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THEORETICAL STUDY OF VORTEX SHEDDING FROM BODIES
OF REVOLUTION UNDERGOING CONING MOTION

By Gary D. Kuhn, Selden B. Spangler, and Jack N. Nielsen
Nielsen Engineering & Research, Inc.

SUMMARY

Based on experimental evidence of the existence of a steady
asymmetric vortex system on a slender body in coning motion, a theoret-
ical flow model for vortex shedding was developed using potential flow
methods and slender-body theory. The model provides for the calculation
of the strength and position of each of the two vortices representing
the areas of concentrated vorticity in the crossflow plane and the
resulting force distribution induced on the body. Initial vortex
locations very close to the body must be prescribed to start the compu-
tation. For cylindrical bodies, the results for vortex motion and
forces were found to be quite sensitive to the initial positions. In
order to investigate the nature of the initial condition problem, a
linearized analysis of the vortex motion very close to the body was
performed. Linearization was found to decouple the motion of the two
vortices, so that the paths of the vortices could be obtained, but the
relative positions of the two vortices along their paths could not.

Upon specializing the body to a cone, it was found that the full non-
linear solution rapidly converged to a unique solution for symmetrical
initial conditions, but that the solution was again sensitive to initial

asymmetry.

On the basis of agreement with data for a cone and an ogive cylinder
in lunar coning motion, the flow model developed is felt to describe
reasonably accurately the nature of the vortex-like separated flow over
the body and the vortex-induced force distribution. The windward vortex
is shown to be somewhat further distant from the body than the leeward
vortex and to be somewhat stronger than the leeward vortex over the
forward portion of the body. These differences are shown to produce a
side force to leeward and a stabilizing side moment in correspondence

with the measured results.

The theoretical results were found to be quite sensitive to the

assumed location of the separation lines. Accurate knowledge of the



location of separation is required before a truly predictive method can

be developed.
INTRODUCTION

The nature of vortex formation on an inclined slender body and its
relation to the two-dimensional flow over a cylinder was recognized
some 20 years ago (ref. 1). Since then, a considerable amount of both
experimental and theoretical work has been done on the nature of the flow
over such bodies and the vortex-induced force distribution on them
(refs. 2 and 3). It has been only recently, however,; that the presence
of a steady vortex pair on a slender body in a coning motion has been
established (ref. 4). The purpose of the present investigation is to
extend certain analytical methods that were developed for the non-coning
(planar) problem to the coning problem to examine the nature of the

vortex flow and the vortex-induced force distribution on the body.

The coning problem is of importance for spinning bodies which
encounter a pitch-roll resonance condition, from which can develop a
lunar coning motion (roll lock-in) with unacceptably high angles of
attack. The reasons for the development of this type of motion are not
well understood. Tobak (ref. 4) has developed a formulation for the
aerodynamic moment system in lunar motion which does not depend on
constructing the nonplanar motion as the sum of two planar motions.
This approach permits coupling of the two planar motions and identifies
two types of "Magnus moments": one due to spin about the body axis
and one due to rotation of the angle of attack plane (the plane formed
by the wind vector and the body axis). The existence of vortices over
the body provides a potential source of coupling and nonlinear moments
of the latter type. Thus, a method of predicting vortex positions and
strengths on a coning body could aid considerably in understanding the

nonlinear aerodynamics of lunar motion and the origin of roll lock-in.

The experimental work of Tobak, Schiff, and Peterson (ref. 4 and
unpublished data) has shown that a steady, asymmetric vortex system
occurs on cones and ogive cylinders in coning motion over a range of

angle of attack and Mach number in the low supersonic range. On the



basis of this evidence, slender-body theory is used to construct a
potential flow model in the crossflow plane consisting of a pair of
vortices whose strengths are not constrained to be equal and whose
positions are not required to possess symmetry about any axis system
in the fluid. Only the case of lunar motion is considered. The
analysis extends to the coning case certain concepts introduced by
Bryson (ref. 5) to predict the variation of vortex position and
strength along the body and the force distribution induced on non-
coning bodies. A linearized analysis is made to determine the initial
motions of the vortices very close to the body and the initial develop-
ment of the vortex strengths. Comparisons with data from reference 4
and unpublished data on slender cones and ogive cylinders are shown

to illustrate the nature of the agreement between theory and experiment.

SYMBOLS

a local body radius

ag local radius at base

<, side-moment coefficient, N/q(vaoz)éo

Cn pitching-moment coefficient, M/q(vaog)ﬁo

CY side—-force coefficient, Y/q(vaoz)

C, normal-force coefficient, Z/q(waoz)

Ch stability derivative defined in reference 9
a

Ch. stability derivative defined in reference 9

C, stability derivative defined in reference 9
q

c, stability derivative defined in reference 9
a

F' force defined by equation (6)

fi,gi arbitrary functions



£ distance from nose to center of gravity

cg
Y/ reference length, distance from nose to center of gravity
© for cylinder, body length for cone
M pitching moment about the center of gravity
side moment about the center of gravity
p pressure
a dynamic pressure, % pve
R real-valued function defined by equation (A-4)
r radial coordinate of a point in the body-fixed (y,z)
coordinate system
t time
\Y free-stream velocity fixed in direction and magnitude
V,w v,z components of velocity field, respectively
v',w' y',z' components of velocity field, respectively
W complex potential
x',v',2' non-rotating coordinate system with origin fixed at the
center of gravity of the body; positive x' directed
rearward parallel to the velocity vector, z' 1in angle of
attack plane at t = 0, y' positive direction to form a
right-handed system; see fig. 1
Y,2 components of body force along y,z axes, respectively
Y',za!' components of body force along y',z' axes, respectively
V,2 rotating axis system in a plane fixed in the fluid perpen-
dicular to the flight velocity vector; origin at inter-
section of body axis with the fixed plane, z in the
angle of attack plane, vy positive direction parallel
to y' at t = 0; see figs. 1 and 2
a angle of attack
B function defined in equation (A-4)
r vortex strength
' vortex strength corresponding to an arbitrary circulation of

the Magnus type



cg

small angle defined by equation (A-13)
cone half angle

non-dimensional distance from feeding point to concentrated
vortex

complex variable, y + iz
complex variable, y' + iz'

angular coordinate of a point in the vy,z coordinate
system

angle of separation lines from resultant crossflow vector,
defined in figure 3

fluid density

velocity potential; also, angle of coordinate defined
by equation (12)

stream function

magnitude of angular velocity of body about x' axis

Subscripts
referred to resultant crossflow
referred to the center of gravity
initial wvalue

index designating right-hand vortex (j = 1) or left-hand
vortex (j = 2)

referred to vortex feeding points

referred to a vortex center

Conventions
time differentiation
complex conjugate

abbreviation for Naperian logarithm



PROBLEM DESCRIPTION

A sketch of the motion being considered is shown below.

The analysis of the motion is based on the following assumptions:

(a) The body center of gravity traverses a straight path at
constant velocity, V, through a constant density fluid.

(b) The body axis is inclined at a fixed angle, a, with the
direction of motion of the center of gravity. The body undergoes a
coning motion in which the plane defined by the body axis and the
velocity vector (the angle of attack plane) rotates at constant
angular velocity , about the velocity vector.

(c) The body spin rate about its own axis is w (lunar motion).

(d) The body is axisymmetric.

