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:Thel chemicaJ ;depo~iloLo's42Sonh onlterfllY g~ers;2!c6nW 

dioxide has been investigated.' The reattant was semiconductor grade
 

silane (SiH4 ) in an induction heated hydrogen flow system. The deposit
 

was found to be polycrystalline with a strong (no) preferred orienta­

tion which tended toward a random orientation at high temperatures. A
 

geometrical model, based on the possible second near the neighbor
 

positions pf silicon atoms in the amorphous silicon dioxide, is proposed
 

,which offers an-expi4n4tion for the stroeg>(1lQ,) o )sajit46r' 

moderate. temperatures oand, the ,near random orienttibdns for h-{:h,' 

temperatures.
 



CHAPTER I
 

INTRODUCTION
 

This thesis-is part of an investigation undertaken to determine
 

the feasibility of using the pyrolytic decomposition of silane (SiH4) to
 

deposit polycrystalline silicon on thermally oxidized silicon substrates
 

which are to be used in manufacturing dielectrically isolated integrated
 

circuits. The basic process of dielectric isolation has been reported
 

by TRW, 1 Maxwell, Beeson, and Allison,2 and Jackson,3 by which tiny
 

islands of single crystal silicon are electrically isolated from each
 

other by silicon dioxide and the entire structure is supported by
 

polycrystalline silicon which has been deposited on the silicon dioxide
 

surface. Figure 1 is a schematic of the dielectric isolation process.
 

Integrated circuits built by this process have better high-frequency
 

characteristics and are more radiation resistant than conventional
 

integrated circuits.
 

The objective of this paper is to investigate the effect of
 

substrate temperature on the preferred crystallographic orientation of
 

the deposited silicon and to determine if the presence of etched channels
 

in the otherwise planar substrate surface produces any undesirable
 

effects. The electrical characteristics of the dielectrically isolated
 

silicon islands will be reported in a later paper.
 

A brief discussion of film deposition in general is presented in
 

chapter 2 of this thesis along with a literature review of previous work
 

done on silicon deposition. The topics reviewed include the physical
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and chemical deposition of silicon on amorphous substrates as well as
 

silicon deposition on silicon and on crystalline (aquartz) silicon
 

dioxide. Silicon-on-sili-con epitaxy is reviewed only where silane was
 

the source material.
 

Surface texture is reported for the physically deposited films 

and for one case of the chemically deposited films in which silane was 

used to deposit silicon on fused (amorphous) quartz. In the silane 

deposition4 all deposits were found to be randomly orientated which is 

in contrast to the texture of the vacuum deposited films. No informa­

tion has been reported on the microstructure of silicon deposited by the 

pyrolysis of silane on thermally oxidized silicon substrates. 

The experimental system and the various steps taken to produce
 

andevaluate the polycrystalline silicon films are discussed in chapter 5. 

Particular attention is given the silane-hydrogen reaction system in 

which silane decomposes to produce elemental silicon. 

Chapter 4 discusses the experimental results as evaluated with
 

the aid of X-ray diffraction and scanning electron microscopy. A model
 

is proposed in this chapter to'give the relative percentage of the
 

substrate surface which is preferentially covered by one of the low
 

index crystallographic planes. The samples are characterized by the
 

percentage of preferred orientation as a'function of' substrate
 

temperatures. 

The final chapter makes an etra6lation of Bicknell's 5 model for 

° epitaxial deposition of silicon on a-quartz to explain the experimental
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results. The proposed theoretical model produces a preferred orienta­

tion in the deposit at moderate temperatures and a random orientation
 

at high temperatures.
 



CHAPTER II 

LITERATURE'REVIEW AND GENERAL THEORY
 

Genera;l Theory
 

The silicon atoms'which are deposited are obtained from the
 

pyrolytic decomposition of gilane gas (SiH4) in a tydrogen atmosphere.
 

Decomposition of silane begins at 4000 C and increases with increasing
 

6temperature. The decomposition'process iA though t6 take place by a
 

heterogeneous reaction in which the silane molecules are absorbed on the
 

substrate surface, break down to ford one silicon'atom and two hydrogen
 

atoms per silane molecule; the hydrogen atoms are desorbed back into the
 

gas stream and the silicon is left free on the substrate surface. The
 

-absorbed silicon atom may either attach itself to a stable nucleus and
 

grow, combine with another atom or critical nucleus to form a stable
 

7
 
nucleus, or it may evaporate.


In the case of a substrate surface having free bonds (as is likely
 

with silicon dioxide in the highly reducing environment of a hydrogen'
 

atmosphere at high temperature, where both previously deposited silicon
 

atoms and hydrogen atoms may capture-surface oxygen atoms leaving
 

silicon bonds exposed on the substrate surface) it is also possible that
 

the silicon adatom may bond directly to the substrate. In this case,
 

the nuclei may be expected to form in a preferred orientation which
 

would depend on the number and spacing of the substrate bonds.
 

Even if the nuclei form in a preferred manner) the final orienta­

tion of the film may have an orientation different from that of the
 

5 
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nuclei,. That is, the substrate ,surface may lead to a preferred
 

nucleation orientation but growth conditions may be such that these
 

nuclei cannot grow while other orientations may be in favorable growth
 

8
 
conditions.
 

Literature Review
 

1. Physical Deposition of Silicon on Amorphous Substrates
 

A. Vacuum Evaporation
 

F. M. Collins9 evaporated silicon from a resistance heated boron 

nitride crucible bnto heated fused quartz substrates. Experiments were 
lO-6
 

carried nut in 1 to 5 x 10 torr vacuum with substrate temperatures 

ranging from 400 C to 1100 0C. Film thickness was on the order of one 

micron. 

Crystallinity was'measured ith an X-ray diffractometer. The 

films were amorphous for substrate temperatures below 5500 C. 

Crystallinity, that ,is, the intensity of recorded X-ray peaks for constant 

X-ray flux, increased with increasing substrate temperiture with a 

preferred (111) orientation becoming appabent, and increasing, at 1000' C.
 

10,-Y. Kataoka evaporated, silicon from tantalum filaments onto fused
 

° quartz substrates heated to 950-1050 C I2 The vacuum'of the system was 

6
maintained at pressure between 5 to 10 x,10- torr and the deposition 

rate was approximately 0.6 u/ain for films 5.5' thick. The 

crystallography of the film was measured by X-ray diffraction, and the 

deposits were found to have a (111) preferred orientation.
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A. J. Mountvala and G. Abowitzl l evaporated silicon with an
 

-6
electron beam in 1 X 10 torr vacuum for deposition rates of between
 

0.'002 p/min and :0.08 i/Thin'. The fused quartz substrates were heated 

to temperatures ranging from 500 to 10000 C ,and the films ranged in
 

thickness from 0.05p'to 0.75j. The textural characteristics of the
 

deposited films were measured'by X-ray diffraction and were found to
 

°vary from an amorphous structure for5 substrate temperatures below 700 0 C, 

increasingly strong (1-O) texture between 7650 C and 900° C, and a
 

texture going from (nlO) to Kill) 
 at l00°6C. Surface topology was
 

viewed with a 5OX optical microscope to show regions on the same
 

substrate, of widely varying grain sizes. The grains were about 5O
 

diameter in one region, 160p diameter in another, and were rectangles,
 

with dimensions of several hundred by over lO00, 
 in the third region.
 

