uncooled molybdenum nozzle that was found to

agree with Bartz's correlation equation. The data could be correlated

also by essuming the skin friction coefficlent to be dependent on the

b




momentum thickness and numerically integrating the boundary layer
momentum equation. Brinsmade and Desmon (5) conducted tests with a
solid propellant motor at stagnation pressgures between 160 - 300 psia
and a stagnation temperature of 4900° R and found that the data at the

throat could be correlated by using laminer heat transfer equations.
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THECRY

The integral momentum and energy equations of the turbulent
boundary layer can be derived by writing momentum and energy balances
on a control volume in the vicinity of the wall where there are viscous
effects in a real fluld. This was the method used by Bartz (4). The
derivation 1s based on the definitior: of displacement, momentum, and
energy thicknesses as the deficlienclies in mass, momentum, and energy
caused by friction and heat transfer. These deficiencies are deter-
mined by comparing real flow wilth potential flow near the wall where
the mass flow rates are made egual in the control volume for these two
types of flow (see Fig. 1).

The basic definitions are:

(1) Displacement thickness

8! e
S*a&i‘-ﬁésfr(-%%)dy (1)

o L4

which 18 the difference in thickness in the two control voiumes in
order to neve the mass flow rates equal.

(2) Momentum thickness

e.ﬁi-gg(-

o

dy (2)

L Qe

which is the thicknese 0i' potantis’ flow which has & momentum flux
that 18 equal to the difference bstween the potentiel uand real flow

momentum fluxes for the same mass flux.




(3) Energy thickness

T A C ) P )
J, AU T, - Ty,

which is the thickness of potential flow that has an enthalpy flux
equal to the difference between the enthalpy fluxes of the potential
and real flows for the same mass flux. 1In forming these definitions,
the time-mean flow denslty, pu, has been represented by the product of
the mean values, p and u, and ignoring the cross-correlation terms.
This can be done on the assumption the correlation terms cancel out
when integrated over the boundary layer as saggested by Shapiro (1h).

Jging these definitlicens in the momentum apnd energy balances on
the control volumes in the potential and real flows, the following
equations are formed:

(1) Integral Momentum Equatiun

6‘}('
@t 11T E a1 apt)  lar (%)
dx ~ 2 U dx pU d& r dx
where Cf is defined as
21'w
Cp= — (3)
£ o
(2) Integral Fmergy Equation
g _ . Taw = Ty 4 1 da{pu) Lla 1 a7 (6)
@z~ h\ T_-T_ j - Fle0Tax T r& T, - T;ax

where Ch is defined as
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The basic assumptions used by Bartz in solving these equatilons
are as follows:

(1) The flow is axisymmetric and steady, the forces acting on
the gas are the pressure gradlent and skin friction at the wall, and
the boundary layer is small compared to the distance from the axis of
gymmetry.

(2) The flow through the nozzle 1s reversible and adiabatic with
the change in total enthalpy of the gas due to the heat flux to the
wall.

(3) The gas 1s perfect, has a constant Prandtl number, and its
viscosity is related to the gas %emperature ralsed to a power.

(4) The skin-friction coefficient and the Stanton number are
the same as they would be on a flat plate at the same free-~stream
conditions, wall temperature, and momentum thickness.

(5) The Stanton number for unequal momentum and energy thicknesses
is that for equal thicknesses multiplied by (g)n , where (n) is an
"interaction component." The Stanton number for equal momentum and
energy thicknesses is related to the skin-friction coefficient by
von Karman's form of Reynold's analogy

Ce

2
Ch = C l/é_ (8) y
1 -5 (?é) [; - Pr + 1n(%§;£%7%§]

(6) Heat transfer has either no effect on the skin-friction

coefficient, and Cy is the same as for adiabatic flow, or has an

effect and the Cg is the same for adlabatic incompressible flow wilth
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the density and viscosity evaluated at the arithmetic mean of the wall
and free stream static temperatures.

(7) The boundary leyer veloclity and temperature distributions
are 1/7-power profiles.