(e) The angle of attack and Mach number are such that a steady

vortex filament pair exists over the leeward side of the body.

EXPERIMENTAL BASIS OF THE FLOW MODEL

An experimental investigation of the flow on a slender ogive
cylinder in coning motion was undertaken at the Ames Research Center,
NASA (ref. 4). Additional work has been done on both an ogive-cylinder
and a slender cone, although the results have not yet been published.
The results of these investigations indicate that a steady, asymmetric
vortex pair is formed on the body which imposes a significant side force
and side moment on the body. The vortex-induced forces are nonlinear
with angle of attack and appear essentially linear with the coning rate
for fixed angle of attack. The existence of the steady vortex pair
forms the basis for the theoretical model and analysis of the present

work.
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The experimental investigations were conducted in the Ames Research
Center 6- by 6-Foot Wind Tunnel at Mach numbers of 1.4 and 2.0 and free-
stream unit Reynolds numbers from 1.0x10° to 3.5x10° per foot. The
models were mounted on bent stings which were rotated to produce the
coning motion. The vortices were photographed at various axial stations
on the body using the vapor screen technique and a camera mounted to
rotate with the sting. Variation of the spin rate of the body about
its own axis in addition to the coning motion about the center of gravity
indicated that for the range of spin rates considered, the spin rate had
negligible effect on both the vortex trajectories and the aerodynamic

loads on the body.
BASIC THEORETICAIL APPROACH

The steady, asymmetric vortex pair observed in the tests described
above suggested that the flow model for the coning motion case might be
developed in the same manner as the analysis for a slender body at angle
of attack. Accordingly, the basic approach followed in this investiga-
tion is an extension of the analysis of Bryson (ref. 5) for a slender
body at angle of attack. In the real flow, flow separation occurs along
two separation lines located on the flanks of the body. Vortex sheets
emanate from the separation lines and roll up over the leeward side of
the body to form two regions of concentrated vorticity. A steady, three-
dimensional flow occurs, as seen in an axis system fixed to the body.
Following the notion of Bryson, the two regions of concentrated vorticity
over the body are replaced by two potential vortex filaments. The
steady three-dimensional potential flow problem is then solved through
the use of slender-body theory. According to this theory, the flow can
be analyzed in a series of planes along the body axis, where the flow
in each plane is unaffected by the flow in other planes. An equivalent
model is the unsteady flow in a plane fixed in the fluid through which
the body is moving. Thus, the steady, three-dimensional problem can be
considered an unsteady two-dimensional flow problem in which time is
equivalent to distance along the body. The present analysis is carried
out as the unsteady two-dimensional flow in a plane fixed in the fluid
and normal to the flight velocity vector. Sketches of this motion are

shown in figures 1 and 2.




Pigure 1 shows the body piercing the plane fixed in the fluid.
An x',y',z' axis system is fixed to the body center of gravity such
that the x' axis is colinear with the velocity vector, and the plane
formed by the y' and z' axes is parallel to the plane fixed in the
fluid. 1In the plane fixed in the fluid, a y,z axis system is defined,
where the origin of the axes is the center of the circle representing
the body cross section in the plane and the =z axis lies in the angle
of attack plane. The body nhose is considered to pierce the plane fixed
in the fluid at t = 0 along the =z' axis. Thus, the angle of attack
plane makes an angle ot with the x',z' plane. The two vortex
filaments originate at the nose and move away from the body and grow
in strength with distance along the body. The vortex strengths are
shown in the positive sense (although negative values of [, are

predicted).

The flow model in the plane fixed in the fluid appears as shown

in figure 2. The vy',z' axes shown are projections into the plane of

the actual vy',z axes. The body is rotating with a constant angular
velocity w about its own center. In addition, the body cross section
has two translational velocity components: a constant radial component

Vo and a tangential component proportional to time.
The vortices are considered to be fed from points, Co on the body,

which are the locations of the separation lines on the flanks of the body.
The separation points are assumed to have fixed angular relationships
with respect to the resultant crossflow vector (vector sum of Va and
wVOL(tCg - t) so that they and the crossflow vector rotate with respect
to the vy,z system at the same angular rate. The vortex strength at

a given vortex position is determined from the condition that the velocity
at o, is equal to éo' The vortex velocity is determined from a
condition of zero net force on the vortex and its "feeding sheet," the
latter being a line connecting the vortex to the separation point along
which vorticity is considered to be transported. The zero net force
condition is an approximation tolthe exact condition of zero force on

each element of distributed vorticity over the leeward side of the body.
Using the two above conditions for vortex strengths and velocities and
suitable initial conditions for the vortices as they originate at the

nose, one can determine the positions and strengths of the two vortices



as a function of time (or distance along the body). From this information

the force induced on the body can be obtained.
METHOD OF ANALYSIS

In accordance with the basic approach discussed above, the method
of analysis consists of solving for the variation with time of the
positions and strengths of the vortices from given initial conditions
using two-dimensional potential flow methods. The methods involved are
described in this section. The notation and coordinate systems are
shown in figures 1 and 2. The x',y',z' coordinate axes are a non-
rotating set of axes with the origin fixed at the body center of gravity,
whereas the y,z axes are a rotating set of coordinates in the fixed
plane. Since the vortex motion analysis is carried out in the V2

system, some care must be taken in dealing with the rotating axis system.

Formulation in the Rotating Coordinate System

In the vy',z' coordinate system, the fluid is irrotational and is
at rest at infinity. Thus the flow field satisfies Laplace's equation
and a velocity potential exists. For motion in the moving (y,z)
coordinate system, it is noted that if the coning motion of the body is
stopped and all motion is taken with respect to the vy,z coordinate
system, then there exists a fluid velocity along the positive y axis
(horizontal crossflow) proportional to « and a fluid velocity along
the =z axis (vertical crossflow) of magnitude Va.? In addition there
is a solid body rotation of the fluid past the body so that the flow
field in the v,z system is rotational. The horizontal crossflow veloc-
ity is the product of the coning angular rate o and the distance
between the x' axis and the center of the body cross section in the
fixed plane. The latter distance is V(tcg - t)a, where t 1is the
time measured from the instant the nose penetrates the plane fixed in the
fluid and tcg is the time that the body center of gravity moves through
the plane. In keeping with the small angle assumption, the body cross

sectiocns in the fixed plane are assumed circular to first order.

The assumption is made in the analysis that trigonometric functions of
a can be approximated with sufficient accuracy by small angle rela-
tions; that is, sin a £ tan ¢ £ a, and cos a = 1.



Since the flow is irrotational with respect to the y',z' coordinate
system, the fluid velocity relative to the y',z' system can be

expressed as

, ., dw’
v' - iw' = —
ag:
where W' 1is the complex potential
W' = ¢' + iy’

The fluid velocity relative to the y,z system is
. ) . ' lU.)t . . S
vV - iw = (v' = iw')e - wVa(tcg - t) - iva - iwl (1)

where the last three terms represent the motion of the y,z system
relative to the vy',z' system. Thus, the fluid velocity relative to
the vy,z coordinate system consists of an irrotational part, derivable
from a potential, plus a rotational part. The fluid velocity in the

rotating system is

w o= —i aZ _ 2%\ , aa
vV - 1w = =iVg <? + wva(tcg t) (i > + 7

£z ¢e
.rl+rg_rm<l> .y 1 1
- 1 - - 1L = | = = -
2T ¢ 2 | ¢ - Qv a
1 C = =
CV
1
r
. s 1 1 g
—lZWC—C -— —J_CDC (2)
Va0 -2
CV
2

where I represents the strength of a vortex.2 1In equation (2), the
first two terms are the crossflow terms. The third term is a source

representing the fact that the body radius is changing with time.