Electron microscopy (19,oooX) pictured a rough surface which was thought
 

to be caused by thermal etching of the substrate.
 

R. G. Breckenridge and coworkers4 deposited silicon films on
 

heated fused quartz by using electron beam evaporation in 2 x 1O'7torr
 

vacuum. Substrate temperatures ranged from 800-10000 C and the deposi­

tion rate was approximately 0.009 p/min for films o.4 to 1.164 thick. 

The surface texture ranged from random orientation at a deposition
 

°
temperature of 8000 C preferred (100) orientation at 900 C, and 

preferred (111) orientation at 10000 C. 

B. Sputtered Films
 

H. Y. Kumagai, J. M. Thompson, and G. KrausJ2 deposited silicon
 

films on heated fused quartz substrates by sputtering in an argon
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atmosphere. All films investigated were deposited at 0.01 p/min for
 

thicknesseaof 0.1, 1.0, and 4.0g. Electron diffraction of the 0.lg 

films and X-ray diffraction of the 1.0 and 4.0 films showed an almost 

amorphous structure for substrate temperatures up to 400° C during
 

deposition but post heat treatments above 6500 C produced a strong
 

polycryStalline structure 
however no preferred orientation was found
 

for post heat treatments as high as 10000 C.
 

2. Chemical Deposition of Silicon on Amorphous Substrates
 

A. Hydrogen Reduction of Trichlorosilane (SiHC13)
 

TRW used an oxidized silicon single crystal wafer as a substrate
 

for silicon deposition from SiHC13. Hydrogen (flow rate = 2000 cc/min)
 

was used as a carrier gas and silicon was deposited at4 p/min with
 

substrate temperature of 11000 C. The final film thickness was approxi­

mately 15L0. This report gave no information on the microstructure of 

the deposited films. 

B. Hydrogen Reduction of Silicon Tetrachloride (SiC14 )
 

E. G. Alexander and W. R. Runyan 1 3 , made depositions of silicon 

on thermally oxidized single crystal 
silicon by hydrogen reduction of
 

°
SiC14 near 1200 C. In the early stages of growth octahedral silicon 

crystals, 1 to 50g diameter, were observed on the silicon dioxide 

surface. These investigators stated that impurities on the oxide
 

surface aided the nucleation of silicon growth, the use of a sodium
 

salt (such as NaH2POa, H20) was Aeeded for a uniform deposit, and that
 

hydrogen reduction of the SiG2 surface may be instrumental in forming 
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nuclei on the untreated wafers. No information vas reported on
 

preferred orientation or final topology of the deposited silicon.
 

E. G. Bylander and M. M. Mitchel deposited silicon on fused 

quartz in the temperature range -of 950-12000 C by hydrogen reduction of 

silicon tetrachloride. It was noted that silicon first nucleated at 
etched areas on the quartz and a typical growth included many octahedral 

silicon crystallites on the substrate strface. 

C. Pyrolysis of Silane (tiH4) 

R. G. Breckenridge and coworkers deposited silicon on-fused­

quartz by the pyrolytic decomposition 6f SiH4 . Using substrate tempera­

° tures of 900-1300 C and flow rates of 5 to 40 ml/min only randomly 

oriented layers were produced. No other information about microstructure
 

was included.
 

In studies of'silicon nucleation on silicon substrates Joyce and
 

Bradley15 used a molecular beam of silane molecules incident upon the 

interface of single crystal silicon and oxidized silicon. After 

240 minutes, surface examination revealed nucleation centers growing on 

the crystal but no growth on the oxide. It was concluded that at the 

-2 
low growth rates (9.3 XlO15 molecules cm se -1 ) used in the experiment
 

no growth occurs on the oxide surface.. 

3. Epitaxial Silicon on Single Crystal Substrates by the
 
Pyrolysis of Silane (SiH4)
 

A. Single Crystal Silicon Substrates
 

10 - 4 Using very low growth rates (approximately 1.0 A/min or g/min) 

6in a silane molecular beam deposition system, Booker and Joyce showed 
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that nucleation of silicon began as separate growth centers, usually
 

separated by a few microns, ,atrandom sites on the substrate which was
 

heated to 8450 C. The nuclei were shaped as truncated tetrahedra on-the
 

(111) orientated silicon substrate with approximately 4 to 1 base-to­

height ratio. The three inclined sides of the tetrahedra intersected
 

the substrate along the three < 110 > directions. These nuclei continued
 

to grow with time and it was assumed,that they would ultimately have
 

joined to give a continuous epitaxial layer.
 

Using the same molecular beam system-; Joyce, Bradley, and Watts 1 7 

investigated the nucleation of pyrolytically decomposed silane on '(TO0) 

silicon substrates. Again silicon growth started as separate growth 

centers which were rectangul-ar inshape. 

The data for both nucleation experiments were fitted to the 

theory of'Lewis 'and CampbellT to predict a,mininnim (111) nucleus of 

three atoms and a minimum (100) nucleus of fou atoms. However, when 

the silicon substrates were given an extensive predepobition cleaning
 

treatment no nuclei growth was observed. Exposure of the clean wafers 

to organic contamination again produced three dimensional nucleation. 

It was concluded that the discrete growth centers were due to minute 

amounts of surface contamination. 

The two papers (16 and 17) reviewed above investigated silane 

deposition only in the initial nucleation region. In earlier work 

Joyce and Bradley18 investigated epitaxial silicon,on silicon by using 

low paxrtial pressures of silane in a previously evacuated system. 

Complete silicon overgrowths were observed for growth temperatures 
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between 920° C and 1260 C and silane prdssure of I torr. The growth 

rates as effected by substrate temperature and silane pressure are 

listed in table I. 

