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Michael F. Card 

ABSTRACT 

An index of imperfection sensitivity is obtained by investigating 

the character of the initial postbuckling region for a geometrically 

perfect cylindrical shell. Using techniques of perturbation theory, 

equations governing p6stbuckling behavior of a multilayered orthotropic 

cylinder axe developed. The theory considers the effects of nonlinear 

deformations induced by loading prior to buckling. Solutions for post­

buckling displacements are obtained by converting the governing equations 

and boundary conditions to a system of second-order differential equa­

tions, which are then written in terms of finite differences at stations 

along the length of the cylinder. The resulting algebraic equations are 

solved by matrix algebra exploiting Gaussian elimination. A computer 

program was developed to solve the resulting large systems of simultan­

eous equations and to perform the numerical differentiation and integra­

tion necessary to calculate the imperfection sensitivity index. 

Relative values of the imperfection sensitivity index are investi­

gated for three types of fiber-reinforced cylinders: helically wrapped 

glass-epoxy and boron-epoxy cylinders, and aluminum cylinders overwrapped 

with boron-epoxy. The helical wrap angle was varied in cylinders of
 

fixed geometry to identify wrapping configurations of minimum imperfection 



sensitivity. Sensitivity indices were obtained from the present theory 

as well as from an extension of existing theory. Agreement between 

sensitivity indices predicted by the two theories was reasonably good.
 

Computed results for buckling of the three types of cylinders suggest 

that substantial differences (up to 27 percent) can exist between classi­

cal and consistent theory predictions for buckling, depending on the 

wrapping configuration. The differences are a result of load-induced 

prebuckling deformations which are retained in consistent buckling
 

theories but are omitted in classical theories.
 

Sensitivity indices computed for the three types of cylinders 

suggest that 450 wraps in helically wound glass-epoxy and boron-epoxy 

shells are desirable. For wraps possessing small imperfection sensi­

tivity boron-epoxy cylinders are less imperfection-sensitive than glass­

epoxy cylinders. The most attractive configuration identified in the 

study was a circumferentially overwound boron-aluminum shell which was 

found to have a positive postbuckling slope. 

The behavior of fiber-reinforced cylinders was investigated experi­

mentally by conducting compressive buckling tests on twelve 30-inch­

diameter glass-epoxy shells with variable wrap configurations. Elastic 

constants computed from test data were in good agreement with analytical 

predictions. Depending on wrap configuration, compressive buckling loads
 

varied from 50 to 90 percent of consistent theory predictions. Compari­

sons of imperfection sensitivity indices with test data show that the
 

indices are in fair agreement with experimental buckling data trends. 

The theoretical and experimental studies reported herein suggest that 



certain fiber-orientations can enhance the compressive buckling strength
 

of geometrically similar cylinders due to the fiber configuration's
 

reduced sensitivity to geometric imperfections in the cylinder wall.
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IV. INTRODUCTION
 

The purpose of the dissertation is to investigate the sensitivity 

of fiber-reinforced cylinders to small imperfections in the geometry of 

the wall of the cylinder. The development of boron and high-modulus 

glass fibers as reinforcement suggests that fiber-wound or fiber­

reinforced shells possess great technological potential. Recent experi­

ence at NASA (refs. 1 to 4) and elsewhere has indicated that the state 

of the art of these new materials is such that their elastic behavior 

can be predicted with reasonable engineering accuracy. Furthermore,
 

efficiency studies of cylindrical shells loaded in axial compression 

(ref. 5) have shown that they are competitive with the best metallic 

shells as lightweight load-carrying members. Thus, studies of filamen­

tary shells are of current technological interest. 

If fibrous shells are ever to be accepted as reliable load-bearing 

elements, their structural behavior must be thoroughly understood. One 

of the most important factors in the buckling behavior of a shell is its 

sensitivity to small deviations from perfect geometry. The sensitivity 

of axially loaded cylindrical shells to initial imperfections has long 

been suspected to be a major cause of lack of agreement between theoret­

ical predictions and experimental buckling data for shells loaded in 

axial compression. Recent tests on carefully manufactured cylindrical 

specimens (refs. 6 to 8) indicate that shells of near-perfect geometry 

can develop loads which approach predictions for idealized shells. The 

problem, however, still Yemains to find some method of making practical 

shell structures more predictable and, hence, more reliable.
 

1 
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By the nature of their construction, fiber-reinforced shells usually 

possess orthotropic material characteristics. In studies of the behavior 

of orthotropic shells, there is some evidence that, given the proper 

orthotropy and geometry, orthotropic shells can behave with relatively 

low sensitivity to small initial imperfections. For example, buckling 

data for axially loaded longitudinally stiffened cylindrical shells 

(which can be considered to be a class of orthotropic shells) have been 

shown by the author to be in good agreement with theoretical predictions 

for ideal cylinders (ref. 9). Furthermore, postbuckling studies (refs. 10 

to 14) have indicated that minimum postbuckling loads for orthotropic 

cylinders can be much higher than isotropic cylinders with similar radius­

thickness ratios. These observations have been used in attempts to
 

predict "knockdown factors" (reductions in theoretical predictions) to
 

correlate buckling theory and experiment (ref. 15). The insensitivity
 

of orthotropic shells has not been established in general and, in fact,
 

imperfection sensitivity of stiffened shells in certain geometric ranges
 

has been noted in references 16 and 17.
 

An interesting peculiarity of fiber-reinforced shells is the fact
 

that by suitable layering, two-dimensional isotropic relations for the
 

elastic constants of the shell wall can be obtained. Thus, by varying 

the orientation of fibers in a shell of fixed geometry, one can encounter 

for a shell with specified length, radius, and total thickness, an iso­

tropic configuration among configurations of varying degrees of ortho­

tropy. Hence, the designer of fiber-reinforced shells, as opposed to
 

metallic shells, has at his disposal an additional degree-of-freedom­

orthotropy.
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Based on the limited evidence of the reduced sensitivity of certain 

orthotropic shells to initial imperfections, we are confronted with the 

following interesting possibility in design. It is conceivable that for 

certain geometries we can find two fiber-reinforced shells, one possess­

ing orthotropy, the other isotropy, such that the isotr6pic shell will
 

buckle at a higher load theoretically. However, because of the greater
 

sensitivity of the isotropic sheli to initial imperfections, the ortho­

tropic shell practically will carry a higher load and, even more important,
 

may be more predictable in its behavior.
 

The goal of the present research is to 6tudy the relative imperfec­

tion sensitivity of fiber-reinforced cylinders in order to identify which
 

fiber configurations are least isensitive to initial geometric imperfec­

tions. The investigation is accomplished by studying the behavior of a
 

perfect shell in its initial postbuckling region. An index of imperfec­

tion sensitivity as suggested by Koiter (refs. 16 to 24) is determined 

by perturbing the shell displacements in the neighborhood of the bifur­

cation point. The effects of nonlinear displacements induced by loading
 

prior to buckling axe considered. The theory is derived by employing 

principles of perturbation theory and represents an extension to cylin­

drical shells of the plate postbuckling theory developed by Stein
 

(ref. 25). Relative values of the sensitivity index are found for 

helically wrapped cylinders of glass-epoxy, boron-epoxy, and boron­

aluminum loaded in axial compression. Wrapping configurations were 

varied to discover configurations of minimum imperfection sensitivity.
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A series of compression tests was conducted on twelve glass-epoxy,
 

filament-wound cylinders to investigate experimental buckling behavior.
 

