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ABSTRACT 

An experimental investigation was made of the effect of unit 

Reynolds number and nose bluntness on the transition Reynolds number 

for a 100 half-angle cone. The tests were conducted at a nominal Mach 

number of 7 and the free-stream unit Reynolds number was varied from 

1.88 x 1O6 to 6.21 x 106 per foot. The results showed a significant 

influence of local unit Reynolds number on transition for the sharp 

cone. A comparison of data from various facilities on sharp slender
 

cones indicated the presence of unit Reynolds number effects as well
 

as the effect of local Mach number on transition. The present transi­

tion data were compared to a correlation based on tunnel noise param­

eters which showed that radiated tunnel aerodynamic noise had a major 

influence on the present results. Correlations of the effect of local
 

Mach number on the transition Reynolds number at similar local unit 

Reynolds numbers are presented. The effect of bluntness was to reduce
 

the local Reynolds number and displace transition rearward completely 

off the cone surface.
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I. INTRODUCTION 

Boundary-layer transition is a comnon fluid mechanical phenomenon 

occurring on many configurations at subsonic, supersonic, and hypersonic. 

speeds. Many parameters influence the transition of a laminar boundary 

layer to a turbulent boundary layer. Such parameters include flow length 

Reynolds number, local unit Reynolds number, local Mach number,, surface 

roughness, angle of attack, boundary-layer heating or cooling, pressure 

gradients, nose bluntness, mass addition or removal and the turbulence 

level of the free stream.
 

In recent years, there has been considerable interest in studying
 

transition in the hypersonic speed range encountered by reentry vehicles 

(see refs. 1 - 6). Boundary-layer transition is undesirable due to the 

increased skin-friction drag and surface heating associated with a 

turbulent boundary layer and possible destabilizing effects on the aero­

dynamic characteristics. Ablation of the protective heat shield may 

alter the transition location due to effects of nose shape changes, mass
 

addition, and surface roughness. 

The purpose of this thesis is to present an experimental investi­

gation of the effects of nose bluntness and unit -Reynolds number on 

boundary-layer transition for a slender cone in a hypersonic free stream. 

The tests were conducted with -a100 half-angle cone, instrumented for 

heat transfer, with four interchangeable nose tips. The four tip con­

figurations were one sharp and three with increasing nose radii of 

rn = 0.15 inch, r n = 0.30 inch, and r n = 0.60 inch. 

1 
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Free-stream unit Reynolds number varied from 1.88 x 1O6 to 

6.21 x 1O6 per foot for a range of tunnel stagnation pressures from
 

185.5 psia to 608.8 psia. The free-stream Mach number varied from
 

6.82 to 6.86, with tunnel stagnation temperature varying from i020 R 

to 1250 R. Schlieren movie frames were taken of eacn nose -ip to 

define the shock shape. 



II. LITERATURE REVIEW
 

The study of transition of the laminar boundary layer to a turbulent 

boundary layer is one of the most perplexing problems in fluid mechanics. 

The classical boundary-layer stability theory for small disturbances was 

developed for the incompressible case by Tollmien in 1929 and Schnicntang 

in 1933 (see Schlichting, ref. 7).
 

Experimental confirmation of this theory came in 1943 from the 

investigation of Schubauer and Skramstad (ref. 8) where the existence of 

traveling Tollmien-Schlichting waves was proven. 

An extension of the small disturbance instability theory to com­

pressible flow for Mach numbers not exceeding 1.5 was made by Lees and 

Lin (ref. 9) and further refined by Dunn and Lin (ref. 10-). The experi­

mental stability work of Laufer and Vrebalovich (ref. 11) at Mach num­

bers of 1.6 and 2.2 indicated fairly good agreement with the theory of 

Dunn and Lin, but the revised stability theory of Lees andfReshotko 

(ref. 12) for Mach numbers up to about 2.5 provided even better agree­

ment with the data of Laufer and Vrebalovich. 

In 1958 Demetriades (ref. 13) conducted experimental tests on the
 

stability of the laminar boundary layer at M = 5.8 and the results 

show major disagreement with the theory of Lees and Reshotko. In fact,
 

at present there is no satisfactory compressible flow stability theory
 

for Mach numbers greater than about 3.
 

Experimental investigations concerning boundary-layer transition 

on cones were conducted extensively in the 1950's and included both wind 

tunnel and free-flight results (see refs. 14 - 22). An examination of 

3 
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the data from these tests revealed a consistent increase in the transi­

tion Reynolds number with increasing tunnel stagnation pressure or range
 

pressure which was termed the unit Reynolds number effect. The unit 

Reynolds number parameter existed in the hypersonic Mach number range 

also, as reported by Stetson and Rushton (ref. 1), Stainback (ref. 2), 

Softley, et al. (ref. 4), and others (refs. 5, 6, 23 - 26). The effect
 

of the unit Reynolds number parameter on transition was studied by 

Whitfield and Potter (ref. 27) and Potter and Whitfield (ref. 28) where 

it was pointed out that there is an inherent relationship between unit
 

Reynolds number and noise generation from the tunnel wall boundary layer. 

Studies by Laufer (refs. 29 and 30) and Vrebalovich (ref. 31) 

dealing with measurement of noise generation from tunnel wall boundary 

layers showed that the major source of disturbances in the free stream 

at the higher Mach numbers (M > 3) was due to radiated pressure fluc­

tuations from the wall boundary layer. Laufer (ref. 29) specifically 

noted that the radiated noise level was roughly 10 times higher for a 

turbulent boundary layer as compared to a laminar one. 

Recently, Pate and Schueler (ref. 32) presented an empirical 

correlation of transition Reynolds numbers on flat plates and hollow 

cylinders through the use of aerodynamic noise parameters. The results 

indicate that transition was dependent on sound radiation from the 

turbulent tunnel boundary layer and was not dependent on unit Reynolds 

number. 

On the other hand, correlations based on aerodynamic noise param­

eters may not be completely suitable since Potter (ref. 33) recently 

showed a definite unit Reynolds number effect in range free-flight tests 
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where sound measurements verified that the noise associated with a*
 

turbulent tunnel boundary layer was practically nonexistent. 

The transition results of this investigation were undoubtedly 

influenced by radiated noise to some degree, in light of the previous
 

discussion, but since the present study was not directly concerned
 

with noise measurements, there can only be recognition of the possible 

noise effects on the results.
 

Another important parameter influencing transition was found to be 

nose bluntness. Investigations by Moeckel (ref. 34), Diaconis, et al. 

(ref. 35), Brinich and Sands (ref. 56), and others (refs. 37 - 39) at 

supersonic Mach numbers showed that the effect of nose bluntness was to 

displace transition rearward on cones, hollow cylinders, and flat plates. 