TABLE 1
 

Temperature range investigated 920-1260' C 

0920 < T <ll00 C 
Exponential increase (activation
 

Growth rate (/min)' as - energy = 37 K cal./mole) 

'affectedby temperature < 0 ' 

G.R. = constant,(for constant
 
pressure)
 

° T <1l00 C 
G.R. = e - I
*Growth RateGrowh(g/ln)W Rae 

Law . Gl 
a
a
p 

iir)Lawfor 0.1 < 1.5 torrp < 
as affected by SiH4
 
pressure T > 1100' C 

G.R. = CPn; n = 1.3 at 10600 C 

S. E. Mayer and Shea19 investigated the deposition rate 

of silicon on silicon by the pyrolytic ,decomposition of silane using 

a H2-SiH4 flow system instead of a vacuum system. The growth rate was 

slightly temperature dependent with a maidmum at 12000 C. Deposition 

rates were also affected by the hydrogen-silane ratio, holding the flow
 

rate of hydrogen and substrate temperature constant; and by the Sill
4
 

flow rate, holding the H2 - SiH4 ratio and temperature constant,.
 

Bhola and A.Mayer20 also deposited epitaxial silicon films on single
 

crystal silicon substrates by the pyrolysis silane in a hydrogen silane 
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flow system. After diluting the silane to 0.2 volume percent in 

hydrogen they obtained deposition rates 0.8 /in for substrate 

temperatures of 1050 to 10700 C and 1.12 g/min for temperatures of 

1100 to 11400 C. The silicon layers tended to become polycrystalline 

for deposition temperatures below 10000 C. 

B. Single Crystal Quartz Substrates 

Bicknell, Charig, Joyce, and Stirland5 grew epitaxial layers of 

silicon on the (010), (1120), and (0001) faces of single crystal quartz
 

using a hydrogen-trichlorosilane flow system. Electron microscopy 

showed growth nucleating as individual growth centers. The observation
 

that the growth centers, or islands, were fairly constant in size
 

regardless of their distribution density was interpreted to imply that
 

the mobility of silicon atoms on the quartz surface was quite low and,
 

hence, islands grow only by receiving new adatoms. The islands were 

almost 1000 thick before the final channels between islands
 

disappeared. 

As a "speculative!' model for epitaxy it was proposed that in the 

reducing atmosphere (hydrogen at 950 to 12500 C) the quartz surface 

would be oxygen deficient which would produce free silicon bonds and 

bonding would occur at the silicon-silicon interface. This,theory was 

substantiated by experimental results in which the (001) face of silicon 

is parallel to (0001) quartz and (010) silicon is, paraliel to(101O) 

quartz for the three quartz orientations studidd,.
 

Part of this group of workeil later compared the above work 

with silicon on quartz epitaxy produced by a silane-vacuum system. For 
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both systems it was found that the growth rate of the epitaxial layer 

was essentially independent of substrate temperature (950 to 12500 G) 

but was a function of the partial pressure of the gas (trichlorosilane 

or silane) only. The comparison of the two gases-did not go into the 

type, size, and distribution of nuclei. 

Summary
 

Epitaxial deposition of silicon on single crystals has been 

extensively investigated and, although there is quite a bit of di-sagree­

ment,. the properties of silicon evaporated 'n fused quartz substrates 

has been reported for substrate temperatures varying from 4000 C to 

llO 0 C. There has been onIyF one report of using the pyrolytic decompo­

sition of silane to deposit silidon'on fused quart7 and the,results 
(random orientations for temperatures ranging from 900 to 10 C) did
 

not agree with any of the vacuum deposition reports.' The Iuthor wishes 

to extend the knowledge of silicon deposits on amorphous substrates-by 

investigating the effect of substrate temperature on the preferred 

orientation of silicon deposited by the pyrolytic decomposition of 

silane on thermally oxidized silicon wafers. To the author's knowledge 

there have been no previous reports of'work in this innediate"area. 



CHAPTER III
 

THE EXPERMT
 

The broad purpose of this research was to investigate the use of 

silane in depositing polycrystalline silicon on oxidized single crystal
 

silicon to be used in dielectrically isolated integrated circuits. The
 

immediate objective was to investigate the effect of substrate tempei'a­

ture on the preferred orientation of pyrolytically deposited silicon on
 

thermally oxidized single crystal silicon.
 

The basic steps in the experiment were:
 

1. Oxidation of the single crystal silicon wafers
 

2. For some wafers, etching of moats in crystal surface
 

3. Pyrolytic silane reaction for silicon,deposition
 

4. X-ray diffraction examination for preferred orientation
 

5. Microscope examinatiofi, both optical and electron scanning
 

microsc6py, for.surfabe topblogy
 

Each of these steps 'will be discusfsed under a separate heading.
 

1. Oxidized Silicon 'Substrate
 

The'initial wafers were 0.005 ohm-cm boron doped single crystal 

silicon orientated within 2 '6fthe(ll) face. The wafers were purchased 

already sliced (I in. X 0.01 in.), lapped.,'and polished. The substrates 

0 were oxidized jina quartz tube furnace ato1100 C by bubbling nitrogen
 

(1000 cc/min) through a water bath heated to 91
0 C (partial pressure of
 

water vapor 525 torr). An oxidation time of 2 hours and 45 minutes
 

produced a one micron thick oxide. Since the color of a thin oxide
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layer 	is due to light interference, the lack of color variation of the
 

oxide 	surface indicated that the l6yer was flat and smooth.
 

No structure determination measurements were performed on these 

oxidized substrates but silicon dioxide grown on clean silicon substrates. 

has been reported as being amorphous with short range crisitobalite 

structure. 2 2 3 The f-cristobalite structure has silicon-silicon 

interatomic spacings of 3.08 R and 5.03 Rand using electron diffraction
 

techniques the average spacing of silicon atoms in thermally grown 

oxides 	has been measured as 3.10 .29
 

2. 	 Formation of Channels in Silicon Crystal Surface 

In order to simulate the dielectric isolation fabrication 

technique, approximately one-half of the test substrates had channels 

etched in the surface of the single crystal wafer. The channels were 

approximately 0.005, O.006, and 0.008 inches wide, 0.20 inches long, and 

0.001 inches deep with the lengths of the channels both perpendicular 

and parallel to direction of incoming gas flow (see Fig. 2). 

In forming the channels the standard photo-resist technique was 

used to etch the channel width and length through the oxide to the 

silicon surface using a buffered HF solution (1 part (vol.) HF to 

4 parts (vol.) of solution of 8 parts (wt.) NH4F to 15 parts weight of 

deionized water))24 The photo-resist is removed and a solution
 

(HF:HNO3 :HAc;2:15:5 (vol.))l which preferentially etches silicon and
 

not silicon dioxide is used to etch the moats to a depth of approximately
 

0.001 inch. After etching the silicon, the remainder of the oxide-is 
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Figure 2.- Test Rattern for Dielectric Isolation.
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removed using the buffered BF solution. The etched wafer is then
 

processed (cleaned, oxidized, etc.) as a new wafer. The etching steps
 

are listed below:
 

Selective Area Etching, of Silicon
 

a. Oxidize wafer (approximately lg of oxide)
 

b. 	Place wafer on spinner, apply KMER photo resist,, spin at
 

3000 rpm for 30 seconds
 

c. 	Dry photo-resist for at least 10 minutes at 1850 F in
 

vacuum oven
 

d. 	Place mask over wafer and expose photo-resist with sun lamp 

(approximately 	 20 sec.) 