Values for the skin friction coefficient are taken from data of
adisbatic flow over flat plates correlated by Coles (7). Coles found

the data could be represented by one curve of Ef versus G 5 Where

the low speed value, Cp, is related to the actual Cp, by

= T&W TS B ( )
C.=C —— c—— 9
T Pa \ T Taw

vhere T, is a temperature wlthin the boundary layer which is found

by
Ty T '(':'f 1/2 T, T\ C;
a=14+ 172z - 1| | = w305 e = e | e (10)
T T 2 T T 2
auv aw awu au

and r is the exponent in the viscosity relationship, p ~ e, The

Ry is related to Ry by

Cra Bo 1 (11)
o 1-m
Cf R@ Taﬁ)

T

A film temperature correction can be made by evaluating the geas
properties p and u, at the arithmetic mean temperature of the free
stream temperature and the wall temperature. When this is done the
relationshlp between C

£ and Cf is

(12)
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*
The term, %T s in the momentum equation can be evaluated from the

oo

integrals which define &% and 8, equations (1) and (2), by using the
assumed l/?-power profiles for the velocity and temperature ratio in
the boundary layer. The limits on the integrals for these thicknesses
as well as for the momentum thickness, (§, are expressed in terms of B
and A, vhich are not necegsarily equal. Therefore the boundary layer
momentum and energy equations are solved lteratively for © and ¢

in order to determine the proper ‘% as well as the proper skin
friction coefficient.

The mass rate of flow per unit area through the nozzle can be
determined from one dimensional isentropic relationsghips. By
specifying the nozzle contour, wall temperature, and chamber condi-
tions, the heat transfer coefficient at any polnt along the nozzle
wall can be found from solving the boundary layer equations for the

Stanton number, C :

h
h qw
¢ = --——-c = (15)
A

In the solutions for hg developed by Bartz (2), it was found
that the heat transfer coefflclent was a strong function of the mass
flow rate per unit area, pU. From this, Bartz developed a nondimen-

sional equation in the form fﬂ

= g (Toe) (i

for the determination of hg' The analysis by Bartz (2) showed that

(a = 0.8) and the exponent, b, was evaluated to be 0.4 from

von Karman's modification of Reynold's analogy for Nfr = 1. The

characteristic length in the Reynolds number is the local diameter
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which varies approximately with the boundary layer. One notable
exception to this variation is in the entrance region of a nozzle
vhere the boundary layer thickness may be small.

The cungtant C was evaluated by determining the heat transfer
coefficient at the throat of the nozzle shown in Figure 2, with
the boundary layer analysis and solving for C in eguation (1%) using
this hg. To insure that this equa.tioréniaould apply to other nozzle
contours and conditions, a factor T s found from nozzle similarity
c

studies in (2) was multiplied into the equation. If it is assumed

that the specific heat, CP

with temperature and that the gas properties p and p are evaluated

s and the Prandtl nuwber, Pr, are constant

gt a reference temperature to account for compressibility and/or heat

trunsfer effects, eguation {14) can be expressed as

0.170.2 .8 0.2
b= .026 ‘Bf b C (;%yls Prer Hrep (15)
e~ 52 \ T, ) (o 576 2 m

This equation can be used to obtain a rapld estimation of the
heat transfer distribution. It has been found to glve good results

except in the entrance reglon of nozzles with thin boundary layer

thicknesses.
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DESCRIPTION OF EXPERIMENTAL TECHNIQUE

Digcussion of ExXperimental Apparatus

The rocket engine used to obtaln the experimental heat transfer
data is shown in the schematic in Figure 3. The solid propellant was '4
a composite of 83.3 percent by weight ammonium perchlorate (oxidizer),
14.4 percent polybutadiene acrylic acid (fuel) and 2.3 percent
stabilizer. This propellant was selected because there are only small
amounts of solid particles (carbon residue) in the exhaust products,
which minimizes heat transfer by radlation, and because its combustion
chamber temperature is relatively low (about hﬁOOo F). There is very
little dissociation of the exhaust gases in this temperature range,

