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RADTATION FROM SLOTS ON CYLINDRICAL BOPIES USING
GEOMETRICAT, THEORY OF DIFFRACTION AND
CREEPTNG WAVE THEORY
By
Constantine A. Balanis, Ph.D.
The Ohio State University, 1969

Professor Leon Peters, Jr., Adviser

[ A hybrid solution employing wedge diffraction and creeping wave
theory is used to compute the principal planes (equatorial and
elevation) radiation patterns of axial and circumferential slots on
conducting cylinders of finite and infinite lengths. The slots are
excited by parallel-plate wavegnides operating in the TEM and TEqq
nodes. j |

For the equatorial plane pattern, the total field in the "1it"
region is obtained by the superposition of two fields; that is, the
wedge~diffracted and the creeping wave fields. The wedge-diffracted
field is obtained by approximating the parallel-plate-cylinder geometry
with two wedges, each formed by a wall of the waveguide and a tangent
plane to the cylinder surface at the edge point. The creeping wave
contribution is obbtained by the method commonly employed for the

computation of scattered fields from curved surfaces. The total field



in the "shadow" region is obtained solely from the creeping wave
contribution. For the elevation plane pattern, wedge diffraction
techniqﬁes for the enbtire patitern are employed.

r The method is checked computationally by comparison with the modal
solutions for axial and circumferential slots on right circular cylin-
ders and experimentally for elliptical cylinders sincé modal solutions
are not readily availableij Experimental modeis are also used for the
verification of the elevation plane pattern computations gince |
boundary-value solutions are not available for finite length cylinders.

IjComputed results using this technigue compare favorably with those
obtained from existing wodal expansion boundary-value sﬁlutions and
experimental results.,} The main advantages of the present technigue are
that it .can be applied to geometries where modal solubions are not
possible, in numerical ranges where the convergence properties of modal
expansicns are relatively poor, in paramebric design problems since the
cont;ibution from each field is separated, and in the analysis of

artennas with finite physiéal sizes.
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INTRODUCTION

The radiation properties of slot antennas on conducting cylinders
have been studied extensively.l'5 Such an%kyses have been restricted
to geometries where modal expansion field functions are ?eadily available
and whose physical length is infinite. Moreover, the solutions obtained
are poorly convergent for objects more than a wavelength or so in extent.
ﬁowever, many practical problems involve slot anbennas mounted on finite
size conductipg bodies whose geometrical shape does not conform to & -
coordinate system where the wave equation is separable. Wedge diffrac-
tion6"9 and creeping wave theory are used in the andlysis presented f
here to compute the radiation patterns of axial and circumferential
slots on conducting cylinders of fiﬁite and infinite lengths. The
method employed is an extension of the geometrical thecory of

diffractionio? -t 12-16

and creeping wave theory.
The geometrical theory of diffraction and creeping wave theory are
extensions of geometrical optics which account for diffraction. They
introduce diffracted rays in addition to the usual rays of geomebtrical
optics. These rays are produced by ineident rays which hit edges,

corners, vertices, or curved surfaces. Some of these diffracted rays

enter the shadow regions and account for the field.intemsity there.



2
The distribution of the incident energy among those diffracted rays is
described by a diffraction coefficient. The diffraction of the incident
rays is a local phenomenon, so the diffraction coefficient depends on
the geometry of the edge or curved surface in the vicinity of the point
of qiffraction and on the polarization of the incident field.

A field is associated with each diffracted ray and the total field
at a point is the sum of the fields of ali rays at that point. The
phase of the field on a ray is assumed to be proportional %o the opbical
1ength-of the ray from some reference point. Appropriate phase jumps
mist be added as a ray passes through a caustic. The amplitude is
assumed to vary in accordance with the principle of conservation of
energy in a narrow tube of rays. The initial value of the field on a
diffracted ray is determined from the incident field with the aid of an
appropriate diffraction coefficient. These diffraction coefficients ,
are determined from certaln canonical problems.

The canonical problem, which ylelds the diffraction coefflcient
for an edge, is the diffraction of a linearly polarized plane wave by
a8 two-dimensional, infini%e wedge. The diffraction coefficient is
found from Sommerfeld! st( asymptotic, high frequency solution to this

problem. Pa‘uli18

has obtained s practical formulation for the diffrac-
tion coefficient and Hutchinsl9 has generalized it. He has obbtalned a
series solution which is valid for the exterior and interior regions of
a wedge. In addition, his solution is accurate for wedges of large
included angles where the Pauli solution is not accurate.

Oberhettingergo has obtained a similar series in which the leading

term ig identical to the Fresnel integral form for half-plane diffraction.



The work of Hubchins tends to bridge the solutions of Paull and
Oberhettinger.

The primary task in applying the creeping wave theory is the
determination of the diffraction, abtenuation, and ray path factors for
a general body‘(and it is not yet always practical). Thus it is .
necessary to evaluate these factors for canonical targets ﬁhose exact
solutions are available, such as the cylinder and sphere.l2"l6’21"23
In order to obtain a more general solution for these factors it is
convenient to utilize experimental data to validate an empirical model
for more general targets such as the prolate spheroid.eu"26

The attenuation and diffraction coefficients for a cylinder have
been obtained by comparing the asympbotic series of the scabtering
boun@ary—value solubion with that of the diffraction problem

formulation.13'16

The ray paths along the surface of the cylinder are
geodesics (great circles). The scatbering by a sphere is, however, a
’most ﬁnpoffant‘problem. The claggsical solution of Mie using separation
of variablés and series techniques can be considered as the starting
point. Senior and Goodrithl have obtained an asymptotic form to the
Mie series solution for the sphere through the application of the
Watson transformation. Hong22 has derived attenuation and diffraction
coefficients with higher order correction terms. The formidable task
of implementing this solution numerically has yet to be accomplished.
An approach to the general formulation of the creeping wave paths

on bodies of revolution has been developed b;g.r'K:'Llrl“t)er.g7 Kinber has

shown that the wave equation may be expanded in a set of ray coordinates


http:Kinber.27

in which the solution can be written in a form whose magnitude is
dependent upon the cross section of the ray tube and whose phase is
dependent only upon the propagation constant and path length traversed.

The empirical aa.jpproachgh“26

utilizes a simplified ray path geometry
to determine gpproximate atbenuation and diffraction coefficients for a
gphere. This approach is of interest in that it lends itself to
extension to more general targets. This method is a simplified creeping
wave analysis. It uses a single nonconvergent (and nondivergent) ray
path together with approximate diffraction and atbtenuation coefficients
to construct an approximate solution for the scattered field due to
creeping waves propagating in each direction along the ray path. The
path chosen is the path traversed by the "major" ray (that is, the path
corresponding to the E-plane of the sphere). This analysis suggests
that an approximate picture of scattering by a sphere can be constructed
by neglecting the creeping waves which have a radial magnetic field
(that is, the "minor" creeping waves) and by considering only the
creeping waves which have a radial electric field (that is, the "major"
creeping waves) except for the H-plane scattered fields.

The prolate spheroid :Eepresents a body for which an exact closed
form solution is not available except on the axis of rotation. In
order to find the ray path geometries for the prolate spheroid for an
arbitrary angle of incidence, the geodesic corresponding to the point
of attachment and the tangent direction at that point must be cal-
culated. The determination of the tangent direction of the creeping.

wave at the shadow boundary is not an easy task in general. t is

therefore suggested that the simplified ray path geometrth'26 for the



sphere can be applied to the prolate spheroid. In this case, the
creeping wave paths are elliptical, thus the total attenuation must be
expressed as an integral which is dependent upon the radius of curva-
ture along the path. Aiso the radius‘of curvature at the points of
attachment and reradiation must be computed in order to determine the
diffraction coefficient. The specific solution for the prolate
spheroid has been presented by Ryan?h’26 and Peters and Byan°25

Many cther antemna problems have been treated using Wedgé diffrac-
tion techniques. Russc, Rudduck, and Peters20 applied the geometrical
theory of diffraction to calculate the total antenna pattern of a horn
in the E-plane, including the backlobe region. Theoretical and experi-
mental patterns are in excellent agreement, thus demonstrating that the

methed for treating diffraction by edges is valid. Obha2

9 used the
geometrical method of diffraction to calculate the radiation pabtbern
and gain of a finite Widfh cﬁrner reflector antenna. This method
yields also good results for the computation of backscatiering from an
anterma having conducting plates finite in extent.

Extensive work of applying the wedge diffraction method to wave-
guides has been carried out by Rudduck.6'9 The principal tool employed
is diffraction by a corducting wedge; the resulting electromagnetic
Tield may be treated as a superposition of the geometricsal optics £ield
and the diffracted field which behaves as a c¢ylindrical wave radiating
from the edge of the wedges. These technigues may be applied to any
two~dimensional antenns or scattering body which may be constructed

from a set of wedges; the radiation or scattering pattern may be obtained

for any excitation which can be expressed in terms of plane or cylindrical



waves by superposition of the individual wedge diffractions. Some
elementary examples include parallel-plate waveguides, walls of finite
thickness, and polygonal cylinders.

A bagic feature of this technique is that it does not require an
assumption of the value of the total field or current on some surface,
as do convenbional methods of aperture inbtegration which employ the
approximation of physical optics. This feature thus allows more
accurate treatment of problems than ordinarily obtained by approximate
methods; it also provides knowledge of the fields in terms of the
incident field, thus resuiting in the abili‘ty to ané.]ytica.].’l.y determine

6

radiation patterns, 7,8 mubual

3e-3h

edmittance and gain of antennas,

30,31 ond reflection coefficient.

coupling,

The geonietrical ray techniques of this method provide conceptual
simplicity with which solutions may be formulated. This together with
superposition of wedges allows structural aspects to be taken into
account, for example, antennas mounted with and without ground planes,
‘structures with thin or thick walls, and arbitrary waveguide truncations
can be treated. In zddition, the fields in all space can be determined,
thus allowing backlobe regions to be treated.

Since the introduction of the geometrical theory of diffraction,
it has been employed successfully in the solution of various types of
diffraction problems. Previous work in applying the wedge diffraction
and creeping wave theories, each one individually, to scabttering and
radiation antenna prcblems has been outlined. However, no one has
attempted a hybrid sclution in using both, wedge diffraction and

ereeping wave theories, on the same scatbterer. The work outlined in



the pages to follow, is an attempt to formulate a hybrid solution
ma.kiI;g use of both wedge d.iffra:ction and creeping wave theories on the
same antenna. The antemna of interest is a slotted, axially and
circumferentially, conductiﬁg cylinder. The slots are excited by
parallel~plate waveguides operating in the TEM and T8y modes.

The essential feature of this approach is that it is applicable to
all btypes of complicated problems, some of which are impossible to solve
rigorously. The approach is to resolve s complicated problem into
simpler omes, each of which will have relative simple rigorous solu~
tions. The bagic buiiding blocks will be rigorous solutions to such
canonical diffraction problems as the wedge, cylinder, sphere, etc.,
which will be put toée'ther to solve more complicated problems.

The work gutlmed in tixis hybrid solution will be for genersl
conducting cylinders of 'a.rbitrary convex cross Section. However, com-
yutations will be restrici;ed to circular cylinders for which boundary-
value solutions exist for comparison and elliptical cylinders for which
models and experimental data are available for comparison. The radiation
patterns of interest for each case are th2 prineipal plane patterns,
equatorial plane (0 = %°) and elevation plane (@ = 0°) in the usual
spherical coordinate system.

The equatorial plane\ pattern will be obtained by the superposition
of diffracted fields from a set of wedges and creeping wave fields
propagating around the surface -of the cylinder. The set of wedges
approximate the parallel-plate-cylinder geometry in the vicinity of the

discontinuity formed by the waveguide and the cylinder. Each wedge is



formed by a wall of the paraliel-plate wavegulde and the tangent plane
to the cylinder surface at the edge point.