The mask used in this step is a Kodak glass slide 
which is the negative photograph (20:1 reduction)
 
of a plastic sheet. The plastic sheet is a two
 
layer laminate, one layer is clear, the other is 
opaque. By carefully cutting and removing only 
the opaque layer any desired mask can be fabricated. 

e. Develop exposures 

f. Harden photo-resist in 1850 F vacuum oven for at least
 
2 hours. 

[The silicon dioxide is now completely covered with polymerized 

photo resist except in the regions where the channels are to be 

etched in the silicon crystal. The polymerized photo-resist is 

strongly resistant to the buffered HF acid but it is readily 

attacked by the ,silicon etching solution. Hence, the necessity
 

of using a two step masking technique.]
 

g. Etch the exposed oxide with the buffered HF solution
 

h. Remove the polymerized photo-resist with hot sulfuric acid'(HS4
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i. 	Using the etched silicon dioxide as a mask, etch the channels
 

in the ,silicon crystal
 

j. Remove the remainder of the oxide in buffered SIF
 

k. Reoxidize wafer as in part 1.
 

3. Silicon Deposition by the Pyrolytic Decomposition of Silane
 

The' experimental system used ih-this research was a Westinghouse 

induction heated silicon epit'xia1 growth system which is powered by a 

standard 15 kw-RF (460 KHz) generator. Gases used in the various 

reactions are stored in a cabinet behind the master gas flow control 

panel. ;The gases are fed through stainless steel tubing from the 

storage cylinders to.electromechanical (solenoid) valves and are then 

metered through needle valve-controlled flow meters. The carrier gas, 

hydrogen, is first in line it "'picks up" 'andmixes the other gases 

through approximately 5 feet of tubing on the'way to the reaction chamber. 

The gas flow times and sequences can be operated either manually or 

automatically, in which case the flow times are preset. In either case 

the gas flow rates and any temperature changes are manually controlled. 

The reaction chamber is a 30 x 2-1/2 inch fused quartz tube with 

ground fittings on each end. The gases are exhausted into a ventilated 

water scrubber. 

Substrates used for the various depositions are placed on either
 

a silicon carbide coated graphite susceptor or a quartz envelope
 

containing a graphite susceptor. In either case, the susceptor has
 

dimensions of approximately 9-1/2 x 1-3/4 x 1/2 inch. The susceptor is
 

-heatedby a water cooled RF induction coil. Temperature is set using a
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standard optical pyrometer and is controlled by a two-color pyrometer.
 

Figure 3 is a block diagram ard Figure 4 is a picture of the system.
 

In a typical run four wafers were placed on a silicon-carbide 

coated graphite susceptor which was positionbd inside the quartz reactor 

tube at the midpoint of the-.BF induction coil, at an angle of.approxi­

mately 70 from horizontal. The first'and fourth wafers in line on the 

susceptor were single crystals (no thermal oxide growth) in the "as 

received" (i.e., tapped,, chemicallyp olished, and cleanied) condition) 

the second wafer, usually, was -n etched ,oxide coated sample, and the 

third wafer was a planar oxide coated sample., Basically, wafers 2 and 3 

were test samples1 and wafers 1 and 4 -weremonitors. A doping gas, PH3, 

was added to the flow to aid evaluation of the monitors. 

The gas flow lines and reactor tube were purged with nitrogen
 

and then hydrogen before activation of the RF generator. Once the EF
 

generator was activated the temperature rise time was very rapid (approx.
 

° 
1 to 2 minutes to obtain desired, 800-12O0 C, temperature). During
 

warmup, temperature and gas flow rates were adjusted to desired values
 

(silane and doping gases were shunted around the reactor tube during
 

this period}),. At the end of the 8 minute warmup period the silane and
 

doping gas were switched into the reaction chamber and the pyrolytic
 

deposition began. At the end of the deposition time the silane and
 

doping gas flows were cut off and the temperature remained constant
 

for one minute, then the RF generator was cut off, and the samples were
 

cooled in hydrogen.
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Figure 3.- Simplified Block Diagram of Reactor. Svstem.
 



4.. 

Ie 4 . . 

4 -4IVV 

V I - - =; == == =x V= == =, === = = = = If=l = === = = == 

%i A t 

%44 
...... ... ......... =
 

i
 

A...
 

iZ4 

Iz< 

.4 
i li • Ii i i 44< i i • i i i •= i I ii i i i x i ~ i i i i <4 44 i •i 


0,t 
! 


i !i i)ii i ii i1111ii~iiIi 1ii ii == i ii ili i1 i i i ili iiiiii i i! ! i !ii= liiii~ili i ii ii
lii i I i i i i i i! iii i i Iiii i == i i ii7 
ii"xxi i ii iii i iii l i ii i i i i i! i = lii i i = i ii !i i iii~ = i i!1i i ii ii .- Yl 

I
i i 


Ii = Ii ! 
iiii ili i! !i! ,I! O ! ~ iiR I!I~ lii iiii i~i i~ ! Miilil~ii !11ii~ii~l ii i~ ~ ~ i =* ili ii 'il ii i ! 

iii = i i~ iii iii i iii%i i i l i iii i i !iii i i i = i i~lii iiIi == i i i i = m• 
iii • ii i i i x% ¢% = i ii iii ili! ii > li! ii i i =iii i I i i i ii , q ­

i i I 
 ii
i=ii~i ii
iii 

iii ii i i i i ~i! i<iiiiiiiiA i ii i ~ i i! i • i i i ii i1 i ! ! i:i'7 ~i il ii • ! !x i i iiiii I lii=8•ii! i
iii=ii =i ii iiiiii.iii ! liii i!i=i i i i iii~i~ili = ii==i i~lii ii E i , iil ii ii iii ilii ! = i +i i ii! i iil! i i i i~ i•i 
 {
 

4 44.iA 

XI 
i O 
 i
iI e-

hl4 S M 

it44" j:g.t-~ . K 

44 

%7>.4 7 >AJ4<. .><. 

A 4, 

.41 1 

.17 



M.4 

ClanY 

Per 4F.,a Pei$ 

I. 