Average chamber pressures of 220, 410, and T42 psia were obtained
by varying either the throat area or the volume of the combustion
chamber and the amount of propellant, Table 1 glves the pertinent
parameters for each of the chamber pressures used in the experiments.
It was desirable to have a constant chamber pressure over the data
taking period. To approximate this condition, the propellant wae
cast in a hollow cylinder configuration with the inner cylindrical
surface being used as the exposed burning surface. Figures &, 5, and
6 show the pressure traces for the three test conditions. It can be

seen that s gocd approximation of constant chawher pressure with time

was achieved.
The convergent-divergent nozzle was made with a ZTA graphite 5;5
insert and & steel housing. The intermal surface contour was made smooth

and continuous which allowed an assumptlon to be made that the

beginning of the boundary layer coincided with the beginning of
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convergent section of the nozzle. The ZTA graphite was chosen as the
material for the insert because of its machinability, resistance to
erosion, and its thermal properties. Alsc by using the graphlte
ingert, the experimental nozzle configuration was simllar to nozzles
used in full scale motors.

Heat transfer measurements were made in the convergent reglon, at
the throat, and in the divergent region of the nozzle for the three
test conditions. A degree of redundancy was obtalned by using two
calorimeters diametrically opposed iln the divergent region. These
calorimeters also were used to determine whether the gas flov through
the nozzle was concentric. The exact locations of all four calori-
meters in the nezzle for each of the tests are shown in Figure 7.

The calorimeters were made with a ZTA graphite core and a silics
phenolic insulating sleeve. As can be seen 1ln Figure 3, the graphite
core wag exposed directly to the flow of gases. By making both the
insert and the calorimeter core out of the same material, there vas
very little disruption of the temperature distribution slong the nozzle
wall. The insulating sleeve was used to direct the heat flow along the
longitudinal axis of the calorimeter. This allows the assumption of
one-Gimensional heat transfer to be made in the data reduction. The
graphite core of the calorimeters was instrumented with five thermo-
couples. The thermocouple nearest the exposed surface was composed
of tungsten -5 percent rhenium and tungsten -26 percent rnenium wires
5 mils in dlameter. The other four thermocouples were made of
platinum and platinum =13 percent rhodium wires also 5 mils in dlameter.

Figure 8 shows the locations of the thermocouples along the

B
R
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longitudinal axis of the core. All calorimeters used in the tests

vere similarly constructed.

By using five thermocouples in each calorimeter, a temperature
distribution through the calorimeter could be obtained even if there
vere random fallures of individual thermocouples. Also the thermal
diffusivity of the graphite could be checked by specifying the tempera-
ture-time history of one thermocouple in the data reduction analysis
and comparing the calculated temperature distributlon through the
calorimeter with the distribvution obtained from the experiment. This
procedure will be demonsirated in a later section.

Ideally, the surface temperature of the calorimeter should be
directly measured. However, due to the extreme thermal environment
at the surface, this measurement is very difficult to make. The
surface temperatures of the calorimeters were determined by locatlng
a thermocouple as closely as possible to the Furface and extrapolating
the temperature data to the calorimeter exposed surface.

All of the heat transfer measurements were taken from statlc
firings of the rocket engine. Flgures 9 and 10 show the engine in
position on the thrust stand. The thermocouple data as well as chanber
pressure ad thrust data were recorded on magnetic tape with a

computerlized data acquisiticn system.

Thermal and Physical Properties

The exhaust gas constituents were determined by assuming the
products of combustion to be in chemical equilibrium at the prescribed

pressure and enthelpy in the combustion chamber. Table 2 presents the

conditions in the combustion chamber for the three tests and the
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resulting mole fractions of each exhaust gas constituent as well as
the specific heat ratio, 7y, and the specific heat at constant pres-

sure, C_, for the gas mirture. These values vwere determined with the

p!
use of a computer program described by Zeleznik and Gordon (21) The
gas mixture was assumed not to vary in the nozzle (frozen flow) and
local conditions at the test measurement locations were determined

by expanding the mixture isentropically through the nozzle.