2In the mathematical formulation, the sign convention on I’ 1is such
that I' 1is positive for a counter-clockwise rotating vortex when
viewed in the coordinate system shown in figure 2.
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For a vortex external to a circle, the circle theorem gives an image
system within the circle consisting of a vortex of opposite sign at

the inverse point plus a vortex of the same sign at the center (ref. 6,
para. 13.50). The fifth and sixth terms, and part of the fourth term,
of equation (2) represent the two external vortices and their images.
The remainder of the fourth term represents a vortex at the center of
the circle of strength Fm' The purpose of this vortex is to represent
a Magnus circulation that can occur because of the body rotation in the
presence of a crossflow. As mentioned previously, experimental results
on cones and ogive-cylinder bodies indicated that the aerodynamic loads
on the body are insensitive to body spin rate, which implies that the
classical Magnus effect is very small. A plausible assumption for the
lunar motion case is that the net circulation in the plane fixed in the
fluid, which is initially zero, remain zero as the body passes through
the plane.® Consequently, in the remainder of this report, it has been
assumed that

The last term in equation (2) accounts for the rotation cf the coordinate

system.
Solution for Vortex Motion and Strengths
The strengths I', and I', of the vortices, for given positions
Cv and Cv , can be determined from the condition that the fluid
1 2

velocities relative to the moving separation points at (g and g
1 2

are zero. Thus,

U e

{v - iw>Cj=Coj = _O- j=1,2 (3)

This condition supplies two equations for the two unknowns I\ and T,.

The condition for zero net force on a vortex and its "feeding sheet"
can be formulated by observing that the force on the external vortex is
equal and opposite to that on the "sheet." The force on an external

vortex is ipl"(év - Vy), where V is the velocity induced at the

Vi

°Some other condition might also be invoked to determine Ty, e.g., that
some specified point on the circle become a stagnation point, as in the
case of the Kutta condition applied to an airfoil mapped into a circle.

11



vortex by all components of the flow other than the vortex itself, and
év -V, is the vortex velocity relative to the local induced flow. A
force exists on the sheet because of the rate of change of strength of
the concentrated vortex. The force on the sheet is thus determined from
the unsteady Bernoulli equation applied to the irrotational flow around
a vortex as follows. Consider a vortex of strength TI'(t) at the origin

of a coordinate system as shown in the following sketch.

1z

The complex potential for this vortex is

wv=¢+i¢=-i£5(7§L1nP=-ir(t) (In r + i8)

Therefore, the velocity potential is

r(t

¢ = 27 9
and

. I(t)

¢ 2T 6

In order for the velocity potential to be single-valued, a branch cut
must exist which in this case is indicated along the positive y-axis
from y =0 to y = +x». Thus, the value of 6 1is limited to the range
of zero to 27. There is a discontinuity in ¢ across the branch cut

of value T (t), but the velocity is continuous across the branch cut.
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The unsteady Bernoulli equation (para. 3.60, ref. 6),

p_ =1 2 2y - pelo}
0 5 (v + w2) St t C(t)
when used to obtain the pressure difference across the branch cut

yvields the result
p, = p, = pr'(t)

In the case of the vortex and its image as shown in figure 2, the branch
cut can be considered to be a line joining the external vortex to its

image. The cut is assumed to pass through the separation point Co on

the body so that the portion of the cut external to the body coincides
with the sheet. The net force on the sheet is then the product of the

pressure difference across the sheet and the length of the sheet.

Thus, the force balance relation for each vortex is

. (¢

ipl
P j

v, = V) taply G, =L ) =0 j = 1,2 (4)

3 3 3 3

In this equation, Fj is a known function of Cv , Qv , Co , and Co
1 2 1 2

(from eqg. (3)) and Fj can be obtained by time differentiation of the
expression for [' resulting from equation (3). Thus, the only unknown

is the vortex velocit £ . Equations (1) through (4), after some
Y v. >

algebra, yield a set of simultaneous first-order differential equations,

linear in the derivatives, Cv . These equations are of the form

J
£C + £0. + Fsl. + £4C. =V_ - g
17v, 2 v, v, v, v, 1
(5)
f5§V + fsz + f7cv + fsqv =V, -9,
1 1 2 2 2
where the fi and g; are complex valued functions of Cv , Cv s Col,

1 2
and Cog.
The equations for the vortex motion (eq. (5)) are to be solved for

given initial values. The vortices cannot be started on the body

because the time for a given vortex to leave the body is governed by a

13



logarithmic singularity. Two physical conditions were investigated for
obtaining initial conditions to the equations of motion of the vortices.
Firstly, the vortex motion in the immediate vicinity of the feeding
points was examined by expanding the equations in Taylor series in terms
of the vortex displacement from the feeding points. The expansion
yielded independent relations for the motion of the two vortices with no
connection between the time scales of the two motions. It also yielded
the trajectories along which the vortices move in the near vicinity of
the feeding points. Secondly, the behavior of the vortices far from the
body was examined to determine if the time scales of the vortices could

be connected using some property of their asymptotic behavior.

In order to integrate equations (5) the angle arguments of Co
1

and Co must first be selected. Data on separation line location for
2

the planar motion case at moderate angles of attack indicate the
separation lines on the two flanks of the body to be symmetrical about

a vertical plane through the body axis. For the lunar coning case where
no data are available as a guide, the most reasonable first approximation
is to assume that the separation lines are located symmetrically with
respect to a plane through the body axis containing the vector sum of

the Vo and wVa(tcg - t) crossflow velocities. Since the magnitude

of the coVoL(tcg - t) component varies with time (or distance along the
body) and its direction changes at tcg’ the plane containing the

vector sum of the crossflow velocities will rotate in the x,y system

with increasing time.

Calculation of Forces and Moments

The method of approach to the prediction of the force distribution
on the body makes use of the Bernoulli equation to obtain the pressure
distribution on the body, which is then integrated to obtain the force.
In the non-rotating y',z' coordinate system, the force per unit length
can be expressed as

dr' day'’ . dz' —-iwt

dx dx t1 dx € P p dg (6)

C

where the contour ¢ 1is the periphery of the circle representing the

14



body, and the body nose is considered to pierce the plane fixed in the
fluid (at t = 0) with the imaginary axes of the fixed ({') and
rotating ({) coordinate systems aligned.

