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AN ANALYTICAL METHOD FOR PREDICTING THE LIFT AND DRAG FOR SLENDER

SHARP-EDGE DELTA WINGS IN GROUND PROXIMITY

By

Charles Harry Fox, Jr.

ABSTRACT

A potential flow rifting surface method is combined with a vortex lift

concept and applied to slender sharp-edge delta wings. A multihorseshoe

vortex lattice method incorporating an image technique is used to compute

the potential flow normal force and axial force characteristics of delta

wings in ground proximity. A free-air vortex lift concept based on a

leading edge suction analogy is utilized to account for the lift increment

due to the leading edge spiral vortex. A method is developed for

combining the free air vortex lift concept with the potential flow theory

results in ground proximity.

A comparison of theoretical and experimental lift and drag for delta

wings having a wide range of aspect ratios is made at selected angles of

attack. The comparison indicates that this method provides a reasonably

good prediction of the lift and drag in ground proximity for aspect ratios

less than two in the angle of attack range from approximately 50 to 160.
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V. INTRODUCTION*

In the design of large aircraft, it is important to consider the

effect of ground proximity on the aerodynamic characteristics because

significant alterations in these characteristics may occur during take-off

and landing (ref.  2) . The present study is concerned with aircraft having

delta wings with sharp leading edges, low aspect ratio, and thin, planar

airfoil sections aqd is restricted to the considerationof the isolated

wing only. The present study develops a method for the prediction of the

effect of ground proximity on the lift and drag of these wings.

Classical potential flow theory as implemented by lifting line and

horseshoe vortex methods (ref. 3)_ has proven inadequate to predict the

lift and drag of the low aspect ratio, sharp leading edge delta wing

irrespective of the presence of the ground. One reason for this

inadequacy is the failure of these methods to treat the chordwise variation

of lift. Lifting surface theory 'using vortex lattice methods (refs. 4

and 5) was developed in order to include the chordwise lift distribution;

however, even these techniques are inadequate to treat the present

planform. The basic reason is that classical potential theory assumes

completely attached flow while, in the real flow, the flow separates from

the sharp leading edges and forms spiral vortices which Zesult in a toss

of leading edge suction and an increase in lift.

A new concept of the vortex lift of planar sharp leading edge delta

wings based on a, leading edge suction analogy is presented in reference 6.

This concept provides a reasonably accurate method of predicting the total

lift of planar sharp edge delta wings in the absence of the ground.

*The material' in this thesis is also presented in reference 1.

l
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I.

The present study employs a vortex lattice potential flow theory

lifting surface method incorporating an image technique to represent the

wing in ground proximity and a method is introduced for combining it with

the free air vortex lift concept. The resulting theory yields a reason-

ably good prediction of the total lift and drag of sharp edge planar wings

in ground proximity. Note that the method is not applicable to the

prediction of pitching moment. Therefore, the present study is restricted

to the consideration of lift and drag.



VI. SMSOLS

A	 axial force, positive toward trailing edge

AR	 aspect ratio, b2/S

$	 matrix defined by equation (9)

b	 total wing span, ft(m)

i

CA

CA, der

CD,

aCDipCL lat

axial force coefficient, axial force/qs, positive

toward trailing edge

axial force coefficient derived from CN,lat) CA,laty

and 6CD • pC2 lat^	 ,

drag coefficient, drag/gS

induced drag factor

CL ' lift coefficient,	 lift/gS

CL.'v '.lift coefficient associated with leading edge vortex

CN normal force coefficient,	 normal force/gS, positive

away from ground plane

Cp; .' y normal force coefficient associated with leading edge

vortex ^,T
^.3

CS leading edge suction coefficient (iniplane of wing and

perpendicular to leading edge)

-	 CT leading edge thrust coefficient (in plane of wing and

parallel to flight direction)'.

c mean aerodynamic chord

H influence coefficient

h height of apex of wing above ground

3
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hF 4

c
normalized height parameter, height of the quarter chord

of the mean aerodynamic chord divided by the mean

aerodynamic chord

K	 a free air proportional correction to the vortex lattice

axial force coefficient defined as CA,der/CA,lat	 =

1	 length

N	 normal force, positive away from ground
a

n	 normal distance defined in figure 2

P(x ) y,z)	 a general point in space

q	 dynamic pressure, 1b/ft 2 , (1.1/m2)

