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EFFECTS OF PRESSURE DISTRIBUTION ON THE SHAPE OF
TENSION SHELL ENTRY VEHICLES

By
James Wayne Sawyer

ABSTRACT

Theoretical and experimental investigations were conducted for the
purpose of improving accuracy in calculating pressure distributions for
various tension shell decelerator shapes and evaluating the effects on
derived shapes resulting from the application of different pressure dis-
tributions. Although tension shell shapes have been derived using
Newtonian aerodynamics in conjunction with linear membrane theory,
experimental pressure distributions obtained on other bluff shapes
indicated that Newtonian theory does not describe the actual pressure
distribution. However, better agreement has been obtained for many bluff
shapes with sonic corners by means of integral reiation theory. Conse-
quently, a computational procedure involving the use of a one-strip
integral relation technique for calculating pressure distributions was
devised for use in deriving new tension shell shapes. Inasmuch as the
nose radius and the free-stream Mach number affected the integral rela-
tion pressure distributions, their effects on integral-relation-derived
tension shell shapes were investigated.

Experimental pressure distributions were obtained at a Mach number
of 3.0 in the Langley 9- by 6-foot thermal structures tunnel and are

presented for typical Newtonian- and integral-relation-derived tension



shell shapes. The experimental pressures are presented in tabular and
grephical form and are compared with pressures obtained from the New-
tonian and integral relation theories. Tension shell shapes were then
derived using the experimental pressure distributions in conjunction
with linear membrane theory and were compared with the Newtonian- and

integral-relation-derived tension shell shapes.
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A projected area
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a sonic velocity
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T
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D
Cp pressure ~cafticlent, p - P,
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P nondimensional membrane pressure differential, P - P,
P local surface pressure, nondimensionalized by q,
Py base pressure, nondimensionalized by q,
q, free-stream dynamic pressure
R nondimensional model coordinates, -rz-
b

T hase radius
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model nose radis (see fig. 3)

Principal radii of curvature of shell in meridional
and circumfersntial directions, respectively

sonic point on model surface

curvilinear coordinates along, and normal to, body
surface nondinensionalized by r (see fig. 3)

velocity components in s- and n-direction, respectively,
rondimensionalized by free-stream velocity

rnondimensional model coordinate, ;’%
model coo linates (see fig. 2)

tension shell shape parameter

shock angle (see fig. 3)

shock-layer thickness along n-coordinate nondimensional-
ized by r, (see fig. 3)

ratio of specific heats

surface slope
P, (0)
stegnatZon streamline isentvopic constant, -——m—or
(p4(0))7

density, nondimensionalized by 0o
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1/y-1
T combined entropy-continuity flow variable, (5%) I
¥,9 circumferential and meridional coordinates, respectively
Subscripts
0 quantities along surface (n = 0)
1 quantities along shock wave (n = 5)

© free-stream conditions



VI. INTRODUCTION

The possibility of exploring the atmospheres cf certain planets has
stilulated the development of aerodynsmic decelerators (refs. 1 through
15). The entry of unmanned probes into an atmosphere requires a vehicle
with low structural weight that can generate a high drag coefficient in
order to obtain a reasonable dwell time in the atmosphere for the gather-
ing and transmission of data. One type of decelerator that shows promise
of satisfying the above requirements is the tension shell as derived in
reference 1. A typical tension shell configuration is shown in figure 1.
The payload is assumed to be concentrated in the forward portion of the
vehicle which is connected to the campression ring at the rear by a thin
shell or membrane whose shape is characterized by negative Gaussian
curvature. The configurations obtain their name from the fact trat the
shell is shaped so as to resist the aerodynamic loading by means: of
tensile stresses only.

As indicated by the references 2 through 10, the tension shell con-
cept has been extensively studied aerodynamically over a wide reage of
Mach number, Reynolds number, and fineness ratios. The results from the
investigation of reference 2 indicate that the relatively bluff tension
shell shapes - that is, those that generate a detached bow shock wave -
may be best suited for use as entry vehicles because they can develop
relatively high drag coefficients without the %dverse boundary-layer
flow sepacration effects that are encountered by less bluff tension shell
shapes. In previous investigations of this concept, the tension shell

shapes were derived using linear membrane theory in conjunction with

1l



either an axisymmetric Newtonian or a constant pressure distribution.
However, the experimental data of reference 16 for lﬁ‘ge angle cones
indicated that the constant pressure distribution predicted by Newtonian
theory does not describe the actual distribution to which the cones are
subjected. Thus, this inadequacy of the Newtonian theory with respect
to cones having proportions similar to those of the bluff tension shell
shapes poses the question of how the shapes of reference 1 might differ
from shapes that are derived using a more realistic pressure distribution.
Moreover, the question arises concerning the nature of the actual pres-
sure distribution on bluff tension shell shapes inasmuch as no experi-
mental pressures are presently available.