The viscosity and thermal conductivity of the gas nixture were

determined by using the equatlons suggested by Brokaw (6):

- i
i
uMix =>L X (1%)
1=1 3
1 "'i %15 %
J=1
J#l

v
K'i
Kix =§2 v % (15)
1=1 i
1 +j£:¢ij ii
J=1
Jfl

Kll
G = ), — 5 6)

KMix > Ki&ix + KFﬂ.x (17)

Thes. equatlons express the mixzture viscoslty and thermal conduc-

tivity in terms of the viscosity and thermal conduectivity of the
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mixture costituents. The constituents that are starred in Table 2

were accounted for in these calculations since they represent the

major quantitlies in the mixture. The viscosity and thermsl conductivity
of each component were taken from data presented by Svehla (16). Their
values were evaluated at the combustlon chamber temperature.

The properties of the ZTA graphite used in the calorimeter core
that are required are the density, constant pressure, specific heat,
and the thermal conductivity. The density and specific heat data
vere taken from {17). The thermal conductivity data were taken from
the results of Wagner and Dauelsberg (18). Figures 11 and 12 show
the variation of the specific heat and thermal conductivity of ZTA
graphite with temperature. The thermal conductivity shown is for
the "across the grain" direction of the graphite which was the direc-
tion of heat flow in the calorimeters. 1Ii can be seen in the figure
that the experimentzl data used to determine the curve is scattered.
The thermal conductivity of any graphite is difficult to control.

The effects of this variation on the test data will be discussed in
the "Accuracy of Results" section. The density and specific heat of

graphites do not vary nearly as much and can be controlled readily. {fw

Data Reduction

A1l of the experimental data were recorded on magnetic tape so

that the flata could t: reduced by computers. The thermocouple millivol®,
readings were converted into degree Fahrenhelit according to Natinmal

’Bureau of Standards conversion tables. The temperature data were®

printed out in specified time increments over the firing time of the
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rocket motors. The chamber pressure data were reduced in a similar
manner.

The heat flux into the calorimeter was determined by dividing
the graphite core into 20 finite elements (Fig. 13), and specifying
the temperature-time history of the third element. The temperature-
time history was that of thermocouple 1, the thermocouple nearest ﬁhe
heated surface in each calorimeter. By using a finite element tech-
nigue, heat balance equations can be written for each of the elements
over small time incremente. For example, considering the heat flow

to be one dimensional, the heat balance on element 1 is

Qin = Qbut * Qstored (16)
K .o (Tl - Til

where Ti is the temperature of element 1 calculated in the previous

time interval. After the heat balance equations are written for each

of the elements, these equacions may be solved simultaneously for the
heat transfer coefficient.

A computer program was useu to solve for the heat transfer
coefficient versus firing time for each of the calorimeters. The
program utilizes the Gauss-Jordan method to solve the simultaneous
linear heat balance eguations. In addition to a temperature-time
history of one of the elements, necessary input data include the

physical dimensions of each element and the thermal properties of the

materisl (K, p, and CP) which may vary with temperature. Oubput

includes the heat trunsfer ccefficient, the henting rate at che surface
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of the calorimeter, and the temperature gradient along the longi-
tudinal axis of the calorimeter for each specified time increment.

Radiative heating from the exhaust gases was not accounted for in
the analysis. This was based on the fact, as discussed by Kuby (11),
that gases radiate energy in finite frequency bands as opposed to most
solid boales which radiate in a energy continuum and therefore the
total Integrated value of emitted energy is much less for gaseous
radiation. The propellant used in the tests was chosen because the
amount of solid particles in its exhaust gases is small enough to be
neglected. By not accounting for the radiaticn from the exhaust

products, the data reduction is simplified, and the results are not

effected substantially.