Theoretical imperfection sensitivity trends are compared with the
 

experimental results.
 



V. LIST OF SYMBOLS
 

A cylinder length 

A21PA31 square matrices associated with left-hand side of 

equations (31) and (40), respectively 

a coefficient in load-displacement expansion (eq. (9)) 

b imperfection sensitivity index 

Cij extensional stiffness of cylinder wall (see eq. (5)) 

cle 2 constants in homogeneous solutions (see eqs. (27) and (36)) 

D postbuckling displacement vector defined in equation (45) 

Dij bending stiffness of cylinder wall (see eq. (5)) 

D21 D31)E31 column vectors associated with right-hand sides of 

secular equations (see eqs. (31), (40), and (71) to (74)) 

Ex j equivalent Young's moduli for helically wrapped layer 

of cylinder wall 

Ex effective Young's modulus for contraction of composite 

cylinder wall 

F1 ,F 2 ,GIj constants associated with axisymmetric prebuckling 

G2 GG solution for w (eq. (18)) 

Gx equivalent shear modulus for helically wrapped layer 

of cylinder wall 

Kij stiffness of cylinder wall associated with coupling 

between extension and bending (see eq. (5)) 

Mx, My moment resultants 

Nx, NyNxy stress resultants 
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n 	 number of full waves in cylinder buckle pattern in 

circumferential direction
 

C12R
 

CllC22- C122
 

R 	 radius of cylinder measured to arbitrary reference 

surface 

t total wall thickness of cylindrical shell 

Ul VlW 1l displacement functions of x associated with first 

perturbation (eigenvector components) 

Ul)VlW 1 normalized eigenvector components 

UV W displacements of shell wall in x-, y-, and z-directions, 

respectively 

Z column vector formed from u, v w) and M evaluatedx 

at each finite difference station
 

x yz 	 surface and normal coordinates for shell 

a 	 helical wrap angle 

0,y 	 cylinder prestress parameters (see eq. (18))
 

77 	 shear strain in shell at reference surface 

A 	 distance between adjacent finite difference stations
 

51t 	 virtual work for an axially loaded cylinder 

normal strain 

'xSKy K7Y 	 curvatures 

Aij 	 structural constants defined in equation (51) 

7', 	 magnitude of applied compressive load at ends of
 

cylinder
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Poisson's ratio for isotropic material
 

Lx;1y equivalent Poisson's ratios for helically wrapped,
 

orthotropic layer
 

I x effective Poisson's ratio for composite cylinder wall
 

perturbation parameter, measure of amplitude of initial 

postbuckling displacements 

amplitude of initial imperfection 

anormal stress
 

T shear stress
 

Superscripts: 

ith layer of cylinder wall 

* evaluated at 2' = Acr 

T transpose of a column vector 

Subscripts: 

0,1,2,3 prebuckling, first, second, or third perturbation, 

respectively (when used on load, strain, or displacement 

variables) 

s imperfect cylinder buckling 

x~y longitudinal and circumferential directions, respectively 

cr at buckling 

iso isotropic
 

exp experimental 

Primes are used to denote ordinary differentiation with.respect to 

the variable x. A subscript preceded by a comma denotes partial 

differentiation with respect to the subscript. 



VI. IMPERFECTION SENSITIVITY INDEX
 

There are several studies of the sensitivity of shells to initial
 

imperfections available in the literature (see, e.g., refs. 26 and 27).
 

The majority of these studies are restricted by the adoption of an
 

initial imperfection of specified geometry. Practically speaking,
 

however, real initial imperfections have a somewhat random character.
 

An example of this fact is shown in figure 1. Measured radial displace­

ments from perfect geometry are shown for a lO-foot diameter ring­

stiffened cylindrical shell (ref. 28). The initial radial displacement
 

wi divided by the shell thickness t is plotted against length for
 

various circumferential stations about 6 inches apart. It is evident
 

that considerable judgment and ingenuity is required to represent such
 

initial imperfections analytically. Thus, in the present state of the
 

art, it seems impractical to hope for an analysis which will yield the
 

exact reduction in buckling load for a wide range of realistic imperfect­

ion geometries. However, a method of assessing relative sensitivities
 

of shells to initial imperfections does exist.
 

In his doctoral dissertation, Koiter (ref. 19) proposed a theoretical
 

method of obtaining an estimate of the sensitivity of a broad class of
 

shells to initial imperfections. In the Koiter theory, it is postulated
 

that the sensitivity of a structure to small initial imperfections can
 

be assessed by a knowledge of the perfect structure's behavior in the
 

initial postbuckling region. In his thesis, Koiter demonstrates that
 

for imperfections having the shape of the perfect shell buckling mode,
 

8
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Figure 1.- Real geometry of'measured imnperf'ections in a large cylinder (ref'. 28). 
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the sensitivity of the shell could be investigated with a knowledge of
 

either of two fundamental parameters. 

These parameters were identified by expanding the applied load 


as a function of a scalar perturbation parameter . The parameter 

is arbitrary and physically can be considered to be any convenient,
 

suitably small measure of the growth of displacements in the shell just
 

after buckling. The expansion of load in terms of this scalar measure 

of postbuckling displacement can be written as 

Acr + a?'cr + bcr 2 + 

where cr is the bifurcation or buckling load. Koiter has demonstrated
 

that when small initial imperfections are taken into account, the
 

relationship between the buckling load of the shell in the presence of 

the imperfection and the buckling load for a perfect shell is related 

to the parameters a and b. For example, Koiter has shown for a shell 

governed by "cubic" behavior (a = 0), the relationship between the 

buckling load ?s in the presence of an initial imperfection of 

7magnitude I and the buckling load for a perfect shell Acr is given by 

T-c- 2. ' \c;) 

The above relationship is restricted to the so-called "classical" theory
 

of buckling in which the effects of deformations prior to buckling are
 

ignored. Recent results (refs. ,23 and 24), in-which these effects are
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considered, also conclude that b is a measure number of the reduction
 

in buckling load due to imperfections.
 

Thus, depending on the type of shell, either a or b is a
 

fundamental parameter in assessing relative sensitivity to small imper­

fections, that is, the imperfection sensitivity index. Hence, the goal
 

of employing Koiter's theory to assess imperfection sensitivity is to 

understand the character of the postbuckling behavior of the structure 

in the neighborhood of a singularity, namely,; the point of buckling. 

This type of consideration is somewhat analogous to studies in the theory 

of nonlinear vibrations where one examines the character of singularities 

in vibrating systems (e.g., refs. 29 and 30).' In fact, -in this field 

there is even Poincar6's "index of singularity." Koiter's work relates 

the character of the singularity occurring at buckling (bifurcation) to 

the structure's sensitivity to initial imperfections. 



VII. DERIVATION OF GOVERNING EQUATIONS
 

Assumptions
 

In developing the theoretical estimate of imperfection sensitivity
 

of the cylinder, several basic assumptions are made. The cylinder is
 

assumed to be composed of several orthotropic layers, each with one of
 

its principal axes of orthotropy alined with the cylinder axis. The
 

effects of transverse shear are ignored. At the onset of loading, the
 

cylinder is assumed to be perfectly cylindrical so that its shape is
 

changed only by deformations induced by load. The cylinder is assumed
 

to buckle into a unique buckling mode, so that the behavior of the shell
 

can be investigated in the neighborhood of a bifurcation point. For a
 

cylinder, this restriction precludes consideration of cylinders that
 

"buckle" in an axisymmetric mode. Axisymetric "buckling" in a cylinder
 

is simply unchecked growth of the axisyimetric 'deformations induced by
 

loading and is often described as collapse rather than buckling. Since
 

no bifurcation occurs, the present theory cannot assess relative
 

imperfection sensitivity for this phenomenon.
 