In view of the above questions, an investigation was made to deter-
mine a more realistic pressure distribution and its effect on the bluff
tension shell shapes of reference 1. One theoretical approach that
accurately predicts the pressure distribution of large-angle cones is
the integral relation theory explained in reference 16. Consequently,

a computational procedure was devised in the present investigation
involving the use of a one-strip integral relation technique for calcu-
lating pressure distributions and linear membrane theory to derive new
tension shell shapes. Shapes were also derived using pressures obtained
from wind-tunnel tests conducted at Mach 3.0 on models with shapes that
were derived from Newtonian pressures and from pressures predicted by
the integral relation method.

The present thesis presents the analysis for shape determination,

discusses the results from the theoretical study and from experiment,



and compares the shapes obtained from the different pressure distri-

butions. Inasmuch as the pressure distributions given by the integral
relation method are somewhat dependent on Mach number and nose radius,
the effects of varying the Mach number from 2.5 to 7.0 and of varying
the nose radius from 0.05 to 0.56 times the base radius on the derived

shapes are also discussed.



VII. ANALYSIS

A. Statement of Problem

The following analysis consists of solving two sets of independent
differential equations with their respective boundary conditions. The
first set of equations comes from the linear membrane equilibrium equa-
tions for a shell of revolution subjected to an axisymmetric pressure
distribution. Circumferential and meridional stress resultants are
assumed related to each other by a constant, and zero axial forces are
assumed on the compression ring. The second set of equations is derived
by applying integral relation theory to the solution of supersonic,
inviscid flow around bluff bodies. The body surface is assumed to be
normal to the free-stream flow direction at the nose, and the local
velocity is assumed to be sonic at the sharp corner on the base com-
pression ring. The two sets of equations are related in that the first
set of equations requires a pressure distribution as an input in order
to provide a shape, while the second set of equations requires a shape
as an input in order to provide a pressure distribution. Either a
particular shape or a pressure distribution must be assumed to start
the calculations, and an iterative procedure must be followed between
the two sets of equations until a unique shape and pressure distribution

are obtained.

B. Basic Equations and Solutions

1. Structural. - For a shell of revolution subject to an axisym-
metric pressure distribution, the appropriate linear membrane equilibrium



equations are (see ref. 1):

and

vwhere (see fig. 2)

and

Assuming K, = aNp, vhere a is a constant, equation (1) becomes

Solving for Nq,:

r1<)g = constant = Ngr{l)

Let Z (which corresponds to the value of AZ used in ref.1l) be -

given as follows:

d(::q’) - rmNa cos ¢ =0
-}-:i+g§=pqm
Locsofe.doine
1l _sing
r r

WMo .1 -ap
+ ==2(Kg) = 0

dr

-0
0

(1)

(2)

(3)
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(5)

(6)

(7)



With the use of equations (3), (4), (6), and (7), equation (2) becomes

9 ,asin9 _ ZP —1-'-(1-0')=0 (8)
dr r cos @ 1y cos Q\Iy

If R= %, then dR = i‘-r% and equation (8) becomes

9 ,asin9 2 01w _,

dR R cos @ cos @ (9)

Assuming that there is no axial force on the compression ring, the slope

of the model surface becomes zero at r = ry, or

= -tan ¢ = 0 (10)

Bl

Thus, for any particular pressure distributior, there exists a first-
order differential equation and the necessary boundary conditions to
soive for the model surface slope. Equation (9) msy again be integrated
with respect to r to obtain the x-coordinate of the desired configura-
tion as a function of r.

Equation (9), subject to the boundary condition (eq. (10)), has
been solved for a body of revolution with an axisymmetric pressure dis-
tribution by the use of a digital computer. A source program in '
Fortran IV language is given in appendix A. Equation (9) wes numerically
integrated twice using the fourth-order Runge-Kutta integration techni-
que. The integration was started at R =1 and continued with decreas-

ing values to R = 0. In order to use the program, values of 7Z, a,



integration step height, DR, and a pressure distribution as a function
of R are necessary inpuots to the program. The program output consists
of values of the axial coordinate and surface slope as a function of E.
With this program, shapes are obtained with zero nose radius of

curvature.

2. Aerodynamic. - For a blunt body of revolution with sharp

corners subjected to inviscid supersonic flow, the governing differential

equations for the one-strip method may be written as follows (see ref. 16):

% = (1 + K5)tan A (11)

as _ [, 5 sin 0 ,T1L 2 2
== [(1 + Kb)(tan A - "'Fg—)plulvl -2+ o P1v] + KBPqug

i rl r &31ulvl -1
+ (1 + K5 + ;5)(1’0 - plﬂ(b ;% > ) (12)
and
dug & & sin ©

-1
i %E 2(ryu)2 + (2 + m)Tlv;J [570 (a - Mg)] (13)

A sketch of the geometry and coordinates are shown in figure 5. A
particular body contour is specified by giving the surface angle and

curvature as a function of 8. On the axis of symmetry at s = O, the



body surface must be normal to the stream direction 6(0) = 325 and the

surface slope must be continuous; thus, the following conditions hold:
(o) = 2 (1k)
2
and
u(0) = 0 (15)

The surface speed is required to reach sonic velocity at the model

corner, r = Iy, which results in the boundary condition that
ug(s*) = a¥ (16)

where a* 1is a constant dependent on M, and 7. Thus, we have three
interconnected first-order differential equations (11), (12), and (13),
and three boundary conditions, (14), (15), and (16), that must be satis-
fied. The functions at the shock wave are explicit functions of 7y, My,
B,band 6. The main dependent variables are 5, B, and ugy, while pj
and po are obtained as explicit functions of 7y, My, and uy by using
the isentropic law.