The tosqgt 

"0,i-

T.......................................... 

rai kj 

t±G 

40Th 

1Co7LA.f 
~~ q 

ia.4 

i t A 

<> 

<>fi 
7> 



4 V, 
z 4 9.r~..4 

r t 
e~z 

.k 7 

k4 
s~r.I 

IN4 

~4> ~ 

~ 
pntepAMnt 

*4*~ 
~ffrtot~ 

% 
4o 

4V 

M~Va 

~%i#A 

.4-W 

M4 L 

"' 

>4 a. 

t.~~~~W. 

w 

. . 

e 

. . . 

~wgi~*z 

. . 4 O4. 

.:,d. 

4, 
+@ 

7; ............... 



X 44~~~J 14[. 44< 
l4AT" - lIq <V j A 1 -,44 

..si ... " 

4L 4 

Gurrt t. 

tt. 

lo X :j-. 

.4,4 

wr..lh
4i 

..K 

bq. 4. '~ 4.1ww e ati tfl1St.r~ 1* t- ,fl 
t'% .4' 

Vct>qa tWe ~ t 
S~ .> A * . 

..... . , -...........44 . .- . ....I . . 444 ... .. . 



-1 v 
Z4 

A4 

"A4 
U. Z4 

-V 

-44 

. k, . . , 4 
-Aa< -r .i 

M"4 

A, v 
1-4 

-N 

%;variable loSx . 

S.na~ 
~e 

4v< 

,.! 
2&0*0 

(itf~a*~4 

4lte ~~ ~ ~ 

~ 

A. 
4 

~ 

n Te p~d"0o 
a 

~ ~<7.0flJtirait 

R."ew~tu or 
t 

m4< 
4<<4 

tb 4!.! 

8e t no. tdce. arert'ae 

77fp4) 
44. 

x ~ ~ 

j~p:: 

~ ~ d Is,.#~:<:4 

.­

lob 

Y. 

w> 

<4< < <~t~94444P4 

4<W 

V 

-P 444 



e % 

VV 
4v 

N 

A e 
tB101. -Wui~o 10 d~W .. 4~to 

.... -o16T a12 

o44o, 'Orn o Ij-Oa Ot 

the 0-i4& 
4it 

o t may do* 

.e ..trese~t.bt ..... h . # 1.t h 
e" 7­

1cntfi 
t~tUof ~ flt#.~~tw ixtt ~ nl'e 
v~~~ttst ~~~~~C~~~d ealop a h ttr,4 

v4. 

( p; 1t~t4tfu~rlofsOa5 

- At 

444 

1,:01 
44Vr 

q, 6 ND 



It "In 

.C-, 

il ? em 501i, 

ii l 

- a % 4t .. ..

It4t41 

i4 i iii i42
 

aK L4A1 .
 

i 0% 11Ii 
>44l 

454Y 

-4K, 

4i4 i 4ii . .
.. ... it.-..4 I .AI•• ... I. ..ii . . > 

4" t 

40 V, 

-ll" t % . . ... .. . N•ii@ i 


4 u iiI Z )ii . ... 4ii. .. . . ..>.
= .. . 4 ..
 
. . .... ....... .. ... .
. .
... . .. . . . . 

It= ,I
!It- ! A i~ i i± ] ~ ii i iii! Ai
 

i• = #iiI 

i i= ii 


== i. t l p11 ..~ ~ ~ ~ ~ i ~l~i i ~ ~ .= ~ iiii~ ~ ~ iiilil ~ ~ ~ ~ ......... 1 -li 

!iiii ii..
i !ii iiliiiiiiiilii~i iii~ £ ....
= 


i! ii~iii iiii i )ii iliiiliiili ii~ ili i
=i iiiiiiiIii!i ii!i ] ii /<
~ ~ 0 ! ii Ifi ii! W.-iiil!
 
i1 q,=-4 i i*! = i• i• i •i% )xi = • • 4
i!<] i i ii i iA i ii ill l• 


i;li =IM
• i = Ii! ii1il i iii ~ 1 1 1111! il ! 


I 

t 
~~ 

It 
i 

ii~ = t!i~iI t == 
i i =I l i i=! ii 

I i iii iIiiii ilii~• i i*=;iilii iii l ii~ ~i = i 11 1111 iiii i : j 

Iii li i I~~liii~ iiil!! !i~ 
NWl

~Ati tii 

i i, i i!il lii~
 
... .. ......... -i 
....==......==,.......................................... ... ......... tiN,lK
.... 
 i! i i !
 
ii ! iiiii ii i~ i ! ii i iili ] i iii!!il i ii)!It, M ,=i~i1! i iii 


ii l. ili ii
 

.41 v.. X 45 A4A0 

I 

4t i V% .t ..I... . .i . . I ,, i , t qI . 1. 

ISM44 

? >4 i 

e44. 

44 



28
 

Preferted Orientation General,
 

The relative intensities of . low index planes of randomly
 

orientated polycr'stalline silicon are listed in the table below.
 

TABLE 3 - (Ref. 2 )
 

RELATIVE INTENSITIES OF 'LOW INDEX SILICON PLANES 

Relative
Rnte'Plane Index Intensity 

(inl) 100% 

(220)-* 60%
 

(3n) 35% 

(400)* 8% 

(331) 17%
 

Silicon, with its diamond structure,has only second order
 

reflections for the (1O) planes and fourth order reflections 

for the (100) planes. 

The data in table 3 is from the A.S.T.M. data card which was 

made by X-ray diffraction of a finely divided silicon crystal. It i's 

assumed that all crystallographic faces had an equal probability of 

satisfying the Bragg angle. If, in a silicon film, one or more sets of
 

planes show a relative intensity greater than that listed on the A.S.T.M.
 

card then the sample is said to have a preferred orientation in the
 

direction of that set or sets of planes.
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If in two sets of powdered crystals one set had a preferred
 

orientation and one did not, then it is likely that the integrated
 

intensity of the preferred peak would be greater than the total integrated
 

intensity of all peaks in the randomly orientated sample. That is, 

preferred orientation is,an ordering effect. In a preferrentially
 

orientated sample, many crystallites which would not ordinarily contribute 

to any intensity peak are brought into Bragg reflection conditions.
 

'The extent of preferred orientation, that is. the per cent of
 

substrate surface covered by a particular orientation, can be estimated 

by the following model. The integrated intensity of the suspected X-ray
 

peak ,of the sample, is recorded and then it is compared with the inte­

-grated X-ray intensity of a single crystal, of the same material as the 

test-smple, which is alined in the X-ray sample holder along a low 

index crystallographic orientation.' If the deposit has a strong
 

preferred orientation then the X-ray intensity of the sample, at the
 

Bragg angle, should approach the intensity of the properly orientated
 

single crystal if the same sets crystallographic planes are compared. 