For the equatorial plane patbtern, two distinet regions can be
identified: +the "1it" and "shadow" regions. The "shadow" region
encompasses the‘space occupled by the set of wedges and cylinder surface
and the "1it" region the remaining space. The total field in the "Lit"
region is obbtained by the superposition of two fields; that is, the
wedge-diffracted and creeping wave fields. The total field in the
"shadow" region is obtained solely from the creeping wave contribution.
For the elevation plane pattern, wedge diffraction techniques for the
entire pattern are employed.

The most interesting part of this hybrid solution is the coupling
mechanism between the wedge-diffracted and creeping wave fields.
Creeping waves are launched by the tip of the wedges in a direction
tangent to the cylinder surface at the edge point. Since the field
must be continuous along the line separating the "1it" and "shadow"
regions, the wedge-diffracted fields along the surface of each
wedge will be used as the initial valuwe of the creeping waves to
preserve the conbinuity of thg fields. The creeping waves continually
shed energy in a tangential direction as they propagate around the
cylinder surface until they reach the opposite wall of the slot and
again illuminate the wedges; this is a second order field contribution
and it is neglected. The loss of energy due to reradiation is accounted
by the use of an attenuation factor.

The method is checked compubtationally by comparison with the modal

solutions for axial and civeumferential slots on right circular cylinders



and experimentally for elliptical cylinders since modal solutions are
not readily available. Experimental models are used for the verifica-
tion of the elevation plane pattern .computations since boundary—jalqg
solutions are not aveilable for finite length cylinders.

Computed results using this technigue compare favorably.with those
obtained from existing modal expansion boundary-value sclutions and
experimental resulls. The main advantages of the present technique are
that it can be applied to geometries where modal solutions are not
possible, in numerical ranges where the convergence properties of modal
expansions are relatively poor, in parametric design problems since ‘the
contribution from each field is separated, and in the analysis of

antennas with finite physical sizes.



CHAPTER I
WEDGE DIFFRACTION

Wedge diffraction techniques are applied for the analysis of the
radiation pattern of the parallel-plate waveguide shown in Figure l.
This geometry has been treated using wedge diffraction concepts by
Rudduck and his co-workers.6'9 Their .solution is incorporabted in the
slotted cylinder radiation pattern analysis and. will be outlined below.
Tn this approach a single-diffracted wave emanates from each wedge that
is illuminated by an incident plane wave. The single-diffracted waves
produced by one wedge illuminabte bthe cther producing double-diffracted

fields. This process continues to higher orders of diffraction.

Single Diffraction

The principal method employed in the analysis of a parallel-plate
waveguide is diffraction by a conducting wedge. The diffraction of a

plane wave by a wedge was solved by Scmmerfeld. 17 Pa.x;[.'[.:i.:!‘8

cbtained a
practical formulation of the solution for a finite angle conducting
wedge which was later improved by Hubchins™ (see Appendix). The
total electromagnetic field from the wedge may be treated as the super-
position of geometrical optics and of diffracted fields which behave as

cylindrical waves radiating from the edge of {the wedges.

10



WA2 = (2—112)7"

Figure 1. Geometry of a parallel-plate waveguide aperture.
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The diffraction of a plane wave by a wedge is shown in Figure 2.
The solution to the plane wave diffraction problem may be expressed in
terms of scalar functions that represent the normal and parallel
polarization components of the electromagnetic field to the plane of

study in Figure 2. The total field is defined as
E = By + Ep (1)

where Eg is the geometrical opties field and Ep is the diffracted

field. The diffracted field is given by
Ep = VB(riw - ¢O,n) + VB(T,¢ + ¢o’n) (2)

whers the parameters =, V¥, V,, n are defined in Figure 2 and
VB(r,W * ¥ ,n) is the diffraction function as defined in the Appendix.
The plus (+) sign applies for the polarization of the electric field

normal to the edge

fe): -0 (3)
n
wedge
where n is the unit normal to the edge of the wedge and the minus (-)

sign applies for the polarization parailel to the edge

(Elwedge)A= 0 (l{‘)

The geometrical opbics field is defined in three regions, as shown in

Figure 2. For plane wave incidence, the geometrical optics field is
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INCIDENT
PLANE WAVE

\\ INCIDENT AND REFLECTED
N\ REGION

INCIDENT REGION

OBSERVATION '\
POINT

// SHADOW REGION

Figure 2. Geometry for plane wave wedge diffraction with geometrical
optics region.
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Reflected Geomebric
Incident Geometric Field * Field Regions

ea'krcosw-ﬂfo)

Eg = -V <¥<n+¥y,  (5)
Eg = ejkrcos(w'ﬂfo) t ejmcoswwo) 0<V¥<m -1, (6)
B = 0 o+ Yy <V (7)

The time dependence e4°% ig used throughout this emalysis.

The diffracted wave Ep may be represented as a cylindrical wave
radiating from the edge (see Appendix). In fact, at large distances
from the edge and in regions removed from shadow boundaries Bp has
the radial dependence e"jkr/ VT. Because of this cylindrical nabure,
subsequent diffractions of a diffracted wave may be treated as the

diffraction of a cylindrical wave by a wedge.

Diffraction Ey a Palr of Wedges

The process of diffraction by a pair of wedges (parallel-plate
waveguide) will be outlined below. Two polarizations which must be
distinguished are those corresponding to the TEM and Ty waveguide
modes. The two cases of interest are shown in Figure 3. In the TEM
mode, the incident plane ':wave is parallel to the axis of the guide
having a polarizabtion perpendicular to the edge of each wedge. The

TE1g wavegulde mode may be represented by two TEM waves which reflect
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WAL = (2—nl)1r

U s /- e
Incident . h 0 T2
w Plane ~Field 9
Wave ¢ 2
et sttt mn i

(a) TEM mode

P

WA2 = (2-n2}7r

Figure 3.~ TEM and TE;n modes in a parallel~plate wavegulde aperture.
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obliquely back and forth between the waveguide walls.35 Thus, in the
TE10 mode the incident plane waves have a polarization parallel to the
edge of the wedges.

1. TEM Mode
In the TEM mode an incident plane wave propagates parallel to the
axis of the guide walls as showa in Figure 3{(a). The far-zone singly

diffracted fields from wedges 1 and 2 are given by

e-j [krl '*'ﬂ/lg 2 &in (_lf_)

E
Elg]i)(rl’fél) - = el 1 (8)
N - (fr + ¢l)
cO8 — «~ £0OS8S
ny m
-l krs + o/l 1 .
E]gl)(r I o+ 2 Sm(%) (9)
2 22 orkro . (vf - 5252)
cosg — = COS 1’12

The superscripts denote the order of diffraction. Expressing the phase

of the incident waves with respect to edge 1

E| =E=1 (10)

_ Ee-jkwcot¢g _ e-jkwcotgsg

E, = (11)

Equations 8 and 9 reduce to


http:walls.35

7

Jﬁffl*“/”]

V2nkey

21 (L) g, (12)

—JEQ‘ +:r[/ll-J
Eé]é)(r2’¢2) = -
»./2;1:1{1‘2

where R]%) (,6,‘51) and BDl)(¢ ) are the singly diffracted rays from

1t

r{1)(g,) (13)

wedges 1 and 2 given by -~

1
== gin
W)« =) (1)
Bp1'tPy B (1r + ¢l)
COS — - COS
oy Iy,
_kacotﬁg L sm(l.ff )
2
R1)2)(?52 = o 2 (15)
cos L - cos( 2)
np no
Applying the far-field approximations
. h
Ty RT,tS cos(¢0 + ¢g)
For phase terms (16)
Tp =T, - % cos(¢o + ¢g)

Ty =Ty =Ty For amplitude terms (17) .
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where
¢l = ¢2 ~ QSO (18)
lead o
-3 {kEfo-F(h/E )COS(¢O+¢g)] +3/k )
CTCIN:J) Q- — RV (4, (19)
2nkr,
- -3 {k[ro+{/2)cos(Botdg)] +n/4 )
L e
ED2 (roJ¢0)
2nkr,
thcos(¢0+¢ )
The singly diffracted rays may again be diffracted producing doubly
diffracted rays and so on to higher orders of diffraction. The singly
diffracted ray R(l) illuminates edge 2, giving rise to the doubly
diffracted ray 52) s and R(l) causes R( ) in a similar manner.

Also, some

of the singly diffracted rays from edge 1 will be reflected

from wedge 2 and appear to radiate from the image of edge 1 giving
rise to
(1) (1) 5
. Bppi(B,) = BRyy (-8.) B, <8, <% (21)

The doubly diffracted ray from edge 2 is given by

R]gg)(féo = Rnlc);EfB(h: - :do = ¢g,n2) + Vp(hyw = ¢o * ¢g:112)] (22)
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where
(i); - (Ji) (-8,) (23)

and from edge 1 by

KD@,) - R Faled, +hpm) +Vylmer +y - Fm)] (@)
where
R]gl) - R]%)(,E - 4,) (25)

There is an.additional doubly diffracted ray by edge 1 from the image

source which is given by

R]gi?_'t)?.(séo) = R]SEETB(EW’% + ¢0’ nl) + VB(EW’%T'[' + ¢o’nl)] (26)
where
B - Rﬁ)(- %) t27)

The total diffracted rays from edges 1 and 2, using single~double

diffractions, are given by

R, (d,) = B, + 22 (4,) + 5B, (28)

RD2(¢0) = R]g]é)(’qso) + R]Z()g)(gjo) (29)



and the reflected ray from wedge 2 by

RR:F‘L(Q:SO) = RD.'L(-QO) (30)

The total diffracted field from the aperture may be expressed as
the superposition of the total diffracted rays from edges 1 and 2 plus

the total rays from the image source to yield

-3 {k[l'o+(h/.2 )cos(¢o+¢g):| +a/k }

2nkr,

By(r,,8,) = = {RDJ_(%)

jkhcos(¢0+¢g) e-jEkws:l':nQ50

* BD.Q(ng)e (31)

Each term in Equation 31 contributes to the radiation pattern only in

certain regions as follows:.

By (B,) g < B <x < WAL (32)
Byo(8,) x +WA2 < <x - 4§, (33)
Ry, (-8, i, <Py <X (34)

There are subsequent diffractions which result in triple and higher
order diffractions from edges 1 and 2. The total higher order diffrac-
6

tions (that is, second and higher order) can be put in a closed form.

The total illumination of edge 2 from edge 1 can be expressed as
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R]_G = Rl(-¢g) (55)

where R}_(¢o) _is the total diffracted ray from edge 1. Consequently,

the total higher order diffractions from edge.2 are:given by
(g ) = Ry [Tglnyn - B - §my) + Vplhn - 6, +6,0)] (36)

Bpo (2, 1GLBY? o} g’ e BY? 0 g’ e

and the total ray by

Ry(6.) = R{EM,) + R{B) (4 ) (37)

The total higher order illumination of edge 1 is given by

Ryy = Rylx - ¢g) : (38)
and.
Ryp = Rl(- g) (39)

Thus the total higher order diffractions from edge 1 are given by

5t

(¢0) = Rop E’B(h:féo + ¢g,n1) + Vp(h,2r + ?50 - g’nl)]
+ RlpEfB(zT'bg* + ¢o,n]_) + ‘w”]a,(QW:BQ—TE + ¢o:n1)] (%0)

and the total diffrac'l;ions by

Ry(B.) = =r)(4.) + RS (4 ) (41)
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The total diffracted field from the aperture can be expressed as
the superposition of the total diffracted rays from edges 1 and 2 plus
the total reflected ray as given by Equation 31 where Ry, (f,)s
Bpo(B,), and Rpy (-@,) are replaced by Ry (B,)s Rolf,), and &y (-8,);
respectively.

The total diffracted waves from edges 1 and 2 are given in terms
of the unknown illuminating rays RlG’ RE.‘G’ and Rl]?‘ These rays can
be determined by the solution of three simultaneous linear equations

formed by expressing each unknown ray in terms of Equations 37 or ha,

_ pll)
Rig = Bpg * RogVaa(By) * RopVip(-fy) (h2)
Rip = BoL) 4+ R L) 4 RypV z (43)
1p = Epip * BogVog (- 5 1pV1p|~ 5
= R(l) + R ( 4 . I
Rog = Bppe + RigVagla - 0g) (L)
where the guantities vl(}’ VJ.'_P’ and VEG are the unit-wave

diffractions used in Equations 36 and k0.
2. TElO Mode
The diffraction at the aperture of the parallel-plate waveguide

for the TE,. mode may be trested in a similsr mamnmer as the TEM mode.