.f:?!\"
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RESULTS

Pregentation and Discussion of Results

Experimental heat transfer coeffi:zients determined for average
chamber pressures of 220, 410, and 742 psia are presented. The experi-
mental ccefficients are compared with theoretical ccefficients deter-
mined from the two methods of Bartz. In determining the theoretical
coefficients with the simultanecus solution of the boundary layer
momentum and energy eguations, the skin friction coefticient was
evaluated at the arithmetic mesn between the free stream and wall
temperature as well as at the free stream temperature. Aiso, the
theoretical coefficient was evaluated with sn "interaction component”
value of 0.1 as rezcommended by Bartz end alsc with a value of zero
vwhich essentlally decouples the momentum and energy equations.

Other data presented are the caleulated temperzture distrivuiion
derived from the temperature data from the thermocouple 1 o each
calorimeter. This caiculated temperature distribution is compared with
the temperature readings of the thermocouple mounbted along the longl-~
tudinsl axis of the calorimeters to determine the accuracy of the
experimental data. The deviations between thermocouple readings and
the calculated temperatures are discussed in the "Accuracy of Results”
section. The experimental heating rates are also presented.

The thermocouples are numbered comsecutively from one to five with

thermocouple 1 located nearest the beated surface of each calorimeter.

Averzge Chamggr Pregsure of 220 psiz

Experimemtal heat transfer data were obtzained at a local area

to throat area ratio, f%-, cf 1.785 in the convergent section of the

Ag
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A
nozzle, at the nozzle throat, K% = 1, and in the divergent section at
A
Ki = 2.369. Figures 14 through 22 show the temperature response of the
t

three thermocouples nearest the heated surface in each of the calori-
meters, the experimental hesting rates, and the experimental heat
transfer coeffivients. The oscillatory nature of the heating rate and
heat transfer coefficlent curves is due to the data reduction technique
rather than physical condltions in the test.

The heating rate curves show a decline in the magnitude of the
heat flux with increasing time. This 1s to be expected since the
driving potential, (Taw - T%), becomes smaller with increasing time.
However, the hest transfer égefficients calculated from the measured
temperatures in the convergent section and ai the throat also decreased
with time. In Figure 23 1t can be seen that both of Bartz's methods
overpredict the heat transfer coefficient throughout the nozzle. The

heat transfer data from the latter part of the firing can be correlated

by using a laminar flow equation used in (12):
e -96"’
RS (18)

This is Pohlhausen's equation for laminar flow where the characteristic
length has been changed to the local diameter sinece the flow is
internal. The heat transfer coefficient determined from the experi-
mental date in the divergent region of the nozzle did not vary as much
as the throat and convergent heat transfer coefficients. The predice
tions from the simulteneous solutlons, where the skin friection
coefficlent was evaluated at the Iree stream temperatire, and from the

laminar flow equation brecketed the test data in the divergent region.
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The leveling of the slope of the temperature curves of thermo-

couple 1 in the convergent and throat calorimeters seemed unususl. In
order to determine if the temperature data were valid, a temperature-
time response of thermocouple 1 in each calorimeter was assumed as shown
in Figures 24 and 25, These assumed temperature responses were used
to compute the temperature response throughout the calorimeter with the
use of the finite element computer program. Figures 2% and 25 show that
on comparing the results using the assumed response with thermocouples

2 and 3 in the convergent calorimeter and thermocouple 2 in the throat

oI

calorimeter, the assumed tempesrature response was incorrect. The
calculated responses were higher than the experimental responses at
the locations where temperature were measured. These comparisons

lend credance to the experimental data which show that the heat transfer

coefficient becomes smaller with tinme.

It is known (4) that cooling the laminsr boundsry layer increases ,i£  
e stability, i.e., increases the critical Reynolds number for
transition to turbulent flow. The boundary layer in this test was

cooled by the nozzle wall throughout the test but to a lesser extent

5 a8 time increased. Thus, it could be assumed that the conditions for

it

laminar flow became less sultable at leter times in the firing. The
experimental data, however, indicate a tendercy from turbulent or Q;ﬁf
transition flow to laminar flow with increasing time.