S	 wing reference area, ft  (m2) z

s	 horseshoe vortex semispan

U00	 free-stream velocity, U. = l

V	 resultant velocity with components u,v,w

u,v,w	 perturbation velocity components in the positive X,Y,Z, =I



angle of attack, deg

circulation `strength

M

r

5

x,y,z	 orthogonal right-handed secondary Cartesian coordinate

system with origin at the lateral midpoint of the local

quarter chord of an element (see fig. l(b))

X*) Y*) z*
	

orthogonal right-handed secondary coordinate system

associated with image wing

S	 angle defined in figure 2

cp	 angle 'between normal to ground plane and Z-axis, deg,

note that cp = m

angle between bound vortex and y-axis, deg, positive

direction is counterclockwise from positive y-axis

8	 angle defined in figure 2

A	 leading edge sweep angle, deg
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pot	 potential flow theory using CA, der

R	 real or actual wing

r	 right wing panel

s	 spanwise segment

t	 total

u,v,w	 components of influence coefficient in x,y,z directions



VII. POTENTIAL FLOW THEORY (VORTEX LATTICE THEORY)

The basis for the implementation of the potential flow theory in

the present study is the ability to represent a lifting wing by a series

of horseshoe vortices. The vortex lattice method represents both the

spanwise and the chordwise distribution of lift by a system of horseshoe

vortices. The wing is divided into elemental parts, each of which is

represented by a horseshoe vortex and a control or boundary point. A

simplified subdivision of a delta wing into elemental parts is shown in

figure 1(a). A horseshoe vortex representing a typical element is shown

in figure 1(b) .

The orthogonal primary coordinate system used for the wing is shown

in figure 1(c). The height of the wing apex above the ground is h. The

angle between h and the Z-axis is T. The angle of attack is defined

as the angle between the free-stream velocity and the X-axis. The

perturbation velocities in the X, Y, and Z-directions are shown in

figure l(c) as u, v, and w, respectively.

To simplify the analysis, the assumption is made that cp M. Thus,	
.t

the present investigation does not attempt to represent the dynamic

situation of an aircraft landing maneuver in which cp and m are

independent functions of time.	 =:

The orthogonal secondary coordinate system associated with the horse-

shoe vortex, representing a typical element of the wing, is shown in

figure l(b) Note that a secondary coordinate system is associated with

each horseshoe vortex of the lattice

a
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A second primary coordinate system (fig. l(d)) is associated with

the image wing. Note the positive directions in the two primary coordinate

systems.

The basic relation between the velocities and the horseshoe vortex

circulation strengths is, in matrix notation:

{V} = [HI (r)	 (1)

where H is a geometric influence coefficient matrix (see ref. 7). In

the computer program, this vector equation is replaced by three scalar

equations for u, v, and w.

In order to compute the influence coefficient, the law of Biot-

Savart is applied. This law, as originally derived in electromagnetic

field theory, says that the magnetic field intensity in the neighborhood

of a long straight wire carrying a steady current varies inversely as

the radial distance to the wire (see ref. 8). The analogy between 	 x

electromagnetic theory and vortex flow is discussed by Lamb (see ref. 9,

	section 148). Following reference 7 pages 127-128, the velocity induced	 ^^+

at a point by a finite line of vortic'ity is given by

V=Hr= 1-( cos S+cos e)
	 ()
F	 2 

4nm 
a

where the ` symbols are defined in figure 2.