10
The TE;, mode may be represented by two plane waves reflecting

obliquely back and forth between the waveguide walls at an angle
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Ag = sin"l(%) . (45)

as shown in Figure 3(b). The wave has a polarization parallel to the
edges of the wedges which form the waveguide walls. For this mode

two cases must be distinguished, as determined by

Case 1: A, > gsg (46)
Case II1: A, < ¢g (47)

In Case I edge 2 is not illuminated by the incident plane wave and no
gingly diffracted ray emanstes. For Case II both edges are illuminated
by the incident wave; hence, singly diffracted rays emanate from both
edges.

Since the polarization is parallel to the edges -of the guide for
the TEyn mode, the negative (-) sign in the diffraction formula is
chosen. The singly diffracted ray from edge 1 is obtained from

Equation 2 as

(1) 1 o fx\} 1
RyT/(6.) = = gin[Z
D1 ‘Fo ] ny B (nt 1 ¢0 o Ao)
COS ~— = COS|wmmmmsesi o ™
m, ny .
- L (18)
T (Tf + ot Ao) .
cos — - ¢os|———mH—
o3, ny

For Case II (Ao < ¢g) , the singly diffracted ray from edge 2 is gliven

by
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(D05, - - & ain & I AToMgeosko]

Epo”

X 1 . 1
T - Po - B T t - fo + Ay
008 — - cos{————-"] oS —— = cog|~————ouv

(49)

where the exponential factor and minus sign represent the phase of the

incident plane wave at edge 1. The reflected rays are given by
(1) (1) I
1(8) = -Ryy (-8,) B <8, <% : (50)

where the preceding minus sign results from the reflection.

Multiple diffractions occur in the same manner as for the TEM mode
but with the minus sign chosen in Equations 22, 2k, 26, 36, and k0.
Thus the total higher order diffracted waves from edges 1 and 2 for

the TEyg mode are given by
R (B0) = Rog [V, 8, + Bomy) - Vp(mpen + B, = Boomy ]

- EEB(QW’% " ¢o’nl) - VB(EW’% " ¢o’nl):| (1)

(h)(¢ ) = RIGET (hsﬂ' = ¢ - ¢g3n2) - VB(h:ﬁ - ¢O + ¢g)n2)] (52)
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The minus sign preceding Ryp results in the same manner as for the
reflected rays of Equation 50. The total wave from each edge is
obtained by using TE.o mode rays 'in the same eguations valid for the
TEM mode, that is, Equations.37 and ¥1-hL, The unknown illuminating
rays are determined in the samé maymer as fo'r the TEM mode by using
the formulations for B]gi), RJ%) P Pjg?) s and (g) given dbove for

the TEip mode.



CHAPTER TIT
CREEPING WAVE DIFFRACTION CONCEPT

When a wave is incident upon an opaque object which is large
compared to the wavelength, a shadow is formed. However, some radia-
tion penetrates into the shadow region due to diffracted raysl2“l6 as
shown in Figure 4. 'These rays are prodﬁced by incident rays which are
tangent to the surface of the body. Each tangent ray spiits at the
point of tangency with one part continuing along the path of the
incident ray and the other traveling along a geodesic on the surface
of the body. At each following point, it splits again with one part
traveling along the geodesic and the other reradiating along a tangent
to the geodesic. From a single incident ray, infinitely many diffracted
rays are produced, one of which is reradiated at each point of the
geodesic. These waves traveling around the opague body have been
designated as creeping wa%res introduced first by Franz and Deppe_rmanl2
for the interpretation of scalar diffraction by circular cylinders and
spheres.

The scattered field causéd by the creeping wave mechanism for a

plane wave incident on a cylinder is given by

t
-3k (% -/ cunloras

+s)
Eq(s,8) = E;(Q) 7 ; D, ()0 (Ple ~° (53)

26
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Figure 4. General concept of creeping wave diffraction.
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which for a right circular cylinder reduces to

k(t ~Cp b
Eq(s,8) = E; (Q)2—0— ) z e (54)

m

since the radius of curvature is constant.

-3 12
Dgh = Dy (@)D, (P} = Diffraction Coefficients k:g—%ﬁgz——(kp)l/5dm. (55)
2/3
- : ~ L 1/3|3x j w/6
oy = Attenuation Constant Ep(kp) [;_(#m + N{] e (56)

p is the redius of curvature of the body’

k 1is the propagation factor

t is the path length along the body

é is the distance from point of detachment to the observation point
P is the point of detachment of the creeping wave

Q@ 1is the point of attachment of the creeping, wave

For a hard surface (E-field normal to the surface) d, = 1.083,

= 0.555, N = 1, and for a soft surface (E-field parallel to the
surface) d, = 0.645, &, = 0.4k90, N = 3. The diffraction coefficients
and attenuation constants are obtained by comparing the asymptotic
gseries expansion for large kp of the canonical boundary-value problem

with Equation 53.13’1J+
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Slotted Cylinder Creeping Wave Mechanism

Rays diffracted by ‘tiqe edges of a slotted cylinder shown in
Figure 5 which are tangent to the surface of the cylinder behave in a
similar manner. At each apex point additional diff-‘racted rays are
introduced each of which will travel along the surface of the cylinder
and will reradiate tangentially. The creeping wave field for a slotted

conduecting cylinder can be expressed as

1,
- jk(tq+s7) - o (p)ds
Eq(s,0) = Ei(Ql)g-# Z Dty (@7 )0y (P e J;
V51 o
2
-Jk(totsp) - JF anp(p )ds
+ B3 (Qp)t——or— Dyh{(Qo)Dpn(Po)e ¥ © (57)
VE2 :

Considering only the lowesb-order creeping wave mode, Bquabion 57-

reduces to

"jk(tl'!'sl) -ftlm (p)ds
EC(S’¢) = Ei(Q’l)Doh(Q-l)Doh(Pl)-e——— e o oh
V1

T2
~Jk(totss) "\/; aon(p)ds
e &

+ Ei(QQ)Dc»h(QQ)Dolrl(PQ-)e \/— (58)
. o

which for a circular cylinder simplifies to

E"Jk(t1+r) o oh®1
VT

~jk(totr)

+ £ (0105 (0} ——— o on’2 (59)

Eo(r,P) = Ej_(Q.]_)Dgh(Q.l)

since the local radius of curvature is the same at Py, Pp, Q, and Qo.
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Figure 5.

Slotted oylinder creeping wave fields.
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To assure_continuity of the fields across the boundary bebween the "1it"
and "shadow" regions, the far-field edge diffracted fields are to be
equated to the creeping wave fields at the shadow boundary. The
angular variation of the wedge-diffracted fields along the shadow

boundaries is given by

Ry = _‘grEDr,+(g+g)] (60)
e

N 7
Rp = e Bz, - (£ + ¢ (61
B ik ED[’ (2 )] )
for the geometry of Figure 6. In other words, the angular variation of
the wedge-diffracted fields along the shadow boundary will be used as
the initial value of the angular variations of the creeping waves.
Thus, R, and Rg will serve as the coupling mechanisms between the
‘wedge-diffracted and creeping waves which assure field continuity along
the shadow bbundaries. The creeping wave field for a circular cylinder
can then be expressed asg
- k(b ) -k (totr)

~Unpt ~Osht
EC(I';¢) =RA§—'—'—\/'I_.——E oh ™1 +RBe—\/;——e oh®2 (62)

where

Ry = B;(q1)02,(q) = e‘_fz; iy [r, +(3+ E)J (63)



Figure 6.

32

Far-zone creeping wave field coordinates.
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e

= 2 - yr i
Rp = B3 (@)0on(Q) = — Enlf: - (§-+ Q)J (6)
For a moncircular cylinder the diffraction coefficient D, is a

funetion of the radius of curvature. ‘Therefore the creeping wave field

given by Equation 62 must be multiplied by Den(P)/Don{Q) giving
[

. - asp(p)ds

DOh(Pl) e-Jk(tl"['Sl) R o

Doh(Ql) \/SI

Ec (S;Qj) = RA

to .
Doy (Pp) Tk (tatsp) - L ay,(p)ds
R ) (65)
B Don(Qp) /s2

The wedge approximation of the paraliel-plate-cylinder geomebry
does alter the physicel boundaries of the ambtemna sbructure and the
diffraction mechanism of the fields especially in the penumbra regiomn.
For the wedge approximation, the fields in the @ ==x(x/2+f) directions
travel along the boundaries of the wedges. However, in the actual
antenna structure some of the energy is brapped on the surface of the
cylinder and travels along the curved surface reradiating in a tangen-
tial direction. Thus the wedge-diffracted and creeping wave fields in
the transition region (pemmibra) will not satisfy the field boundary
conditions. However, computabions carried out using such a model com-
pare favorably with ex:i\.sting boundary-value solutions and experimental
data. Therefore, such a model would be a valid approximation of the
structure as far as the diffraction mechanism of the fields is concerned
and Equations 60 and 61 would serve as the coupling mechenisms between

wedge~diffracted and creeping wave fields.



CHAPTER III
CIRCULAR CYLINDER RADIATION

The wedge diffraction and creeping wave techniques previousily
outlined will first be applied for the calculation of the equatorial
radiation patterns of axial and circumferential slots on circular
conducting cylinders of infinite length. Boundary-value solutions
for slots on circular cylinders with common feeds exist and will be
used for compariscn. Once the mebhod is verified, it will be employed
for pattern caleculations of slots whose field distribution is such that
modal solutions do not exist and to bodies whose geometric shape does
not conform to-a coordinate system where the wave equation is separable.
In addition, the elevation plane pattern for finite length cylinders
will be analyzed. It ghould'be rointed out that no boundary-value
solutions for finite length cylinders exist, and experimental results
will be used for comparison. The diffraction contributions from the
edges of the cylinder and the effect of the finite width aperture to
the overall pattern will be observed. Pattern calculations for more
complex geometries such as an elliptical eylinder will be carried out

in the following chapter.

Equatorial Plane Pattern of Axial Slots Operating in the TEM Mode

The two-dimensional diffraction geometry for an axial slot mounted

on a circular cylinder and operating in the TEM mode is shown in

3k
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Figure 7. The Jjunctions formed by the walls of the parallel-plate

waveguide and the planes tangent to the surface of the cylinder at the

edge points are represented by a pair of infinite wedges of finite

included angle WA = (2 - n}n. Two regions, "1lit" and "shadow,™ are

formed by the imaginary sides of the finite wedges as shown in Figure.T.
For fg = 90° of Figure 3(a), Bp1(-B,) =0, Rpr(%,) =0,

h=w, n =n,= n and Equation 31 for the wedge-diffracted field

reduces to

- {x[ry-G/2)sing] +x/2 )

25Ky,

Ep(resPy) =

{Rl(¢o ) + Ra(d,) e-JkWSin%}
(68)

A shift of coordinates from the aperiture to the center of the cylinder
is convenient, so that common coordinates will be used for wedge-

diffracted and creeping wave fields. Assuming the far-zone approximatlions

T, ™ T - a cos @ cos B8 For phase terms (67)
r, & r For amplitude terms (68)
g, ~ ¢ (69)

the total wedge-diffracted field is-expressed as

ED(r,¢) _ & e';jér ej {k@/E)sin¢+acos¢cosBJ‘-ﬂ/ll-} Rl(¢)

+ Be(sé)e'jmm} (70)



36

LIT REGION
Obsexrvation
Point p
v 0
T %o
ﬁ N G 4

SN

WA=(2-n)~=

Incident
Plane
Wave

\
ﬂu%uurl rrLLLL\ﬂ\’“}

———— SHADOW REGION ————-

Figure 7. Lit and shadow regions for circular cylinder.
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The creeping wave contribution as expressed by Equation 62 is

'given by

e'jkr e-tl(m0h+jk) + R e'jkr e-tE(a’Oh+'jk)
53 B

EC(I‘,¢) = RA = (71)

The wedge-diffracted and creeping wave fields, suppressing the

e-Jkr/ VT factor, are given by

Verk

By (8) = i J (k Ef/e)sin¢+acos¢cosﬁj - 11/4} {Rl(¢) + Re(¢)e-jkwsin¢}

(72}
and
Eg(f) = Rye ° + Rge © © (73)
'In general, the total field is equal to the sum of the two fields
Ep(8) = Ep(B) + By(9) - (74)

However, wedge-diffracted and creeping wave fields do not exist in all
regions. ‘To find the total field in each region, the appropriate wedge-
diffracted and creeping wave fields must be considered, as they are
tabulated in Table 1.