Different sets of planes can be compared by observing the intensity 

ratios given on the silicon A.S.T.M. card. Only comparative measurements 

were used in this paper. The deposit which had the strongest X-ray
 

intensity peak was used as a reference, but it was believed that this
 

deposit had a very strong preferred orientation since photographs taken
 

on the scanning electron microscope showed the surface had a very uniform
 

texture (Fig. 13).
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The per cent of preferred orientation of other planes can also
 

be calculated from the reference'sample by comparing relative intensities
 

of the various planes listed in table 6. The equation used to calculate
 

the percentages of preferred orientation is
 

I_( Raf-r. i 

where:
 

6 = percentage of crystallites of which the (hkl) plane that lies
 

parallel to substrate surface (as compared to the reference sample)
 

Ihkl 

('Sample) = X-ray intensity of the (hkl) plane of the sample being 

investigated. 

I (Reference) = X-ray intensity of reference sample = 2600 cps 

R.I.(A.S.T.M.) = Relative intensity, as obtained from the standard 

A.S.T.M. file card, of the (hkl) plane and the plane
 

of orientation of the reference sample.
 

Results:
 

The crystallography of the deposits was strongly temperature dependent.
 

The absolute intensity of the (220) crystal peak shows an increase with
 

increasing temperature until 10000 C and then the (220) intensity
 

decreased with further increases in temperature (Fig. 7). As may be
 

expected,, the relative (to the (220) peak) intensities of the other
 

low index crystallographic planes increased as the absolute (220)
 

intensity decreased (Figs. ,8-11),, indicating that the orientation of the
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Figure 7.-


Intensity of (220) Diffraction Peak vs. Substrate Temperature.
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Figure 8.- (111)/(220) Intensity Ratio vs. Substrate Temperature.
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Figure 9.- (311)/(220) Intensity Ratio vs. Substrate Temperature.
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Figure i0-.- C.400)/(220). Intensity Ratio vs. Substrate Temperature.
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Figure ii.- (331)/(220) Intensity Ratio vs. Substrate Temperature. 
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deposit was going from a strong preferred orientation to a more random
 

orientation. Table 4 tabulates the X-ray data in terms of the absolute
 

(220) intensity and relative intensities of the other planes. The 

per cent of deposited crystallites which have either their (111), (n1O), 

(100), or (331) faces alined parallel to the substrate surface is
 

calculated by using equation 4.1 and the results are listed in table 5.
 

(The data tabulated in table 5 is not exact, since no,standard was used 

as reference, but it is only comparative data, since sample 2-3 which 

had a very strong (220) line and very low relative intensities of other 

planes were used as the reference.) 

The X-ray data indicates that the deposits go from a very strong 

preferred (n1O) orientation at approximately 10000 C to an almost 

equally mixed, but moderately strong, preferred orientations of (110) 

and (100) crystallites at approximately 11000 C and then to an almost 

°random or mixed orientation at deposition temperatures near 12000 C.
 

Even in the high temperature deposits the (ll), (511). and (331)
 

orientations are depressed from the standard A.S.T.M. (relative to the
 

(220) peak) intensities; hence, the deposits are not completely
 

random,but still havd a slight (n10) and (100) preferred orientation
 

with the(110) orientation dominating in all runs.
 

The lowest temperature deposit made was at 8400 C. The absolute
 

(220) amplitude was no lower than sbne high temperature depositions 

(see table 4) but the relative amplitudes of the other planes were 

loVer.for this sample than for the high temperature depositions (see 

Figs. 9-12). The low absolute amplitude of the (220) peak is not 



TABLE 4 

X-RAY DIFFRACTION RESULTS 

Sample 2-1 2-2 , 2-3 2-4 2-5 2-6 ASTM 

Temperature 84o 86o 980 1095 116o 1170 ­
(o0) 

Intensity of 195 1360 2600 620 500 16o
 
(220) '(cops) 

Intensity of (in) 
b 26 55 lO5 167
(% of (220)) 1i b 


Intensity of (311) 
(% of (220)) 3 n n b 10 58 

Intensity of (400) 
(% of (220)) n 1 5 12 7 12 13.5 

Intensity of (331) 7.5 2 2 10 13 16 22 
(% of (220)) 7 

b = detectable but not measurable, on range of which data was obtained.. 

n = not detectable on range of which data was obtained. 
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TABLE 5 

COMPARISON OF PER CENT PREFERRED ORIENTATION OF LOW INDEX PLANES IN 
SILICON DEPOSITS USING THE (220) INTENSITY OF 

SAMPLE 2-3 AS A STANDARD 

Sample 2-1 2-2 2-3 2-4 2-5 2-6 

Temperature 0 C 84o 86o 980 1095 .116o 1170, 

Plane index 

(il) () 1 b b 3.7 3.8 3.9 

(n1o) (% 7.3 52 100 24 ii 6.2
 

(l0) (%) n n 21 6 5-5 

(331) W 2.5 5 11 7 4.5 

Surface covered 
by preferred 10 57 56 28, 20 
growth (,%) 

(220) intensity 195 1,36o 2,600 620 300 16o
 
(cps)
 

b = detectable; but not measurable, on range of which data was 

obtained
 

,n=not detectable on range" of which data was obtained.
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explained in terms of the deposit going to a random orientation. Using 

silane, amorphous silicon has been deposited on glass substrates at 

temperatures as high ts 6500 C. and' the macroscopic appearance resembled 

27the crystallihe form. }tence., this deposit is probably mostly amorphous 

and the crystaflites that do exist have a preferred (110) orientation. 

An example of the X-ray diffractometer data is shown in Figure 12 

where,.the diffraction peaks from sample 2-3 are compared to the-peaks 

in sample 2-4,. Both diffraction patterns were taken with identical 

machine settings. The upper curve shows a very strong (220) peak and
 

the lower curve shows a weaker (220) peak, but the relative (and in this 

case, the absolute),intensities of the (111), (400) and (331) peaks 

have increased.
 

The surface topology of the samples was examined by using both an 

optical microscope and a scanning electron microscope. The majority of
 

the surface of all samples was covered with small ( li),, slightly 

rounded crystallites (see Figs. 13 and 14): Scattered about on some 

samples were random growths of spikes or needles. The extraneous growths 

were most comnon on the lower temperature deposits, but no general 

pattern or condition for growth was observed. 

The appearance of the small crystallites which covered most of 

the surface varied slightly with temperature. Sample 2-3 has been 

determined, by X-ray diffraction to be almost completely covered with
 

crystallites orientated with the (110) face parallel to the surface,and 

the photomicrograph taken with the scanning electron microscope (Fig. 13)
 

shows that nearly all crystallites are similar in appearance as though 
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there is a common morphology for the (n1O) orientation. Sample 2-4
 

has been determined to have a mixed orientation of (n1O) and (100)
 

planes (the (llo) dominates) with a representation of other orientations
 

as well (table 5). Examination of the magnified surface shows a large
 

number of crystallites which were common to the (110) orientation and
 

also a number of other shapes, one of which is characteristic of a (l00)
 

orientated octahedron (Fig. 14).
 