A more general situation must be considered in the present problem

as shown in figure 3. The influence of a complete horseshoe vortex

(line BAA'B';) on the induced velocityat a general point (P) in three

J
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dimensional space must be computed. In the figure note that the trailing

vortex legs (AB and A'B') actually extend to infinity. Applying

equation (2) to each part of the horseshoe vortex in figure 3, the

equation for H becomes

H=- 1 { cos G PAA + cos L PA'A)
^tPQ

+ 1
-
(cos L PB'A' + cos L PA'B')

479N'

+^ cos L PBA + cos L PAB)	 (3)

which reduces to

H	
1 AQ + A Q 	 l 1+ 	 + l 1+AN 	 (^)

2^+ztPQ A PA' 	41gN-'	 PA	 41 FN-	PA'

Note that for clarity the angles 4 PB'A' and L PBA are not shown in

the figure since B' and B represent points at infinity and therefore

the angles are zero and the corresponding cosines are unity as given in

equation (4)
Omitting the algebra (fig. 3 includes all geometric constructions

used in performing the algebra) and recalling that in the present problem

the vector equation is broken up into three scalar equations, the scalar

influence coefficien±s are given by the following equations



i#3 N'

I	 Via.

3

fr

	

`^ E
	

y cos +x sin *+	 y cos *+x  sin - 
s

z cos cos	 cos V^
..	 %(xly -l z) 	-

4n^z2 +(y sin	 x cos )2]	 z2 + Cy +s) 2 +(x+s tan ^r) 2 	z2+(y-s)2+(x--s tan *)2

C 5( a))

	y cos +x sin + s	 y cos *4 x sin - s

z sin	 cos	 cos
H,(x.,Y.,z)

4nlz2+(y sin a-x cos *) 2̂  z2+(y +s)2+(x+s tan *)2 jz2 (y _S)2+(X_ s tan )2

k

+	 Z	 {.	 - x+stand

	

,	 1
^+nlz2 + (y - s) 2]'	 z2 + (y - s) 2 + (x - s tan *)2

+	 z	 x- stanr
-	 1 +	 (5(b))
4ir [Z2+	 #s2	 2+	 +s2+ x+stan 2

cN;

R

zi
a;

iiE^



S	 s
y cos	 + x sin	 +	 Y cos *+x sin ^ - cos

-ysin	 xcos
HW (x;Y z ) _

cos iJr	
^

-
410 EZ2+ (Y sin j-x cos *)2]

VZ2 +(y+s) 2 +(x+s tan *)
2
	z2+(Y-s)2+(x-s tan	 }2

C

1- ('y- s) - x + stand
1 +

4n'z2 + (y	 s) 21.-

_
-

z2 + (y	 s)2 + (x - s tan *)2

+	 y + s l +	 - x - s tan
(5(c))

4,rEz2 +	 2	 z+ (y+	 2	 (x+ (Y+s)^	 2	 's)+	 stan*)2

Equations (5) are based on the assumption that the trailing vortex sheet lies in the plane of the wing

and extends to infinity. 	 The physical situation in which the trailing vortex sheet essentially	 CYN

follows the free-stream direction is not represented because this assumption was made. 	 Nonetheless,
' I

this assumption was made in order to simplify the equations.

In the present case, it is necessary to consider the complete vortex lattice. 	 From considerations

` of symmetry, for each horseshoe vortex on the left half of the real wing, there exists a corresponding

-horseshoe vortex on the right half of the real wing as well as on the left and right halves of the

image wing, all of which have equal. 'circulation strengths. 	 Therefore, equation (1) can be restricted

to considerationof the left half of the real wing provided each	 element of the	 H	 matrix is the

sum of four successive applications of equations (5) with sets of the secondary coordinates (x,y,z)

appropriate to each of the four wing panels being used.

H	 rS	 ^ ,ate	 '^	 # a M t,	 be.	 * d-	y,. 	 .. ..	 v^4t,6i	 1	 .^'..i+'^	 4	 r	 - ^e	 -	 X15 W:^ ..,	 .5Y?	 Js	 k	 ..	 ,o
r'#	 't	 RI	 'N	 %,	 ^ "	 Y ]`L ADY	',FW
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Let (Xb,Yb,O) represent the coordinate of a point Pb on the left

half of the real wing at which induced velocities are to be computed. Let

(Xa,Ya,O) be the origin of the secondary coordinate system of a horseshoe

vortex on the left half of the real wing. The corresponding element of

the influence-coefficient matrix EH] may be written as
P

H = Hl)R + Hr,R + HIJI + Hr,I = HR + HI
	

(6)