The theory is developed by adopting the Koiter parameters to obtain 

the sensitivity index of a perfect cylinder'. The development of the 

theory differs from that existing in the literature (refs. 16 to 24) in 

that the index is identified by employing perturbation techniques similar 

to those of reference 25. Nonlinear equilibrium equations formulated 

from Donnell-von Karman strain displacement relations are perturbed about
 

the bifurcation point to find equations governing the behavior of the
 

12
 



13
 

shell in the initial postbuckling region. The perturbation is shown to 

produce secular terms which are constrained to vanish. The constraint 

conditions yield relationships between the sensitivity index and the
 

buckling mode. The sensitivity index is then computed by using the
 

constraint condition together with a suitable definition of the
 

perturbation parameter. 

Equilibrium Equations 

Nonlinear equilibrium equations are formulated using the Donnell­

von Karman strain displacement relations. Under the assumptions, the
 

virtual work expression for a multilayered orthotropic cylinder loaded
 

in axial compression can be written as follows:
 

pA 2R 

01Of o, NXb~ + ybey +NxY y2 Y + KX8K x+ MY3K7 + MXYbKXY)dx dy 

+ hu Ady _O (i)
0 

where
 

Nx = C116x + C12Cy + Klx + Kl2Ky 

Ny = Cl2ex + 0 226y + K12 x + K22y 

xy = 066 7xy + K6 6 ixy 
(2) 

Mx = Kll6x + Kl2Cy + Dllx + Dl2Fy
 

My = K12cx + K 22ey + D12Kx + D221y 

Mxy = K66xy + I6Rx 
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with 

ex U X+2V2Kx - W2 Yx xXX 
Sx + I+ 1 2 = - W X 

' R 2 ,Y ,YY()77 Uy + v_ + w W 'K = -w,() 

r +VX +wxvy - 2Wxy 

In equations (2), Ci , Dip,and Kj are structural stiffnesses of 

the multilayered wall associated with extension, bending and coupling 

between bending and extension, respectively. If the stress-strain 

relations for the ith cylinder layer are written as,
 

1* 
 y
 
_ ipi 

y fi 1 ()) 

1 y 

-ra 

i i i
 

then, the structural stiffnesses can be defined 'bythe following
 

integrals:
 



011Ex" dz Cl2 22 = d" 
wall I - ltx:L wall i - wxyall i -

RI zz K22 -- (5 

Kll-- all 1 L-i wallI I- P ily al -1 xy 

• ii -
D z2dz D12 ~ 2252~za ~ z 
= afl i gI y wall 1 - i2 a i - piai 

The integrals appearing in equations (5) can be evaluated for an arbitrary reference surface by 

using equations (83) and (85) of reference 31. The elastic constants for fiber-reinforced structures H 

appearing in equations (4) can be predicted-analytically from the constituent properties of the 

fiber and matrix. The constants for a layer in which the fibers are unidirectional can be obtained 

from any of references 32 to 35. For layers with fibers oriented at angles ± (see fig. 2),
 

an "equivalent" orthotropic layer is defined through compatibility considerations and the trans­

formation equations of orthotropic elasticity ('sea refs. 35 to 37). The formulae employed herein 

are sunnarized in appendix 3 of reference 1. 

Equation (1) can be expressed as a function of the displacement variables u, v, and w.
 

Integration by parts yields the following equilibrium equations which are valid in the postbuckling 

region: 



Circumferential Wrap 

Helical Wrap 

Figure 2.- Geometry of fiber-reinforced cylinders. 
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NxK + NXY = 0 

x + y = 0 (6) 

-%=, - + N - =-2 w -'-wy =0o 
I~x~x 21y~x R -NwjxMyyy 2xyy,xy "ywyy 

The boundary conditions resulting.from the 'variations, ith the load 

specified and the cylinder supported at the ends, can be written as 

x + ?0 o. 

Nxy =0 or, v=0 

,(7)
Mx 0 or w,x=.O 

Perturbation Procedure
 

Following the Koiter procedure, the displacements are expanded as
 

u = LO ) + Ul + 22 + . . .
 

v = -Vo(t ) +. vl + V2 + . ... (8)
 

w= wo,( ) + wj + w'2 2 + ...
 

where the 'subscript 0 -denotes-the axisymmetric state of deformation 

induced by load and is the perturbation parameter. 

-The applied compressive load 7' is expanded as 

=cr + acr?\ + bA r 2 + (9) 
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where 7 'cr is the applied load at buckling. At this point, it should 

be observed that Koiter's work was based on -classical,buckling analysis 

so that the dependence of the axisymmetric .deformatiqns (u 0 , vo, wo) on 

t is not clearly noted. Fitch (ref. 24) has recently generalized 

Koiter's work to include the effects of deformatibns prior to buckling. 

In Fitch's work, the dependence of the axisymmetric deformations on ' 

can be found by expanding these d~formations in a Taylor series about 

the buckling load ?cr" Thus, 

r 0?
0 IS cr 0? vo = * + ( - o ) *, + ( -,o )2 Vo, +( o 

u0 0,+(-,\c~u2 u0 +... 

( +we = w + (A - ?cro,. + cr)2 
, o,20.+ 

wo =wo*+(A - Ncr)wo* + 2( ?crY2 w + 

where the * denotes quantities evaluated at A ='cr. For example, 

x A =- r 

Using equations (9) and (10)
 

u=v + (aA r) +9 + a + bcrV + v2 ) 2 + ....2 


0vr1 2+ OA U , )x(ao2~ c 

v =V,*+ (aA, V.,a +,7 + * + Av ,X),A 

2w = wo*+ (aA w* +w )+ a * + b. w* + w t2+' 
0 cr . 1 \2 cr 0g. crO,71\ 2) 



0 
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Zeroth Perturbation 

If equations (11) are substituted into the equilibrium equations (6) 

and the boundary conditions (7), a series of equations corresponding to 

powers of are obtained. The equations corresponding to the zeroth 

power of can be written as follows 

N 0 (12a)
 

% 0o (12b) 

00 

+4 -tw (12c)0 

with boundary conditions
 

N* + =0 (13a)
XO cr 

N* z0 or v*=0, (i3b)
0 xyo 


w* o0 (13c) 

4
M* -0 or w 0 (13d) 

xo 0 

with
 



20' 

* *' J '*" , 

o = u° + (w0 

R
 

K- W
 

where the prime denotes ordinary differentiation'with respect to x.
 

The stress resultants of equations (L) and (13) are defined by substi­

tuting equations (1M) into the constitutive relations of equations (2).
 

Equations (12) and (13) can be identified as equations determining. 

the axisymmetric deformations occuring in the cylinder prior to buckling. 

The asterisk indicates that the deformations resulting from these
 

equations must be evaluated at the inception of buckling, that is, at 

N= cr. 