Radia.’cioﬁ patterns computed using the boundary-value solution given
by Wait”® and the fields from Table 1 in thelr respective regions for the
diffracted-field solution are shown on Plates I, II. It should be noted

that the second and higher order diffractionsg are approximated by



TABLE 1.

OF A CIRCULAR CYLINDER IN THE DIFFERENT REGICNS

WEDGE-DIFFRACTED AND CREEPING WAVE FIELDS FOR THE EQUATORTAT, PLAWE PATTERN

Regions Wedge-c}igfgrjted field Creepin% v(w;\)re field tQ
C
Region I
,jEc(@r/2)sin¢+acos¢cos[3) - /4 _ . -
e 3 (Ry + Rpe~dlevsing) g o ty {agntik) +Rge ta(agy+dk) a(¢ L 3% ﬂ) a(_¢ $ 30 B)
0<@< 12‘- - B ark 2 2
Region IT
ejE{(&r/E)sin¢+acos¢cosﬂ) -1:/1{_-_| o b, +K)
{Rl +Rze-,]kws:m¢} RBe 2\%ch a(—¢ +jég _ B)
Z-p<gzi V/enk
Regi Iix
egion ejﬁi(@/a)singlhcosgicosﬂ) -rr/lg “t,(a, k) .
. ) e 2 o(4+2-4)
5 < ¢ < B Vork
Region IV

FtB<f<n

rye PPNk} | g o~talagn*ik)

14
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wedge diffractions resulting from uniform cylindrical waves. Diffracted
waves will resemble cylindrical waves if they are observed sufficiently
far away from any shadow boundary that results from their source. The
double-d.iffracted waves can be adeguately treated as those of uniform
cylindrical waves for gulde Wi;‘lths down to about 7\/ 5. However, triple
and higher order diffractions are not very accurate when ,Gﬂg = 9o°
since they are viewed at the ghadow boundary formed fy their source32
and the solution is more accurate for wider slots.

The soluwbions which consider only first and second order diffrac-
tions have a discontinuity in the @ = *90° dil:ections because higher
order diffractions are neglected. The disconbinuity and variation from
the boundary-value solution in the ® = £¥90° is greater for smaller
guide widths. The solution which takes into account higher order
diffractions eliminates the discontinuity, but it is not very accurate
in the geometrical shadow boundary region (pemumbra) since the assump-
tion of uniform cylindrical waves is not satisfied for triple and
higher order diffractions.

This analysis is more accurate for large ‘ka cylin.ders, gince the
decaying exponents of the surface waves are derived fro'm asymptotic
series for large ka. Using this approach, the computations for large
ka cylinders do not require any additional details from those of small
ka. In contrast, the boundary-value solution computations for large ka
cylinders are not very convenient since Bessel functions of large order
and argument are not readily available. Also, the convergence of the
radiation pattern function becomes poor.:li‘or large ka, and higher order

terms must be included (sbout 2ka terms). From an economic point of
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view, large ka value computations using the boundary-value solution
require considerably more computer time compared to the corresponding
diffracted field solution (about a factor of 50) since‘higher order
terms mst be included for convergence.

As the values of ka increase, the field in the "shadow" region

~(x/2 + B) > ¢ > (x/2 + B) decreases and the ripples start to appear
at larger angles. Tt is noted that the period of the ripples is
approximately (180/ka) degrees. A field plot (voltage versus angle) for
the ka = 12, w/A = 0.2 cylinder is shown in Figure 8. The variations
between the boundary-value and wedge-diffracted solutions and the field
disconbinuity along the ¢ = *90° directions are more noticeable on a
linear scale. The agreement would be significantly improved for larger
cylinders with wider plate separations as shown for the ka = 26,
w/A = 0.4 cylinder in Figure 9.

Up to now, the parallel-plate-cylinder geometry has been approxi-
mated by a set of Wedées of finite included angle (n £ 2) each Formed
by a wall of the parallel-plate and a tangent plane to the cylinder
surface at the edge point. For the far field, it would be the presence
of the conducting wall for the wedge geometry of Figure 3 that would
force the field to be zero at ¢ = x - WA, However, there is no such
conducting wall in the far field of the geometry of Figure 6 and it is
only the edge that needs to be considered. Sommerfelle points out that
patiterns on precise diffraction photographs exhibit almost no dependence
on the material and shape of the diffraction edge, and a glass surface
with radius of curvature of several metersg yields essentially the same

diffraction fringes as the edge of a razor. It is then suggested that
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another possgible approximation of the parallel-plate-cylinder geometry
will be a half-plane (wedge with n = 2) insteesd of a finite wedge
(n £ 2). This approximation becomes necessary for the TE1o mode bgcause
the wedge-diffracted field along the boundary separating the "14t" and
"shadow" regions for the Tinite wedge approximation will be zero. Thus,
there will be no creeping waves traveling around the cylinder surface
for the TEjp mode and no fields in the "shadow" region. Since this is
not true, the half-plane approximation becomes necessary.

However, to verify the validity of the approximations, finite
wedge (n # 2) and half-plane (n = 2), both models will be used for the
computation of patterns for TEM and TE g mode slots and compared with
houndary-value scolutions and experimental resulbs.

It was found, by comparison, that another approximation for the
TEM mode slot on a cireular cylinder was to replace the edge 1 geometry
by a half-plane (n = 2) for the first order diffraction and by a finite
wedge (n £ 2) for second and higher order diffractions for the 00-180°
pattern measured. in the counterclockwise direction. The edge 2 geometry
was replaced by a finite wedge for all orders of diffraction. For the
1.80°-360° pattern, the approximations of edge 1 geometry are valid for
edge 2 and vice-versa.

The computed results using the above approximations are shown on
Plates 11T, IV where they are compared with the boundary-value sc;lutiono
It is seen that the above approximations result in better accuracies for
smaller guide widths around the penumbra region than the finite wedge
approximation used previously. However, the finite wedge approximation

gives bebter results in the "1it" region as it should since the fields
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in the "1it" region are more strongly dependent on the geomebry of the
edge of the wedge, while the far fields in the penumbra region would be
dependent on the fields on the walls of the wedge. It should then be
concluded that both approximations are valid and a combination of the

wedge approximations dependent on the location of the observation point

would yield optimum results. As a firs-’c order of approximation, either
one of the suggested models may be used. A field plot for the ka = 12,
w/A = 0.2 cylinder is shown in Figure 10. The accuracy of the above
approximation of the penumbra region is better seen in this plot when
compared with the one in Figure 8.

As was pointed out earlier, many models for the parallel-plate-
cylinder geometry would give good results as a first order of approxi-
mation. Another suggested model for the parallel-plate-cylinder
geometry would be a thin-walled waveguide (n = 2 for all orders of
diffractioz.ls). Computed results using such a model are shown in
Figure 11. A reasona“r;le agreement between the boundary-value and
diffracted solutions is indicated.

Sometimes it mey be deslirable %o hé,ve *’c',he maximm radiation
oriented at a given angle other than the zero degree direction
described previously. One way of accomplishing this would be o -ha.ve
the feed of the waveguide mounted in a slanted positiomn.

TEM mode propagation along the paraliel~plate is assumed but the
aperture field distribution will not be uniform in this case. Propaga-
tion of this mode in a guide mounted on a cylinder in a slanted position
has no boundary-value solution. However, the technique of diffracted

fields described previously can be used to obbtain the radiation pattern.
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The two-dimensional geometry of this mode is shown in Figure 12.

The modified equation for the diffracted field is given by

1 3 {k Ea.cos¢cosﬁ-(h/2)cos(¢+€+¢g)] -s/k }

ED(ﬁ) = :7;;; € . - Rl(¢)

+ my(g) oS te) Rﬁ-@e’jzkwsm(me )} (75)
where
¢g = g - € (76)

_ W

B = — 7 (77)
and the regions where the appropriate wedge-diffracted fields are
gpplicable are given by
R, () s+e>8>-2 (78)
R, () L>6> - (g + 5) (79)
7, (-9) E-e>4> (@ -e) (&0)

The creeping wave field is the same as that given by Egua‘l;ion T3

applicable in the regiocns outlined in Table 1.
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The computed radlation patterns for this mode of operation are
shown on Plate V with a field plot for one cylinder in Figure 13. It
is observed that the maximum radiation for the cases investigated is
oriented at an angle @ = -¢/2. This agrees with the physical reasoning
by observing the reflection mechanism of the rays from edge 1 by the
side of wedge 2. It ca.n'”then be concluded that by slanting the feed
wavegulde at a given angle, it will orient the maximm radiation in
other than the @ = 0° direction. The discontinuities observed in the
gsolution which considers only single-~double diffrac*l;ions occur because
third and higher order diffractions which are neglected beconme
significant.

Equatorial Plane Pattern of Circumferential Slots Operating in the
TE:LO Mode

The TE;y mode propagation in a parallel-plate guide can be repre-
sented by two plane TEM waves reflecting obliguely back and forth
between the wavegulde walls with the electric field parallel to the
edge of the walls., The approximation of the parallel-plate-cylinder
geometry by a set of wedges each formed by a wavegulde wall and a
tangent plane to the cylinder surface at the edge point will not satisfy
the electric field boundary conditions. In order to overcome this
obstacle, the half-plane approximation is used as a model. The boundary-
value solu'bio_n for a eircumferential slot operating in the TElO mode
mounted on a cirenlar cylinder exists and it will be used for comparison.

The two-dimensional diffraction geometry is shown in Figure 1%, It
was found by comparison with the boundary-value solution thet one approxi-

mation was to replace the edge 1 geometry by a half-plane (n = 2) for the
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first order diffraction and by a finite wedge (n £ 2) for second and
higher order diffréctions for the 0°-180° pattérn measured in the
counterclockwise direction. The edge 2 geometry was replaced by a
finite wedge for all orders of diffraction. For the 180°-360° pattern,
the approximations of edge 1 are valid for edge 2 and vice-versa.

The wedge-diffracted field is given by

B, (f) = 1 ej {k@/é) sin¢+acos¢cosl3] - ﬁ/L} {Rl . Ree—jkwsingﬁ}

Vork
(81)
By = RJ%) + 31%) (82)
R, = B + B0 (83)

where Béi), Réi), Béé), and Rég) are given by Equations 48, 51,
49, and 52 with ¢g = 90°, BDl(-¢) =0 and RlP = 0. The creeping

wave contribution is given by

Be(#) =RAe—tl(%S+jk) +RBe"b2(aos+jk) (84)

where

Ry = EDE- (% + B)J (85)
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Rp = ED[E (% " Bi} (8)

as given by Equation 81 and

2/3
oy = Atia) 3[95] P w6 (87)
The regions where the appropriate wedge-diffracted and creeping wave
fields are applicable are identical to those shown in Table 1 for the
TEM mode.

~ The computed results using this approximation are showm on Flate VI
along with the boundary-value solution. It is noted that the solution
which includes higher order diffractions gives the best resulis. A
noticeable discontinuity is present at the shadow boundary when higher
order diffractions are neglected.