While the calculation of vortex motion can be accomplished in the
rotating, ¢, coordinate system, some care must be exercised in distin-
guishing between the two axis systems in carrying out the force computa-
tion. It was noted previously that relative to the rotating, {, system,
the flow over the body has an irrotational and a rotational part. In
the ' system, the flow is completely irrotational and has the
characteristic that all fluid velocities are zero at an infinite distance
from the body. A velocity potential ¢'({',t) exists, which is the
real part of W'({',t), given as follows

2
w'({',t) = Va [i - wl(t_ - t)] . a
cg [C_’,'elwt - iva (t - tﬂ
- iwt
+ aa 1ln [Q'e - iva(t - tﬂ
- iwt
1 ) ﬂ
r. (c cvl>
- i5= 1n P > -
21 e iwt _ iva (t - t) - — —— a
£ e + iva (t - t)
— Vl cg _
r— l(,L)t f ' -
r. (c avz)
- i>=—1In| - 5-— : =
2T £ iwt iVa(tc -t) - — — a
+ ivVa(t - t)
L 2 Cg -—
(7)
The Bernoulli equation for unsteady flow in the (' system is
given by paragraph 3.60 of reference 6 as
§=-5 St t -% (v'® + w'®) + c(t) (8)

where the constant € is uniform throughout the flow at a given instant

of time. The procedure is to obtain the proper forms of the first two

15




terms on the right-hand side of equation (8) using the real part of
equation (7) for ¢'(£',t) and the derivative of equation (7),

aw' (¢',t)/dt' for v' - iw'. The contour integration indicated in
equation (6) is then performed. With respect to the integration, it is
noted in reference 7 for the case of free vortices external to a body
that the contour can be enlarged from the body periphery to a contour
with infinite radius, on the basis that inclusion of the external free
vortices within the contour will not change the force computed on the
body, since the external vortices are force-free. The advantage in so
doing is that certain terms in the integrand go to zero in the integration.
In the present case, the contour ¢ may also be enlarged, since the
condition of zero net force on the vortex plus its feeding sheet has

been imposed. It is evident that when this procedure is carried out,

the v'? + w'2 terms in equation (8) go to zero for large ¢' and do
not contribute to the integral. Also, since a contour integration is
performed, the constant C in equation (8), which is constant everywhere
on the contour, will not contribute. Thus the only term that does
contribute in equation (6) is the time derivative of the velocity

potential. 1In the integration it is convenient to use the relation

99! (L'y€) _ AM'(L',E) _ 4 3w (X',¢) (9)
ot ot ot
where ¢'(L',t) 1is the stream function for the flow, and the following

relation between the coordinates
£ o= [C + iVa(tcg - t)] e TrWE (10)

is used to obtain the results in the ¢ system coordinates.

16



The application of this approach to the problem results in an

expression for the force per unit length given by the following result,

Q

P!
X

Q.

_ _—ilwt . .
= e 2rpaava [1 - w(tcg - t%

+ Ta2puwva {2 + iu)(tcg - t)]
2

vopolry (o, -22\ +r, (o, - =
1 Cvl 2 _ CVZ

ol . a2 \|

+ St 1pl“lCV <l -7 2)
L 1 v

J

+ 8% iprgcv <l - ra22> (11)
2

where

The first two terms represent forces that are derived from the
attached flow around the body due to the body radius' changing with
axial distance and the cross-coupling between the rotational and angle
of attack motions. The next term arises from the motion of the vortices
in the rotational flow around the body. The last two terms represent
the time rate of change of impulse of each external vortex and its image,

and are identical to the terms that occur for the planar motion case.

COMPUTER PROGRAM FOR VORTEX MOTION
AND FORCES ON BODY

The differential equations (eq. (5)) which must be solved for the

vortex motion are a set of first-order ordinary differential equations,

linear in the derivatives. They can be written in the form

17



dy

at fl(cl’CZ’t)
dz,
gt = £.(6,,8,,t)
dy,
at f3(C1’C2’t)
622
T £,(6,,6,,%)
where
Cl =y, + iz
CZ = y2 + iz
and f£,, f,, £ ,, and £, are real-valued functions. The expression

for the complex force on the body (eqg. (11)) is of this same form.
The moments about the center of gravity of the body are obtained by

integrating the following equations

aMm _ dz
dx V(tcg t) ax
aN _ ay
ax V(tcg - t) e

where the convention has been used that the pitching moment, M, is

positive when produced by an upward force ahead of the center of gravity

and the side moment, N, is positive when it corresponds to rotation of
the nose to the right.

Integration of equations (5) is accomplished using a fourth-order
Adams-Moulton predictor-corrector method (ref. 8) with starting values
determined using a Runge-Kutta integration scheme. 1Initial values of
€, £,, and t are provided as input to the computer program. The
initial values of the integrated forces and moments are defined to be

zZexo,
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The computer program written to integrate the equations consists
of a main program and six subroutines. The main program reads the
input data and controls the flow of the calculations. The various
subroutines compute the derivatives and the vortex strengths, perform
the integration, compute the coordinates of the body surface and

separation points, and print out the information of interest.

The starting conditions for the vortex positions are input in
either of two ways, as determined by the value of an index, NSTART.
If NSTART = 0, the data to be input are the quantities ¢ and €

1 2
shown in figure 3. The initial vortex positions are subsequently calcu-

lated as
. y)]

Wi

Cv = Co + ae, exp [1 <eol +

1 1

and

i
i

. T
v Co + ae, exp [1 (90 -3+ y2>]
2, 2 2

where Co and Co are the initial values of the locations of the
1 2

separation points, and v, and vy, are given by equation (A-13).

If NSTART = 1 the data to be input are the coordinates Yy s 2y 0 Yy,
1 1 2
and z, of the vortex positions. The initial coordinates of the separa-
2
tion points are computed as
1(6C—QS ) iQO
Co = ae = ae
1
i(e _+0 ) ie
¢ = ae 2 = ae 2
Oz
where GS and GS are input and Qc is the angle of the direction
1 2 N
defined by the crossflow velocities Vg and coVa(tCg - t)
= -1 | _ Va
ec = tan wVa (t - t) -
cg
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INITIAL CONDITION ANALYSIS

Bryson (ref. 5) showed for his potential flow model of vortex shed-
ding from a body in steady motion at an angle of attack that the vortex
feeding points are unstable saddle points and, therefore, there is only
one integral curve passing through each feeding point. Because of the
unsymmetrical nature of the present problem, it was considered desirable
to derive a linearized solution of the problem in the vicinity of the

feeding points similar to that for the Bryson problem.

The analysis followed the same procedure as used by Bryson

(Appendix B of ref. 5). First, the vortex positions were expressed as

ig,
Ql = Col + ae€,e
(12)
i¢2
Cg = Co + ac_e
2
where Co and Co are the complex coordinates of the feeding points,

1 2
and € and €, K 1. The assumption of zero net vorticity previously

discussed was used. The equations describing the vortex motion (eq. (5))
were evaluated to first order for small ¢; and the induced velocity at

a vortex, VV was expanded in a Taylor series about the feeding point, Co .

j J
The condition that the feeding points be stagnation points relative to
the resultant crossflow was imposed. The details of the analysis are

presented in Appendix A.

The assumption of small ej and the consequent neglect of terms
of second order and higher order in ej resulted in decoupling the
equations describing the motion of the two vortices. Thus, to first
order in ej, two independent sets of equations were derived describing
the paths along which the vortices move and the manner in which they
move along their respective paths. The feeding points were shown to be
unstable saddle points with a single integral curve passing through
each, inclined at an angle of 30° to the downstream tangent to the body
at the feeding point. This result is identical to that of Bryson (ref. 5)

for the case of planar motion. However, unlike the planar motion problem,
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the a priori assumption of éymmetry of vortex displacement is not justi-
fied in this case. The first-order analysis discussed here cannot yield
any information about the relative displacements of the two vortices
since, to first order, the vortices move independently of each other.
The second-order analysis is quite extensive and is beyond the scope of
the present effort. The independence of the linearized motion of the two
vortices is illustrated in figure 4, where the variation of €  and €,
with time is shown on a semi-logarithmic plot for two different values
of 62/61 with €, = 10~°. The ratio of eg/el is constant at the
initial value for both cases. The variation of € is the same in
both cases while the variation of €, is different by the ratio 62/61.
The logarithmic nature of the singularity at the feeding point (ej = 0)

is shown by the linearity of the variation of 1n Ej with time.