Solutions to equations (12) can be obtained by integrating 

'equation (12a) and applying boundary condition (13a) so that 

N = - (15) 

XO ?cr 

From the definition of 'N*, it follows that
 

6* *' + w*)2=iKw*?? 2_aYo L_ (_6) 

%O 2 0 Co 0o ll R Cl 

Integration of equation (12b) together with either of bouiidary conditions 

(15b) imply that both and N are zero everywhere. Substitution 
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of equation (16) into equation (12c) yields the following ordinar'y'
 

differential equation in wo
 

lc cll - '2 er] 2 C-- o.K12) 


(17)
R C1 I \cr 

For simply supported shells (Mxo O
a)with boundary conditions applied 

at x = ± A/2 when A' is the cylinder length, the solution of (17) can 

be written as 

w = F, ,sinh r sin 75 + F2 cosh F cos 77 + \crP 1 (iS) 

where
 

2 IC2 -K1201 + - cO
I'0±1022-C12 /.2 

D11 ll- ­C_°l 


2 1±012 - 112C11I %\r:0nlR 

0l102 2'IIC22 12 i~2J ~ 1
7 + 

2R 2L 21UDl 
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P C12RF-

C11C22 - C12 

L-A 'M "G sinh' -si n A 

F1 = ' 2 

acosh cos 
2 

A 
p 

2 =2 

-2 

•" 

s 2 
2 

c 

27 

21 

Y 

G2 cash flcos ZA+ G, sinh 

2 2 2 

~\h 2l 27A 
21 11 -,py si sin 7A + 

C),2 2 

$PAsn 

2 

-
cash2 

2 

pLA 
2 

CO 
274LA 

2] 

with 

rK"+ 

G01A00 
R C12 %(p1-2 

2)j I 2 

G 2 012 D,1 1 

C~11 I22 

- 2 

1C2/ 

For clamped boundary conditions, the radial displacement v* is given
 

by (18) with 

PA A A ,7Asinh -cos--7 cosh - sin­
2 2 2-

P1 = cr~l 

psin-cos-
AA A + sinh -A cosh PA 

2 2 2 2' 
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(19)
 

7 sinh lA cos 2A + p cosh A sin A 
2 2 2 2 

F2 = -crPI 

A A _

0sin - cos 2- + y sinh A cos PA 
2 2 2 2 

*J 

Note, in general, that quantities such as wo, k can be found from 

equations (18) and (19) by replacing ?'cr by A, performing the 

indicated partial differentiation and evaluating the result at ?-= 

For the-quantity wox, the result can be written as 

cr. 

Wox-A cosh P sin 7i(Flf - F2r)p N + sinh xcos 7i(FgY + F2P)\ 

+"sinh P sin ? E p 7FIP 2Y) - YA(Fly + F2 1 

+ x cosh 13 cos 7RiEA(Fly + F2 03) + 7,-A(F~I3 F2 Y) (20) 

with' 

1 

S8.y(Dlz 

For simple support boundary conditions, if 

G12 
Fl-T and F 

G21 



GlA yA 23 r 
F - cosh a cos - sinh A sin A 

0d 2 2 G 2 2 

+ -Lsinh PA co 2 (aIP,<G7 A os) sin4(Gj7, + G0A
 
2G2 2 ±oo 2sh
 

- 22 	 A sin A-+ cosh2 A L-A
 
2 2 2 2
 

. G2 	 PA csh L--n A 2 _oscos sin 

2 2/2HtJ7 2a2-


(21)
 

G2- sinh A sin 	7A G2 A cosh PA Cos 7A
 

F2,-	 -in- -- O -C05 

A BA 7A A PA yA
 
+-cosh L- sin -- 2
 

2G 2 2 i~)--grh 2-7go 2-(j 

"2021(p sih PA sin2 2LA + oosh 2 P- cOS2 YA 
2 2 2 2]G2-T) ?. 


2G1y ,Asinh A coh A _7AI
 
G2 27 7 Sf~cs2
 



with
 

]
- 7 7,) - D]

G j = pl[P2 - y2 + 2;\crC3 g 

G21\= PI{[2cr(Py) , + 2y] 

For clamped boundary conditions, if
 

FG and F2 = -G G 

_ _oA 2 == = 2]G2 crPl L 
crp
+7 A c + os - Ay77) - sinh A s AAJ 

- h2SIG12(pj\ sin 7A + Ap37,\ cos 7A + y,;\ sinli OA + Ay' cosh PA) 



(22) 

A-F2? = - c 

(PG 2 2 2'~Sn 2)o 
A?40P~l A - Y + cos PA CoyA Y 
-- sinh sin _(3 r,-2-(P L ]

20+ %erPIG lfY " 2 2 2' 

+ 2rPIG2l P, sin YA + AP7) cos, yA + y7 \inh PA + AYP, cosh PA) 

It should be noted that equations (18) througa(22) were developedby exploiting symmetry of the 

boundary conditions using a coordinate x with &rigin &tthemid le of the cylinder. For subsequent 

developments, a more convenient coordinate is" ,±-whosehbrigin is at the end of the cylinder. 

Equations (8,) through (20) may be written for this coordinate by using the transformation 

= x - A/2. 

First Perturbation
 

The equations corresp6nding to the first pgwer 6t- can be written as follows:
 

N +N = 0 
xpx xyjDy
 

NXYx + NYI, =0 (23) 

- ,x - 2% ,xy - Mylyy + - NZo W - 1 %xx Ny Wlyy 
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with boundary conditions 

Nxl ='0
 

v1 = 0 or Nxy1 = 0 

Wi0 

Mxl = O0 or Wl = 0x 


In equations (23) and, (24-) and subsequent perturbations 

x = uijx + Wo* w~
 

wi 
CYi =v + ­

xyi fUily + vix + Wo.x Wiy 1 =12)3, .... (25), 

"xi = - Wi~xx 

" 
Yi - -wiyy 

i =,- i,xy
 

'and the corresponding stress resultants are obtaified by substituting
 

equations '(25) into the constitutive relations C2)..
 

To obtain equations (23),, the equilibrium equations resulting
 

from the zeroth .pertuxbati6n (eqs ( 2).);were used,tb eliminate terms 

such as a-A * xobtained from the perturbation. 'Also in obtaining 

the boundary conditions .,exploitationws made of the fact that terms 
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having the functional form aXc fo vanish at the boundary if f* is 
or o,X 0 

zero there. Equations (23) and (24) are similar to the usual equations
 

governing buckling of a prestressed cylinder except for the absence of
 

a free buckling parameter. The buckling parameter is absent since, in 

the present problem, the displacements of the shell have been expanded 

about a single, known point of bifurcation. Thus, as opposed to the
 

usual buckling problem in which a multitude of eigenvectors are possible 

solutions, only one eigenvector is an admissible solution of (23) -namely 
that corresponding to N = - %r" If both the buckling load cr 

as well as the number of circumferential waves n in the buckle pattern 

are established by a conventional buckling analysis (e.g., ref. 38) 

equations (23) and (24) can be converted into a set of ordinary
 

simultaneous differential equations and boundary conditions by the 

following substitution: 

-y
uI = fl(X) cos 
R 

V1 = Vl(x) sin ny (26)
R 

2=jl(x) cos 


As was done in reference 38, the eigenvector corresponding to N* = -
7 er 

can be found by the method ,of finite differences and determinant plotting. 