The extent of rearward transition displacement was dependent on the 

degree of blunting. Brinich and Sands (ref. 36) noted a transition 

reversal at N. = 3.1 when their cone had a flat bluntness. That is, 

for small amounts of blunting, the location of transition shifted rear­

ward but as the bluntness was increased, the point of transition began 

to move forward. A transition reversal at a hypersonic Mach number due 

to nose bluntness was reported by Stetson and Rushton (ref. 1) for a 

slender cone at M. = 5.5. Other data concerning bluntness effects on 

transition at hypersonic Mach numbers for cones can be found in refer­

ences 2 - 4 and most recently by Softley (ref. 40). 

The reason that transition is shifted rearward when an initially 

sharp cone (or other body) is blunted is due to the alteration of the 

flow field due to bluntness. Figure 1 shows a schematic of a blunted
 

cone flow field. The mass flow entering the boundary layer at or neaa
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the stagnation region has passed through a near-normal shock and conse­

quently is a high entropy flow. The mass flow passing through the shock
 

father out is essentially unchanged from that of the sharp cone case. 

Schlieren photographs showing the shock shape for the sharp and blunted 

tip cone of this study are presented in figures 2(a) through 2(d). The 

local Mach number and Reynolds number at the boundary-layer edge of a 

blunt cone are reduced below that of a sharp cone due to the decrease in 

flow velocity at the boundary-layer edge after passing through the bow 

shock. 

The location downstream of the blunt nose where all of the high 

entropy flow has been swallowed by the boundary layer and where essen­

tially sharp cone conditions exist is known as the swallowing distance 

Various approximations exist for calculating the swallowing distance 

(see refs. 2, 38, and 41). The method of Zakkay and Krause (ref. 41) 

will be used for this investigation because it is less complicated and 

because Stetson and Rushton (ref. 1) used it to obtain successful results. 



III. TEST APPARATUS, CONDITIONS, ADD PROCEDURE 

Description of Model
 

'The model used in this investigation'is shown in figure 3. The 

model was a lO° half-angle cone with four detachable nose tips, an 

axial length of 12 inches (with sharp tip installed), and a-base diameter 

of 4.23 inches. The cone model was rolled from a 0.063-inch-thick 

inconel 610 sheet and spun ,on a lathe to the desired wall thickness of 

0.030 inch. Inconel was chosen because of the material's low thermal 

conductivity which reduces conduction effects and also because it has
 

favorable machining properties.
 

The detachable nose tips were machined separately from an inconel 

shaft to obtain uniform-wall thicknesses and were threaded to allow for. 

accurate installation on the cone frustum. The blunt tips were ellip­

tical in shape, with the radius at the shoulder joining 'the stagnatipn' 

nose region with the conical region being half the radius at the stag­

nation point, rn. The dimensions of each tip ,are as follows: 

Nose tip rn (in.) Length (in.') 

A 0 2.25. 
B 0.15 1:75 
C 0.30 1.25 
D o.6o o.6o 

Instrumentation
 

The model was instrumented with 38 thermocouples for measuring wall 

temperature and heat-transfer rates. Table 1 lists the thermocouples 

and gives their surface locations. 

7 
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All thermocouples were 30-gage (0.010-inch-diameter) chromel-alumel 

wires which were individually spotwelded to the inside surface of the
 

model skin. The reference temperature of each thermocouple was main­

tained at about 77 F using a cold junction box.
 

Test Apparatus 

This experimental investigation was conducted in the Langley 11-inch 

hypersonic tunnel with the Mach 7 air nozzle. The facility is capable of 

operating over a range of stagnation pressures from 73.5 to 610 psia and 

a range of free-stream unit Reynolds numbers of 0.8 x 106 to 6.3 X 106 

per foot. Free-stream stagnation temperature can be varied over the 

range of 1000 R to 1280 R, and free-stream Mach number varies from about 

6.6 to 6.9 depending on stagnation pressure and length of run. A 

schematic of the 11-inch facility is shown in figure 4. 

Test Conditions and Procedures 

For this investigation, a total of 35 runs were made. Seventeen 

runs were conducted with the sharp tip, and six runs were conducted with 

each of the three blunt tips. The ranges of tunnel stagnation pressure, 

stagnation temperature, free-stream Mach number, and free-stream unit 

Reynolds number were as follows: 

R Rw/ft X 1O6 Pt. psia Tt, M. 

185.5 - 6o8.8 1020 - 1250 6.82 - 6.86 1.88 - 6.21
 

Details of the test conditions are given in table 2. 
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The test procedure consisted of evacuating the test section to a 

vacuum of about 3 to 4 mm Hg and preheating the test air with an elec­

trical resistance heater. A fast response pressure regulating valve 

enables steady-state flow conditions to be established in the test 

section within 2 to 4 seconds.
 

Each test run was approximately 10 seconds in total length. The 

test gas passed into an evacuated sphere which later was pumped back 

down to a vacuum, exhausting the test gas to the atmosphere. After each 

test run, the model was air cooled in preparation for the next test run. 

A temperature time history of each thermocouple wa's recorded with 

three 18-channel oscillographs. Stagnation pressure and temperature 

were recorded separately for each run. In addition, schlieren photo­

graphs were taken for each run with a high-speed 70 mm camera to obtain 

the shock shape. 

During the initial positioning of the cone model in the test section,
 

care was taken to align the model precisely at zero angle of attack. The 

alignment was checked periodically throughout the test investigation to
 

ensure that no misalignment was present. 



IV. TEST RESULTS AND DISCUSSION 

Heat-Transfer Distribution 

Sharp Tip .- Experimental Stanton number distributions (determined 

by method in appendix A) are compared with laminar and turbulent theory 

(presented in appendix B) in figures 5(a) thm.ough 5(i) for run numbers 

1 - 17 (see table 2). For the turbulent theory, the flow was assumed 

turbulent from the sharp tip.
 

The beginning of transition in this investigation was taken to be 

the thermocouple location at which the experimental Stanton numbers 

first began to deviate consistently and significantly from laminar 

theory and where this deviation was continued downstream. The end of 

transition was taken as the highest Stanton number above turbulent 

theory. An arrow will be used to designate the location of the start 

and end of transition.
 

The first 12 test runs presented in figure 5 were made at a wall 

' temperature to total temperature ratio of Tw/Tt = 0.51 to 0.53 The 

last five test runs presented were conducted at a' Tw/Tt of"0.45 to
 

Q.47 by increasing the stagnation temperature to determine if there was
 

any effect of a slight variation in Tw/Tt on the transition location. 

For the two lowest local unit Reynolds numbers, runs 1 and 2 in 

figure 5(a), the flow over the cone remained laminar. However, at a'
 

local unit Reynolds number of R, = 3.46 x 106 per foot the flow over 

the rearward portion of the cone became transitional, as indicated by 

the arrow in figure 5(b). 

10 



As the local unit Reynolds number was increased further, the start 

of transition generally moved forward (figs. 5(c) - 5(d)), and finally, 

at R, = 7.01 x lO6 per foot, fully turbulent flow was established on 

the rear of the cone (fig. 5(e)). 

For the remaining three test runs at Tw/Tt 0.52, the location of
 

the start of transition again generally moved forward with increasing
 

local unit Reynolds number, while the location of the end of transition 

remained stationary except for the last test run (see fig. 5(f)) where
 

the end of transition moved forward.
 