Summary of the Experimental Results:
 

The microstructure of the deposited silicon films was strongly 

dependent on substrate temperature. At the lowest substrate temperature
 

the deposit was nearly amorphous with the existing crystallites alined 

in the (n1O) direction. As the deposition temperature increased toward
 

10000 C, the deposit became more crystalline with the majority of 

crystallites alined with their (n1O) face parallel to the substrate. 

Above 10000 C the extent-of preferred (n1O) orientation decreased and
 

there was a significant contribution from (100) orientated crystallites. 

At temperatures hear 12000 C the dep6sits are nearly random with a weak 

(liO) and (100) preferred orientation with the (no) orientation
 

dominating. 

The diameter of the deposited crystallites was approximately lg
 

on all samples. The morphology of these crystallites could be correlated 

with the 'extent of preferred orientation of the deposited films. 
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CHAPTER V
 

EXPLANATION OF RESULTS 

It has been demonstrated that in silicon on silicon epitaxial
 

growth an orientated nucleus on the (111) surface is stable with three
 

1 7

1 5 
atoms and nucleation on a (100) surface is stable -with four atoms.


The results were obtained by fitting data to extrapolated theory
 

originally developed by Lewis and Campbell.7 However, this data was
 

obtained on substrates where initial nucleation-started at what was
 

postulated as being points of carbon contamination , hence, these
 

minimum nuclei models would not necessaril carry over to, other 

substrates. That is, the minimum stable (111) nucleus is three atoms 

when nucleation begins at a point -of carbon contamination. The minimum 

nucleus for-a-perfect (lll) surface is not known. Hence, it is not 

conclusive that all (111) orientated 'silicon growths begin,-as three 

atom nuclei. 

Bicknell 5 has proposed a model for ,silicon epitaxy on crystalline 

quartz. In this model the SiC2 substrate surface becomes oxygen deficient 

during high temperature treatment in a hydrogen' trmosphere and 'the 

surface silicon atoms (in the quartz) have free bonds to attach to the 

depositing silicon atom. The silicon atoms in the- (1i0) surface of 

quartz are alined such that there is only a small misfit- from the (le0) 

silicon crystal planes and bonding in the quartz is such that in an 

oxygen reduced '(olbO) surface there would be two bonds exposed per 

silicon atom (Fig. 15). In (100) orientated silicon there are two 

42
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Figure 15.- Silicon on 'Quartz Epitaxy (Reference 5). 
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silicon bonds from each atom going to atoms in the plane above the
 

plane of reference.
 

By extrapolating Bicknell's model to amorphous SiO22 with short
 

range cristobalite structure in which the silicon atoms have an average
 

22 the following model is proposed.
interatomic spacing of 3.1 
The
 

surface is again made oxygen deficient due to high temperature,treatment
 

in a hydrogen atmosphere and silicon bonds are exposed o 'he 'surfdce.
 

If short range order exists in the silicon dioxide and the average
 

0 
silicon-silicon interatomic spacing is 3.1 A as measured by Pavlov and
 

Shitova,2 2 then it is reasonable to expect the surface to have a typical
 

configuration of two exposed silicon atoms 3.1 a apart with a third
 

0 
exposed silicon atom 3.1 A from the second atom, at an arbitrary angle
 

from the line between the first two atoms but spaced not less than
 

0 
3.1 A from the first atom (see Fig. 16). This, of course, is the
 

configuration for any three adjacent silicon atoms and the configuration
 

is repeated again and again across the silicon dioxide surface. The
 

angle of the third atom changes from group to group. 'Thedensity of
 

exposed silicon atoms, and hence, the density of the triads, will
 

increase as temperature increases. Therefore, random distribution of
 

second neighbor silicon atoms as constrained above will produce possible
 

bonding sites at all spacings between 3.1 and 6.2 X. 

Figure 17 identifies the planar interatomic spacings of the (ll1), 

(110), and (100) planes of silicon and table 6 lists the spacings with a 

±15 per cent tolerance which is often considered maximum for orientated 

overgrowth. This information suggests that there are six different ways
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Figure 16.- Locus of Possible Second Near Neighbor Positions
 
in Amorphous Cristobalite.
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Figure 17a.- Planar Interatomic Spacing of (ill) Silicon.
 



4A 

0 

6.65A 0 

0 
5.91-A 

0 
5.43A 

3.83A 

Figure l7b.- Planar Interatomic Spacing of (110) Silicon. 
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Figure 17c.- Planar Interatomic Spacing of ClOO) Silicon.
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TABLE 6
 

INThIRATOMIC DISTANCES (ETHIN, THE PLANE). FOR LOW INDEX
 
ORIENTATIONS OF SILICON
 

d a+15% a +a+1%%
 

(A) (A) (A) (,"
 
3.83 3,.25 - 4.4 3.83 3.25- 4.4 .3.83 3.25 - 4.4
 

6.42 '5.46 - 7.38 4.5 3.8 - 5.3 5.43 .4.-6 - 6.2 

5.43 4.6 - 6.2 

5.91 5.0 - 6.8 

6.65 5.6 - 7.65 

7.05 6.0 - 8.1
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of fitting a (11O) orientation on the short range order Si02 compared to
 

two each for the (lll) and (100) orientations.
 

It seems reasonable to expect that not only the-number of ways 

to make an orientated fit will contribute to the probability of a given 

orientation but that the length along the third atom locus which falls 

within ±15of the interatomic spacing will also contribute to the 

orientation probability. That is, if the third, silicon atom in the 

triad is considered to lie at a-random position on the curve in 

Figure 16, then the length along the curve 'whichwould accommodate a 

certain orientation should be a relative probability of obtaining that 

orientation. 

The equation for the length along the third atom ocus i: 

where:
 

S = distance along third atom locus which is'withtn ±15 per cent 

of the interatomic distance of a particular set(of sllcon atomsi in a 

particular orientation 

A = average silicon-silicon interatomic spacing in thermal
 

0 
silicon dioxide = 3.1 A. 

d min = Interatomic spacing (-15%) of the particular set of 

silicon atoms referred to in the definition of S. 

mm> 3.1 oA. 



d max = Interatomic spacing (+1-3%) of the particular set of­

silicon atoms referred to in the definition of S.
 

d max < 6.2 
0
A. 

The lengths along the third atom locus for each possible , 

interatomic spacing is listed in table 7. 