The components of the resulting eigenvector can be expressed as 
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ul =Ic U1(x)cos fy 

R
 
v1 = c1v1(x)sin Ey (271 

wl = cjwj(x) cos R 

where cj is an arbitrary constant and Uj, VI, and Wj are suitably
 

normalized components.
 

Second Perturbation
 

The equations corresponding to the second power of can be
 

written as follows:
 

Nx2 ,x +Nxy 2,x a-crICll(wox?\ l,x) x + C66Wo,,xxWl,YYI 

1 2 2(2a 

2011 w!,x + 012 wl,y) - c66(wlxwl,y) C2Sa) 

N2Ix+Ny2,y =- acrIC66(wox wly), + C12 wt,xWlxy 

- (0 2 + 022 wC, - 66(wi,xwiY) (28b) 



xx -X2 2,Y-M 2 y
'-3'XY2)xy~2,XMICy 

a-Ar 6,xx 1AO 

Nyo -

R 

w1 ,x 

2N* 
"~ 

+N 0 7 

N W* -N* W2,y 
-x 2 OIxx Yo y 

w1 ,O; +YC11 6,x,\ w&,x w1 ,1 - R ,XAWix 

+ KiiAw&,x x xx +Kw ,J,,yy 26w,, ly, 11 

1 2 2 2. 2 

(C:2 Wj x + 022 Wjl)#j W1) 

+ NX1 W, xx + 2Nxy1 wfXY + Nly 1 Wj,'Ty 

+C12 W 4 I o,xx 

(28c) 
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with boundary conditions
 

N 1 2 

Nx + c1 wl,x + C12 wl, y 0 

NxY2 + C66 Wl,x Wl,y 0 or v 2 = 0 
(29)
 

112 T
 

1 2 1 2
 
aKlW1,x + - K12 = 0 or = 0 

Equations (28) and (29) can be converted into a set of ordinary 

simultaneous differential equations and boundary conditions by the 

following substitutions
 

u 2 = u20(x) + 72 1 (x) Cos ny + U22 (x) Cos ny 

R R 

v 2 = V2(x) sin n! + V22(x) sin 2Y (30)
R R 

W = W20(x) + W21(x) cos ny + W22(x) cos 2 

Since the differential equations of (28) are linear, solutions 

corresponding to each set of U2ij V2i, and W2. (i = 0,1,2) can be 

superposed. However, if the particular solution for e21, V2 1, and W21 

is sought by algebraic means from equations (28) and (29), certain 

difficulties are encountered. If equations (28) and a set of boundary 

conditions from equation (29) are cast in finite-difference form after V 
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substitution of (30), the resulting simultaneous algebraic equations 

can be written in matrix notation as 

A2z21 = aercl D21 (31)
 

where Z2. is a column vector whose components are U21, V21, W2 11 

and Ma evaluated at each difference station and D2 1 is a column 

vector containing elements corresponding to the terms multiplied by a
 

on the right-hand side of equations (28) and (29). Because the
 

trigonometric function associated with U21, V21, and W21 has the 

argument ny/R the determinant of A21 has a form identical to that 

used in determining the buckling load Acr* Hence, 

det A2, =0 (32)
 

which demonstrates that the particular solution resulting from (31) is
 

a secular term which must be removed from the perturbation. A condition 

for removal of the secular term is the requirement that 

A21Z21 = a\cr D21 - 0 (33) 

If Z21 is identified as the eigenvector Z1 corresponding to the
 

solution of equations (23) and (24), then the desired condition for 

removal of the secular terms is
 

AlZ1 = A21Z21 = 0 = aAcr D21 

or 

T T 
Z1 A21 Z1 = acrc±Zl D21 = 0 (34) 
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TT
 
where is the transpose of Z1 . Since Z, D21 is finite and %cr and
 

cI must be finite for buckling to occur, it follows that
 

a =0 (35) 

Thus the only admissible solution corresponding to the functions U21,
 

V21., and "21 is the solution to the homogeneous system
 

A21Z21 = 0 

Hence, the general solution to equations (28) and (29) with a = 0 

becomes 

u2 = U2o(x) + o2U,(x) cos ny + u22(x) cos 2ny 

R R 

v2 = c2V1 (x) sin nyy + V22 (x) sin 2ny (36)
R R 

w2 W2 0 (x) + YX)- cos ny + W2 2 (x) cos 2ny
R R 

where c2 is an arbitrary constant and U1, V1 , and W1 are the 

normalized components of the buckling eigenvector (see eq. (27)). 
I 

Third Perturbation 

If a = 0, the equations corresponding to the third power of 9
 

can be written as follows 



5: 

NX3 x + NXYYY b? cr[Cll(wO x? wl;x),x + C66 wo,x?, w3-,yy] 

10ll(WIx w2jx),x 	+ C,2(wly V2,y),x + C66(wix W2)y + wl y W2)x) Y]
 

xy3lx + HY3 'y 	 bA,r[c66(WO*,x-,\ wi.,Y),x + C12 w6,,N wi,,Yl
 

[C66("'Ix V2,y + 'ly W2,x) 
 + 012(wlx W2,x)'y + C22(wly W2,y) yl
 

N 
N W* X* w
 xo 3;xx x3 Cmc Yo 3 yy
 'x3)xx - 'XY3)xy - ' r3,yy + R w 

b? cr[Nxo,?, vl, + N w5jxx \ + N; ? wlyy + cil W6 xx W6,x \ wix W6,x-A wlx (37)
X, 0 

,6,x7\ wl,-X) + 2K66( w + Y12( jx? wlx) 

jmc OIX-A ily )xy YYI + I a (wi, . W2, X) P= 

" K12 I(wl y '2,Y) 	xx + (W,,. W2,.)"] + K22(wly W2,y),yy + 2K66(wa.,. W2,y
 

" wly w2,x) + 	(CII wl x w2)x + C12 wly w2,y woxx - -012 wl x w2
 
Xy 	 R 



",1x 
+ 22 Wly W2,y) + LU ll 

2 
22 wly) + 2C66 Wlx wl, y 

2 
"I x 

wl,xy 

w2 ) l+ 
1+ W~y C12 

+ Nx W2,xx+ Nx 

2 

wl xx 

l 
l x 

+ NYl W2 ,y +Y2 w1,yy + 2NXy I w2, + 2xy2N ,xy 

with boundary conditions 

N + Cll wlx W2,x + C12 Wljy W2,y + b?crCll WO;xf Wlx 0 

Nxy3 + 066(wl,x W2,y + wly W2,x) + b?\cr
0 66 WSx 

= 0 

Wly = 0 or v3 = 0UT 

(38) 

IA15 + Kil w1 ,x w2 ,x + K1 2 
7 1,y 7 2,y + b? rKii w0 ,X- Wl 0 or W3,x = 0l 
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Equations (37) and (38) can be converted into a set of ordinary 

simultaneous differential equations and boundary conditions by the 

following substitutions: 

u3 = 130(x)+ 131(x)cos f + U32(x)cos _Z + U33(x)oos 3ny 

v3 = V33(x) sin ny + V3 2(x) sin ?ny + V33 sin 3nY (39)
R R R 

w3 = 30 (x) + W31 (x) cos ny + W32 (x) cos 2ny + W33 (x) cos.3ny
R R Rr
 

Paralleling the second perturbation,, U31 Vi31, and W31 can be 

shown to be secular terms which must be eliminated. The resulting 

algebraic equation in this case can be written as:
 

A31Z31 = b7\c1 D3l + cE131 (40) 

where D31 is a column vector corresponding to the terms multiplied 

by b on the right-hand sides of (37) and (38) and E3 1 is a column 

matrix generated from the terms that are independent of b. In 

contrast to equation (31), the additional term multiplied by c 

occurs in (40) because, when the general solutions (eqs. (27) and (36)) 

are substituted into the right-hand sides of (37) and (38), terms such 

as cos ny/R cos 2ny/R result which can be expanded as 

3n + cosZ \ 
cos ny 2ny = R_ Cos + C a-) 
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thereby yielding additional secular terms that are independent of b. 