The first of the five test runs with Tw/Tt 0.46 was made at 

RZ = 3.77 X 10 per foot (fig. 5(g)). For this local unit Reynolds 

number, the start of transition occurred near the base of the cone. As 

the local unit Reynolds number was increased, the start of transition 

moved forward somewhat more abruptly than with the tests at Tw/Tt 0.52, 

and fully developed turbulent flow was established only for the highest 

local unit Reynolds number, RI = 6.88 x lo 6 per foot (fig. 5(i)). 

As indicated in figure 5, there was exceptionally good agreement of 

measured Stanton number with that of laminar and turbulent theory. In 

fact, the agreement of the measured heat-transfer data with theory was 

much better than that of Everhart and Hamilton (ref. 23) where the same 

theory was used for tests with a slender cone at M. = 10. 

The results from figure 5 for the Tw/Tt - 0.52 data show that 

the start of transition first occurred on the sharp cone model for a 

local unit Reynolds number of R, = 3.46 x lO6 per foot. Increasing th 

local unit Reynolds number to a maximum of 9.18 X 106 (total of 12 test 

runs) generally moved the start of transition forward and established 
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fully turbulent flow on the rearward portion of the cone. Five test 

runs were conducted at a Tw/Tt of about 0.46 with the start of transi­

tion first occurring at R, = 3.77 X 106 per foot. The location of the 

start of transition moved unhesitantly forward with increasing local unit 

Reynolds number and fully turbulent flow was established near the cone 

base for R, = 6.88 x lO6 per foot. 

Blunt tips.- The experimentally measured heat transfer to the 

blunted tip configurations, nondimensionalized by the nose stagnation 

heating rate are presented in figures 6(a) through 6(f) for runs 18 - 35 

(see table 2). The heat-transfer distributions are presented as a func­

tion of surface distance nondimensionalized by nose radius, S/rn, and
 

are compared to the laminar theory of Lees (appendix D) for sphericall
 

blunted cones. The wall temperature ratio for the blunt cone tests 

varied over the range of Tw/Tt = 0.52 to 0.53. 

The heat-transfer results for nose B (r n = 0.15 inch) are presented 

in figures 6(a) and 6(b). As indicated in the figures, the flow remained 

laminar and the heating distribution below theory for a range of free­

stream unit Reynolds numbers of I = 2.01 X 106 to 6.10 x 106 per foot 

The results for nose C (rn = 0.30 inch) are presented in fig­

ures 6(c) and 6(d) and, as before, the flow over the cone remained 

laminar and below theory for a range of free-stream unit Reynolds num­

bers of R. = 2.13 X 106 to 6.08 x 106 per foot. 

In figures 6(e) and 6(f), the results with nose D (rn = 0.60 inch) 

are -presented for a range of free-stream unit Reynolds numbers of 

R = 2.10 x 106 to 6.21 x 106 per foot. As with the other two noses, 
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the flow remained laminar and the experimental data fell below that 

of laminar theory. 

The reason that the experimental heat-transfer distributions for 

the blunted configurations fell below the theory of Lees may be due to
 

the fact that the theory of Lees is based on spherically blunted cones. 

The tips for the present investigation were geometrically blunter than
 

a spherically blunted tip, and since Lees points out that the heat
 

transfer over a sharp slender cone is reduced by spherically blunting
 

the tip, perhaps the greater degree of blunting for the present tests
 

reduced the heat transfer even more.
 

The results from figure 6 indicate that boundary-layer transition 

cannot be attained on the blunted cone configurations of this investi­

gation unless free-stream unit Reynolds numbers greater than 6.2 x 106 

per foot are reached. 

Transition Reynolds Number 

Effect of local unit Reynolds number.- The transition Reynolds 

numbers asdetermined from the Stanton number distributions of figure 5 

are presented in figure 7 as a function of the corresponding local unit
 

Reynolds number.
 

The circular symbols are the transition Reynolds numbers determined 

at the start of transition, while the square symbols are the transition 

Reynolds numbers determined at the end of transition. The open symbols 

represent the transition Reynolds numbers determined at Tw/Tt = 0.51 

to 0.53 and the shaded symbols are those determined at Tw/Tt = o.45 

to 0.47.
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The solid and dashed lines were faired through the data for the
 

start and end of transition and power law relations of the form 

Rs~tr , (RI/ft)n were calculated. From the figure, it can be seen 

that there was a stronger effect of local unit Reynolds number on 

transition Reynolds number for the Tw/Tt 0.52 data at the end of 

transition as compared to the start of transition, which agrees with 

the results of other investigations (see refs. 23, 25 - 26). 

However, the data measured at Tw/Tt -0.46 in figure 7 (shaded 

circular symbols) indicate a less sensitive effect of local unit Reynolds 

number on the start of transition and presents a completely different
 

picture if considered by itself. Caution must be taken in the interpre­

tation of the Tw/Tt 0.46 data. The small reduction in the wall 

temperature ratio, from Tw/Tt ' 0.52 to 0.46, should not have produced 

any significant change in the transition Reynolds number. 

In fact, all of the data in figure 7 for the start of transition 

fall within the normal random scatter of experimental results so that 

no conclusion can be made. Referring to the Stanton number distributions 

in figure 5, one observes that some variation in determining the loca­

tion of the start of transition could exist. If this variation was 

assumed to be no more than three thermocouple locations (0.75 inch) on
 

either side of the previously selected location (arrow) as a maximum 

(see fig. 5), the transition Reynolds number for the start of transition 

could be affected by a maximum of about 10 percent. 

The transition Reynolds numbers in figure 7 for the start of transi­

tion fall within a ±1O percent scatter. From a comparison of the present 

data to that of Larson and Mateer (ref. 6), Stainback (ref. 2), Stetson 
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and Rushton (ref. 1), and Everhart and Hamilton (ref. 23), it was, con­

cluded that the scatter of the transition data for this investigation 

was no more than, that normally encountered in transition studies. 

In order to determine how the unit Reynolds number effect of thi 

investigation compares with those from studies in other facilities, 

available cone transition data were collected and are presented in 

figure 8. The line associated with each data symbol indicates the 

relationship between transition Reynolds number and local unit Reynolds 

nunmber. To avoid confusion, only one data symbol for each study was 

shown. The numbers given for each solid line represent the local Mach 

number at the boundary-layer edge for the particular investigation. 

The references for the data presented azre listed in table 3. An 

attempt was made to choose only data for slender sharp cones at zero 

angle of attack where the weal temperature' to total temperature ratio 

was Tw/Tt - 0.5 (present tests). The two references' that/violated 

this objective (refs. 3 and 4) were used because they,found no effect.
 

of wall temperature on transition. 