Thus, although the linearized analysié is useful in determining
the paths along which the two vortices move in the region near the
separation points, it was not capable of providing a complete and
unique set of initial conditions for calculation of the vortex motion
and induced force distribution. Nor is it clear on a priori grounds
that a second-order analysis will overcome the deficiency of the first-

order analysis.

EFFECT OF INITIAL CONDITIONS
ON ASYMPTOTIC VORTEX BEHAVIOR

An investigation was conducted to determine the sensitivity of the
vortex behavior to the initial conditions. The investigation was

carried out for cylindrical bodies as well as slender conical bodies.

Cylindrical Bodies

A systematic study of the effect of initial conditions on the
downstream behavior of the vortices on a cylindrical body was conducted
using the computer program written to solve equations (5). The initial

vortex positions were defined as

21



as in the near field analysis discussed above. The values of ej were
provided as input to the computer program, along with the body radius

and the locations of the feeding points. The angles, ¢ were computed

ok
from the first-order analysis (eq. (A-10)). The initial location of the
right-hand vortex was always specified as

€, = 0.05

while the initial wvalue of €, was varied.

Non-coning case.- The first step in the study of the downstream

behavior was to examine the case of planar motion (w = 0) both with
symmetrical initial values of € and with small deviations from initial
symmetry to gain insight into the effect of initial errors on the down-
stream behavior. Some results are shown in figure 5 for the case of

a = 26° and QS = 50° with separation considered to originate at the
nose at t = 0. Figure 5(a) shows the trajectories of the vortices

for initial values of ¢, of 0.049, 0.05, and 0.051. For the symmetri-

cal case (¢, = 0.05), Bryson (ref. 5) shows that the vortices pass
i

outside of and then curve in towards specific points on the Fdppl curve
determined by requiring that the velocity at the vortex and at the
separation point be zero simultaneously. The vortices actually reach

the points on the Fdppl curve at t = =, since the induced velocity

there is zero. Figure 5(a) illustrates this behavior for €, = 0.05.
i
For €, = 0.049, the left-hand vortex lags behind the right-hand
i
vortex and the Foppl point is not reached. For ¢ = 0.051, the

2,

i
opposite effect occurs; the right-hand vortex lags behind the left.

The possibility exists with a numerical integration solution and a
computer that round-off errors can introduce a source of asymmetry even
in the case of symmetrical initial conditions. These errors can accumu-
late so that the asymmetry increases as the integration proceeds and can
cause the solution to diverge markedly from the symmetrical case. The
error limits of the Adams integration scheme used in the computer
program described previously were established so that symmetry was
maintained until the vortices reached the immediate vicinity of the

Fbppl line, the locus of vortex positions at which there is zero
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induced velocity, VV. The results of a computation with a sufficiently
small error limit are shown as the solid curves in figure 5. The results
of figure 5(b) indicate that the solution does not begin to diverge

from the symmetrical case until a point some 55 radii from the nose is

reached, at which point each vortex is near its Fdppl point.

It is characteristic of the planar motion solution that the vortex
strength will increase to a point about 30 radii downstream of the nose,
at which point the vortex begins to curve towards the Foppl point and
the vortex strength begins to decrease; that is, I’ becomes negative.
At this point, the solution becomes physically unrealistic since the

occurrence of negative I' implies that vorticity is being fed back into

the body boundary layer rather than being shed from the boundary layer.

In figure 5(b) is shown the variation of €, and ¢, with dis-

tance along the body for the three cases discussed above. 1In the

symmetrical case, € = &, until the divergence due to numerical errors

occurs sometime after the Fdppl point is reached, about 55 radii from
the nose. In the asymmetrical cases either €, or ¢, exhibits a
peak value at a station about 20 radii from the nose dependent upon
whether € or ¢, was larger initially.

In figure 5(c) are shown the variations of ¢ for the two vortices.

In the symmetrical case, él = €, until the divergence due to numerical

errors occurs. The value of ¢ first rises to a maximum, then
decreases and becomes negative as the vortices reach the vicinity of
the Fdppl point. The value of ¢ then returns to zero as the Fdppl

point is approached. At this point the second derivative, €, also

approaches zero. The same characteristic shape of the curve of ¢

versus X 1s produced for the asymmetric cases. However, the condition

€, = €, =0 1is never reached. Note, however, that when the initial
value of €, is lower than that for the symmetrical solution which
reaches the Fdppl point, then é2 becomes negative, but él does not.

Conversely, when the initial value of €, is larger than that for the
symmetrical solution, €, becomes negative, but é2 does not. More
significantly, when €, 1is initially smaller than the value for the
symmetrical solution, the value of é9 is consistently smaller than
€, in the far field and conversely for initial values of €, larger

than required for the symmetrical solution.
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Coning case.- One would expect to find with coning motion a down~

stream behavior of the vortices similar to that of the planar motion case,

at least for small coning rates. This result is illustrated in figures

6, 7, and 8 for the case of wﬁcg/v = 0.12 and €, = 0.05. With
i
€, = 0.05 (fig. 6), the trajectory, the variations of €, and €, and
i
of €, and éz are similar to the behavior noted above for the non-coning
case where ¢ was less than €, . With €, = 0.054 (fig. 7), the
i i i

behavior of the vortex motion parameters is similar to the behavior for
the non-coning case where eZi was greater than eli. It is of
interest to note that the small change in €, for the coning case
i

results in a completely different downstream behavior as shown by
comparison of figures 6(a) and 7(a).

The intermediate case with €, = 0.05320325 is shown in figure 8.

i

The behavior shown here is qualitatively similar to that shown for the
non—-coning case with symmetrical initial conditions, as shown in
figure 5. Figure 8 indicates that the two vortices move away from
their feeding points at similar rates. The vortices first accelerate,
then slow and finally approach positions that are essentially stationary
with respect to the resultant crossflow velocity vector. Furthermore,
in the coning case, ' becomes negative for both vortices at approxi-
mately 30 radii downstream as in the planar motion case, whereas I
does not become negative for either vortex in the other two coning
cases mentioned above. Thus, the downstream behavior of the vortices
with coning motion is qualitatively the same as that for the planar

motion case where symmetry exists, at least for moderate coning rates.

The principal vortex-induced force distribution is in the =z
direction. The side force distribution is an order of magnitude lower
and is quite sensitive to the differences in vortex positions and
strengths caused by small differences in initial conditions. This
result is illustrated in figure 9, which shows the axial variation of
the side force distribution corresponding to the three values of

€, noted above. A value of ¢, = 0.05 produces a large side force

i i
to leeward, whereas the other two values of €, produce small side
i
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forces to windward. These results indicate the importance of obtaining

a reliable method for determining initial conditions.