The u, v, and w components of HI,R are found directly from

equations (5) by letting y = y1 and using

x =Xb - Xa

yl = Yb - Ya

z = 0

Since Hr,R is symmetrically related to the influence of the left real

horseshoe vortex on a point (Xb^ - Yb,O), let yr - Yb - Ya and reverse 	 h

the sign of the component of V in the Y-direction. Then, the components
0
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that the wake of the real wing lies in the XY-plane results in a wake

which, at positive angles of attack, intercepts the ground and passes

into the image region below. Similarly, the image wake intercepts the

ground and passes into the real region above. Although it is hoped that

such behavior will not significantly affect the present results, large

errors would probably result if the present technique were used to obtain

the downwash at a rear tail. The technique used to form the image in

this investigation depends upon the assumption that the wing is planar.

The image system would be incorrect if the wing had such nonplanar

characteristics as camber, twist, dihedral, or a deflected flap.

With respect to the X*,Y*,_Z* coordinate system, the coordinates

of the point (Xb,Yb,O) become (see fig. 1(d))

Xb = 2h sin cp + Xb cos 2cp

Yb = Yb

Zg _ - 2h cos cp - Xb sin 2cp

Thus, to obtain the influence of the left half of the image wing on the

left half of the real wing (H1, I ) , use

x* _ - 2h sin cp + Xb cos 29 Xa

y =_Yb - _ya

* _ 2h cos cp Xb sin 2cpz	 _

To obtain the influence of the right half of the image wing on the left

half of the real wing, the y-coordinate is altered to
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yr = -Yb -Ya

and the sign of the v component is reversed.

Substitution of these coordinates into 'equations (5) yields the

components Hu, Hv , and HW. These image-influence components are

expressed in the directions of the rotated axis system. The following

equations are used to resolve the image influence into the X-, Y-, and

Z-directions and to account for the fact that the circulation strengths

of the image vortices are opposite in sense to those on the real wing:

[HIJ = - [B] [H*j

where

d	 HI - Hl,I + Hr,I

and the components of the HI matrix are Hu , ^ 2 Hv , I , and HW , I ; the

components of the H* matrix are Hu, Hv, and H* and the B matrix

is defined as follows:

cos 2cp	 0	 -sin 2cp

B	 0	 1	 0	 (9)

sin 2cp	 0	 cos 2cp

Since only planar wings are considered in the present study, the

(8)
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wBC = sin m	 (ll)

The circulation strengths are then computed from the equation

EHI-1`wBC)	 (12)

where each element of the H matrix is the total influence at a given

boundary point caused by a given set of four symmetrically placed vortices

on the real and image wings.

Since the circulation strengths are known, computation of the forces

acting on the wing is now possible. Let a, segment be defined as that

(r) =

portion of a line of vorticity on the wing which has a constant circulation

strength.	 The present analysis computes the induced velocity at the midpoint

of each segment from the equation

`v	_ ^H] (r)	 (13 )

where the	 H	 matrix is now the influence of the set of horseshoe vortices

on the set of points composed of the midpoints of the segments. 	 If the

induced velocities are expressed in terms of 	 u,	 v. and 'w, then the

forces on the wing can be computed by forming the vector cross product

of the circulation strengths of the segments and the induced velocities

at the midpoints of the segments.	 For a spanwise segment, the forces are }.

MFA,s =_2rs(ws - sin m)(2s) 	 (14)

FN,s = 2I'sCvs tan	 - (us - cos m)](2s)	 (15)

where the subscript	 s	 denotes a spanwise segment.	 For a chordwise

segment, the forces are

F
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(17)

n
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FA , c = 0

FN,c = 2rcvcic

where the subscript c denotes a chordwise segment, Zc is the segment

length contained within the planform, and rc is the net circulation

strength resulting from the individual circulations of each trailing-

horseshoe-vortex leg forming that segment.

The total normal and axial forces acting on the wing are obtained by

summing the normal and axial forces acting on all segments.