The condition for removal of the secular terms that is the analogue of 

equation (34) can be written as
 

TA
3 Z1 = b7\ c~zZT D5 + AZTE -0 (41) 
ziA I cr 1 D31 1 1 31 0
 

which has the solution
 

b = -c 1Z E31 (42)
 

?crZ{ Dl
31
 

Equation (42),together with consideration of the equilibrium equations
 

and boundary conditions corresponding to the first, second and third
 

perturbations can be shown to imply the following proportionalities:
 

w1, I'l I% N 1 bl/2-
I% cc 

w2, Nx.2 NxY2> Ny2 w b (43)
 

w3 Nx 5, NX7 'y3 Y 3/ 

It is interesting to note that the counterpart of equation (42) was found
 

by Stein in a study of the postbuckling behavior of plates. (See
 

equation (19) of reference 25.)
 

The proportionalities indicated in equations (43) have also been
 

found in existing applications of the Koiter theory. For example, Fitch
 

and Cohen in references 23 and 24 have obtained an explicit expression
 

for b from energy considerations. In terms of the present notation,
 

the results of references 23 and 24 can be expressed as: 
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ff Adx dy + 2f f dx,dy 
surface surface 	 (44) 

kr 	 f Jo dx dy 
surface 

where 

SC 4 2 2 
xN2 w 1, + NY2 + 'w,y[ 2 wtx " ,y +-0 +12 Wl x "Y 

+ i C22 wly + 2C66 Wl-x W2,y
 

B 	= I 1 wl,x W2,x + Nyl Wl,y w2,y + Ncy,(WjxW2,? + Wl,y W2,x) 

0=N* w 2 w 2 +2(Nx vO* w +1N w*xw )
X0	 j?\ Ijx + 1 x1 ,x ix xy1 ,l ,o? ±y 

Using the proportionalities indicated in equation,(43), it 'can be seen
 

that equation (44) becomes independent of b and hence equation (44)
 

must be the counterpart of (42). The general theory of references 235
 

and 24 can be specialized to a "classical" buckling theory by taking pre­

buckling deformations consistent with a membrane state of stress. The
 

index b has been obtained under these assumptions by Budiansky in
 

references 20 to 22. For the cylinder, the use of classical buckling
 

theory requires derivatives of w* to vanish. Inspection of equation (44)

0 

with this assumption reveals again that the equation is independent of b. 
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Determination of b
 

To determine b explicitly, the perturbation parameter must 

be defined appropriately. If the parameter is considered to be a 

scalar measure of the growth of the displacements in the shell just after 

buckling, then must be related to the magnitude of these displacements.
 

The displacement vector D is defined to be the following:
 

fl=(u-u "i v+(-w9-- - uo) -I+ v-j + (w - w'o) k (45) 

so that to the second approximation using (11) with a = 0 

D = + (b?\cruo,1 + u 2 ) i+ + ) + fwl + (b\crW i 

+ w2 ) 2]k (46) 

The parameter in the present theory is taken to be such that the
 

square of the perturbation parameter is equal to the square of the 

magnitude of the vector (',(t-D., averaged over the cylinder surface 

and nondimensionalized by the square of the cylinder thickness t. Hence 

L dxdy 
Surace 

(7
 

21(RAt 2 

Using equation (46) 

2tRAt2j2 f 2 + 2+ wi)dx dy + o( 3) (48)f 
surface 
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Using the general solution for the first perturbation (eq. (27)) and 

expressing cj in terms of b from equation (42), b can be written as 

b = - 27cRAt2Z7E3 1 

2 c s 2  ' crZT nsJ~Jee(u cOs 2 Y+ V sin 2 ay+ W o day 

Thus, to within 0( 2)j the expression for b becomes
 

- 2At 2 ZTE 

b A (50) 

T cDI+ V1+ W2)d 



VIII. NUMERICAL SOLUTION OF POSTBUCKLING EQUATIONS 

The solution for the state of axisymnetric prestress at buckling
 

has already been presented in closed form (eqs. (18) and (19)). The
 

solution to the equilibrium equations and boundary conditions resulting
 

from the first and second perturbations (eqs. (23), (24), (28), and (29))
 

were found for simply supported and clamped shells by using numerical 

methods. Following the finite-difference technique suggested by refer­

ences 38 and 39, the system of ordinary differential equations resulting 

from substitution of the general solutions (eqs. (27) and (36)) are cast 

into a set of simultaneous second-order differential equations and 

boundary conditions involving the fundamental displacement variables 

U, V, and W and an auxiliary variable Mx. By employing central 

differences, the equations are converted into simultaneous algebraic 

equations which are then solved on a digital computer by matrix methods. 

Because the resulting algebraic equations contain banded matrices, it is 

expedient to employ Gaussian elimination in the solution. 

General Solution
 

In formulating the postbuckling solution it is convenient to con­

sider the left-hand sides of the equilibrium equations in general. When 

the general solutions for the first and second perturbations are substi­

tuted into the equilibrium equations and the definition of the moment 

resultant M is introduced, the following set of second-order differen­x 

tial equations and boundary conditions are obtained:
 

k1 
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Aljj" + A1U + A13V' + A14 W" + A15W' + A1 6W+ A17M' =I"-

A2U' + A22V" + A V + A4w" + A I + A26W D2 
(51)
 

+ A32V" + A35 v + i34W" + A3 W' + - M"=D(A31' 5 A3 6W 3 

A ' + A4 2V + A4 W" + A4 4 W' +A4# + M D4 

where
 

All = 9ni -_ 
D11
 

= -C66(R)A12 


C Ki2Kij) mn
 

A13 = (C12 + C66 -__-_R 


Ai4 (C ± - 5 wox 

i +K K ,D1 a)(m 2 
A=15 (I - + 

2 n 12 +60K 66 nil 

A17 = D 1 

A21 = _(C12 + C66) -R 

A22 = C66 



A3= C22(TR) 

A2 = (K1 2 + 2K66 ) Rn

A25 = -(C12 + C66) Ox R 

.w n Cmml32L 
-C660x -A26 = * . K22 

6wO xx R ( 2 .R 

A'1 = + (K12 + - c2Kn6wo,xx 

A32 - -2y6
 

3A C2 2
mn + K22(l * imn 

-R2 - c12wo,xx -1-

A12 (4D266 + + 

= +o(K2 + 2K66)()1*wx - cIaWOxw0 xx 

frc2Kii 1A2 C1A36 Cii + 2(K66 - K12 - f xx + _22 

+ 22 012Q-- 2 ­
+ D22 R- T11R) R 1 R 

2 
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Ai = -Kll 

A4 2 = -K12 m-

A4 3 = Dl 

A4 4 = -Kii*x 

A4 5 =-E[12(T 

with 

and 

m = 0 U201 V201 "201M20 

m =1 -v",, .)M 

m = 2 - U2 2, V2 2, W2 2, M2 2 

Di (i = 1 to 4) the corresponding loading terms. 