Equations (11), (12), and (13) and the boundary conditions (1k4),
(15), and (16) have been programed for use on a digital computer. The
integration of equations (11), (12), and (13) starts at s =0 and
terminates at s = s*; the initial shockwave standoff distance &(0) is
unknown and must be chosen so that equation (16) is satisfied at the
correct corner location. A discussion of the techniques used in solving

the equations and a detaiied program list-out are given in reference 16



with sample calculations on certain blunt axisymmetric bodies. 1In order
to use the existing program for more general shapes, it is necessary
only to modify the input statements and the subroutine called BSR. In
order to perform the calculations, an input statement was added to
direct the computer to read in tabulated values of surface slope and

r for any particular configuration. The subroutine BSR was modified
by adding appropriate statements to direct the computer to use the
correct values of surface slcpe and r for the particular configuration
under consideration. With these modifications, flow conditions may be
computed for any bluff budy for which the surface slope is continuous

and is given as a function of r.

C. Calculation Procedure

in order to begin the iterative procedure involving equations (9)
and (10) and equations (11) through (16), either a shape or a pressure
distribvution must be assumed. For the work contained herein, an
initial shape was calculated using a Newtonian pressure distribution
(i.e., P = Cp =2 8in®0), and this shape was used in the integral
relation computer program involving equations (11) through (16) to
obtain a new pressure distribution. To satisfy the requirements ot the
integra. relation computer program that the surface slopes be continuous
and normal to the stream direction at the nose, the initial shape was
given a spherical nose radius. The pressure distribution so obtained
was fed into the linear membrane program involving equations (9) and
(10) which calculated a new shape having a zero nose radius of curvature.

The new shape was +then sphericelly blunted and applied to repeat the



19

procedure until convergence occurred, and a unique shape and pressure
were obtained. The process was considered to have converged if the
difference between successive iterations resulted in a maximur variation

in x/r, of less than 0.0001.



VIII. EXPERIMENT

A- Models

Two pressure distribution models were wind tunnel tested as part of
this investigation. The shapes ard pertinent model dimensions are given
in figure 4; model coordinates and orifice lor~ations are given in
table I. The model shapes were derived using the linear membrane equi-
librium equations for values of Z = 0.65 and a = O. For one of the
shapes, a Newtonian pressure distribution was assumed, and for the other
shape a pressure distribution predicted by integral relation theory was
used- Both shapes had a nose-radius-to-base-radius ratio (r,/ry) of
0.20. Each mode? was instrumented with 49 pressure orifices; 41 orifices
were distributed along the front face of the model ard 8 orifices were
distributed along the model base. The orifices along the frcnt face of
the models were pcsitioned along two radial lines 180° apart and were
mounted flush with, and normal to, the model surface, whereas the base
pressures were measured at the open ends of tubes soldered along the
model base (see fig. 5). The models were machined from mild steel, and

the surfaces were polishked to a smooth bright finish.

B. Test Apparatus
1. Test facility. - All tests were conducted in the Langiey 9- by

6-foot thermal structures tunnel. This facility is a supersonic blow-
down wind tunnel which operates at a Mach number of 5.0 at stagnation
pressures from 50 to 200 psia and at stagnation temperatures from ambient

to 2,000° F. The air storage capacity is sufficient to permit tests of
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2 minutes' duration for stagnation pressures of 50 psia. The models were
sting mounted as shown in figure 6. The models were aligned at zero
angle of attack with respect to the tunnel walls.

2. Instrumentation. - Surface pressures were measured on each of

the configurations by means of pressure transducers located outside the
tunnel. The transducers were connected to the orifices by approximately
25 feet of 0.090-inch-inside-diameter steel tubirg. In addition to the
surface pressure orifices, four total pressure and four total temperature
probes were mounted on the walls of the tunnel to monitor the free-stream
flow conditions. Transducers with accuranies cf 1 percent of the maximum
range were used for all pressure measurements. Care was exercised in
choosing transducers having a maximum range that matched the pressures

to be measured as closely as possible. The outputs from all the pressure
transducers and the thermocouples were recorded by the Langley central

data recording facility.

C. Test Procedure

All tests were conducted at a stagnation temperature of 2‘500 F and
at a stagnation pressure of 60 psia. The corresponding Reynolds number,
based on the maximum body diameter, was approximately 10.4 X 1 6,
Constant flow condictions were maintained for approximately 4O seconds
in order to be certain that all pressures had stabilized. Both model
shapes were tested twice at identical flow conditions in order to check
for incorrect pressure readings and to determine the experimental

accuracies involved. For the repeat test, the pressure transducers were

interchanged.