All of the data in figure 8 indicate a substantial effect of local 

unit Reynolds number on transition.Reynolds number except fq± "the.data 

of reference 6 (square symbols). For the case of reference 6 in which a
 

weaker unit Reynolds number effect existed, the explanation for this 

behavior was attributed' to the test facility (Ames 3.5-foot hypersonic 

tunnel) where cold helium gas was injected into the ,subsonicportion of 

the tunnel nozzle for purposes of insulating the wall from the hot free­

stream flow. It is known (ref. 42) that the acoustic energy radiated 

from a jet boundary is a function of the molecular weight of the jet. 
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Therefore, the low molecular weight helium-air'tunnel boundary layer' 

may have influenced the transition results of reference 6.
 

The unit Reynolds number parameter has never really been established 

as the most appropriate parameter describing the behavior of transition 

Reynolds number with increasing tunnel or range pressure.. The investi­

gation of Pate and Schueler (ref. 32) showed the dependence of transition
 

Reynolds numbers in conventional wind tunnels on radiated pressure fluc­

tuations from the turbulent tunnel wall boundary layer. The major 

factors affecting the radiated pressure field were found to be the 

tunnel wall boundary-layer displacement thickness, the wall mean shear, 

and the tunnel test section size. Using these factors, an empirical
 

correlation was developed which was independent of unit Reynolds number.
 

The correlation was based on transition data from zero-bluntness flat
 

plate and hollow cylinder models tested in nine different wind tunnels
 

over a free-stream Mach number range of 3 to 8 and a free-stream unit 

6
Reynolds number range from 0.6 x 10 to 13.2 X 10 per foot. 

The data for the start and end of transition for the present tests 

are compared with Pate and Schueler's correlation in figure 9. 'The 

scatter of the data used for Pate and Schueler'sacorrelation is repre­

sented by the dashed lines, and the solid line is their correlation.
 

In order to maintain compatibility, the displacement thickness (8*) and 

the turbulent mean skin-friction coefficient (CF)were determined for
 

the present study by the same meth6d used by Pate and Schueler. Th6, 

mean skin-friction coefficient was determined from Van Diest (ref. 43)
 

using the centerline length from the nozzle throat to the-cone tip, (L)
 

as a characteristic dimension. To determine 8*, a correlation method
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of Maxwell and Jacobs (ref. 44) presented in Pate and Schueler's paper 

was used. The tunnel circumference (c) for the present tests was
 

44 inches, and the reference circumference used in the correlation (cl )
 

was 48 inches. 

The data for the start and end of transition from the present tests 

are above the correlation of Pate and Schueler. It should be mentioned 

that all of the transition data used by Pate and Schueler was based on 

the Reynolds number for the end of transition. Therefore, the square 

symbols of this investigation (end of transition)ishould be used for
 

comparison purposes. The obvious conclusion here is' that since the 

Reynolds number for transition on cones .is greater than that measured 

on flat plates or hollow cylinders (see Potter, ref, 39) for-given free­

stream conditions) one would expect the cone data to,fall above Pate and 

Schueler's correlation. Hower6±, the slope and general trend of.'the
 

present data agrees with their 6orrelation which would certalnly.inditate 

that there was a major influence of radiated aerodynamic noise on the 

results of the present investigation. 

The correlation of Pate and Schueler is l1ited to wind tunnels 

having turbulent wall boundary layers. In addition, as pointed out by 

Pate and Schueler, the correlation cannot be applied to free-flight 

results due to the restrictions imposed by CF and 8* and also because 

the correlation is based on finite sized wind tunnels. The -recent study 

by Potter (ref. 33) which showed a definite unit Reynolds number effect 

in range free-flight tests tends to cast doubt on the correlation of 

Pate and Schueler. In Potter's tests, noise measurements verified that 
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the noise levels normally associated with turbulent tunnel wall boundary
 

layers were practically nonexistent.
 

Clearly, the situation suggests that more investigations must be
 

conducted to determine and define the most appropriate parameters to 

explain what has been designated the "unit Reynolds number effect,
 

which, by nature, is surely a combination of many interrelated and
 

perhaps still unidentified parameters.
 

Effect of local Mach number.- Referring to figure 8, it can be seen
 

that there exists a trend between transition Reynolds number and local
 

Mach number. That is, as the local Mach number increases, generally
 

speaking, so does the Reynolds number for transition.
 

In figure 10(a) the transition data for the present tests are
 

compared with data from the investigations of table 3 to indicate the
 

effect of local Mach number on the start of transition. The vertical
 

line at all but one of the data points with a bar at the top and bottom
 

represent the range of transition Reynolds numbers with unit Reynolds
 

numbers for the particular investigation.
 

The solid line is the correlation of Softley, et. al. (ref. 4) for 

a local unit Reynolds number of RI = 2 x 106 per foot. The general 

trend of this curve agrees with correlations of other investigators. 
4 

For this particular curve, transition Revnolds number 'is related to local
 

4 
Mach number as Rs,tr a 
M2
 

In contrast, a correlatiou xab uuen suggested by.Larson and Mateer 

(ref. 6) in which the highest transition Reynolds numbers measured should
 

be used when comparing data from various facilities at similar test con­

ditions in order to assess the effects of various flow variables on
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transition. Referring to figure 10(a) the correlation of reference 6
 

would consider only the highest or the upper bound of the data presented,
 

as represented by the dashed curve. This dependence of transition
 

Reynolds number on local Mach number was constructed, by definition, 

from data at high local unit Reynolds number which accounts for the 

deviation from Softley's correlation.
 

In an attempt to provide further insight into the local Mach number
 

effect on the start of transition, data were taken from figure 10(a) at 

the same local unit Reynolds number, R, = 2.8 x lO6 per foot, and pre­

sented in figure 10(b). The data of Larson and Mateer (ref. 6) and 

Stetson and Rushton (ref. 1) were not included because their transition 

data were generally higher than those of the remaining investigators. 

The data of the present investigation were corrected or adjusted to a
 

local unit Reynolds number of 2.8 x 106 by using the relationship 

Rs'tr ' (R/ft)0"604 from figure 7. A correction was also applied to 

the data of reference 4 by using Rstr ' (R 2/ft)0 53 0 from their paper. 

The faired curve through the selected data points represents the
 

correlation of transition Reynolds number with local Mach number for%
 

the present study. 

As a further comparison, the correlation of the present investiga­

tion is plotted with those of references 4, 23, 25, 26, and 45 in 

figure 10(c). The correlations are classed into two groups: Those for 

the start of transition (five curves)) and those for the end of transi­

'
tion (three curves). The correlation of the present study (solid curve) 

agrees reasonably well with those of the other investigators. Note'that 
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the correlations of references 4, 25, and 26 indicate a somewhat 

different Mach number dependence (bell-shaped curves)from the others. 

In the high Mach number range (Mz = 10 to 14), the correlation of 

the present study agrees considerably well with that of Softley (ref. 4) 

and Morkovin (ref. 45), but the three curves differ considerably in the 

range of M, = 5 to 10. 

There appears to be somewhat-more uniformity and agreement for the 

three curves defining the end of transition. 

It -shouldbe noted that the correlations in figure 10(c) were all 

number (R, = 2.0 X 106made at essentially the same local unit Reynolds 

to 2.8 x 106 per foot). 