If the central difference formulae 

f1 

i 

f i+1 - fi-i2Ls 

fi+ 2fi + fi-1 
A2 

(52) 

are employed, equations (51) can be written at the ith station as 

AiZi I + BiZi + CiZi+1 = D-' (i = 1,2,-.,N) () 
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with 

A1 ! A _ iA 15 A17 

- A 1 3  A24 A25 ­ 17 

2 
A,
A 1 A2A 

A -T 3 3 34 2 35 ­

2l A4o A43 A4 0 

-2A + A2A1 2  fo' -2A1 4 
+ A'2 A1 6  0 

0 -22 +A 2A2 3 -24 + "26 0 

Bi 

0 -A3 2 + A2A3 3  -A3 4 + A2A36 2 

0 A2A4 _243+ A A2 

Al 2 A1 3  A1 4 
+ A 1 5  ! A1 7 

A 0 
Ci =
 

A A 

A+ 00 k A4 4 

where A is the width of a finite-difference space and i is numbered 

so that i = 1, N corresponds to the boundaries of the cylinder. 
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Boundary Conditions
 

For the present investigation, the so-called "classical" simple
 

support and clamped boundary conditions were employed, that is, for simple
 

support
 

Nx
 

v=0 
(54) 

w= 0 

Mx=O 

at the boundaries, while for clamped support 

Nx =­

v=0 
(55)

w=0
 

W =0 

at the boundaries. 

Using the results of the first and second perturbations (eqs. (27)' 

and (36)) and the finite-difference approximations, the boundary conditions 

can be written as 

A1Z0 + B1Z1 4'C1Z2 1 

(56) 

=AZo + %NZ + CNZN+l DN} 

where for simple support 
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-aCll 
2 

-Kl - Clw 0 ;(1) 
2 

0 

0 0 0 0 

0 0 0 0 

L 0 0 0 0 

-0 C12 A2 A2 + 2K n + K2m 2 

• R R R 0 

o 0 -0 

o 0 1 0 

0 0 0 

n 0 -Kl + Ciiw,x(1) A 0 

0 0 0 0 

ClI 
0 0 0 0 

O ' 0 00 

and A., B, and C. are given by similar expressions differing only 

in that wax is evaluated at station N rather than station 1. 
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'For clamped support, the last row of equations (56) is modified 

so that 

[oAN( 	 ] j)
 

BI(4,j) o 0a] ( 	 (57) 

C 42j) oa 

The contribution by points exterior to the boundary (denoted by the
 

subscripts 0 and N+l) introduced by the finite-difference scheme is
 

eliminated by writing the equilibrium equation at the boundary (see, for 

example, ref. 38), thereby obtaining two simultaneous equations in three 

unknowns at each boundary. If the exterior points are algebraically 

eliminated, the equilibrium equations and boundary conditions take the 

following form:
 

B, l zi Di 

A2 B2 C Z2 D2 

A3 B3 C3 
 z3 D3
. .. . . .. . ... 	 ... (58 )
 

AW_2 	 BN_2 N-2 Zw-2 TN-2 

AN-A %-l ­ 1 -1N 
ANB N Z DN
 

Li
 



1-9
 

and
 

Zjj(i) = WJ(i) where i denotes the ith station 
± (1,2,. ..,w)
M (i)_ 

Since 
All is a banded matrix, it is convenient to triangulaxize All 

by Gaussian elimination so that equation (59) becomes 

A Z =0 (60) 

where
 

"R,C,
 

R 2 C2 

A]., . .
. . . .(61) 

and
 

R,= B1
 

R= B - AiPi 1 i 2,3,...,N 

with 

Pi = 1C.1c 

Pi= i =~2,5,...,N 

i 
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where
 

A1̂ = 1 ' - AAlcC1
 
B B - A1A{-I'
 

AjN ;N'-

Solutions to equations (58) for each of the perturbations are discussed
 

in the following sections.
 

Solution for First Perturbation 

For the first perturbation, the right-hand side of equation (58) 

becomes a null vector so that the equation becomes 

A0Z n 	 = 0 (59) 

where
 

B1 C1
 

A2 B2 C2 

A3 B3 C3 

All . . ..... with m =1 

S-2 	 %h-2 CN-2 

AN_- BN-l CN._ 
AN 	 AAN 	 B 
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A condition for solution of equation (60) is that
 

det All = 0 

so that
 

det(Rl%...RN) = 0
 

Using Potters' method (ref. 42) applied to a general eigenvalue problem, 

it can be shown that det RN = 0 is a sufficient condition for solution. 

This determinant, however, contains spurious poles which can be removed 

conveniently by the method outlined in reference 40 using the condition
 

det R1 detdet R jdetR det =det Rl det R 0 (62) 

For the first perturbation solution), Ncr must be such that 

equation (62) is satisfied. For the present study, the buckling load was 

determined from a computer program developed in reference 41 by using the 

techniques of reference 38, and equation (62) was used to verify the, 

accuracy of the present equations. The buckling solution of reference 41 

differs from the present solution for the zeroth and'first perturbation 

only in that deformations prior to buckling are found from a numerical 

rather than closed-form solution, and that provision is made to investigate 

various values of n and the applied load in order to find the buckling 

load ACT by determinant plotting (see also ref. 38). Once the buckling 

load has been determined, its corresponding eigenvector can be found by 

a method suggested by reference 38.
 



52
 

If 

all a2 a1 3 a14 

82l a22 a23 a24
 
RN = 

a31 
 a32  a33  a34 .
 

41 a.2 a4 3 a44 

it can be shown that the components of the eigenvector at the boundary
 

are given by
 

a12 a13 
 1
 

U() et a22 a23 a24 

a42 a43 a44J
 

Vl(N) = det 	a21 a23 a24 

al a43 a44 

(63)
 

all a12 a14
 

W7l(N)= det I a-22 a4 

a41 ah2 a44 

all a,2 ai3i 
',(N) = det a2l a23 

41 a42 a43 
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With the components of the vector Zll(N) known, the eigenvectors at
 

other stations are found from the recurrence relation 

-ll(i)= -Pll(i + 1) i = 1,2,...,N-l (64) 

After obtaining Zii at all stations, the resulting vector was normalized 

for the present computations so that
 

ZJll (65) 

with
 

Vl(i) 

Zll(i ) i = 1,2 .. AN 
Wl(i) 
M Ci)i 

This normalization was used as a convenience to compare results from 

conventional Koiter theory (e.g., eq. (44)) with the present theory. 