IX. THEORETICAL RESULTS AND DISCUSSION

A. Comparison of Newtonian and Integral Relaticn

Pressure Distributions and Corresponding

Tension Shell Shapes

Tersion shell shape coordinates that were computed using Newtonian
pressure distributions and the corresponding coordinates that were
obtained from the iteration procedure using integral relation theory
described previously are presented in table II. For the present wouk,
three Newtonian-derived tension shell shapes were used as initial shapes
in the iteration procedure and were computed for values of the shape
parameter, Z, of 0.50, 0.65, and 0.80. As the shape parameter is
increased, the body length increases. Consequently, these values of Z
were chosen to yield shapes that were sufficiently bluff to generate a
detached bow shock wave and thus permitted use of the integral relation
theory. For these shapes, a nose radius of r, = 0.05 r, was used in
the integral relation computer program to obtain the pressure distribu-
tions used in the linear membrane computer program for determining
shapes. Also included in table II are the shape coordinates that
resulted from the studies made to observe effects of nose radius and
Mach number on tension shell shapes derived from integral relationr
theory. In both of these studies, the shape for Z = 0.65 was used.
For the study on nose radius effects, shapes were computed for nose
radii of r, = 0.20 ry and 0.56 r, and for My = 3.0. For the study
on Mach number effects, shapes with r, = (.05 r,, were computed for

n

Mach numbers of 2.50, 5.00, and 7.00. Corresponding pressure

13
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distributions and drag coefficients predicted by the integral relation
theory are listed in table III for all of the shapes given in table II.

The disparity between pressure distributions given by different
theories for the same shape is illustrated in figure 7. Presented are
the pressure distributions calculated from Newtonian, modified Newtonian,
and integral relation theories for the Newtonian-derived tension shell
shape for Z = 0.65 and r, = 0.05 r,- The results are typical for all
shapes considered herein and indicate considerable difference in pre-
dicted trends. For example, pressures obtained from the integral rela-
tion theory decrease from the stagnation point and are sutstantially
higher over most of the surface with respect to the Newtonian and modi-
fied Newtonian values, whereas the Newtonian and modified Newtonian
pressures increase from the nose cap tension shell juncture. The modified
Newtonian pressures are presented in order to compare theoretical pres-
sures based on the same free-stream Mach number; Newtonian theory is
baéed on My = ©. Except for the stagnation point values, the pressures
obtained from modified Newtonian theory (O, = Cp stag sin26) are in no
better agreement with the pressures given by integral relations theory
than are the Newtonian pressures (Cp = 2 sin?0).

The initial Newtonian-derived tension shell shape, the final
iterated shape, and the pressure distributions used in their derivation
are shown in figure 8 for Z = 0.50, 0.€5, and 0.80. The final iterated
shapes shown were obtained after four iterations. This rapid convergence
is demonstrated in figure 8(b) for the Z = 0.65 shape. Typically, a
substantial decrease in the overa’l length of the shape occurred with

the first iteration. Second, third, and fourth iterations resulted in



15

consecutively smaller changes in overall length as shown by the detail
in figure 8(b). Eacu successive iteration resulted in a shape with an
overall length that was alternately shorter or longer than the preceding
shape and thus indicated convergence. The pressure distributions con-
verged in a similar manner, but smaller differences were obtained between
successive iterations. The integral reletion pressure values produced by
the first and fourth iterated shapes are almost identical and are only
slightly larger than the integral relation pressures calculated for the
original Newtonian shape.

The results of figure 8 show that the pressures obtained from
integral relation theory decrease as the tension shell length is
increased but the changes in pressure are small compared to the changes

in shape. In contrast, the Newtonian pressures show a strong sensitivity

to shape change.

B. Effects of Nose Radius and Macu Number on Shapes and

Pressure Distributions Derived From

Integral Relation Theory

Since the integral relation pressure distributions and the derived
tension shell shapes are somewhat dependent on the assumed nose radius
and the free-stream flow conditions, it is desireble to document the
effects of these variables. Therefore, pressure distritutions and
tension shell shapes were computed for L = 0.65 at a Mach number of
3.0 with r,/r, = 0,20 and 0.56 and for Mach mmbers of 2.50, 3.00,

5.C0, and 7.00 with rp/ry, = 0.05. The effects resulting from the nose
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radius and Mach number variations are shown in figures 9 and 10,
respectively. The largest effect of nose radius on the pressure distri-
bution occurs over the spherical nose cap and is characterized by a
si1ight bulge which covers an increasing percentage of the surface area

as the nose radius is increased, but the overall effects are small and
substantiate the conclusions presented in reference 17 for configurations
with the sonic point located at the shoulder. Therefore, tension shell
shapes that are computed from the integral relation pressure distribu-
tions are insensitive to nose radius and a spherical nose cap may be
added without appreciably affecting the shape downstream of the nose cap
Jjuncture. In contrast to these results, figure 10 shows that Mach mumber
affects both the pressure distribution and the tension shell shape. An
increase in Mach number results in a reduced static pressure loading and
a shorter tension shell shape, but both the pressure distribution and the
tension shell shape converge as the Mach mmber increases. The Mach
mﬁnber dependency and the fact that aerodynamic decelerators will be used
over a finite Mach mmber range indicate that a tension shell shape
derived for a specific application will be a compromised shape taking
into account Mach mmber effects. Although a Mach number dependency is
shown for the tension shell shape, the changes in shape that occur within
the Mach mmber range considered herein are not as great as those
obtained betweern Newtonian-derived and integral-relation-derived tension

shell shapes.