In addition, a comment should be made concerning the obvious fact 

that each correlation of the type presented in figure 10(c) is con­

structed using transition data from different facilities where the 

effects of sidewall sound radiation on the transition measurements 

undoubtedly vary in magnitude. This sound radiation factor produces a 

level of uncertainty in comparing transition data from various facilities­

over a wide Mach number range, but it is an inherent factor which may. not 

be any more significant than the other uncertainties present.
 

Effect of free-stream unit 'eynolds number.- The movement of the 

surface distance to the start and end of transition with increasing free­

stream unit Reynolds number is, shown in figure 11. For the open symbols 

(Tw/Tt - 0.52) there can be noted two instances of "transition sticking" 

for the start of transition (Str = 0.78 and 0.59 ft); that is, transition 

occurred at the same location as the Reynolds number was increased. For 

the shaded symbols (Tw/Tt 0.46), the location of the start of transition 
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moved consistently toward the sharp tip with increasing free-stream unit 

Reynolds number. The data for the end of transition in figure 11 also 

indicate "transition sticking." As discussed previously, the apparent
 

effect of the small variation in wall temperature ratio on the transition
 

Reynolds number was interpreted as within the scatter of experimental
 

transition data. However, the author believes that these effects were
 

of sufficient interest to be mentioned in passing.
 

Effects of Nose Bluntness.- As discussed in the literature review
 

blunting a previously sharp tipped configuration produces many changes
 

in the flow field characteristics. For a cone, the local properties at
 

the edge of the boundary layer are altered such that the local Reynolds
 

number is significantly reduced. As the flow at the boundary-layer edge
 

advances downstream away from the nose region, the local Mach number and
 

Reynolds number increase and approach the equivalent sharp cone conditions.
 

A measure of the distance the flow has to travel before reaching essen­

tially sharp cone conditions is the swallowing distance. Defined in
 

another manner, the swallowing distance is the location on a blunt cone 

where all of the high entropy flow passing through the curved bow shock
 

has been swallowed by (or has entered) the boundary layer. Using the
 

swallowing distance formulation of appendix C,. the local Reynolds number
 

based on surface distance has been calculated for each of the three blunt
 

nose tips at the maximum tunnel conditions tested and are presented in 

figure 12. Also shown is the local Reynolds number distribution for the
 

.
sharp tipped cone,


From this figure, it can be seen that the local Reynolds number for
 

the sharp tipped cone reached about 9.2 X 106 at the cone base compared
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to about 2.7 x 106 for the tip with rn 0.15 inch, to as low as 

o.68 X 106 for the tip with ru = 0.60 inch. Each of these three 

Reynolds number distributions for the blunt tips corresponds to the last 

(maximum tunnel conditions) test run presented in figures 6(b), 6(d), 

and 6(f) which showed that the flow remained laminar for all three nose 

tips. 

Therefore, the results indicate that in order to attain transitional 

and turbulent flow over a l00 half-angle cone at M, = 5.5 and' at 

Tw/Tt 0.5 with tips of bluntness equivalent to those of this inves 

tigation, higher local Reynolds numbers must be attained. This dannot 

be achieved in the 11-inch facility because the present model dimensions 

are a maximum for the test section and the maximum stagnation conditions 

attainable were utilized for the present tests.
 

The distribution of the local unit Reynolds number along the cone 

surface for each of the three blunt tips and the sharp tip at the same 

tunnel conditions of figure 12 are shown in figure 13. The local unit 

Reynolds number for the sharp tip case is, of course, constant while 

the three blunt tip cases are somewhat lower than the sharp tip distri­

bution as were the local Reynolds number distributions of figure 12.
 

To further indicate the effect of bluntness on local properties, 

the local Mach number distribution is shown in figure 14. Again, for 

the sharp tip case, the local Mach number is constant. However, for the 

blunt tip case, the Mach number varies from zero at the stagnation point 

behind the normal shock to about 2.25 at the shoulder joining the curved 

nose region and the conical frustum, and then approaches the sharp tip 

value far downstream. The local Mach number for rn = 0.30 inch and 
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rn = 0.60 inch gradually approach the sharp cone condition at the edge
 

of the boundary layer. This can be explained by the relationship of 

swallowing distance to nose radius, presented in figure 15. 

In figure 15, the swallowing distance is shown to increase signifi­

cantly with nose radius and, since the swallowing distance is a measure 

of the distance downstream the flow must travel before approaching 

sharp cone conditions, the effect of nose bluntness on local properties
 

can be clearly ascertained. For a given cone, increasing the tip radius
 

results in a more predominant bow shock which affects a greater portion
 

of the mass flow entering the shock region (see figs. 2(b) - 2(d)). The
 

properties at the boundary-layer edge downstream of the blunt tip will
 

not reach sharp cone conditions until all of the flow affected by the
 

curved bow shock has entered the boundary layer. 

The experimental work of Stetson and Rushton (ref. 1) contains the 

most recent results concerning nose bluntness transition reversal with a
 

slender cone. Figure 16 is a figure similar to one from their paper 

which presents the distance to transition for a blunt cone (Str)B' non­

dimensionalized by the distance to transition for a sharp cone (Str)S; 

versus the distance to transition for either a blunt or sharp cone Str' 

nondimensionalized by the swallowing distance, Ssw* 

Starting to the right of the figure, the "sharp limit" exists which 

simply means that all data which fall in that area are for a sharp or 

essentially sharp cone (Str/Ssw > 4). As the nose tip becomes blunt, 

Ssw begins to increase (Str/Ssw< 4) and the data of reference 1 followed 

the solid line [(Str)B/(Str)S > 1] for small nose bluntnesses of 

rn = 0.031 to 0.25 inch. That is, the location of transition occurred 
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farther back on the model for small amounts of nose bluntness as compared 

to the sharp case because of the reduction in local unit Reynolds number.
 

The assumption is made that the local Reynolds number required for tran­

sition remains the same for cones with small amounts of nose bluntness 

as for those with a sharp tip. The nose tip with radius rn = 0.15 inch 

for the present investigation falls within this range of nose radii.
 

Calculations can thus be made with the present results to explain the 

behavior of the blunt cone data. From figure 15, a value of swallowing 

distance for the rn = 0.15 inch nose radius tip was about 

SSW = 26 inches. Based on Stetson and Rushton's results, a slender cone 

with rn = 0.15 inch should have a value of Str/Ssw 0.6. This would 

result in a distance to transition for the rn = 0.15 inch nose tip 

cone of Str (26)(0.6) 15.6 inches. Since the cone was only about 

11.5 inches in length with the rn = 0.15 inch tip installed, this 

result verifies that transition should not have occurred on the model. 

A maximum rearward transition displacement of 4.1 times that of a sharp 

cone was reached in reference 1 for rn = 0.25 inch.
 

For increased nose bluntness (r n > 0.25 inch), the data of refer­

ence 1 followed the upper dashed line in figure 16 and finally approached 

the "blunt limit" region'for rn = 1.50 inches. A departure from the 

solid line and movement toward the "blunt limit" region signifies a
 

reduction in the critical Reynolds number required for transition.
 