TABLE 7 

LENGTH ALONG THE THIRD ATOM LOCUS FOR LOW INDEX ORIENTATIONS 
OF SILICON
 

(n)(no) (iooY
 

d S d S d S 

o 00
 

3.83 2.86 3.83 2.86 3.83 2.86 

6.42 6.14 4.5 4.50 5.43 9.16 

5.43 9.16
 

5.91 7.84 

6.65 5.28
 

7.05 3.10
 

The number of bonds needed from the surface silicon atoms to 

induce a given,orientation also needs to be considered. Silicon planes 

alined in a (nl0) orientation have one bond per atom going from one 

plane to the next;where as planes alined in either the (lll) or.(100) 

orientations have two bonds per atom going from one plane to the next 

plane. That is, only the (10) Orientation has adjacent atoms in the 
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plane. Since the model is based on a surface which is made oxygen
 

deficient due to 	hydrogen reduction at high temperatures, it is likely
 

that at the lover deposition temperatures there will be a higher density
 

of single exposed bonds than would exist at the higher test temperatures.
 

Hence, in just considering the number of bonds needed for nucleation
 

orientation the higher temperatures would be more conducive to (ill)
 

and (100) orientations than to (110) orientations.
 

Hence, considering the lengths along the third atom position
 

curve and the number of ways of alining the various orientations, and
 

the temperature effects of freeing surface silicon bonds the following
 

should be expected-:
 

l. (110) orientation at lower temperatures
 

2. (nl0) and (100) orientations as temperature rises 

3. Random orientation at very high temperatures-

In 	 crystalline, cristobalite the second silic6n-silico, inter-­

0 t22atomic-distance is 5.03 A. Pavlov an& Shitova, did not publish data
 

shoving the cristobalite structure in thermal SiO2 extending to three­

silicon atomsbut if the "amorphous" SiO2 structure did extend past.
 

near neighbors only, there would still -be conditibns for nucleatio'
 

orientation. The same argument as before is usedsfor the:production
 

of free silicon bonds but now the interatomia distances fo the various 

-orientations are compared to a fixed 5.03 0A instead of to' all points 

along the curve in Figure 16. Looking back at table 6, it is seen that 

there are now three ways to fit a (110) orientated nucleus on the
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surface, one way to fit a (iOO) orientated nucleus on the surface and
 

no may to fit a (lll) orientated nucleus.
 

This model still predicts a (1O) orientated deposit at lower 

temperatures and (11O) and (10) orientations as. the temperature rises, 

but it does not predict the emergence of (ll) orientated growth. If 

this model is correct,then the nucleation of (111) and other orientations 

could start in disordered regions of the reduced silicon dioxide. Hence, 

either model of the silicon dioxide surface produces the same qualitative 

results. 
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APPENDIX I 

1. PROPERTIES OF SILANE (Sil4) 1 % 2 0 

Silane is a colorless, pyrophoric gas which breaks down into its
 

elemental components at temperatures as low as 4000 C.- There are no
 

corrosive byproducts in the pyrolytic reaction as there are in the
 

hydrogen reduction of silicon tetrachloride and trichibrosilane; that is,
 

the basic reactions are
 

Silane, Si4 -- Si + 2 H2 . M 

Silicon Tetrachloride, SiC14 + 2 H2 -Si + 4 HCI' (2)" 

and 

Trichlorosilane, SiHC13 + H2 Si.+ 3 ACi (3) 

The HCl byproduct of reactions (2) hnd (N)ishihl-y dorrosi~e
 

and in silicon on silicon epitaxial deposition a net etching may result.
 

Under clean laboratory conditions, the standard grade of silane
 

is capable of producing silicon on silicon epitaxial layers with a
 

resistivity of better than 50 ohm-cm, which corresponds to a net
 

8
impurity doping level of the order of one part per 10 silicon atoms.
 

The physical properties of silane are listed in table 8.
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TABLE 8 

oPHYSICAL PROPERTIES OF SILANE2

Molecular weight . . .... 32.12 

Specific volume at 70 F, 1 atm....... 12.1 cu ft/lb 

Boiling point at 1 atm ..... ....... . ll2° C 

Freezing point at 1 atm. ......... -185 ° C 

Density, gas at 200 C .... ...... 1.44 g/1 

Specific gravity, liquid at -1850 C o.68 

° 
Critical temperature ..... ..... -4 C
 

Critical pressure .... ........ .. 702.7 psia (47.8 atm.)
 

°
 Viscosity at 15 C .... ... 112.4 micropoise 



APPENDIX II 

MATERIALS USED IN EXPERIMENTS 

Gases, chemicals, and crystals, were all high quality semiconductor'
 

grade materials capable of being used in construction of semiconductor
 

devices. The materials used are listed,below along with-their primary
 

function, purity, and source. 

TABLE 9 

Item Function Grade or Sourceimpurity 

*0.005 ohm- Electronic
Substrate for silicon 

Silicdnwaters outside growth 	 cm boron Materials,­

doped Incorporated
 

Silane (Si H 
- Silicon deposition *50 ohm- Matheson Gas 

Cm Products 

Purified 

Hydrogen H2 Carrier gas for 
silane 

in liquid 
nitrogen 

Government 
stock 

cold trap 

Diluted in
 

H2 100 ppm Matheson gas
Phosphine (PH) Doping gas
5 	 impurities, products
 

< 10 ppm
 

Nitric acid (a) Cleaning wafers Reagent FisherSci.
 
(HNo3) (b)Silicon etch A.C.S. Co.
 

Hydrofluoric (a) Oxide etching Reagent Fisher Sci.
 
acid (HF) (b) Silicon etching A.C.S. Co.
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Grade or

Item Function impurity Source
 

Glacial Acetic Silicon etching Reagent Fisher Sci. 
acid (CH5 COOH) A.C.S. Co. 

Ammonium Fluor-de(NuIF)ide (N4)Co. Oxide etching Certified Fisher Sci.o 

Trichloro- Electronic Fisher Sci. 
ethylene Cleaning wafers grade Co. 

Methanol MCleaning wafers Spectro-analyzed Fisher Sci.Co. 

(a)' Oxygen source 
for oxide 
process Distilled & 

Water (b) Cleaning deionized Local still 
wafers 

(c) Dissolving 
NH4F 

*The resistivity of a semiconductor is not a true orexact indicator
 

of crystal purity, but it is an indicator of the net electrically
 

active impurity atoms. The resistivltyof pure; intrinsic, silicon
 

has been calculated to be approximately 239,o0 ohm-cm,,at. 3000 K
 

and if one could start with pure silicon.oand add one boron atom for
 

84 
every 10 (10 ) silicon atoms the resistivity would drop to 50 ohm-cm 

(0.005 ohm-cm). In practice, however,' the resistivity of the silicon
 

sample is only a measure of the difference in number of p-type and 

n-type impurity atoms. 
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