Conical Bodies

For the case of a slender cone at angle of attack with flow separa-
tion and vortex formation, Bryson (ref. 5) derived the vortex motion
and forces on the assumption that the flow field is conical. Thus,
solutions in the crossflow planes are similar and are scaled according
to distance from the cone vertex. The present formulation of the prob-
lem does not employ such an assumption. Consequently, a number of
calculations were made with conical bodies to check the Bryson results
for the planar motion case and to determine the nature of the present

solution for the coning case.

The behaviors of the vortices shed from a slender cone for both
planar and coning motion are shown in figure 10. The configuration is
a 10° half-angle cone with the center of gravity at fcg/ﬁo = 0.61 for
the coning case. The cone angle of attack is 34°. 1In both cases, the
s 34° from the resultant

crossflow vector. In the coning case, two sets of initial conditions

separation lines were specified at angles, Gs

on €, and €, were used. The value of € was specified as 0.05

in both sets of initial conditions while €, * was given the values
i
0.05 and 0.055. In the planar motion case the initial values were

€, = ¢, = 0.05. 1In all cases the starting positions of the vortices

weie spezified on lines inclined 30° to the downstream tangents to the
body at the feeding points. The variation of € and €, for planar
motion (w = 0) is indicated in figure 10 by a solid line, while the
broken lines represent the variation for wﬁcg/v = 0.042. The vortices
in all cases were started at x/iO = 0.00191. For the o = 0 case,
the solution immediately converges to a value of € = 0.3976 with the
vortices on lines 36.86° from the downstream tangents to the body at

the feeding points.

In the coning case, the asymptotic solution is very sensitive to
the initial conditions just as it is for the cylindrical body. For
equal initial values of €, and €, the solution converges very
rapidly in the same manner as the planar motion case, but the asymptotic

solution is one in which €, increases approximately linearly with
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time and ¢€_ decreases. For €, = 0.055, the downstream solution is

characterized by even greater asymmetry.

Of the two sets of results for coning motion shown in figure 10,
the set using symmetric initial conditions appears the most plausible
in accordance with the following reasoning. In the planar motion case
where the initial conditions and the locations of the separation lines
are clearly symmetrical, a conical solution is obtained, which implies
that the vortices originate on the axis of the cone at its apex. For
the coning motion case (where the separation lines are also assumed to
be symmetrical about the plane of the resultant velocity vector), the
vortices should also originate on the cone axis at the apex. At the
apex, the rotational flow field, which is the principal source of
asymmetrical growth and motion of the vortices, is zero. Thus, one
would expect the initial vortex motion and growth at the cone apex to
resemble that for the planar motion case, and the motion just downstream
of the apex should not be appreciably different from the planar motion
case.

The results for the vortex strengths are shown in figure 11. 1In
the planar motion case, the vortex strengths are equal and increase
linearly with time, or distance along the body. In the coning case,

the strengths still increase linearly with time, but at different rates.
COMPARISONS WITH DATA

Slender Cones

Unpublished data on a 10° half-angle cone were obtained from the
Ames Research Center, NASA. The cone was mounted on a bent sting such
that the sting could be rotated to produce the coning motion and the
cone could be spun relative to the sting. The angle of attack could
be varied using interchangeable stings. A six-component force balance
system measured aerodynamic forces in body coordinates and moments
about the center of gravity. Photographs were taken of the vortex
positions at various axial stations using the vapor screen technique
and a camera mounted on the rotating sting. The cone was mounted with

its center of gravity at the 6l-percent length station. Tests were
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conducted in the Ames Research Center 6- by 6-Foot Wind Tunnel at the

conditions as described earlier in this report.

Comparisons between the vortex positions deduced from vapor
screen photographs and calculated positions for an angle of attack of
30°, a value of wﬁcg/v of 0.042, and a Mach number of 2.0 are shown
in figure 12. The agreement is reasonably good. The feeding points
for the theoretical calculation were chosen to be at angles, GS,
symmetrically displaced 34° from the resultant crossflow vector. The
value of 34° is the same as that used by Bryson (ref. 5) based on cone
separation data. The initial vortex displacements were symmetrical
with €, = €, = 0.05 in accordance with the reasoning of the previous
section.

In comparing the forces and moments on the cone, it is useful to
consider the forces due to both the attached and the separated flow
around the body. In reference 4 it is shown that for small angles and
angular rates (attached flow), the total side-moment coefficient can

be expressed as

wl

= 9
C, = v oalc, +c ) (13)
q a

Similarly, the side-force coefficient can be expressed as

wl g
cy = < alc, +C,) (14)
g a
Reference 9 indicates that slender-body theory considerably over-
predicts the stability derivatives, C, , C, , C, » €. for a cone at
q a q a

supersonic flight Mach numbers. Therefore, since the attached flow
portion of the forces and moments in the present theory are based on
slender-body theory, it is appropriate to examine only the nonlinear,

or vortex-induced, forces and moments.

Figure 13 shows the comparison between theory and data for the
variation of side~force coefficient, cy/(mgo/v), with angle of attack,
The theory is indicated by open symbols while the experiment is indi-

cated by filled circles. Theoretical results for two values of the
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separation line location, 85, are shown. The linear variation of
Cy/(wfo/v) for small angles of attack is predicted very well by the
results of reference 9 as shown in the figure. The predicted values at
high angles of attack were obtained by adding to the linear variation
for attached flow the predicted nonlinear contributions due to the
vortices. 1In figure 14 the theoretical side moment on the cone is
compared with the experimental data in the same manner as for the force

coefficient above.

Figures 13 and 14 indicate that the predicted results are strongly
influenced by the location of the vortex feeding points. For a given
value of GS, the vortex-induced side force first appears at a larger
angle of attack than the data indicate and increases at a faster rate
than the data as the angle of attack is increased. The figures indicate
that it may be possible to improve the prediction of the side force if
6 is varied with angle of attack. This result is in gualitative agree-

mZnt with the data of reference 10, where the angle of separation, 85, On
inclined bodies in planar motion is shown to depend strongly on angle of
attack. Also, it may be necessary to specify an axial variation of the
separation line location different than the constant angular displacement
from the resultant crossflow vector as used in the present theory. It

is apparent that knowledge of the separation line location is an important

factor in developing a predictive technique.

Ogive Cylinders

Some experimental measurements of side moments on a slender ogive-
cylinder body are presented in reference 4. As in the cone experiments,
vapor screen photographs were used to observe the vortices. The total
side moment ahead of the center of gravity was measured. The configura-
tion is a cylinder 2.5 inches in diameter with a fineness-ratio 3.4
tangent-ogive nose. The center of gravity was 2.5 feet from the nose
of the body. The tests were run in the Ames Research Center 6- by 6-

Foot Wind Tunnel with conditions as described earlier in this report.

Theoretical calculations of the vortex-induced forces on the ogive
cylinder were made based on the assumption that the vortices started on

the ogive nose of the body. Initial vortex positions were obtained
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from calculations for a cone based on the conclusion reached previously
that a unique set of initial conditions can be obtained for the solution
for a cone. Essentially, the ogive-cylinder is considered to have a
conical nose, and a cone solution like that discussed in the previous
section is used to supply initial conditions for an ogive-cylinder calcu-
lation. The initial conditions were obtained as follows. First the
station at which the tangent to the ogive surface made an angle of 10°
with the body axis was found. The dimensions of a 10° half-angle cone
tangent to the ogive at the same station were computed. Then the solu-
tion for the vortex motion over the cone was computed for the experi-
mental conditicons. The separation points were each assumed to be angles,
B> 50° from the resultant crossflow vector, which value corresponds to
measured separation line locations on ogive-cylinders and cone-cylinders
at angle of attack (ref. 10). The angle of 50° was chosen as the best
estimate of an average value of the angular location of the separation
line since the location actually varies along the body, whereas the
computer program used here can only handle constant values of GS. The
asymptotic solution for the vortex trajectories on the cone was then used
to obtain the positions of the vortices on the ogive at the station at

which the ogive was tangent to the 10° cone.