Another approxima:‘bion for the parallel-plate-cylinder geometry would

be a thin-walled guide (n = 2 for all orders of diffraction) as was
also true for the TEM mocie. Computed results using this model are shown
in Figure 15. A good agreement is indicated. The discontinuity in the
g = *90° directions for the single-double diffractions is again present
gince higher order diffractions are neglected.

Elevation Plane Pattern of Circumferential Slots on Finite Length
Cylinders Operabing in the TEM Mode ¢

The elevation plane pattern EF(G)] ¢=0] for a finite length
conducting cylinder can be computed using wedge diffraction techniques.

The diffracted field from the ends of the cylinder and their contribution
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to the overall radiation pattern can be readily computed. While
boundary~value solutions for circular conducting cylinders of infinite

length exist, 1,2

no solution which takes into account finite length is
available. To check the validity of the technique, experimental results
were used for compariscn.

The two-dimensional geomebry of a slobted cylinder operating in the
TEM mode is shown in Figure 16. The diffracted fi;ald for the TEM mode

from edges 1 and 2 ig given by

'j[:kro +’T/lg

(r.,0.) = = Ry (6.) (88)
ED o770 V?]:Q:‘o- D\Yo
‘where
RD(eo) = ej (kW/Q)Si-neo {Rl(eo) * RQ(eo)e-ijinso} (89)

and R;(8,) and R,y(8,) are given by Equations 37 and 41. Diffractions

from the aperture in the 8, = i:r/ 2 directions will be diffracted by

o]
wedges 3 and b which in turn will be diffracted by wedges 1, 2, 5, and
6. This process conbinues to higher orders of diffraction.

To calculate the single-~diffracted £ield by wedge 3, the reciprocity

principle (see Appendix) will be applied. This leads ‘o

-3 [t +x/u]
By (r505) = S - 73 (o) (50)
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where

R]%)(sg,) = Rl(g) {VB(z =, £+ 95_,n3)} (91)

The single-diffracted ray from wedge 3 in the direction of wedge 5

(65 = 180°) will be diffracted again and its contribubion is

-j E:r5 +Tr/l|-] (

(1) e 1),
(I‘ 2B.) = 8 (92
Eps (75 oy Rpg (85) )
where
R(l (9 ) R(l ('IE) {VB(&, 53115)} (93)

Diffractions from wedge 5 in the directions of wedge 3 (65 = Oo) and
wedge 6 (e5 = 270°) will cause additional diffractions. Assuming that
the length of the cylinder is several wavelengﬁhs » the d@iffractions by
wedge 6 are negligible. However, the second order diffractions from

wedge 3 are given by .

) R [kr5+1t/}-l-3 (2)
ED3 (r3:95) = \/QQ—B RD3 (9 (91")

where

B{2)(65) = B (0 = 0) { Vylapn - 85,m5)) (95)
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_ The same procedure used to calculate the fields diffracted by
wedges 3 and 5 can be applied tf; caleulate the fields diffracted from '
wedges 4 and 6 being initiated by the aperture diffractions in the
0y = -x/2 direction.

The first order diffracted fields by wedges 4 and 6 are given by

Elgi)(rweu) = 2 e o R]gi)(eu) (96)
N

where

RM)(elF = Ry (- %){VB(E % eu,nh)} (97)
and

(1) Sl rni]

Epg’ (vg:06) = N B$E) () (98)
where

r{3) (eg) = RS (x) (Vp(as20 - 0gymg)} (99)

and the second order diffracted field from wedge 4 by
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=3[y, + /Y

@) (r,,0,) = & (2)(q (100)
Epy, (1y20)) o (6))
where

(2) _ »{1)
Roy (eh) = Rpg (Eﬁ)<VB(a,n + Bh’nh)} (101)

The above derivations were all based upon the wvalidity of the
reciprocity principle as outlined in the Appendix.
Shifting the coordinates from the individual edges to the center

of the cylinder and assuming the far-field approximations

Ty = T - -Z-‘- cos © W
Ty N T - d cos(y - 98)
r, ~r+d cos{n ~ ¥ - 8) > For phase terms {102)
r5%r-dcos(n’-7~ 8).
Tg T + d cos(y - 8)
/
R rs A For smplitude terms (103)
0, ~ 85~ 8 = 0 = 6~ 8 (10k4)
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a = (g)e +(%)2, | (105)

(106)

~2
It
ok
gI
l_l
(510
| S|

the diffracted fields, suppressing the e-j @:r+ Tt/h:l/ \/E:E factor,-
are shown in Table 2 valid in +the indicabted regions.

It should be pointed out that additional diffractions by each
wedge will be present and can very convenlently be accounted for.
However, for cylinders with several wavelength.radius and length such
diffractions have secondary effects and can be neglected. It is
apparent from Figure 16 that the two-dimensional geometry used for the
formulation of the elevation plane pattern of a finite length slotted

.cylinder is identical %o the cross section configuration of a slotted

.finite width ground plane.

The computed results using the fields from Table 2 are shown on
Plate VII where they are compared with exjperiment'al data.- 1t is- obviocus
that a very good agreement between theory and experiment is indicated.
The ripples in the -1/2 < 8 < /2 region are present because of the
diffraction contribution from the edges of the cylinder, and they
become negligible as the length becomes large. The experimental results

were obtained from slotied gro_und plane models since it was deduced .



TABLE 2. WEDGE-DIFFRACTED FIELDS FOR THE ELEVATION PLANE PATTERN

OF A FINITE LENGTH CYLINDER IN THE DIFFERENT REGIONS

Diffraction wedge Wedge-diffracted field Region
1 and 2 Ey(8) = ej(ka/g)cc-’se(RD(e)} Z< 0 <g
5 512 (e) = Jdteos (-0 {R]%)(e) + Rjgg)(e)} Z<o<n
L E]gﬁ’g)(e) - ¢~Jkdeos(x-7-6) {B]gi';)(ej + B]gﬁ)(e)} x<o<Z
: 22)00) - ejkdcos(“"”"e){Rl%)(e)} o<
6 EJ%)(G) = e‘jkdcc’sn(”'e) {R]%)(e)} 3—; <8 <0

L9
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Plate VII.

Elevation plane patterns of finite length cylinder
(TEM mode).
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that their two-dimensional éeometry is identical ‘to that of a slotted
cylinder.

The beamwidth of the main lobe is decreased as the aperture width
is increased. The smoothest pattern and the lowest back lobes are
obtained for the aperture whose width is exactly one wavelength since
complete cancellation of- the fields diffracted from wedges 1 and 2 in
the @ = iJ‘t/E directions occurs. The ripples in the '-900 < o< 900
region which are much in evidence in (a) and (b) do not appear in (c)
and (d) because the fields in the 6 = #x/2 directions are very weak
and any diffractions from the edges are negligible. Additicnal lobes
appear as bthe .aperture width is larger than one wavelength.

Another formilation for the diffractions from wedges 1 and 2
would be to use conbtinuous double d:?.:E':E‘rta.C‘l::'Lorls.5 7 In *bhis case, double-
diffracted rays from wedge 2 [RI()S)(B):] are neglected in the 0° < o < 90°
region while double-diffracted rays from wedge 1 Etlg]e_)(eﬂ are neglected
in the -900 <o <o region. Compubted results using the above formula-
tion are shown on Plate VIII where they are compared with é@erimental
results. Again a very good agreement between theory and experiment

is indicated.
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CHAPTER IV
ELLIPTTICAT CYLINDER RADIATTON

Flush-mounted antennas are commonly used on space vehicles,
missiles, and-aircraft. However, their radiation properties usually
cannot be predicted analy‘hical:lly because the geometric shape of the
body to 1‘«rhich they are mounted does not conform to a coordinate system
where +the wave equ;.tion is separable;. The method used to analyze the
radiation propert:'%es of' axial slots on circular conducting cylinders
can be applied to -eylindrical shaped bodies of arbitrary convex cross
sec;tion. One geometry of wide interest is am elliptical cylinder which
can‘be used as an approximate model for the wings of an aircraft or the
fins of .a migsile.

The far-field radiation-produced by a slot of arbitrary shape on‘
the surfa.ce of an elliptical cylinder of infinite length-ilsing modal
solutions has been carried ocut by Wait.5 Computations using the modal
solution are numerically convenient only for very thin-shaped elliptical
cfl:‘.nders, and as the size increases (larger ka and kb) higher order )
terms must also be included for convergence. However, tile analysis
using wedge diffraction and creeping wave theory can be used for com-
putations of any size and shape of an elliptical cylinder. As the
physical di'mgnsions increase, the accuracy of the obtained data increases

because diffraction coefficients (D) and decay constants (oyy) used in

71
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the analysis are derived from asymptotic series of canonical boundary-

value problems for A — O.

Bquatorial Plane Pattern of Axial Slots Operating in the TEM Mode

As in the analysis of the circular cylinder, the two-dimensional
geometry for an axial slot mounted on an elliptical cylinder and
operating in the TEM mode is shown in Figure 17. Again, the junctions
formed by the walls of the parallel-plate waveguide and the planes
tangent to the surface of the cylinder at the edge points are approxi-
mated by a pair of infinite wedges of finite included éngle
WA = (2 - n)n. The wedge-diffracted field is given by Equation 66 and

is repeated here.

-jl{xk ro-@r/a‘)siniﬁ:] + 5/ } - jkwsin
B (ro,0,) = e { [ {Rl(¢o) +Re(¢o)<‘9 I '¢0}

2rkr,
(107)
Using the far-field approximations
I-'o ~r - T, cos @ cos B For phase terms (108)
T, T For amplitude terms {109)
o ~ ¢ (110)

Equation 107 reduces to
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Figure 17. Lit and shadow reglons for elliptical cylinder.
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By (r,8) = _ﬁ E—'\%—ij e'j {k@/a)smﬁéﬁocosgécosﬁj —st/’-!-} R, (6)

+ Ry (%) e—,jkwsin¢}

where
e 2
w
X =% 3 (113)-

L \faf o2 (114)

2a

o
o
1

with Rl(ﬁ) and Rg(ﬁ) as defined previously.

The creeping wave field is given by Equation 65 and repeated here.

tl )
~3k (- +s "f acnip)ds
o 3k ( 1 1) o 0

Dy, (P )
E.(s,f) =R, 2L L e
¢ 4 00(®) Ve1
%
2
Do (Po) dk(tatsp) e"J; oo (p)ds

+R
B Doh(Qe) NS (115)

From the geometry of Figure 18, one may obtain the far-field approxima-

tions

T, =T, =T (116)



Figure 18.