Stetson and Rushton's results show that a typical value of Str/Ssw 

for a cone with rn = 0.30 inch would be about 0.3. For rn = 0.30 inch 

figure 15 gives a swallowing distance of about 68 inches so that a dis­

tance to transition would be about Str (68)(0.3) 20.4 inches. This
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result shows that transition should not have occurred on the model with 

r n = 0.30 inch. For the rn = 0.60 inch nose radius tip, an approximate 

value of Str/Ssw from Stetson and Rushton's study would be about 0.07. 

A swallowing distance from figure 15 for rn = 0.60 inch would be about 

170 inches so that an approximate distance to transition would be about 

Str (170)(0.07) - 12 inches. The length of the cone with the
 

rn = 0.60 inch nose tip installed was about 10.5 inches, so that the 

approximate transition point was slightly rearward of the cone base. 

The behavior of the transition point for blunted cones, as mentioned 

by Stetson and Rushton, appears to be highly dependent on local Mach 

number. Rogers (ref. 38) conducted bluntness tests at M. = 3.1 with 

a slender cone (lower dashed curve) compared to Stetson and Rushton's 

value of M. = 5.5 and obtained quite different results. The work of 

Brinich and Sands (ref. 36) at M. = 3.1 verifies that of Rogers. 

One of the objectives of the present investigation was to obtain
 

transition data with the blunt tipped cone configurations in order to
 

further clarify and define the behavior shown in figure 16. The model 

of this investigation was the maximum size possible for testing in the 

fl-inch tunnel. In addition, the maximum Reynolds numbers of the test 

facility were used in the tests. Therefore, the results show that for
 

the blunt cone configurations of this study, it was not possible to
 

obtain transition on the model for the range of Reynolds numbers tested. 

http:170)(0.07


V. CONCLUDING, RP4ARKS
 

From this experimental investigation of laminar, transitional, and 

turbulent boundary-layer flow over a sharp and blunt tipped 100 half­

angle cone. at a nominal free-stream Mach number of 7, it was concluded 

that: 

1. Experimentally measured Stanton numbers on the sharp tipped 

cone agreed well with laminar and turbulent theory for a range of local 

unit Reynolds numbers of 2.78 x 106 to 9.18 X 106 per foot. 

2. Experimentally measured wall heat-transfer rates on the blunt 

tipped cone were consistently below that of laminar theory for spheri­

cally tipped cones over a range of free-stream unit Reynolds numbers of 

2.01 X 106 to 6.21 X 106 per foot.
 

3. The transition Reynolds numbers for the start and end of
 

transition for the sharp cone at Tw/Tt 0.52 displayed a strong 

effect of local unit Reynolds number. However, transition data deter­

mined at Tw/Tt - 0.46 were less sensitive to local unit Reynolds
 

number, but no'positiv'e conclusion was made since the effects noted
 

could be interpreted within the normal scatter of experimental data. 

4. A comparison of transition data on slender sharp cones from 

various facilities at similar test conditions indicates a consistent 

influence of local unit Reynolds number on the transition Reynolds 

number. From a comparison of the present data to the correlation of 

Pate and Schueler (ref. 32). which is based on aerodynamic noise param­

eters and is independent of unit Reynolds number, it was shown that 
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radiated aerodynamic noise had a major influence on the transition data 

of the present investigation.
 

5. From the comparison of transition data from various facilities 

the dependence of transition Reynolds number on local hypersonic Mach 

number was shown to vary from a minimum at MI 5 and increase sharply 

with increasing local Mach number. The correlation of transition 

Reynolds number with local Mach number for the present study was similar 

to that of other investigations. 

6. The location of the start of transition with increasing free­

stream unit Reynolds number was shown to generally move forward for the 

tests conducted with the sharp cone.
 

7. The local Reynolds number was reduced significantly for the 

blunt tip cone configurations as compared to the sharp tip case and, 

assuming the same critical Reynolds number for transition for the blunted 

cone as for the sharp, the transition delay moved transition completely 

off the blunted cone surface. Approximate calculations for the rearward 

shift in transition using Stetson and Rushton's (ref. 1) data indicate 

that transition on the cone with the three nose tips, rn = 0.15 inch, 

0.30 inch, and 0.60 inch would have occurred at Str = 15.6 inches, 

20.4 inches, and 12 inches, respectively, if the cone had been of suffi­

cient length. These calculations were made for the maximum Reynolds 

number tested. 



VI. SUMMARY 

An experimental investigation was made of laminar, transitional, 

and turbulent boundary-layer flow over a sharp and blunt tipped 100 

half-angle cone at a nominal free-stream Mach number of 7. The tests 

were conducted at stagnation pressures ranging from 185.5 psia to 

608.,8 psia and for free-stream unit Reynolds numbers of 1.88 x 106 to 

6.21 x 106 per foot. Stagnation temperature varied over the range of 

1020 R to 1250 R.
 

Measured Stanton numbers showed good agreement with laminar and 

turbulent theory for the sharp cone case. The heat-transfer rates 

- measured on the blunt tipped cone configuration were below that of 

laminar theory for spherically blunted cones. Transition Reynolds 

numbers for the start and end of t±ansition on the sharp cone indicated 

a strong dependence on local unit Reynolds number. 

By comparing slender sharp cone transition data from various 

facilities it was shown that the unit Reynolds number effect is a 

common parameter in many wind tunnels. A comparison of the present 

data to a correlation based on aerodynamic noise parameters showed the 

influence of radiated tunnel aerodynamic noise on the present results. 

The transition data from various facilities also showed a strong depen­

dence on local hypersonic Mach number. A correlation of transition
 

Reynolds number with local Mach number based on the results of the 

present investigation compared favorably with correlations of other
 

investigations.
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For the blunt tip cone configurations, the local Reynolds, number 

was reduced considerably compared to the sharp tip case and transition 

was delayed to the extent that it did not occur on the cone with any of 

the blunt tips. This transition delay was approximated by an available 

method for the three blunt nose tips, rn = 0.15 inch, 0.30 inch, and 

0.60 inch, and the calculations indicated that transition would have 

occurred at a surface ,distance of 15.6 inches, 20.4 inches, and 12 inches, 

respectively (for the maximum unit Reynolds number), if the cone had 

been of sufficient length. 
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APPENDIX A 

IXPERIMENTAL HEAT-TRANSFER DATA REDUCTION 

The convective heat-transfer rate tol-.e cnne msrface was, calculated 

using the equation: 

.iconv = Pwcp Ay ­ (A-i)
 

The value of the wali density pw was taken to be 530 ib/ft3, and the
 

=
specific heat varied with the wall temperature as cpw O.1041
 

+ 0.0000335 Tw . The thickness of the wall at each thermocouple station 

was measured and varied over the range from 0.028 to 0.O41 inch. The 

temperature-time derivative dTw/dt was determined by measuring the 

slope of each thermocouple trace at the instant constant flow conditions 

were 'established in the test section (between 2 and 4 sec). Corrections 

for radiative heat transfer both from the tunnel wall to the model or 

from the model to the surrounding environment were insignificant due to 

T
the low temperatures encountered (maximum w - 120 F). The heat-transfex 

measurements were made under nonisothermal wail conditions, with the 

-model wall temperature varying a maximum of about 40 F over the model 

length. Estimates of the error in the measurements due to heat conductior 

along the wall were made using the equation for one-dimensional heat 

conduction in a radial direction along a cone surface: 

4c k /d2!W +±I jl (A-2) 

aS2 
 s as, 
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Conduction effects were minimized by the thin skin of the model
 

(AY 0.030 in.). The maximum correction due to conduction was calculated
 

to be about 2 percent, with most of the corrections being less than
 

1 percent of the measured heat-transfer data. For this reason,
 

corrections due to heat conduction effects were neglected.
 