It is generally assumed (4) that boundery layer heat transfer coef-

ficients are affected by wall temperature. This is accounted for by
evaluating the skin friction coefficient and the gas transpoyt properties

at some intermediate temperature between the adlabatic and wall tempera-

s R v, L
W : - R
L P s P R

ture. Figure 25 shows the difference between evaluating the skin friction
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coefficient at the free stream temperature and the arithmetic mean

of the free stream and wall temperature for turbulent flow. Increasing
wall temperature would tend to lower the heat transfer coefficient but
not to the extent experienced in the test.

A favorable pressure gradient tends to stabilize a laminar boundary
layer and since the local pressure decreases along the length of the
nozzle, a turbulent boundary layer could revert to laminar flow. In
Figure 26 the experimental data from the 220 psia chamber pressure
test is compared with experimental data presented in (12). The figure
is a plot of the parameter, Stanton number mmltiplied by the Prandtl
number to the Q0.6 power versus free sitream Reynolds number based on the
local diameter. It can be seen that the data reported on Lerein falls
within the transition regilon as defined in (12). These results suggest
that it is possible for laminar or transition flow to occur in a rocket
motor nozzle even though the exhaust gases originate from a combustive

process within the motor chamber that is highliy turbulent.

Average Chamber Pressure of 410 psia

The nozzle used in this test was the same as that used in the
220 psia test with measurements made at the same locations. The addi-
tional pressure was generated by coupling two motor cases together
with the head end case containing only helf as much propellant as the
second case. This method gave a chamber pressure thet varied more than
in the 220 psis test.

Figures 27 through 35 siow the temperature response of the three
thermocouples nearest the surface in each of the calorimeters, the

heating retes, and the experimentsl heat transfer coefflclents.

e 5 e g e

ey
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Figure 36 shows a comparison of the experimentally determined coef-
ficients with the several methods of predicting the coefficients. It
can be seen that, as in the 220 psia test, both of the Bartz methods
overpredict the heat transfer coefficlents, with the technique of
avaluating the skin friction coefficient at the free stream temperature
coming nearest to correlating the date. The heat transfer coefficient
at the throat of the nozzle decreased sharply with time. This is also
occurred to a lesser extent at the comvergent calorimeter. The local
Reyrnolds number at the convergent, throat, and divergent calorimeter
was 0.723 X 106, 1.02 x 106, and 0.798 x 106, respectively, indicating
turbulent flow when compared to the date in (12). The drastic reduc-
tion of the heat transfer coefficlent at the throat 1s questionable
in view of the fact that the Reynolds number at the throat indicates
turbulent flow and that the magnltude of the coefficient drops slightly ;;f;
below that of the convergent calorimeter. The Iniltial 1.5 to 2.0 seconds ;f?ﬂ

of data do indicate that the Bartz methods slightly overpredicted the

results of the test at the throat.

There wag very little variation with time in the heat transfer
coefficlent on the divergent calorimeter. By evaluating the skin
friction woefficient at the free stream temperature, the heat transfer

coefficlent wvas very nearly predicted. The convergent calorimeter

data did show some decrease in the heat transfer coefficlent. The
heat transfer data at this point was slightly overpredicted by using
the free stream skin friction coefficient in the slmultaneous soluticn.

As mentioned before, there was some variation in the chamber

pressure. An average chamber pressure of 410 psia was used in the

analytical solutions. The chamber pressure vaeried from h40 psia in the
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initial stages of the firing to 360 psia just before burnout. Using
the Nusselt number correlation equation, where the heat transfer
coefficient is proportional to the 0.8 power of the chamber pressure,
to determine the effect on the heat transfer coefficient, it is found
that the chamber pressure varlation would theoretically cause the
heat transfer coefficient to vary 6.5 percent above to 9.8 percent
below that for an average chamber pressure of 410 psia. The change
in chamber pressure could partially explain the reduction in heat
transfer coefficients at the convergent calorimeter and at the throat

calorimeter.