The preceding system of equations have been programed for solution 	 i

on a high speed digital computer. The _results from this computer program

are referred to as the vortex lattice theory. The vortex lattice theory

lift and drag coefficients are therefore given as:

CL,lat = CN lat cos m CA,lat sin m	 (18(a))

CD,_lat = CN,lat sin m + CA,lat cos a 	 (18(b))

An axial-force coefficient CA,lat can be calculated by using the

vortex-lattice method as implemented herein since the total velocities

used to compute the forces on the vortex lines were calculated at the

midpoint of each vortex segment rather than at thecontrol point where the

boundary condition was applied. However, the values obtained are somewhat 	 'R

inaccurate because of the discrete nature of the vortex-lattice formulation

of the problem. The first task is, therefore, the correction of the axial-

force coefficient. The method used relies on the fast that the vortex-

lattice span load distribution in free air can be used to ` compute an

i



22

accurate value of the induced-drag factor	 aCDl . The accuracy of this
aC2
L,lat

calculation has been checked by independent methods. (See reference 10.)

Thus,a better approximation of the free-air axial-force coefficient, valid

'	 for large angles of attack in potential flow, is obtained from the

solution of

CA,der = CL,lat sin a - 2CDl2	 CL,lat 
cos m

	

aCL,lat	
(19)

CL	 C	 cos a C	 sin a	 f,lat	 N,lat	 A,der

The corrected axial-force coefficient in free air may be written in terms

of the vortex-lattice axial-force coefficients as

	

CA,der _ KCA,lat	 (20)

Equation (20) defines K, the fractional correction to the free air axial-

force coefficient. It is assumed that, for a given wing planform, K is	 y

a function of angle of attack but not a function of height above the

ground

The effect of introducing K is to replace equations (18) by

CL , pot - CN,lat cos a KCAlat, sin a	 (21(a))

C= C	 sin a + KC	 cos oc,	 (21(b))
D,Pot; N,lat	 A,lat

Results obtained from use of these equations are referred to as the

potential theory lift and drag coefficients.



VIII. VORTEX LIFT CONCEPT

The potential flow theory as developed in the preceding section can

not be applied to sharp leading edge wings. The reason for this is that

the potential flow theory is based on the assumption of full leading edge

suction whereas for the slender sharp leading edge low aspect ratio delta

r	wing of the present study, the leading edge suction is lost and a leading

edge spiral vortex is formed. Reference 6 presents a new concept of the

free air vortex lift of sharp edge delta wings based on a leading edge

suction analogy. Since the present theory to be discussed below is based

on a combination of the potential flow theory and the vortex lift concept,

an understanding of the vortex lift concept is important to the under-

standing of the present theory. Therefore, the following discussion of

the vortex lift concept based on reference 6- is presented.

For sharp leading edge low aspect ratio delta wings, the flow

separates from the leading edges even at low angles of attack and rolls

up into two spiral vortex sheets. The flow reattaches to the upper wing

surface inboard of the vortex sheets. This flow pattern results in an

increase in lift at a given angle of attack and is referred to as non-

linear or vortex lift. The vortex lift concept assumes that the total

lift can be calculated from a-potential flow lift and a lift associated

with the leading edge spiral vortices.

The potential flow lift for the zero leading edge suction condition

is given by

CLOP = CN,lat cos a	 (22)

23

fig
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The leading edge suction coefficient is simply related to the leading

edge thrust coefficient by:

Cs = CT
	

(23)
cos A

The vortex lift concept asserts that a force is required to maintain

the equilibrium of the flow over the spiral vortex assuming the flow

reattaches to the wing. The magnitude of this equilibrium force is equal

to the magnitude of the potential. flow theory leading edge suction force

(ref. 6). The vortex lift concept can then be interpreted as a rotation

of the resultant suction force into the normal force direction and thus

the normal force coefficient associated with the leading edge vortex is

CN,v = ICS)	 (24)

The lift coefficient associated with the leading edge vortex is
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Since zero leading edge suction was assumed, the total drag coefficient

becomes

CD,t = CL,t tan m	 (27(b))