The adiabatic wall temperature was calculated from the equation:
 

Taw =Tt + T(I - (A-3) 

where 71 is the recovery factor and was taken as rj=/T for laminar 

flow and q = for turbulent flow. For the range of temperatures 

encountered in this investigation, the Prandtl number (Pr) varied from 

0.710 to 0.729. A value of 0.72 was used for all of the calculations.
 

The convective heat transfer was converted to a Stanton number by
 

the equation:
 

Nst(A4

=pRUcp(Taw - Tw) (A-)
 

where a specific heat of Cp = 0.24 for air was used.
 



APPENDIX B 

THEORETICAL HEAT TRANSFER 

Laminar Theory
 

The local heat transfer to the cone wall is
 

a=(ktT). (B-1) 

For a laminar boundary layer, the temperature and velocity profiles have 

similar shapes at 'all locations, assuming a uniform wall temperature. 

That is, both'temperature and velocity may be considered as functions
 

of y only. We have
 

%- (!aTo (B-2) 

using the relationship
 

Tw = ((B-3) 

we have
 

IIWOduT)WT LT(~ (B-4) 

From the expression for Stanton number
 

Nst = q(­
p aw w(2
 

43 



44
 

and by substituting equation (B-4) into (B-5) we have an expression
 

for the local Stanton number
 

NSt = (B-6) 
2Prw2/3
 

where
 

cW
Cf =/2 
T 

(B-7)=Z 

p (-= (B-8) 

Equation (B-6) expresses a relationship between heat transfer and skin­

friction and is known as the Reynolds analogy. Croeco (ref. 46) and
 

VanDriest (ref. 47) both developed similar expressions for the Reynolds
 

analogy.
 

aa ,vu viBlasiuD \±. tp&,ji± UL ± ua bi in-friction 

on a flat plate in laminar flow as
 

&.664 (B-9)
 

which combined with the Reynolds analogy gives 

0.332 (B-10) 

St Pr2/3 RS 
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From VanDriest (ref. 49) the local Stanton number for axially symmetric 

laminar flow over a sharp cone is V-times that for a flat plate at the
 

same local Reynolds number, Mach number, and wall temperature to local 

free-stream temperature ratio.
 

Rewriting equation (B-1O) for the laminar heat transfer to a cone
 

in terms of free-stream conditions, introducing a reference temperature,
 

and assuming Pr = 0.72, we have
 

Tl/4[-
Nat. = 4.317 - p2Mj±'T (B-11)

S1t
 

where a reference temperature defined by Monaghan (ref. 50) was used
 

S0 .5 7  + 0.425 + 0.0328 

Turbulent Theory
 

For turbulent theory, the 'same relationship between local Stanton
 

number and skin friction holds true (eq. (B-6)). Schlichting (ref. 7)
 

gives the following expression for the local skin friction for turbulent 

flow on a flat plate 

cf.= 0 (B-13)
 
(Rs)']/'i
 

which combined with the Reynolds analogy gives 

Not 0.0296 (B-14)
 
PrW2/3(R sl/5
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For turbulent axisymmetric flow over a cone, the local Stanton number is
 

1.15 times the value for a flat plate under the same turbulent local
 

conditions (ref. 49). 

Introducing a reference temperature, and converting to free-stream 

conditions, assuming Pr = 0.72, the following expression for the 

turbulent free-stream Stanton number for a cone is developed 

Ns =0.088(Pjj.TZ- T-; y/' (B-15) 

where the following reference temperature for turbulent flow was used 

(ref. 51)
 

= 0.5 H + 0.46 + 0.0284 2 (B-16)Tj T.1 



APPENDIX C
 

SWALLOWING DISTANCE AND DEVELOMENT OF LOCAL PROPERTIES 

A convenient method for computing approximate local properties along
 

blunted cones involves the use of the swallowing distance, SSW. The
 

swallowing distance is defined as the position on the cone where the high
 

entropy flow which has passed through the curved region of the bow
 

shock has been swallowed by the boundary layer. At this location, the
 

properties at the boundary-layer edge are essentially the same as that 

for an equivalent sharp cone.
 

A formulation for the swallowing distance was developed by Zakkay 

and Krause (ref. 41) by assuming a linear Mach number gradient along the 

boundary-layer edge. Their subsequent expression for the swallowing 

distance is of the form 

5sw[2.22 ~ y~ur. 1/ (C-1) 
sw=n p ( + Msh) f2(q) sin2(C 

The transformed stream function, f(n), was assumed to have a value 

of 2.3 after reference 1. Values of the local Mach number, Mt, and the 

Mach number at the shoulder joining the blunt nose with the conical 

frustum, Msh, were obtained from the tables of references 52 and 53, 

respectively. Surface pressure, Pl, for the blunt cone assumedwas 

to be constant and equal to the equivalent sharp cone pressure.
 

The shock shape was obtained from schlieren photographs and 7 was 

taken to be the raQai aistance Irom tne cone axis to tne shock location 
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where the pressure recovery across the shock was of such a value that
 

expansion to PZ resulted in 0.95 MZ. The local flow properties
 

approach sharp cone conditions asymtotically from the swallowing distance.
 

Therefore, the swallowing distance can be computed from equation (C-l). 

Since this distance represents the location where the local Mach number 

is 0.95 M, for a sharp cone (known value), the local Mach number 

distributions along the blunt cone surface can be determined by assuming 

a linear gradient from Msh to 0.95 MZ.,
 

Once the local Mach number distribution is known, the energy
 

equation can be written
 

2 
Ht = hZ + ii (0-2)

2 

or, for a perfect gas 

=epz + 2 (gT)-3)
 
2
 

solving for TI, we have
 

T Ht (c-4) 
2)(p+ rCRgMZ


Values of TZ for corresponding values of MZ can now be computed. 

From these values of TZ, the speed of sound aZ, u Pl, and jtZ can 

be determined, thus enabling the local Reynolds number, R; = -- , to 
bcz
 

be calculated.
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Free-stream properties were computed assuming an isentropic 

expansion (7 = 1.4) from the known stagnation conditions. For the sharp 

cone case, local properties at the boundary-layer edge were computed 

from the tables of Sims (ref. 52). 