X. EXPERIMENTAL RESULTS AND DISCUSSION

A summary of the experimental pressures obtained from the Mach 3.0
wind-tunnel tests is provided in table IV in pressure-coefficient form
and is presented graphically in figure 11 for the 2Z = 0.65 Newtonian-
and integral-relation-derived tension shell shapes with r,/ry = 0.20.
The data from both models show excellent repeatability and indicate
nearly identical pressure distributions in spite of the difference in the
shapes. (See fig. 4.) Thus, the experimental results substantiate the
conclusion, noted earlier from the computed integral relation pressure
distributions of figure 8, that the pressure distribution for a bluff
tension sheil shape is relatively insensitive to significant changes in
the tension shell shapes. For these shapes relatively high and nearly
constant pressures are generated along the front surface to a value of
r/rb = 0.75 before showing the influence of the flow expansion around
the sharp corner at the base. Nearly constant values of pressure less

than free-stream static pressure are obtained along the rear surface.

17



XI. COMPARISON OF THEORY AND EXPERIMENT

A. Pressure Distribution

In figure 11, curves of the pressures obtained from integral
relation, Newtonian, and modified Newtonian theories are included, and
it is apparent that the experimental data favor the curves given by
integral relation theory. The agreement between experiment and integral
relation theory is excellent over the nose cap and is within 9 percent
over the remaining portion of the Newtonian-derived shape (fig. 11(a))
and within 7 percent for the iterated shape (fig. 11(b)). The
experimentally determined pressures lie above the integral relation
curve downstream of the nose-cap juncture, and the maximm deviation
from theory occurs at a value of r/ry = 0.90. The deviation of integral
relation theory from experiment may be due partially to viscous effects
which were not taken into account by integral relation theory. These
viscous effects result in a buildup of the boundary-layer displacemest
thickness along the model surface and therefore change the effective
shape. However, integral relation theory gives a much better representa-
tion of the aerodynamic loading on bluff tension shell shapes than do the

Newtonian theories and is recommended for use in design applications.

B. Shapes Determined From Experimental Pressures

The experimental pressure distributions of figure 11 were used in
the linear membrane computer program to determine shapes for comparison
with the theoretically determined shapes. The coordinates of the

experimental shapes and thelr corresponding experimental pressure

18
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distribution in terms of the nondimensional membrane pressure differen-
tial, P, are given in table V. The pressures ire an average of those
obtained from the two tests conducted on each wind-tunnel model. These
experimental shapes and their pressure distributions a-e compared with
corresponding Newtonian-derived and integral-relation-de.~ived shapes and
pressure distributions in figure 12. In this figure, urlike figure 11,
the experimental pressure values are generally less than cttained from
integral relation theory because the experimental values of th=
parameter, P, were evaluated using measured values of basc pressure,
whereas the values of P determined from integral relation theory were
evaluated assuming zero base pressure. The agreement between the experi-
mental and integral relation values of P, however, is within 4 percent.
The tension shell shapes derived from the experimental pressures differ
by less than 2 percent and should be representative of shapes obtained
under true aerodynamic loading. Moreover, these shapes are in excellent
agfeement with the integral-relation-derived shape. Consequently, a
truer representation of a bluff tension shell shape can be obtained from
pressures determined from integral relation theory rather than from

Newtonian theory.

C. Drag Coefficients

One criterion governing the final selection of a planetary
atmosphere-entry decelerator shape is the drag coefficient. Therefore,
the method used in estimating the drag coefficient is of paramount
importai.ce. In table VI, the drag coefficients predicted by Newtonian-

and integral-relation theories for the Z = 0.65 tension shell shapes
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with r /ry = 0.20 are compared with drag coefficients obtained by
integrating the experimental pressure distributions of figure 11l. All
drag coefficients are based on a free-stream static base pressure in
order to provide a common basis for comparison. The drag coefficients
predicted by Newtonian theory are up to 13 percent greater than experi-
ment, whereas the drag coefficients predicted by integral relation theory
are 6 percent less than experiment. Thus, conservative and more accurate

estimates are obtained from integral relation theory.



XII. CONCLUDING REMARKS

A theoretical and an experimental investigation were conducted for
the purpose of improving accuracy in calculating pressure distributions
for various tension shell decelerator shapes and to evaluate the effects
on derived shapes resulting from the application of different pressure
distributions. Although tension shell shapes have been derived using
Newtonian aerodynamics in conjunction with linear membrane theory,
experimental pressure distributions obtained on other bluff shapes
indicated that Newtonian theory does not describe the actual pressure
distribution. However, better agreement has been obtained for many
bluff shapes with sonic corners by means of integral relation theory.
Consequently, a computational procedure involving the use of a one-strip
integral relation technique for calculating pressure distributions was
devised for use in deriving new tension shell shapes. The results
indicated that tension shell shapes that are derived using pressure
distributions predicted by integral relation theory are substantially
blunter than equivalent Newtonian tension shell configurations. Although
the pressure distributions predicted by integral relation theory are
somewhat dependent on model nose radius and Mach mumber, the differences
in the integral-relation-derived tension shell shapes attributable to
various nose radii and Mach mmbers are considerably less than those
noted between Newtonian- and integral-relation-derived tension shell
shapes.