Far-zone creeping wave field coordinates.
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Sy ®r - T cos 61

2

r + T cos 81

Equation 115 reduces %o

by
: - agnle)ds
B f oh
EC(T,¢) = VA e - a J le o

VT

.t
" ) - a1 (p)ds
o JkT e-JktzeL/; 'oh

where

DOh(Pl) ejkTCOSSl

Vv, = R
AT TAD (G

Doh(PE) -jk'rcosﬁl
VB B —_—
Doh(QE)

76

(127)

For phase terms (118)

For amplitude terms (119)

(120)

(121)

(122)
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2

e e'ﬁr ED[}’ ’ (% ' Q)J = 54(0) Pon(® )] (123)
' 2

Rp = e_gr EDE': - (% + {:):l = Ei(QE)[Doh(QE):I (121)

as obtained from Equation 111.
Expressions for the radius of curvature and differential are

length for an ellipse can be obtained by applying the basic geometric

as = \/(dx)2 + (ay)2 (125)

3/2
N EERCA 2]

|Y"| (126)
x = T sin @ (127)
y=7Tcos @ (128)

Using Equations 125, 127, and 128 lead to

dx = T cos @ df + sin @ ar (129)
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dy = -7 sin @ af + cos § 4t (130)
1/2
ds = Ere(d;é)Q + (d'r)gj (131)
2 -
v -R) & e
2
g = b (sFcos™f + besineﬁ)B/ (133)

2’ c055¢

Substituting Equations 127 and 128 into the equation for an ellipse in

rectangular coordinates
—_—t e = (151!_)
lead to

T = i 7 (135)
[éec052¢ + besin?¢

ab(a2 - be)sin ¢ cos ¢ ag

dt =
2 2 2.2 5/2
Eé cos @ + b sin ﬁ]

(136)
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Substituting Equations 132 and 133 into 126, and Equations 135 and 136

into 131 yield

b N /%

1 |a%cos®P + brsin®gl -

p = e— l '

ab a2c032¢ + bgsin2¢ (379
(atcosg + phai 24 1/2

ds = ap L& cOS @ sin=@) ag (138)

2
(aPcos® + basin?gﬁ ) 5

The arc length and complex attemuation factor of the creeping wave on

the elliptic surface can then be expressed as

' 1/2
t = f¢12 ds = ab ¢12 (a)‘l'cosE'Q + bh'singgﬁ)jie ag (139)
B3 ¢J.l (afcos®P + b=sin’Q) '
2/3
& 1/3 .
[* e - 220 s,
o 2 4
f¢12 ab a¢
2
¢ll [Kahcoseﬁ + bhsin2¢)(a2cos2¢ + besin2¢jf/
' (1k0)
where
¢ll = trapping point angle of the creeping wave

exit point angle of the creeping wave

¢12



8o
The points of trapping, Ql and QE’ are given by Equations 113 and
11%. To determine the points of reradiation, P, and P,, of each
creeping wave on the surface of the elliptical cylinder, the vector
cross product will be utilized.2’ As shown in Figure 18 for the

observation angle ¢ (assuming far-field observations)

Ax#; =0 (141)
where
4= -%cos @ +F sin ¢‘= unit vector perpendicular to the . (1h2)

line from the origin of the
cylinder to the observation

point
A 32 b2
o, = - = unit vector normal to the (113)
: 1/2 .
o 2 eylinder surface at the
) o+ (L point of tangency
a2 b2 . .

Applying Egquation 1M1 and, using the equation for an ellipse in

rechtangular coordinates

-1 (1hh)

mf\) l NI\J
+
%o [

leads to



N
xl(Pl) = ~a®cos § 7 .
Eaacos2¢ + b2sin2¢]
2 s
v (®y) = — 72 |
E::Ecosegb’ + basin2¢]
~1|x1(Pq)
V. = tant X1\F1
1 - ¥1(Pp)
/
2
XE(PE) _ a“cos @ - A
[é2c032¢ + bgsingﬁj
¥o(Py) = -t°sin ¢ 7z
E::acosagé + basinggéj

S

The angles B and § are given by

=lla W
B...—.'ta:n — ————
b Va2 - w2

t = tan~L|R ul
a 2 2
ha™ - =

81

Reradiation point P; (145)

Reradiation point Ps (1k6)

(1%7)

(148)

The wedge-diffracted and creeping wave fields, suppressing the

e~d¥T/ & factor, are given by
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) - 2 SERATIT AN} i
e
t t
. -f taon(p)as ) -f Paon(p)as
-Jjkt ~Jkts
Eq(f) = Vje le © + Vge e © (150)
£ = f 2 as (151)
P11
t, = f oo ds (152)
Bo1 :
In general, the total field is given by
En(8) = Bp(f) + Eq(F) (153)

where the appropriate fields must be considered in each region as shown
in Table 3.

Radiation patterns compubed using the fields from Table 3 in their
respective regions are shown on Plates IX, X, and Figure 19. Experimental
models were constructed and the obtained data were used for comparison
gince boundary-value solutions are numerically convenient only for very

I

thin elliptical eylinder. Harrington® points out that the equatorial

(o]

radiation pattern (6 = 90~ plane) for a circular cylinder with finite

axial slot is identical +to that with an infinite axial slot. It is



TARLE 5. WEDGE-DIFFRACTED AND CREEPTNG WAVE FIELDS FOR THE EQUATORIAL: PLANE PATTERN OF AN ELLIPTICAL CYLINDER IN THE DIFFERENT REGIONS

Wedge-diffracted field Creeping wave field gﬁu ¢21
Regaons ED(¢) Ec( } ¢12 ¢22
resen £ (/2 stnprocoss § [ Facntone [ aonioras | = by = =l = )
3| k({(x:/2) sinPr cosPeosp) - n/l . - oh! ~ - aghlp)ds
£ 2 / By + Ree-jkwsingﬁ} Ve gkt Vo 4+ v, o TRe2, Yo

o<¢s§-§ Veank Prp =2m + ¥y {fp = =B

- t

Region II f 2 Poy = -(x - ¥)

: k{(w/2) sing+, - x/k - agn(p)ds /

B . ed[ (w2 staffrocosfooas) ﬁ/:l {R]_ + REe‘JkWSin¢} VBe—'jk-tee ° ———
L-t<gszi Ve Bop = -B

Region IEI tp By = =[x - W)

e;j Ec((w/E)sin¢+Tocos¢cosB) - 1:/11-] { } ' -5kt - \4/'0 asnip)ds 21 1
R, Vge <] ———
1 B
L<psi+t ank Bop = =B
by by
Region IV -f an(plis -f anields (B = B By = =l = W)
-jkt ° -jkb o -

x 0 Ve le + Ve =
F+ti<gsx fra =¥ bop = -P

¢
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assumed that such a relation holds for an elliptical cylinder, and the-
experimental results were obtained using finite axial slots. The
experimenial models were also of finite length of about 20 wavelengths;
diffractions from :bhe edges of the cylinders should then be negligible.
Dimension construction accuracies were within *3/25 and surface
irregularities within *A/50. A1l ;neasurements were performed at a
frequency of about ]__0 GHz.

The agreement between computed and experimental patterns is good
particularly in the forward hemisphere. Errors of the order of 2-3 dB
are obtained in the pemumbra region and they indicate that further'
improvement could be made on the approximationg of the parallel-plate-
cylinder geometry by a wedge and those implicit. in Equations 123 and
124, The use of the half-plane wall for certain diffractions processes
would yleld improved results near the penumbra region as has been
discussed previously for the circular cylinder. In general, the errors
in the shadow region are of the same order of magnitude, and they are
quite acceptable for determining possible interference and noise that
might be introduced from o:bher systems fthrough these back lobes.

For ellipbical cylinders. with consbant mejor axis but decreasing
minor axis (thinner shape ellipse), the rate of attenuation of the
creeping waves, whose main contribution is in the "shadow" region, is
larger. However, the "1it" region radiation, whose primary source is
the wedge-diffracted fields, is essentially unaffected as shown on
Plate (a)~(c). The creeping waves are strongly influenced by the

radius of curvature which is rapidly changing while the wedge-diffracted
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fields depend on the included angle of the wedges (WA) which remains
essentially constant.

For the small ellipbical cylinder (ka = 10.666, kb = 8) of
Plate X(a) slightly larger variations and asymmetries between experi-
ment and theory are noted. TFor ¥1.0 percent changes in frequency
(Plate X(b), (c)), the variations and asymmetries are even greater and
it is believed that the physical construction tolerances of the ellip-
tical cross section are critical for the measurements on this size
body. For a thin elliptical cylinder the radius of curva'i:ure of the
surface near the major axis is small and any diffractions from that
region wonld not be very accurate since the asymptotic series assumption
of large physical dimensions is not well satisfied.

In Figure 19, the experimental pattern of a thin elliptical
cylinder (ka = 40, kb = 8) is compared with a theoretical curve of a
finite gize ground plane obtained using wedge diffraction technigues.
A good agreement is nc;ted 1n the 90° < @ < -90° region. However, in
the 90° > @ > -90° region the ripples predicted by the compubted curve
of the ground plane do not appear in the experimental curve for the
thin elliptical cylinder. The surface of the cylinder is smooth and
has no sharp edges to contribute diffractions in the "1it" region for
the ripples to é,ppea:c'. The fact that edge diffracted fields do disturb
the pattern is an interesting faet to the antenna designer who would
certainly prefer the smooth pabtern. Cylindrical caps on the sides of
the ground plane would reduce the ripples and smooth the patiern.

To check the validity of the half-plane (n = 2) approximation for

the parallel-plate-cylinder geometry instead by a finite wedge (n £2),
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Equations 149 and 150 were used with modified n's and the compubted
results were compared with experimental results. It was found by com-
pa:rison, like for the circular cylinder, that the best approximation was
to replace the edge 1 geometry by a half-plane (n = 2) for thé first
order diffraction and by a finite wedge (n % 2) for second and higher
order diffractions for the 0°-180° pattern measured in the counter-
clockwise direction. The edge 2 geometyy was replaced by a finite
wedge for all orders of diffraction. For the 180°-360° pattern, the
approximations of edge 1l geometry ars valid for edge 2 and vice-versa.

The computed results using the above approximations are shown on
Plate XTI, where they are compared with. the experimental curves. It is
seen that the sbove approximations result in better accuracies in the
penunbra region than the finite wedge approximation but larger varia-
tions exist in all other region's. As concluded previously, the solution
used then depends on the region of space of interest. Tt should be
noted that computed results for single-double diffractions and multiple
diffraction shown on Plates IX, X, and XI are almost the same, and it is
rather difficult to distinguish any variations between the two.

Equatorial Plane Pattern of Circumferential Slots Operating in the
TE1p Mcde

As was explained previously, the TE;, mode is represented by
two plane TEM mode waves reflecting obliquely back and forth between
the waveguide walls with the electric f£ield being parallel to the edge
of the walls. The finite wedge approximation for the parallel-plate-
cyljnder-geome'b:r':y- will not satisfy the boundary conditions and the

half-plane approximation will be used.
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For a circumferential slot operating in the TE;, mode and mounted
on & circular cylinder it was found that the best approximation was to
replace edge 1 by & half-plane (n = 2) for the first order diffraction
and by a finite wedge (n # 2) for the sect;nd and higher order diffrac-
tions for the 0°-180° pattern measured in the counterclockwise direction.
The edge 2 geometry was replaced by a finite wedge for all orders of
diffraction. For the 180°-360° pattern, the approximations of edge 1
geometry are valid for edge 2 and vice~versa. .

The above spproximation will be used also for the elliptical
cylinder. The wedge-diffracted field is given by Equations 81-83 with

n's modified as explained above. The creeping wave field is given by

1 ty
) -f ouos(p)ds ) -‘\[ cr,os(p)ds
Ea(f) = VAeﬁ']ktle © + VBe-Jkt2e © (154 )
where
2/3

t 1/3 .
f aglp)ds = -(—E)e—/(%) a9 n/6 e

0

P10 ab dp

d i/2
- [(al['cosegﬁ + bl’sin2¢)(a2c3032¢ + basinegi)]

(155)
The regions where the appropriate wedge-diffracted and creeping wave

- fields are applicable are identical to those shown in Table 3 for the

TEM mode.
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The computed results for the TE;y mode slot on an elliptical
cylinder are shown on Plate XII. Iike for the circular cylinder, the
single-double diffraction solution has a discontinuity in the @ = i90o
directions because higher order diffractions are neglected. The thin-
walled guide approximation (n = 2 for all order of diffraction) could

also be used as was demonstrated for the circular cylinder. Good

results would also be obbained in this case.
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CHAPTIER V
MUTUAL COUPLING BETWEEN SLOTS ON A CYLINDER

The coupling between two or more waveguide apertures on the

surface of a cylinder is calcvlated using wedge diffraction and creeping

30

wave theory. Mubual coupling is defined” as follows:

Modal current (or voltage) in coupled guide (156 )

Mutual Coupling =
Modal current (or voltage) in transmitting guide

Tt should be noted that this quantity gives the phase as well as the
magnitude of the coupling, and may be readily converted to mutual
impedance or any other desired form for expressing coupling. The
analysis of coupling will be formulated in the following manner. The
transmitting guide, with its associated modal current, is replaced by
an eguivalent line source. The modal current induced in the coupled
guide by a line source isldetemined. These two steps are then combined
to obtain the mutual coupling.