Average Chamber Pressure of 742 psis

The nozzle contour for this test was slightly different for this
test in order to increase the chamber pressure to 742 psia. The
contour still included at 450 half angle convergent reglon and a 150

half angle exit cone, hut had a smaller trroat dlameter. Heat transfer

A

1
measurerents vere made at an area ratlo, E; = 2,067 in the convergent
region, -=— = 1, at the throat, and at == = 3.764, in the divergent

A, Ay

region. Figures 37 through 45 show the temperature responses of the

three thermocouples nearest the heated surfaces in each of the calcri-
meters, the heat fluxes caleculated from the temperature responses, and ;%L
the resuliting heat transfer coefficlents. Figure 46 compares the experi-

mental results with the verious anslytical preciction methods. This

figure shows the data to be slightly overpredicted when the free stream
skin friction coefficient is used in the simulbteneous solution. The
convergent reglon dat.. showed very little variation of the heat transfer

coefficient during the burning of the motor elthough the overprediction
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vas the largest at this measurement location. The heat transfer coef-
ficient at the throat wag 1n the range of the predictions that used the
free stream skin friction coefficlent inltially and decreased as the

burning progressed. The divergent calorimeter data agreed very nearly

with the predictions of the method stated above.

Accuracy of Results

The accuracy of the experimental resulte can be broken down into
two parts:

(1) Accuracy of the measured data.

{(2) Accuracy of the method of data reduction.
Factors which affect the accuracy of the measured data are the ability

to determine the true location of the thermocouples wlth respect to the

nozzle internal wall and the error introduced by the recording equipment.

Factors which affect the accuracy of the data reduction are how well
the propertles of the ZTA graphite can he determined, i.e., the density
and the constant pressure speciflc heat and thermal conductivity as a
function temperature, and how accurate the method of data reduction is.
The location of the thermocouples in the calorimeter could be
determined to within *.003 inch by using close tolerances in the fabri-
cation of the calorimeter and X-raying each calorimeter. Flgure 47 is
e typical X-r=zy photograph. The tolerances on the ilnstellation of
the calorimeter in the nozzle were such that the true location of the
thermccouples with respect to the nozzle internal wall could be deterw
mined to within £.008 inch. Thilis resulted in a band of uncertainty of
the temperature distribution along the length of the calorimeter as

shown in Figure 48,
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The thermocouples used in the tests could measure true temperature
within 1 percent. The noise in the recording channels of the measuring
eguipment could be filtered so that there was negligible error in the
recording of the temperatures.

As stated before, the experimental data on the thermal conductivity
of ZTA graphlite is scattered (Fig. 12). In attempting to fit the
temperature date from the thermocouple 1 with the experimental
temperature distribution, it was necessary to vary the thermal conduc-
tivity of the graphite. The curves shown in the figures that present
the temperature data versus time represent a "best fit." Since the
thermal. conductivity of the graphite varies with temperature, the
thermal conductivity versus temperature curve had to be varied rather
than a thermal conductivity value. The density and constant pressure
specific heat versus temperature of ZTA graphite are accurately
know (18) and error in their values were not considered in the analysis.

In order to determlne the effect of the +.008 inch error in the
location of the thermocouple 1, an errvor analysis was made by
varying its location in the désta reduction. The calculated heat input
to the nozzle wall was found to vary 5 percent during the early times
in the test with the variatlon decreasing to *2 percent during the
later times in the test. This variation was in the calculated heat
input only. As previously steted, the experimental data was not
perfectly fitted with the calculated data baged on the temperature data
of thermocouple 1. TFigures 48 through 50 show the percent difference

between the heat input based on the temperature data of thermocouples

1, 2, and 3 and the calculated heat input for late times in the teats.
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The percent difference was determined by comparing the slopes of

curves at the heated surface of the calorimeter since the heat input is:

G = K S (19)
surface
The thermal conductivity was not varied since the difference in surface
temperature of the two curves was not large.