Experimental pressure distributions were obtained at a Mach number

of 3.0 in the Langley 9- by 6-foot thermal structures tunnel for typical

21



22

Newtonian- and integral-relstion-derived tension shell shapes. The
experimental pressure distributions were in relatively good sgreement
with theoretical pressure distributions predicted by integral relation
theory but showed poor agreement with pressure distributions predicted
by Newtonian and modified Newtonian theories. Tension shell shayes
derived using the experimental pressure distributions were in good
agreement with the corresponding integral-relation-derived tension shell
shape but were in poor agreement with Newtonian tension shell shapes.
Thus, integral-relation-derived tension shell siapes are more representa-
tive of bluff tension shell shapes than Newtonian-derived shapes. Drag
coefficients predicted by integral relation theory were approximately

6 percent less than experimental values whereas Newtonian drag coeffi-

cients were up to 1> percent higher than experiment.
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XV. APPENDIX A

In this section the Fortran IV source program is listed for the
derivation of tension shell structures of revolution subject to linear
membrane theory and axisymretric pressure distribution. The following

definitions are used in the program and are defined below or in the list

of symbols:
Program Definition
yA Z
ALPHA a
THETAD Limiting configuration slope, deg
THE(J) Radial position array, R
P(J) Pressure dis’ :ivution array, P
J Indexing Parameter
K Indexing Parameter
DR Integration step size
THET 0, deg
RO R
YO X
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PROGRAM SAMYER (INPUT ,0UTPUT ,TAPES=INPUT » TAPEG=0UTPUT 4 PUNCH)
PROGRAM FOR CALCULATION OF TENSION SHELL SHAPES

100 FORMAT(1X2HI=E16e8 +2X6HALPHA=EL16,892XTHTHETAD=E16,8)

101 FORMAT(B8XSHTHETASX2HROBX2HYO12X2HPO)

1 FORMAT{3E16,.8)

2 FORMAT(2E16,.8)

20 FORMAT(4EL16.8)

DIMENSION THE(S00),P(500)

13 READ(S,1VZ,ALPHA,THETAD
READ(S5,2V(THEWJ) P (J),4=1,500)
DEG=5T,295780
THETAS=1,5707962
THETAR=THETAD/DEG
RAN=1,5T07000
J=1
RO=THE(J)

OR0=, 005
DR=DRO

25 THETA=THETAS
OTHET=THETA
R=R0O
Y0=0,

K=1

WMRITE(65100)2Z4ALPHA,THETAD
WRITE(6,101)

THET=THETA®DEG

WRITE(6,20) THET,RO,YO,PO

PUNCH 2,THETA,RO

L=1

COMPARISON OF ANGLES .

3 IF(R.LT.THE(.H.ANO.R.GI’.THE(.M].))GO T0 4
IF(R,EQ.,THE(J))GO TO S
IF(RL,EQ.THE(J+1))GO TO 6
IF(RLT,THE(J+1))60 TO 7
IF(R,GT.THE(J))IGC TO 8
INTERPOLATICN FOR THETA AND PRESSURE

& DOG=(R-THE(J)I/(THE(J+1)-THE(J))
PO=P(JI+(P(J+1)-P(J)i*D06
GO T0 9

S PO=P(J)

GO Y0 9

6 PO=P(J¢]l)



14

15

10

16

11

17

12

GO ¢ 9

J=J+1

60 10 3

J=J=-1

60 70 3

RUNG-KUTTA INTEGRATION
IF(R,LE.O0)GO TO 23
ER=R*%(]l,-ALPHA}
IF(THETALGT.RAN) A=0Q,
IFITHETA,GT<RANIC=2,*2%ER*PO
IF(THETALGT.RANIGO TO 14
TAN=SIN(THETA) /COS(THETA)
A=-DREALPHA/ (R*TAN)
C=2.*2%ER*PC/SIN(THETA)
IF(K.EQ.2)GC YO 10
IFIK,EQ.31GC TO 11
IF(K.EQ.4)GO0 TO 12
Al=A-DR*(
IF(THETAL.GT,RAN)B]1 =0,
IF(THETAL.GT.RANIGO TO 15
81=DR/TAN

R=RO-DR/2.
THETA=DTHET+Al1/2,

K=Ke¢]

G0 10 3

A2=A-DR*C

IF(THETA,GT ,RAN)B2=0.
IF{THETA.GT.RANIGO TO 16
82=DR/TAN

K=K+1

THETA=DTHET+A2/2.