IX. METHOD OF COMBINING POTENTIAL THEORY AND VORTEX

LIFT CONCEPT IN GROUND PROXIMITY

Several facets of the preceding analysis led to the idea that the

potential flow theory and the vortex lift concept could be combined to

permit the prediction of the lift and drag of sharp edge delta wings in

ground proximity. The use of the vortex lift concept (eqs. (27)) in free

air provided a reasonably good prediction of the characteristics of these

wings (as shown in ref. 6). The potential flow theory described in

section VII provides a method of computing the variation of normal and axial

force for a wing in ground proximity. Finally, the vortex lift concept

can be interpreted as a modification to the potential flow theory normal

and axial force to account for the leading edge spiral vortices. A

straightforward application of the equations presented in the preceding

sections leads to the following equations.

C	 _	 + K I CA, lat cos 
M	 28 aL,t	 C N,lat	 cos 11	 (	 ))

CDC t = CL, t tan. a (28(b))

These equations are referred to as the present theory. Note that the

assumption that K is independent of ground height and the fact that

the vortex lattice method allows one to compute CNlat and CA,lat y

as functions of <angle of attack and ground height permits equations (28)
s

to be used to compute the total lift and drag in ground proximity. Thus

these equations represent a method of combining the potential flow theory

in ground proximity with the free air vortex lift concept.
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X. COMPARISON WITH EXPERIMENT

Several features of the analysis should be noted. First, the

existence of the spiral vortices emanating from the leading edge implies

a redistribution of vorticity in the wing and wake. This redistribution

is not accounted for with respect to the image wing below the ground plane,

even though the results of reference 6 have been used to correct for this

effect at the real wing. Secondly, the choice of the coordinate'system

used in the vortex lattice method described in section VII leads to a

wake which, at positive angles of attack, intersects and passes through
fi

the ground plane. Finally, since the present approach uses the method

of reference 6, which does not predict the distribution of forces over

the wing, this approach cannot be used to calculate pitching moment.

In view of the assumptions used in developing the present theory,

the justification for its use must rest primarily upon a comparison with

experimental data. One of the most complete experimental studies of ground

effect for sharp-edge delta wings is that of reference 11, in which a`

series of wings with leading-edge sweep angles of 75°, 70°, 600, and 50°	 }

(aspect ratios of 1.072, 1.456 5 '2.309, and 3.356, respectively) were

tested. These wings were tested by using both the fixed- ground-board and

image-model test methods-at a free-stream velocity of 11+.8 ft/sec

(35.0 m/sec) mounted on a strut support Certain unexplained nonlinearities

existed at low angles of attack in the_ data of reference 1'1; however, the

data were self-consistent. Corresponding with the assumptions of the

theory, the wings were isolated; that is, there was no fuselage or tail.r

The experimental data are presented in terms of the height parameter used
A;
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in the present study. Details of the lattice layout used are given in

reference 1.

The lift and drag characteristics of the wings as functions of

normalized ground height are presented in figure 4 for m = 10 0 , and in

figure 5 for m = 15°. The drag coefficients presented in these figures

do not include the fraction-drag component which has been removed by

subtracting the minimum drag coefficients from the data of reference 11.

(The values subtracted were 0.008, 0.010, 0.011, and 0.012 for wings with

leading-edge sweeps of 750 , 700 , 600; and 500 , respectively.)

An examination of figures 4 and 5 reveals that when either the

potential theory or the present theory is able to predict the free-air

lift coefficients, it can also be used to predict the effect of ground

proximity reasonably well. For aspect ratios less than 2.0 ., where the

leading-edge vortex is well developed, the present theory(eqs. (28))

accurately predicts the lift. As the aspect ratio increases and the 	
A+

effects of the leading-edge vortex become less pronounced, the accuracy

of the potential-theory lift predictions (eqs. (21)) becomes progressively

better and that of the present-theory predictions becomes worse. In

general, the present theory yields a better drag prediction than the

potential theory. These effects can also be seen in figures 6 and 7

which summarize the lift and drag characteristics as functions of aspect

ratio for selected ground heights.