The coupling problem considered in this discussion is described in
Figure 20. The formulation of the solution to the coupling problem is
as follows. A unit-amplitude wave with its associated modal current is
ineident in the transmitbing guide. An equivalent line source, having
an ocmnidirectional pattern and a field matching that of the guide in

the direction ¢t, is substituted for the transmitting guide. A coupled

ol
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Figure 20. Coupling between parallel-plate wavegulide slots on a

cylinder.
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wave with its associated modal. current is induced in the receiving guide.

The mutual coupling is defined as the ratio of the modal quantity in the

coupled guide to that of the transmitiing guide.

TEM Mode

For the TEM mode, the field component perpendicular to the plane
of Figure 20 is the magnebic field. The incident field is uniform
across the guide width, and thus the incident power flow for a unit-

amplitude megnetic field is given by

m

Po = Wig, Lo = = (157)
€
o

The modal current associzated with this mode is
i, = Vw . (158)

The replacement of the guide by a uniform equivalent line source is
illustrated in Figure 21. The field radiated by the equivalent line

source is equated to the field radiated by the guide, thus

~3(kr - n/4) -3k
1) S = Hp (1) = DTo(%)E-\,-——; (159)

where Dgo(fi) is the diffraction coefficient of the transmitting guide
in the direction ¢‘t' The modal current I; dis that of the equivalent
line source with an antemna impedance Z,, and is given by

-3 w/b

Il = \[E_IE.DT0(¢.t)€ (160)



D (8.) :
T0 1 I, (TEM)

Figure 21. Equivalent line source for transmitting guide.
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A principal criterion for the validity of this analysis is the accuracy
of substituting the equivalent line source for the guide.

The modsl current induced in the receiving guide by the equivalent
line source is obtained by spplication of reciprocity, as illustrated
by Figure 22. The modal current induced in a line source by a guide
excited by a modal current Il will be obtained. ;['he power received
by the line source, being the product of the effective aperture width

of the line source 7\/21{, multiplied by the power density, is given by

2
p=Lz, EHTl(Q'l) - Hpo(Qp)] ] (161)

where HTl(Q,l) and HTE(QE) are the fields of the receiving guide at
points Q‘l and Q2 as shown in Figure 22. The modal current received

by the line scurce is thus glven by

T = ‘lﬁEIT () = Hp (Qeﬂll (162)

where
t
1
ek "f aop(p)ds
HT (Q'l) = vile-J le © (165)
L
—ikbs agn(p)ds )
Hy (@) = Vipe 0 2 Vo . (16%)



Il (TEM)

= I (TEMD)

N

i

Figure 22, Use of reciproeity to ‘obtain response of parallel-plate
guide to line source.
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By reciprocity, this'is the modal current induced in the guide by the
line source excited by a modal current Ij.
The mubtual coupling for the TEM mode is obtained by taking the
ratio of the modal current in the coupled guide %o the modal current
in the transmitting guide. Using Equations 158, 160, and 162, the mutual

coupling is given by
1= ..\9 Dipo (@ )e ™3 “/l*{HT (@) - Hy (Qg)} @65)

Computed results of mutual coupling between two slois operating in
the TEM mode on a circuvlar conducting cylinder are sh_own in Figure‘EB
‘for different size cylinders and compared with data from a flat ground
plane.BO It is seen that the coupling decreases as the relabive position
between the two slots increases and it would be zero when -

the two slots are diametrically opposite since the two creeping waves

would cancel in ‘the sec;ond slot. Tt should be noted that the phase of
the coupling is also available from this analysis. Since theoretical
determination of coupling by convenbtional methods is difficult and

experimental data are not available, no comparison can be made.



Mutual coupling, dB

N

L e 3

L e SO
&
h 4

L T s rry //li

i I | | |

~50

Figure

03,

Mutual

1.2 1.6 ' 2.0 2.4 2.8
Relative position of two slots, 1)\

coupling between slots on a circular conducting cylinder (TEM mode)
and on ground plane.

3.2

TOT



CHAPTER VI
CONCLUSTIONS

Wedge diffraction and creeping wave theory have been used to
analyze the radiation properties of slots on cylindrical bodies. Using
this technique, the computed results for circular and elliptical
cylinders have been favorably c‘ompa.red. with existing modal solutions and
experimental results. Three models representing the parallel-plate-
eylinder geometry have been introduced and their validity verified.

One model representing the parallel-plate-cylinder geometry was a
set of infinite wedges with finite included angle (n # 2). Such an
approximation served as a good model for TEM mode slots. Although the
physical structure of the antenna was comprised of flat and curved
surfaces forming an edge, a model of two flat surfaces forming an edge
was a good approximation for computing the diffracted fields in the 1i%
region. The values of the fields obtained in the penumbra reglon may
not have been very accurate, because of the presence of the wedge, but
it was demonstrated that good values can be obtained. BSuch a model can
be used in approximating other complex structures which may be similar
to the ones applied in this dissertation.

‘Another model representing the parallel-platé-cylinder geometry for
81l orders of diffraction was a set of two flat ground planes (n = 2).
Even though the physical structure of such a model was guite different
from the actual antemma, it was demonstrated that it also served as a

102
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good model. for computing the diffracted fields in the 1it region. Since
wedge-diffracted fields are strongly dependent on the tip of the wedge,
the edge of the flat ground plane was similar to that formed by the
plate of the guide and the surface of the cylinder. For this case, the
fields in the penumbra region were more accurate than for the previous
model becanse there was no physical structure to interfere with the
fields. This model can be used for TEM and TE;n modes and will give
accurate results, as a first order of approximation, for a variety of
structures which ?orm.a tip even though the physical structure may be
different.

The third model used Tor approximating the edge region of the
antenna was a half-plane in combination with a finite wedge in the
following manner: replace the edge 1 geometry by a half-plane (n = 2)
for the first order diffraction and by a finite wedge (n # 2) for second
and higher order diffractions for the 0°-1.80° pattern measured in the
counterclockwise dirvection. The edge 2 geometry is replaced by a finite
wedge (n £ 2) for all orders of diffraction. For the 180°-360° pattern,
the approximations of edge 1 were valid for edge 2 and vice-versa. It
was demonstrated that this model also served as a good replacement for
the parallel-plate~cylinder operating in the TEM and TE;n modes. It can
also be used as a model for the wedge-diffracted fields of struectures
forming edges which masy be similar to the ones for which it was applied
in this dissertation.

As a result of the preceding, the antenna designer now has at his
disposal three models for approximating edges formed by curved and fiat

surfaces. HEach one will give good results as a first order
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of approximation. However, since each one is more accurate in different
regions, a combination of them will give better results.

For the TEM mode slots, all three models have been used in the
computations. The compubed resulis using the half-planes model and
the half-plane in combination with the finite wedges approximation are
more accurate for smaller guide widths in the penumbra region but the
fﬁni%e wedge approximation gives better resulis in all other space.
However, as the guide width is increased, the finite wedge approximation
gives better resulbs in all reglions.

For the TEyn mode slots, the parallel-plate-cylinder gecmetry
carmot be approximated by a set of wedges of finite included angle
because the tangential E-field boundary conditions are not sabisfied.
Therefore it was necsssary to use either the half-planes model or the
half-plane in combination with the finite wedges approximation as a
model. The compubations agreed very closely with existing boundary-
~ value solutions. -

The elevation plane patbern of a finite length cylinder of an
arbitrary cross section was bomputed usipg wedge diffraction techniques.
The diffractions from the edges of the cylinder are taken into account
and their contributions to the overall pattern are noted. As the
aperture width is increased, the beamwidth of the main lobe is decreased.
The smoothest pattern and the lowest back lobes are obtained for the
guide whose width is exactly one wavelength since complete cancellation
of the fields diffracted from wedges 1 and 2 along the cylinder
surface (6 = +90°) occurs. As the guide width is increased beyond

one wavelength, additional lobes gupear.
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The maximum radiabion of a slotted cylinder can be oriented in any
desired direction by simply slanting the input guide. Such an orienta-
tion may be warranted to achieve desired radiabion characteristics. The
problem of mutual coupling between slobs on a cylinder has been oub-
lined. Computations have been carried out but cannot be compared since
boundary-value or experimental data are not available.

The above technigue used to analyze the radiation properties of
aperture antemnas on cylinders pregents two problems: approximation
of the aperture geometry by wedges and the excitation mechanism of the
creeping waves. In other words, the representation of a complex
geometry by simpler models whose solubions are known and the initiation
of the creeping waves geem to be the main obstacles. It was found that
a junction formed by a flat plate and a curved surface can be approxi-
mated by a wedge with infinite sides but finite included angle (n £ 2),
by a half-plane (n = 2) or by a half-plane in combination with a finite
wedge as far as the diffracted fields are concexrned. This agrees with
Sommerfeld’s conclusion that patterns on precise diffraction photographs
exhibit almost no dependence on the shape of the diffraction edge and
the fields diffracted by the wedges in the "1it"™ region are chiefly
dependent on the region near the tip of the wedge.

A1l models give good results as has bheen demonstrated. Also it
was found that the creepling waves can be initiated by using the wedge-
diffracted field along the boundary which separates the "1it" and
"shadow" regions as their initial value. This type of assumption
Preserves continuity of fields as it is necessary. However, this camot

very easlily be established for any case. For example, creeping wave
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theory along with image theory on curved surfaces was applied for the
analysis of the radiation properties of a wvertical iafinitesimal stub on
cylindrical bodies. The results obtained were compared with existing
boundary-value solutions but a very poor agreement was indicated. A
more practical case of a finite dipole might yield a creeping wave
solution by segmenting the dipole. Each segment of the dipole would
launch a creeping wave on the cylinder at the tangent point fixed by
the height of the segment. There would also be a different "image"
element for every radiation angle. This would represent a lengthy
problem bubt its soluwbion should be tractable.

TEM mode aperture field distributions can be realized in practice
using H-plane sechoral horns of several wavelengths. This type of field
realization was used for the elevation plane pattern experimental
measurements. The compubed results agreed very closely with the experi-
mentel data which iﬁdicates that the assmmed sperture field distribution
is closely approached. However, for circular cylinders, the equatorial
plane radiation pattern function of an infinite axial TEM mode slot is
'the same as that of finite slot. Tt is assumed that such a relation
holds for elliptical cylinders and experimental measurements of TEM mode
axial slots were carried out using standard rectangular waveguide feeds.
A comparison between computed and experimental results indicated a very
good agreement which justifies its validity.

The essential feature of this technigue is that it 1s applicable to
all types of complicated problems some of which are, in general,
Impractical to solve rigorously. The approach 1s to resolve a complicated

problem into simpler component problems with spproximations, if necessary,
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such that each of them will have a simple rigorous scolution. The known
solutions of these individual compconents pemmit the caleulation of the
overall radiation pattern by the use of superﬁosition'. ‘Cther analyses,
such as the point-matching techmique have been developed for the solu;
t5.0111 of complicated antennas. However, the point-matching approach
yields good results for antennas and supporting structures whose
electrical sizeé is small, resulbing in a set of N linear equations
which are within the capacity of présent digital computers to handle
and the time involved in such computations is gre-at resulbing in a high
cost per data point. The analysis presented in this dissertation based
on the geometrical theory of diffraction and creeping wave theory yields
approxima.;be results with relatively little expenditure of computer time.
Algo, gince the field co;:rbribu'tion from each individual component is
separated, this teclmique is ideal in parametric désign problems.
Indivitiual parameters can be varied and their effect 1.:.0 the overall
patbtern studied.

Another possible spproach to the solution of a complicated problem
would be an asymp'totic._sez:ies expansion for each problem of interest.
However, such an approach presents. difficulties. TFirst of 2ll, an
asymptotic series expansion may not always be very convenient due o
the complexity of the formuwlation. BSecondly, even if such an analysis
is possible, it is applicable only to that individual problem at hand.
A slight variation in the geometry would require s new derivation which
in some cases may not be possible. The technique outlined in the main
text, although less accurate, provides solutions to general type of

problems with only slight variations. It should be pointed out that
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data obtained with the agbove technique are well within measured
accuracies.