The results for the predicted vortex positions for an angle of
attack of 26° and a coning rate (wzcg/v) of 0.12 are compared with
sketches made from unpublished vapor screen photographs for three axial
stations in figure 15, While the "“centers" of the areas of concentrated
vorticity are difficult to determine, the predicted vortex positions tend
to agree qualitatively with the photographic information. The theory
predicts that the right-hand vortex is further away from the body than
the left-hand vortex. The right-hand vortex has a greater strength than
the left-hand vortex until a peint about 10 radii from the nose, beyond

which the strength of the left-hand vortex becomes larger.

The side-moment coefficient on the portion of the body from the
nose back to the center of gravity is attributable almost entirely to
the vortex-induced side force distribution, since slender-body theory

for the attached flow predicts a zero value of Cm + Cm for this case.
q a
This conclusion is substantiated by the data presented in reference 4,

which is reproduced as figure 16. The predicted side moment at 26° is
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also shown in figure 16, and falls within the scatter in the data. Thus,
use of the cone solution as a source of initial conditions appears to be
a promising technique for obtaining a unique solution for sharp-nosed

non--conical bodies.

It is of interest to examine the photographs of the vortex posi-
tions near the aft end of an ogive-cylinder mounted and tested at the
Ames Research Center in the same manner as was indicated previously for
the 10° half-angle cone. In these tests, photographs of the vortex
positions were obtained up to 8 diameters aft of the center of gravity.
Sketches of the areas of concentrated vorticity for a = 25°  and
wﬂcg/v = 0.12 are shown in figure 17. Near the aft end of the body,
the photographs tend to indicate that the right-hand vortex is "torn"
from the separation line and becomes free, much as occurs on long
slender bodies in planar motion at high angles of attack. Theoretical
solutions for the ogive-cylinder indicate that generally I' for the
right-hand vortex becomes small but not necessarily zero at some point
along the body. An example of this behavior is shown in figure 18
where the variation of T along the body is shown for both vortices
for the ogive-cylinder case discussed above. Other calculations showed
that I can become negative for certain combinations of initial condi-
tions, angle of attack, coning rate, and separation line locations.
Such behavior suggests that the tearing of the feeding sheet of one
vortex might occur at the point where I' becomes negative, and a new
bound vortex would be started at the separation point. No calculations

were made along these lines, however.
CONCLUDING REMARKS

Based on experimental evidence of the existence of a steady
asymmetric vortex system on a slender body in coning motion, a theoreti-
cal flow model for vortex shedding was developed using potential flow
methods and slender-body theory. The model provides for the calculation
of the strength and position of each of the two vortices representing the
areas of concentrated vorticity and the resulting force distribution
induced on the body. For cylindrical bodies, initial vortex locations
very close to the body must be prescribed to start the computation.

The results for vortex motion and forces were found to be guite
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sensitive to the initial asymmetry. In order to investigate the nature
of the initial condition problem, a linearized analysis of the vortex
motion very close to the body was performed. ILinearization was found
to decouple the motion of the two vortices, so that the paths of the
vortices could be obtained, but the relative positions of the two
vortices along their paths could not. Upon specializing the body to a
cone, it was found that the full nonlinear solution rapidly converged
to a unique solution for symmetrical initial conditions, but that the
solution was again quite sensitive to initial conditions. It was
reasoned that for the cone, with separation starting at the nose, the
most likely initial conditions for the coning case were the symmetric
vortex displacements found for the planar motion case. The symmetric
solution was then used as a source of initial conditions for an ogive

cylinder by considering the ogive to have a conical tip.

On the basis of agreement with data for a cone and an ogive cylinder
in lunar coning motion, the flow model developed herein is felt to
describe reasonably accurately the nature of the vortex-like separated
flow over the body and the vortex-induced force distribution. The
windward vortex is shown to be somewhat further distant from the body
than the leeward vortex and to be somewhat stronger than the leeward
vortex over the forward portion of the body. These differences are
shown to produce a side force to leeward and a stabilizing side moment

in correspondence with the measured results.

The dependency of the theoretical soclution on assumptions regarding
the separation line location should be noted. For the lunar motion case,
the body is not spinning relative to the boundary layer, so that use of
separation location data obtained for planar motion should be a reasonable
assumption. On the basis of this assumption, one could probably devise
some simple qualitative rules for the vortex strength and position
behavior from the present analysis, which could be used in a fashion
similar to the one shown in reference 4. However, the development of a
truly predictive method requires a three-~dimensional boundary layer
solution that would predict the location of the separation lines over the
length of the body. Such a method would then permit calculation of not
only the lunar case but the case of coning motion with nonlunar spin
rates, where the body is spinning relative to the boundary-layer flow and

causing some shift in the location of separation.
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Finally, the nature of the theoretical solution suggests some
interesting possibilities for explaining other experimentally observed
separation characteristics on slender bodies. Vapor screen photographs
of an ogive cylinder in lunar coning motion tend to indicate that the
sheet feeding the windward vortex eventually "tears," leaving that
vortex "free" and forming a new vortex at the separation line. The
theoretical results indicate that at some station aft along the body,
the rate of change of strength of the windward vortex approaches zero or
goes negative, which suggests that since vorticity is no longer being
fed to the vortex from the separation line, the sheet should be cut.
Further, an initial condition investigation for the planar motion case
indicates that if the solution is perturbed asymmetrically, the asymmetry
will grow in a fashion that resembles the coning motion solution. This
result is in accordance with experimental observations of vortex flow
over bodies at relatively high angles of attack, which tend to indicate
the existence of a steady asymmetric vortex pattern, with sheets being

torn and free vortices formed.

Nielsen Engineering & Research, Inc.
Palo Alto, Calif.
June 1969
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APPENDIX A

DERIVATION OF MOTION OF VORTICES
IN THE VICINITY OF FEEDING POINTS

Let the vortex positions be expressed as

ip.
t. =t _  + ae 7 (A-1)
3 o.
J
where Co is the complex coordinate of the feeding point of vortex
j, as shown in the sketch below, and Ej << 1.
/\Fz r4 £,
&2
i -
t2 (bw

¢, €9 _\\
P 1.
L Y
Co_/ / \ ‘% Qol
1

Assume

r =r_ +7T (a-2)

The expression for the vortex strengths resulting from eqguation (3)

of the text becomes

-1 U =
. = 5 ejVaﬁj sec(¢~j -0 _) J=1o0r 2 (A-3)



where
2
- X . w °i 3
Bj = | 2g cos 90. + Zma(tcg - t) sin 90. + va-—v ale
J J
or
-i8
o.
By = Rye J (A-4)
is measured from the

is a real-valued function, and time, t,
instant the nose of the body passes an arbitrary fixed plane in the

where R.
J
Then the equations describing the vortex motion (eq. (5)) become

)

fluid.
ig.
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J
where terms containing ejéj have been considered to be of second order
and neglected.
Now, ¢j is determined as follows. Expand the induced velocity at
a vortex, VV , in a power series in Ej for fixed ¢j.
J
O 1
v = V. .) + €.V3 ) o+ ... A-6)
v, j(<Z>j) €5 ](¢3) (
where Jj = 1 and 2, and
. 190.
Vi(o.) = e J [2iVa cos A + 2iwva (t - t)sin @
S °j °3

(A-7)
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Now, when €. so equation (A-6) requires

is i8
o . o. . o.
va(¢.) = ae J+ iab_ e J (2-8)
J 7] Oj

Substituting equation (A-8) into (A-~7) yields

Il
@)

1 2 _
1 - 7 Sec (¢j eoj)

whence

- = - (-1)J) I _
05 = 6. (-7 % (a-9)
J
Thus, both vortices leave their respective separation points along

lines inclined 30° from the downstream tangents to the body at the

positions of the separation points at the instant of separation.