The potential flow theory prediction, for the lowest aspect ratio

presented in figure 6 is only 71 to 77 percent of the lift and 30 percent

of the drag compared to a prediction by the present theory of r

92 to 100 percent of the. lift and 100 percent of the drag.	 x
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(a) A = 750 ; AR = 1.072.

Figure 4.- Comparison of lift and drag coefficients determined by
different theories with the experimental data of reference 11
at an angle of attack of 10 0 
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Figure 4, Continued.
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(a) n = 75°; AR = 1.072.

Figure 5.- Comparison of lift and drag coefficients determined by
different theories with the experimental data of reference 11

°at an angle of attack of 15.
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(b) n = 700 ; AR = 1.456.

Figure 5.- Continued.    
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Figure 5.- Concluded.
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Figure 6.- Effect of aspect ratio on theoretical predictions of lift
and drag coefficients at two heights above the ground and
comparison with experimental data of reference 11. a, = 100.

71

.



38

Figure 7.- Effect of aspect ratio on theoretical predictions of lift
and drag coefficients at two heights above the ground and
comparison with experimental data of reference 11. a = l=o
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In order to examine the effects of angle of attack over a larger

range, the data- of reference 12 were used. Reference 12 presents tabulated

lift and drag data as functions of angle of attack and ground height for

a wing with an aspect ratio of 1.616 (A = 680). The wing was suspended on

a wire support rig over a fixed ground board and tested at a free-stream

velocity of 120 ft/sec (36.6 m/sec). A minimum drag coefficient of 0.009

was subtracted from the measured drag data of reference 12 in order to

compensate for the friction drag in the data.

The results of the theoretical calculations for a wing with an aspect

ratio of 1.616 are compared with the data of reference 12 over an angle-
	 J

of-attack range from 10 to 15.550 in figure 8. The comparison is further

summarized in figure 9. Note that figures 6 and 7 indicate that the

present theory should yield a good prediction of the lift and drag 'at this

aspect ratio. The data from reference 12 indicate that the same result is

obtained except at an angle of attack of 10 . It should be noted, however, ' k
that an angle of attack of 10 probably does not provide sufficient leading

edge separation for the complete formation of the leading-edge spiral

vortex system. Other than this anomalous point, the present theory gives

a good prediction of the lift and drag for each angle of attack throughout

the ground-height range. The predicted lift anddrag are presented in

figure 9 as a function of angle of attack for selected ground heights._,

The present theory yi .-Ids a reasonably good prediction of the lift and

drag throughout the angle-of-attack range from some angle of attack	
r

between 10 and 5.520 up to an angle of attack of 15.550, the highest angle

of attack for which experimental data were available. (See figure 8.)

I 	 '
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(a) a = lo . Note the enlarged CL and CD scales.

Figure 8.- Comparison of lift and drag coefficients determined by
different theories with the experimental data of reference 12.
A = 680; AIR = 1.616.
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(d) a = 15.550 .

Figure 8. - Concluded.

ZTI;^



.8

.7

.6

CL
4

J

0
0 2	 4	 6	 8 /0	 12	 14	 16	 18	 20	 22	 24

a, deg

Figure q.- Effect of angle of attack on theoretical predictions of lift
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The potential flow theory prediction, for the highest angle of attack

presented in figure 9, is only 75 to 80 percent of the lift and 25 to

28 percent of the drag compared to a prediction by the present theory of

93 to l04 percent of the lift and 108 to 116 percent of the drag.



XI. CONCLUDING REMARKS

A method of predicting the lift and drag of slender planar sharp-edge

delta wings in ground proximity is described, and the results are compared

with experimental data. The method utilizes a vortex lattice method

incorporating an image technique to compute the potential-flow normal-

force and axial-force characteristics of delta wings in ground proximity.

A correction to account for finite vortex-lattice spacing is made to the

free-air vortex-lattice axial force, and the correction is assumed applicable

to the vortex-lattice axial force in ground proximity. A recently published

vortex lift concept in free air based on a leading-edge-suction analogy is

utilized, and a method is presented for combining it with the results of

the potential-flow theory in ground proximity. A comparison of the
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