The concept of a hybrid scolubion uvtilizing wedge diffraction and
creeping wave theory has been established in solving aperbure antenna
problems on cylindrical bodies that have not been congidered previocusly
from this point of view or problems that otherwise ‘may not be possible
to solve in any other way. The first attempt was to gpply this tech-
nique to bodies with known boundary-value solutions for comparison of
the results. It was then extended to more complicated geometries where
exact solutions are not possible but where experimental. data are avail-
able. Once -a good understanding of the radistion mechanism is
established, the technique cam be extended to other more complex
geomebries to include slots on spheres, prolate spheroids, ogiveé,
ete, Also problems involving dipoles on the surface of such geometric
shapes should be considered. Experimental data and modern computational
methods such as the pc;in’c—matching boundary-value techniques should be
used to obtain improved values and gain better understanding of the
radiation mechanisms involved.

Another possibility would be to combine soluitions of the type
given in this dissertation with the computer technigues. For example,
the case of the monopole antenna on a cylinder would use point-matching
methods to find the fields in the vicinity of the moncpole and the
diffraction concepts would be used over the remainder of the cylinder.
This would greatly extend the size cylinder that could be itreated using

point-matching techniques.



APPENDIX
DIFFRACTION BY A PERFECTLY CONDUCTING WEDGE

The diffracted field for a plane wave incident on a wedge of

included angle (2 - n)x shown in Figure 24 is given by
ED(T:‘V:WO:H) = VB(I‘,II! - ﬂro,n) ® VB(I‘:’lf + 1[’0311) (166)‘

where the plus sign applies for the polarization of the electric field

‘pexpendicular to the edge

JE
on

and the minus sign.applies for polarization parallel to the edge

' )= 0 (167)
wedge

(Elwedge) =0 . ' | (168)

The wedge diffraction function ETB(r,ﬂr * Wo,n)] for a plane wave has

been determined by Pa.u_"l_i18 and improved by Hutchins.l9

The improved form of the diffraction function is defined as
‘-TB(I';‘Lr T ‘Jfoyn) = I_T[(T:‘J" F 1koan) + I-hr(r’ﬂr F ’]’OJH) . (169)

where
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Wave
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Figure 2k, Diffraction by a wedge of included angle (2 - n)x.
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~j Qe+ n/k) + (¥ T o )
Iiﬁ(r,llf TV ,m) ~ g Va cotEr (ZnJ“ %)]ejkra f e-aT2d~r

gn ver Viwa
+ Higher ordér terms ‘ (170)
a =1+ cos [(llf V) - 2111‘[N] (171)

and N 1is a positive or negative integer or zeroc which most nearly

satisfies the equation

2nall - (¥ F wo) = - for I_,
(172)

1

el - (¥ F¥,) = 4 for I,

Equation 170 contains the leading terms plus higher order terms
which are negligible for large values of kr. Tor large values of kra

Equation 170 reduces to the form jéresented by Pauli and given by

e e . (173)

o3 (it a/h) % sin(Z)
¥

Il
coS — = CO8
hal n

The diffracted field of Bquation 173 is that from which the asymptotic

VB(r,llI + 1Ifo,n) =

diffraction coefficients of the geometrical theory of dé.ffraction are
obta:'med.lo Thig expresgion is not valid in the shadow houndary because
a =0 there.

The solution for cylindrical wave diffraction at large distances
from the edge can be debtermined by the use of the prineiple of

6

reciprocity together with the solution for plane wave diffraction.
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For plane wave incidence the diffracted field at observation point P
of cylindrical coordinates (r,¥) as shown in Figure 25(a) is given by
VB(r,’tIr,n) of Equation 169. Now consider the situation in Figure 25(b)
in which the wedge is illuminated by a cylindrical wave with its source
at (xo, §O). By reciprocity the diffracted field V, in the direction
£ is equal to the diffracted field Vy which is located at the point

(r = Xo,¥ = £,) with a plane wave incident from the direction VY, = &.



Incideni Plane
Wave

(a)

P(xo.so)

Incident Cylindrical
Wave

(b)

Figuré 25. Illustration of weciprocity.

113



10.

BIBLICGRAPHY

Silver, 8., and Saunders, W. K. "The Radiation from a Transverse
Rectangular Slot in a Circular Cylinder,” Journal of Applied
Physics, 21(August, 1950), T45-T49.

Bailin, L. L. "The Radiation Field Produced by a Slot in a Large
Circular Cylinder," IRE Transactions, AP-3(July, 1955), 128-137.

Wait, J. R. "Radiation Characteristics of Axial Slots on
Conducting Cylinder,” Wireless Engineer, (December, 1955),
Z16-322.

Harrington, R. F. Time Harmonic Fields. New York: McGraw-Hill,
1961, -_PP. 21[‘5-25)4‘0

Wait, J. R. Electromesgnetic Radiation from Cylindrical Structures.
New York: Pergamon Press, 1959, Pp. 88-10k,

Rudduck, R. C. "Application of Wedge Diffraction To Antemmna
Theory," Report 1691-13, Antenna Laboratory, The Ohio State
University Research Foundation; prepared under Grant NsG-4L48,
Wational Aeronaubics and Space Administration, Office of Grants
and Research Contracts, Washington, D.C., June 30, 1965. ——

Ryan, C. E., and Rudduck, R. C. "Radiation Patterns of Rectangular
Waveguides," IEEE Transactions on Antennas and Propagation, AP-16
(Fuly, 1968), 188-489.

Ryan, C. E., and Rudduck, R. €. "A Wedge Diffraction Analysis of
the Radiation Patterns of Parallel-Plate Waveguides," IEEE
Transactions on Antennas and Propagation, AP- lG(July, 1968),

hoo-ka1,

Rudduck, R. C., and Yu, J..S. "Higher-Order Diffraction Concept
Applied to Parallel-Plate Waveguide Patterns,”" Report 1691-16,
Anterma Laboratory, The Ohio State University Research Foundation;
prepared under Grant NsG-4L8, Wational Aeronavitics and Space
Administration, Washington, D.C., October 15, 1965.

Keller, J. B. "Diffraction by am Aperture,"” Journal of Applied
Physics, 28(April, 1957), Loe-hik., -

11k



12.

13.

1k,

15.

16.

7.

18.

19.

20.

21.

22,

25.

2h.

15

Keller, J. B. "Geometrical Theory of Diffraction,” Journal of
Opticel Society of America, 52(February, 1962), 116-130.

Franz, W., and Depperman, K. "Theorie der Bengang Am Zylinder
unter Berucksichtigung der. Kreichwelle," Ann. Physik, 10{June,
1952), 361-373.

Levy, B. R., and Keller, J. B. "Diffraction by a Smooth Object,”
Conmmnications on Pure and Applied Mathematics, 12(1959), 159-209.

Keller, J. B., and Levy, B. R. "Decay Exponents and Diffraction
Coefficients for Surface Waves on Surfaces of Non-Constant
Curvature,”" IRE Transactions, AP-3(December, 1959), 552-561.

Levy, B. R. "Diffraction by an Elliptic Cylinder," Journal of
Mathematics and Mechanics, 9(1960), 1k7-165.
Kouyoumjian, R. G. "Asymptotic High-Frequency Methods," Proceedings
of the IEEE, (1965), 864-875.

Sommerfeld, Arnold. Optics. New York: Academic Press, 1954,

Pp. 245-265.

Pauli, W. "On Asymptobtic Series for Funchbions in the Theory of
Diffraction of Light,” Physical Review, 5l(December, 1938), 92k-931.

Hutchins, D. L. "Asymptotic Series Describing the Diffraction of a
Plane Wave by a Two-Dimensional Wedge of Arbitrary Angle,” Ph.D.
Dissertation, The Ohio State University, Electrical Engineering
Department, (1967).

Oberhettinger, F. "On Asymptotic Series for Functions Occurring
in the Theory of Diffraction of Waves by Wedges," J. Math. and

. Pnys., 34(1955), 2ks5-255.

Senior, T. B. A., and Goodrich, R. F. "Scattering by a Sphere,”
Proc. IEE, 111(May, 196k).

Hong, S. "Asymptotic Theory of Diffraction by Smooth Convex
Surfaces of Nonconstant Curvature," Technical Report No. 2, The
University of Michigan, Department of Electrical Engineering
Radiation Laboratory, Contract AF Ob(694)-834, August, 1966.

Kinber, B. Ye. "Asymptotic Solution of the Problem of Diffraction
by a Sphere," Telecommunications and Radio Engineering, No. 10,
October, 1966.

Ryan, C. E. Jr. "Memorandum on Analysis of Echo Area of Targets
Using Geometrical Theory of Diffraction and Creeping Wave Theoxy,"
Report 2430-1, ElesctroScience Laboratory, The Ohio State University,
Department of Electrical Engineering, Columbus, Ohio, May 22, 1967.



25.

26.

27.

28.

29.

30.

31.

32.

33.

3h.

36.

116

Peters, L. Jr., end BRyan, C. E., Jr. "The Relation of Creeping
Wave Phenomena to the Shadow-Zone Gecmetry," GISAT IIT
Symposium, 1967.

Ryan, C. E. "A Geometrical Theory of Diffraction Analysis of the
Radar Cross Section of a Sectionally Continuous Second-Degree
Surface of Revolution," Technical Report 2430-4, The Ohio State
University, ElectroScience Laboratory, Department of Electrical
Engineering, March, 1968.

Kinber, B. Ye. "Short-Wave Asymptotic Diffraction of Acoustic and
Electromagnetic Waves from Surfaces of Revolution,"” Radiotechnika,
20(1965), 101. '

Russo, P. M., Rudduck, R. C., and Peters, L. Jr. "A Method for
Computing E-Plane Patterns of Horn Antennas,” IEEE Transactions
on Antenmas and Propagation, AP-13(March, 19565), 219-22k.

Obha, Y. "On the Radiation Pattern of a Corner Reflector Finite in
Width," IEEE Transaction on Antenmas and Propagation, AP-11(March,
1963), 127-132.

Dybdal, R. B., Rudduck, R. C., and Tsai, L. L. "Mutual Coupling
Between TEM and TE,, Parallel-Plate Waveguide Apertures,”" IEEE
Trinsactions on Antennas and Propagation, AP-1k (September, 1966),
574-580.

Mikuteit, S. "Mutual Coupling in a Three-Element, Parallel-Plate
Waveguide Array by Wedge Diffraction and Surface Inbegration
Techniques,” Report 2485-1, The Ohio Stabte University Electro-
Science Laeboratory, Columbus, Ohio, August 30, 1967.

Rudduck, R. C., and Tsal, L. L. "Aperture Reflection Coefficient
of TEM and TEjo Mode Parallel-Plate Waveguides,” IEEE Transactions
on Antennas and Propagation, AP-16(January, 1968), 83-89.

Burnside, W. D. "The Reflection Coefficient of a TEM Mode Symmetric
Parallel-Plate Waveguide Illuminating a Lossless Dielectric Layer,”

Technical Report 1691-25, The Ohio State University, ElectroScience

Laboratory, May, 1968.

Jones, J. E., Tsai, L. L., Rudduck, R. C., Swift, C. T., and
Burnside, W. D. "The Admitbance of a Parallel-Plate Waveguide
Aperture T1lluminating a Metal Sheet," IHEE Transactions on
Antennas and Propagation, AP-16(September, 1968), 528-535.

Kraus, J. D. Rlectromagnetics. New York: MeGraw-Hill, 1953,
PP- ll"'!"6‘h'500

Wu, D. C. F., Rudduck, R. C., and Pelton, E., "Application of a
Surface Integration Technique to Parallel-Flate Waveguide Radiation
Analysis," IEEE Transactions on Antennas and Propagation, AP-17

(May, 1969).



117
3f. Wu, D. C. F., and Rudduck, R. C., "Slope Diffraction Analysis of
TEM Parallel-Plate Guide Patterns,” Technical Report 1691-29, The

Ohio State University, ElectroScience Laboratory, Department of
Electrical Engineering, Columbus, Ohio.