In the figures that show the calculated heat input and the
calculated heat transfer coefficients, there is oscillation in the
curves caused by the data reducing process rather than any physical
phenomena occurring in the tests. This was caused by the large change
in temperature of the graphite in a short time, the temperature varia-
tion of the specific heat and thermal conductivity of the graphite, and
the fact that a finite difference technique was used.

In summary, the heat transfer results from the tests vwere not

exact results. However, the data did show trends which were presented

and discussed previously.
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SUMMARY AWD CONCLUSIONS

The experimental heat transfer coefficients obtained by firing a
solid propellant rocket motor at chamber pressures of 220, 410, and

742 psia were generally below the predictions made by the Bartz methods

of solving the boundary layer energy and momentum equations simultaneously

and the Nusselt number correlstion equation.

The test at 220 psisa chamber pressure demonstrated that it is
possible to obtain laminar or transitional boundary layer flow in a
solid propellant motor sven though a turbulent combustlve process is
occurring in the motor chamber. The best agreement was found in the
divergent region of the nozzles at all three pressures where the experi-
mental coefficlients were only slightly below the predictions from the
simultaneous solutlon and evaluating the skin friction coefficient at
the local free stream temperature.

Data from the convergent and throat calorimeters indicated the
heat transfer coefficient decreases with increasing wall temperature.
This variation was more pronounced than the variation in the predic-
tions when the skin friction coefficlent was evaiuated at the arithmetic
mean of the free stream and wall temperature (film temperature). The
predictions using the film temperature skin friction coefficient were
always above the experimental heat transfer coefficients in magnitude.
Predictions using the skin friction coefficient evaluated at the free
stream temperature were in the seme renge of the experimental data,
but they do not account for wall temperature variation.

These results tend to substantiate the data in the literature in

the respect that predicting heat transfer rates in the inlet portion of
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a rocket motor nozzle is difficult (4, 19, 20) and that transitional
and laminar flow along the nozzle wall is possible (1, 5, 12). The
data in (5, 12) were collected from nozzles similar to the rozzles
used in the tests reported on here apd for similar combustion chamber
conditions (PC on the order of 200 psia). The data from (1) showed
the transitional flow phenomena to occur at a lower combustion chamber
pressure (75 psia).

These test data indicate that by using either the Bartz simultaneous
solution or the Nusselt number correlation eguation recormended by
Bartz, caleulations of the heatlng load along a nozzle wall would be
conservative in that the apnalytical heat transfer coefficient is higher

! than the experimental coefficlent. 1% is felt, however, that the degree
of conservatism will hamper efforts to have an efficient nozzle design.
Further analytical and experimental efforts are needed to refine and
improve Bartz's methods.

It should be noted that these sets of data are not a complete test
of the Bartz methods since the data was derived from the use of one
type of nozzle. A complete conclusion may be drawn when test data are

available from a variety of propellants and nozzles used on solid

propellant motors.
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Pounds of
Propellant
6.75
10.13

6.75

3

Chamber Volume, in

Combustion

Throat Area, 1u2
1.238
1.238

Variati-r of Motor Characteristics to Acanieve Different Chamber Pressures
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Table 2, Exhaust Gas Properties

Average chamber 220
pressure, psia

Chamber gas
temperature, °R 4845

Specific heat

ratio 1.25

Specific heat
constant. Pressure,
Btu 0.443

1b °R

Viscosity, R&%Té 48.6 x 10'6

Thermal conductivity

Btu ft -6
o 35.8 x 10
't sec °R

Exhaust gas
constituents, mole
fractions

k10

4880

1.23

0.443

48.6 x 107°

35.8 x 10

BRgET =388

0.193
0,005
0.082
0,005
0.119

167

0.

-6

£ 3

* % ¥ %

35

42

4900

1.23
0.4h3
48.6 x 10°°

35.8 x 10'6

Note: Mole fractions of constituents did not vary with chamber pressure,
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Local to ™hrost Diameter Ratio|
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Note: A1l thermocouples were located on graphite core centerline

Tive thermocouples Five thermocouples
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Figure 8. Calorimeter dimeunsions
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Typical X-ray of calorimeters
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