This is exactly the same condition that results for the case of symmetric

vortex shedding from a body in steady motion at an angle of attack

(Bryson's result).

The investigation of the stability of the feeding points and the
early motion of the vortices proceeds as follows. Express the angle,

®j’ as

= - (-1yJ T _
¢j 5. (-1) 3+ 4 (A-10)
3
where Vj << 1. Expand the velocity V§(¢j) in a Taylor series

about Yy = 0, and evaluate V§(¢j) at vy = 0.

Thus,

160. 190.

v? - (é + iad ) e I+ 2113 (—l)jVRje 3 v5 (A-11)
3



and

i[zeo + (-1)3 %]
vl = —2ivy [l - iw(tcg - t):,e

+ iwae J

1[90. - (_l)j %]

l[eo. - (-1} %]
- iVR, |e J
J

(A-12)
Substituting equations (A-11) and (A-12) into equation (A-6) and
subsequently into equation

(A~5) and then separating into real and
imaginary parts, yields from the real part,

A
= €. =+ ... A-13
Y5 T €5 (A-13)
where
= _ _ (_yJ & - ; (i T
A 2Va {cos [60 (-1) 3] + og(tc t)sin [eo. (-1) 3]}
J J
+ 2 e1)IV3I A - wa
and
B = (-1)74f3 VR
Then,

from the imaginary part,

O S S A9 L
Ej cj {Za (VRjCOS jbj + V

; -1 (43 5
Ijsm <z>j> > (=1} 3 9,

N[
JLLE

]
a_ 1l _yviaf3a. g A
a—4[( 1) 335 ooj] B}

1 o) o
+ >a (VR_cos ¢j + Vv

, Lia _ (_1yivTs
; Ij51n ®j> -7 [a (-1) 3




where Vg R Vﬁ s V? ’ VI are the real and imaginary parts of V? and
] J J J

V%. It can be shown from equation (A-14) that when €., = 0, then

éj = 0. Thus, each vortex feeding point is an unstable saddle point

with a single integral curve passing through it, given by eguations (A-10)
and (A-13).

It is of interest to compare equation (A-13) with the results of

Bryson for the case of w = a = 0. Equation (A-13) becomes

iz
cos (on - (=1) 3)

Y . . N
J J (—l)j V3 cos 90
J

~

which, for Jj = 1, gives Bryson's result
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Plane fixed in fluid
parallel to vy',z' plane

Figure 1l.- Sketch of the motion of the body
through the fluid.
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Figure 2.- Flow field in the plane
fixed in the fluid.
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Figure 3.- Coordinates for computer program input data.
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Non-dimensional vortex displacement,
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Figure 4.- Linearized solution for non~dimensional vortex
displacement, a = 269, mﬂcg/V = 0,24,



Initial Conditions
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(a) Vortex trajectories.

Figure 5.- Vortex motion on a cylindrical body
in planar motion for different initial
conditions, a = 26°, wﬁcg/v = 0.0.
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Nondimensional vortex displacement, €

€
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(b) Vortex displacement.
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(c) Vortex displacement rate.

Figure 5.~ Concluded.

70




|

2.4
| Vt - o
a
o
2.0g—
a
o /
l.6e [—
z/a I—
1.2

y/a

(a) Vortex trajectories.

Figure 6.- Vortex motion on a cylindrical body in coning
motion for symmetrical initial conditions,
€ = € = 0.05, wi vV = 0.12.
li 2i Cg'/
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Nondimensional vortex displacement, €

Vortex displacement rate, ¢

] I | | I

10 20 30 40 50

Nondimensional axial distance, Vt/ao

(b) Vortex displacement and displacement rate.

Figure 6.~ Concluded.
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= 42

y/a

(a) Vortex trajectories.

Figure 7.- Vortex motion on a cylindrical body in coning
motion for unsymmetrical initial displacements,
e, = 0.05, ¢, = 0.054, a = 26°, who/V = 0.12.
i i
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Nondimensional vortex displacement,

Vortex displacement rate, €
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(b) Vortex displacement and displacement rate.
Figure 7.- Concluded.



vt/a_ = 58 _
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Vt/ao 24

58
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(a) Vortex trajectories.

Figure 8.- Vortex motion on a cylindrical body in coning
motion for unsymmetrical initial displacements;
@ = 0.05, ¢, = 0.05320325,
i i
o
wﬁcg/v = 0.12, a = 26 .
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Nondimensional vortex displacement, ¢
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(b) Vortex displacement and displacement rate.
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Figure 9.- Theoretical vortex-induced side forces on a

cylindrical body for three different
initial conditions.
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Non-dimensional vortex displacement,
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Figure 10.- Non-dimensional vortex displacement on a 10° half-angle cone
at 34° angle of attack; feeding points at 34°

from resultant crossflow vector.
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Figure 11.- Variation of vortex strengths for planar and
coning motion of a 10° half-angle cone at 34°
angle of attack; feeding points 34© from
resultant crossflow vector.
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X Theoretical vortex
l centers

x/ﬂo = 1.00 | x/) = 0.525
x/ﬁO = 0.60
x/4, = 0.525

Sketch of —mm—»
experimental
vortices at
x/ﬂO = 0.9

y/a
Figure 12.- Comparison of theoretical and experimental

vortex trajectories on a 10° half-angle cone,
wﬂcg/v = 0.042 at 30° angle of attack.
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Figure 13.- Side-force coefficient on 10° half-angle
0.61.

cone due to coning motiony M_ = 2.0, Bcg/ﬂo =
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Figure 14.- Side-moment coefficient on 10° half-angle
cone due to coning motion; M_ = 2.0, ﬂcg/ﬂo = 0.61.
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Experimental vortex

—=0O—— Theoretical vortex

trajectory
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Figure 15.- Comparison of theoretical and experimental vortex
trajectories on an ogive-cylinder body in coning motionj

wlcg/V

0.12,

a

26°.
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Yawing-moment coefficient, Cn/(wﬂcg/v)
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B Theory
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Figure 16.- Side-moment coefficient
on a slender ogive-cylinder.
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Figure 17.- Sketches of vortices on ogive-cylinder

in coning motion from vapor screen photographs,
wﬂcg/V = 0.12, a = 25°.
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Figure 18.- Variation of rate cf change of vortex
strength on ogive cylinder, wﬁcg/v = 0.12, a = 26°.
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