Ga 10 3

A3=A-DR*(C
[F(tHET‘QGToR‘N'83=°.
IF(THETA.GT,RANIGO TO 17
83=DR/TAN

K=Kel

R=R0-DR

THETA=DTHET+A3
IF(R,LEL.OIC=0
IF(R,LE.0)GO TO 12

G0 70 3

A&=A-0R%(
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23

IF(THETAL,GT,RAN)34=0,
IF(THETAL.GT.RANIGO TO 18

B4=DR/TAN
DELTA=]o/6,%(A142,%¥A2¢2,%A3+A4)
OTHET=DTHET+DELTA
THETA=DTHEY

THET=THETA*DEG

RO=R0O~-DR
OV=1./6e%(R142,%B2¢2,%83+B84)
YO=Y0+DY

PRINT RESULTS

WRITE(6420) THET,RO,Y0, PO
PUNCH 2,THETA,RC

K=1

IF(R.LEL.O)IGC TC 23
[IFITHETALGT,THETARIGO TO 3
CONTINUE

siop

END
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TABIE I. — COORDINATES AND ORIFICE LOCATIONS FOR NEWINNIAN- AND
INTEGRAL-REIATION-DERIVED PRESSURE DISTRIBUTION MODELS.

NEWTONIAN RELATION NEWTONIAN
SHAPE SHAPE ORIFICE SHAPE

x/rL r/rll x/rjIL r/x‘b No. x/rJ r/rb

1 0.1113 o} 0.3588 0 26 0.0811 | 0.625
2 0.4097 | 0.025 0.3572 | 0.025 27 0.0712 | C.650
3 0.k0o } 0.050 0.3525 | 0.050 28 0.0619 | 0.675
I 0.3967 | 0.075 0.3442 | 0.075 29 0.0532 | 0.700
5 0.384% | 0.100 |} 0.3320 | 0.100 30 0.0450 | 0.725
6 0.3680 | G.125 0.3167 | 0.125 31 0.0375 | 0.750
7 0.3510 | 0,150 |} 0.3010 | 0.150 32 0.0306 | 0.775
8 0.3341 | 0.175 | 0.2854 | 2.175 33 0.0244 | 0.800
9 0.3174 | 0.200 | 0.2701 | 0.200 34 0.0188 | 0.825
10 0.3008 | 0.225 | 0.2550 | 0.225 35 0.0139 | 0.850
11 0.2845 | 0.250 | 0.2401 } 0.250 36 0.0098 | 0.875
12 0.2685 } 0.275 0.2256 | 0.275 37 0.0063 | 0.900
13 0.2527 | 0.300 | 0.211L4 } 0.300 38 0.0036 | 0.925
1k 0.2371 | 0.325 0.1975 | 0.325 39 0.0016 | 0.950
15 0.2219 10.350 | 0.1839 | 0.350 ko 0.000k | 0.975
16 0.2071 | 0.375 0.1707 | 0.375 41 0.0001 { 0.987
17 0.1925 | 0.400 | 0.1579 } 0.400 o] 1,000
18 0.1784 ] 0.425 0.1456 | 0.425 ) * 0.987
19 0.1646 | 0.450 | 0.1336 | 0.u450 43 * 0.900
20 0.1513 | 0.475 0.1221 | 0.475 by » 0.800
21 0.1384 | 0.500 | 0.1111 |} 0.500 s * 0.700
22 0.1259 | 0.525 0.1005 | 0.525 u6 * 0.600
23 0.1140 {0.550 | 0.090k | 0.550 k7 * 0.500
24 0.1025 |} 0.575 0.0808 } 0.575 48 * 0. 400
25 0.0915 | 0.600 ]0.0716 | 0.600 e} * 0.300

i sl eee—

* Orifices installed on the base of the model
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TABLE IV. - EXPERIMENTAL PRESSURE DATA FOR 2 = 0,65
TENSION SHELL SHAPES WITH rn/rb = 0.20.

e o

ORIFICE ki ORIFICE K 1
) NEWTONTAN INTEGRAL RELATION| NO HEWTONIAN INTEGRAL RELATTON]
SHAPE SHAPE SHAPE SHAPE
TEST 1| TEST 2 | TEST 3 | TEST & TEST 1 | TEST 2 | TEST 3 | TEST b
1 1.756 L.757 1.758 1.755 26 1.645 1.650
2 1.752 1.751 27 1.649 1.652 1.658 1.655
3 1.739 1.740 1787 | 1,746 28 1.638 1.637 1.640 1.643
I 1.720 1.720 1.722 1.723 29 1.641 1.6k0 1.645 1.645
5 1,702 | 1.704 { 1.718 | 1.718 30 1.622 | 1,629 | 1.630 | 1.627
6 1.695 1.698 1,707 | 1.704 31 1.630 | 1.633
7 1.69% | 1.695 | 1.708 | 1.708 32 1.617 | 1.617 | 1.616 | 1.618
8 1.686 | 1.687 | 1.698 | 1.697 33 1.€13 1..613 | 1.611 | 1.610
9 1,694 | 1,687 | 1.700 | 1.699 34 1.592 | 1.593 | 1.591 | 1.538
10 1.679 | 1.680 | 1.601 | 1.690 35 1.581 | 1.587 | 1.581 | 1.575
11 1.679 | 1.679 | 1.693 |} 1.692 36 1.559 | 1.553 | 1L.5%9 | 1.554
12 1,674 | 1.67% | 1.685 | 1.685 37 1.536 | 1.537 | 1.528 | 1.528
13 1.674 1.674 | 1.689 1.690 38 1.2 1.493 1.484 | 1.484
1k 1.670 1.671 1.680 1.679 39 1.446 1.i51 1.432 1.426
15 1.671 | 1.670 | 1.686 | 1.686 ko 1.325 | 1.323 | 1.311 | 1.314
16 1.667 1.664 | 1.676 | 1.679 41 1.202 1.20L 1.19% |} 1.192
a7 1.666 | 1.671 | 1.683 | 1.682 k2  |-0,067 |-0.062 |-0.060 |-0.072
18 1.660 | 1.660 | 1.673 | 1.672 43  [-0.078 |-0.076 |-0.076 {-0.078
19 1.662 1.662 1.679 1.678 L 1-0.077 |-0.079 |-0.078 |-0.078
20 1.657 1.658 | 1.667 | 1.668 ks 1-0.095 |-0.081 |-0.080 [-0.096
21 1.664 1.662 1.675 1677 % |-0.093 |-0.073 [-0.097 [-0.087
22 1.65% | 1.653 1.662 1.663 7 -0.057 [-0.090 |[-0.09k |-0.072
23 1.657 1.662 1,673 1,667 8 |-0.076 [-0.062 |-0.072 |-0.089
24 1.649 1.656 g -0.097 |-0.063 |-0.098 {-0.089
25 1.655 1.652 1.661 1.664
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TABLE V. — EXPERIMENTAL PRESSURE DISTRIBUTIONS AND THE
DERIVED Z = 0.65 TENSION SHELL SHAPES.