APPENDIX D
 

LAMNAR HEAT TRANSFER OVER SPHERICALLY TIPPED CONES
 

The theory used for the heat transfer over the blunt-nosed cones 

of this investigation is that of Lees (ref. 54) which is expressed as 

- A(e)c + L- (D-i) 

4s= cBG) + (cot e0 S - !i- c@ 1/(D ) 

where:
 

A(ee) = ( sin2e +0 

B(eG) = 0.1875 D(e)
 

sin 
c [2 ­ (i 

coi
 

) 2n~~ e - ( @ +8 ~- ~ 2 

I - cos 20 
+52 
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c = cone half-angle, radians 

2 C 

S/rn surface distance from stagnation point nondimensionalized 

by nose radius. 

For the conditions of the present test,,' e. = 100 ('0.1744 radians), 

M = 6.86, and 7, = 1.4, we have 

5.671 + -139 
w_ (0.2164) - [ 3 51 (D-2) 

1/25j
3
t+[(+671[6 
­

-



2. 

Fluid which has passed through a near normal shock. 

Fluid which has passed through essentially a conical shock 

2 ---- Boundary layer 

R) 

Bow shoc. 

Figure I.- Flow past a blunted cone. 



(a) Nose A. 

Figure 2.- Schlieren photographs of model.
 



(b) Nose B. 

Figure 2.- Continued.
 



(c) Nose C.
 

Figure 2.- Continued.
 



ON 

(d)Nose D. 

Figure 2.- Concluded.
 



(a) Sharp cone configuration.
 

Figure 3.- Photograph of model.
 



TO-r 

(b) Sharp and blunt nose tips. 

Figure 3.-- Concluded. 
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TABLE .- THERMOCOUPLE LOCATIONS ON INSTRUMENTED CONE MODEL
 

12 inches 0 

S 4.23 inches 

1800 

THERMOCOUPLE 
S 

IN. DEG. THERMOCOUPLE 
S 

IN. DEG. 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

2.48 
2.68 
2.88 
3.13 
3.38 
3.63 
3.88 
4.13 
4.38 
4.63 
4.88 
5.13 
5.38 
5.63 
5.88 
6.13 
6.38 
6.63 
6.88 

0 20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

7.13 
7.38 
7.63 
7.88 
8.18 
8.38 
8.63 
8.88 
9.13 
9.38 
9.63 
9.88 

10.13 
10.38 
10.63 
10.88 
11.13 
11.38 
11.63 

0 



HIGH PRESSURE HIGH 
'TANK VACUUM 

PUMP 

,_ PRIESSURE LOW
 

PRESSURE
RGTOR 
 TANKRTLARK 
IC 

FiI -f a i 

iMODEL • 
TE~tSUPPORT , 

HEATERPUMPS
 
TO HIGH PRESSURE 

TANK -DRYER 

Figure 4. - Schematic of Langley l1-inch facility. 
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TABLE 2.- TEST CONDITIONS OF EXPERIMENTAL INVESTIGATION
 

Stagnation Stagnation Free-stream Free-stream 
Run pressure temperature Mach unit Reynolds No. 
number psia OR number per foot 

NOSE A (SHARP) 

± 185.5 1055 6.82 1.88 x 106 

2 201.0 o6o 6.82 2.02 

3 226.3 1040 6.82 2.54 

4 255.9 1035 6.83 2.66 

5 288.o ±O5O 6.84 2.91 

6 360.0 ±o6o 6.85 3.58 

7 4o4.o 1055 6.86 4.02 

8 439.0 1040 6.86 4.52 

9 482.0 1070 6.86 4.7o 

10 519.0 1075 6.86 5.01 

1 546.7 1070 6.86 5.33 

12 6o8.8 1043 6.86 6.21 

13 301.3 1180 6.84 2.53 

14 368.3 1194 6.85 3-03 

15 437.o 1200 6.86 3.56 

16 516.o 1225 6.86 4.07 

17 6o4.o 1250 6.86 4.61 
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TABLE 2.- Continued 

Stagnation Stagnation Free-stream Free-stream 
Run pressure temperature- Madh unit Reynolds No. 

number psia OR number per foot 

NOSE B (rn,= 0.15 in.) 

18 197.4 1050, 6.82 2.01 X 106 

19 294.0 1050 6.84 2.99 

20 369.2 1035 6.85 3.80 

21 423.5 1025 6.86 4.43 

22 516.0 io68 6.86 5.06 

23 607.5 1050 6.86 6.1o 

NOSE C (rn = 0.30 in.) 

24 200.2 1020 6.82 2.13 x 106 

25 288.4 io6o 6.84 2.88 

26 363.0 1050 6.85 3.67 

27 434.5 1055 6.86 4.36 

28 520.0 1080 6.86 I 4.98 

29 605.8 1050 6.86 6.o8 

NOSE D (rn = 0.6o in.) 

30 196.5 1020 6.82 2.10 x 1O6 

31 280.0 1055 6.84 2.81 

32 365.4 1035 6.85 3.77 

33 436.o 1045 6.86 4.44 
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TABLE 2.- Concluded 

Stagnation Stagnation Free-stream Free-stream 
Run pressure temperature Mach unit Reynolds No. 
number psia OR number per foot 

34 507.6 o4o 6.86 5.18 

35 6o4.o 1035 6.86 6.21 
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(a) Local unit Reynolds numbers of 2.78 x 106 and 3.00 x 106 per foot. 

Figure 5.- Stanton number distributions for sharp tipped model. 
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(b) Local unit Reynolds numbers of 3.46 x 106 and 3.94 x 106 per foot. 

Figure 5.- Continued. 
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Figure 5.- Continued. 
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Figure 5.- Continued.
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(f) Local unit Reynolds numbers of 7.95 x 106 and 9.18 x 106 per foot. 

Figure 5.- Continued. 
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TABLE 3. - LIST OF REFERENCES FOR TRANSITION
 

DATA ON SHARP CONES
 

SYMBOL M E(deg. Twt p u22 Investigator 

0 5.5 10 .45-.53" 3.5X10 6-9.2xlO6 Present 

u 5.0 15 .43 6xlO6-13.5>xO 6'\ Larson and 

6.8 .4 17x0-106.7xl06 	 Mateer (ref. 6) 

4.8 	 8 .38-45 3.5X106-4.7x06 Stetson and 
Rushton (ref. i) 

15.8 6 Stainback
 

A67 7.5 .43 2.80- 13.8X10 6) (ref. 2)
 

7.5 	 .45 1.5 o0 10.0o0, 

8.8 5 .075-.365 2 x 1O6 	 Sanator, et al 
(ref. 3)
 

8.9 	 3.75 .55-.69 1.3x0 6-5.1X!06 Everhart and 
Hamilton (ref.23) 

(10.1 5 .21.26 1.2)40 -2.640 Softley, et al 

12.3 5 .21-,25 1. 2do6 _1.8X1o 6 ) (ref. 4i) 
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