* EXPERIMENTAL *¥ EXPERTMENTAL
CONFIGURATION I CONFIGURATION IT

P r /rb x/rb P r/ry x/ry

1.830 0 0.3958 | 1.838 0 0.4015
1.815 0.050 | 0.3638 } 1.824 | 0.050 | 0.3680
1.779 0.100 | 0.3320 § 1.798 | 0.100 | 0.3348
1.766 0.150 | 0.30)7 ] 1.786 0,150 0.3030 |
1.758 C.200 | 0.2702 } 1.778 | 0.200 | 0.2721
| 1.751 0.250 | 0.2405 § 1.772 0.250 | 0.2k21
1.745 0.300 | 0.2119 { 1.768 0.300 | 0.2132
1.7k2 0.350 | 0.1846 | 1.763 0.35C | 0.1857
1.739 0. 400 0.1588 | 1.760 0. 400 0.1597
1.736 0.450 0.1345 | 1.756 0. 450 0.1352
1.734 | 0.500 | 0.1120 § 1.752 | 0.500 ¢ 0.1125
1.729 | 0.550 | 0.0912 | 1.74. | 0.55C | 0.0916
1.72% | 0.600 | 0.0724 § 1.7 .. | 0.600 | 0.0727
1.717 0.650 0.0556 | 1.734 0.6°0 0.0553
1.708 | 0.700 | 0.0409 | 1.723 L. 0 | 0.0410
1.696 | 0.750 | 0.0283 § 1.710 | 0.750 | c.028L
1.680 | 0.800 | 0.0180 | 1.68¢ 0.800 | 0.C180
1.653 0.850 0.0100 | 1.€58 0.850 0.0110
1.610 | 0.906 | 0.0043 ] 1.610 | 0.900 | 0.0043
1.510 | 0.950 | 0.0010 J 1.51k | 0.950 | 0.0010
0.925 1.000 0 0.933 1.700 0

* Pressure distribution measured on Z = 0.6%
Newtonian tension shell shape with rn/rH = 0,20
in Mw= 3.0 alirstream.

** Pressure distritution measured on 2Z = 0.65
integral rela‘ion tension shell shape with
rn/rb = 0,20 in M_ = 3.0 airstream.



TABLF V.. — THEORETICAL AND EXPERIMENTAL IRAG COEFFICIENTS FOR
T™HE Z = 0.05 NEWIONIAN- ADG INTEGRAL-REIATION-
DERIVED TENSIOE “HELL SHAFZ: WITH ’n/"b = 0.20,

CALCULATTION DRAG COEFFICIENT
METHOD NEWTONIAN INTEGRAL
SEHAPE RELATION
SHAPE
NEWTORIAR 1.7959 1.814
THEORY
INTEGRAL 1.500 1.516
RELATION
THEORY
EXPERIMENTAL 1.590 1.590




Compression ring

Tension shell

Payload

Air flow

!

Figure 1.- Typical tei:sion shell entry vehicle.
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»

rigure 2.- Tension shell she:re and coordinate system.
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Shnck wave

Figure %.- Geometry and coordinate system for aserodynamic
consideration.



39

jo— 0.05 Ty

]
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r, = 0.20 T,

Figure 4.- Pressure distribution model details.
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Figure 8.- Comparison of Newtonian and integral relation pr.ssure

distributions and corresponding tension shell shapes.
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Figure 8.- Continued.
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Figure 11.- Experimental and theoretical pressure distributions about
the Z = 0.65 Newtonian- and integral-relation-derived tension
shell shapes with r,/r, = 0.20 and at M, = 3.0.
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Figure 12.- Comparison of the Z = 0.65 Newtonian-, integral-relation-,
and experimentally derived tension shell shapes and pressure
distributions.