Solution for Second Perturbation
 

For the second perturbation, the equilibrium equations can be 

written as 

A2mZ2m = D m m = 0,2 (66) 
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with 

A A 

B1 C1
 

A3 B3 C3
 

• N-2 BN-2 CN-2 

AN_,B-
l - X-

A 

"2(1)-- i
 
Vu~i) 2(i) 

z2(i) = and D(i) A2 2 ') 
W2,(') d23(')
 

_M2 1 (i) d2 4 (i) 

where m takes on the value 0 to evaluate the axisynretric part of the
 

general solution (eq. (36)), for example,. W20, and m has the value 2
 

for the asymmetric part, for example, In equation (66), the compo-
W22.
 

nents of the vector D2m can be written at the ith station as
 

%jii-) = Cliwj + m-1n2 C1 WW +In-n)2 ~62
i) -~ i2 c12wflwi + nR c66wlwi
 

d22(i) = 1K(C12 + C66) 


-L += 

2 

C22i ' 2R 06Wl]()


=W) p K a1i(nfYQj~2 + w6 

.F2 ' l C2 C1 +mK66 wlw m2+ 2m ­
22 C2)
 

K
+ (K1 )n - w1+ 7 - 6 N)I Fn)ll2 ­

d24 (i)= O 
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where the bar over the stress resultants indicates the part of the stress 

resultant that is independent of y (viz., N.l = NX cosR 

Following the development used to eliminate exterior points in the 

general solution (see section entitled :Boundary Conditions) 

D~ml) f~~l)- A1 AlDa$1) 

(68) 

njw() = jwm()- Zo ln11)2,N 

where A1 . Al, C1, and C! are evaluated for m =0 or m =2. 

For simple support boundary conditions 

• °rwii)]2 
00 (69)Dkm A2 o'w{i) 

1 KFlW'1IYfl2
1 

and for clamped boundary conditions, D2m becomes a null vector. It 

should also be noted that rigid body displacements will occur in U20
 

if Nx2 is prescribed at both ends of the cylinder. To suppress these
 

deformations, the boundary conditions of equations (68) and (69) were 

modified so that the axial displacement was fixed at one end (i.e., 

U2o(N) = 0). 

Thus, the solution for displacements resulting from the second
 

perturbation requires solutions to two sets of simultaneous algebraic
 

equations having the form
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B C1 Z2m(l) Df2 (l) 

A2 B2 C2 z (2) D (2) 

A3 B3 C3 Z2m(3) D2,(3) 

. . . . . .	 (7o) 

AN-2 	 BN-2 C- 2 Z2 m(N-2) D2m(N-2) 

ANi BNl 0 NJ Z(N-1) D(N-1) 

with 	m = 0,2. 

To solve these equations, Gaussian elimination (sometimes referred to as
 

Potters' method, ref. 42) was employed on a digital computer.
 

Evaluation of b 

As mentioned in the derivation of the governing equations, the
 

determination of b requires identification 6f the 'secular terms occurring 

in the 	general solution of the third perturbation. To accomplish this,
 

the general solutions of equations (39) are substituted into the equilib­

rium equations, and terms whose coefficients, are either cos 2- or 

sin n are collected. The resulting equilibrium equations associated
R 

only with secular terms can be written as 

AZ 	 = ccfl15+ +71)

131 crClD31 1 31 	 (71) 

in which 

D3l 2d2i ± = 1,2,...,N2 a23	 (i) 
d33(i) 

0 
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with' 

513 (i)= -cll(wt,x W + wo,xkW) + (K 66wSx~w 

d3 2 (i) = R C66w xiW1 + R(c12 + c66)wo x- wi 

a33(i) -- -w4 + xlw~O,x3xN -II Yo,?, 1 

- , 1C2 

+ CllwOXxW0XAWi - - W0xAWi 

+ Kll(WO,XW i '' + 2w0,xxAWj + Wtr=xxWi) 

-- 2(n)2KEs6 Wx _ (2K66 + K12)w0,x7\Wi 

and
 

ri-e7 Se3.) "­

.A, 0 

with
 

=n + Wv 2 ) 

e32(i) (012 + 2+ iW + W) 

2
+ ~ 66[iW 2 2 + W1(0 ­

+ ( )f C2 2WIW2 2 
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e3 3 (') = K3 3 + 3 + x o + w)- (2) o12 ww22j 

+ i wo w22 + (Wkxw+ 2 

- w - ( win I + ) 
+2 2(,W 2 "Y2 

where
 

3 Kll[W1 ''(W20 + 1L)2 + W (2W 0 + Wk2) + W-4- + 2 2 

12LiqW22 + w +~~ 1W

(n)2 K6 6 wiW22 + Wi2k+ 9WL2 ) + w1(2w 0 + MW 2 ] 

(11)2 K 1(34W 2 2 +9 K22W 22 

c33 RR)2 c22w1w22 -c+2wk 2 2)]
 

+ Cl l(W + ljna 012I]) 2 

(n)2 i[3 c()2 + (nj W2 

+ (%2 C66(w{) 2 W1 

Following the procedure for development of boundary conditions
 

1 1 f31(
D31(l) = D - 'AA l ) 

(72a) 

D1(N)= D 1 (N) - Cccln31(N) 
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and 

E31(l) = E31 (l) - AA 
1 E31 (l) 

(72b)
 

E31()=E31() -clcjl E31JN)
 

where A,;A1 C1, and C1 are evaluated for m= 1.
 

For simple support boundary conditions
 

= .1-AO P =-, lN (7I5a 
g31(') =-A 2 0 ±=1,N (73a) 

clwj(:i) IWo(') + 12 W2'2(')] 

0 
2
E5 1 () = -A i = l,N (73b)

0 

KIIW{(i) [W Ci) + 2 W 2 (i] 

For clamped boundary conditions, D31  and E31 become null vectors. 

Thus the vectors D31 and E31 can be written as 

D31(l) E31()
 

D31(2) E31(2)
 

3a= (74)
D 31  


D31(N-!) E31 (N-1)
 

D31(N) E31(N)
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Finally, using the equation for b (eq. (50)) previously developed
 

2 T
 
-2t AZ TE 51 

b =iE3 (75) 

hcr 11D31 v
zT foA (U21 + + W2)dx 
0 

Program SICK
 

The numerical computations to determine the sensitivity index b
 

were performed on a CDC 6600 series computer using a Fortran program
 

entitled SICK (Sensitivity Index for Cylinders ex Koiter). A listing
 

of this program is contained in appendix A. In the program, four key
 

subroutines wer.e employed: MATRIX, POTTER, DIF, and SIMP. MATRIX is a 

CDC general purpose program which permits addition, subtraction, multipli­

cation and inversion of matrices. POTTER is a Langley Research Center
 

program which solves banded matrix equations with a three-vector bandwidth 

by Gaussian elimination (Potters' method, ref. 42 ). DIF is a Langley 

program which numerically differentiates a function using a 10-point
 

Gauss quadrature method. SIMP is an elementary program which integrates 

a function by Simpson's rule. 

The numerical results were found to converge with about 40 finite­

difference elements. The results presented herein were obtained with 

60 elements. In the numerical approach employed, a major consideration 

was computer storage required to solve4the.equations resulting from the 

second perturbation (eqs. (70) ) using the subroutine POTTER. The choice 

of 60 elements was largely dictated by the fact that it led to a require­

ment of 70,000 octal storage units by program SICK. This storage was the 
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maximum obtainable on the Langley remote terminal system. Running times 

for a typical problem were quite excellent with the solution requiring
 

about 25 seconds' computing time.
 



IX. INVESTIGATION OF RELATIVE IMPERFECTION SENSITIVITY
 

OF FIBER-REINFORCED CLINDERS
 

The imperfection sensitivity of certain fiber-reinforced cylinders 

was investigated with the Koiter index b determined from both the
 

present theory (eq. (75)) as well as the theory of references 23 and 24. 

To employ the latter theory, equation (44) was employed together with 

the normalization described in equation (65). Three types of cylinders 

were considered: glass-epoxy, boron-epoxy, and aluminum reinforced with 

an overlay of boron-epoxy. The cylinders considered had a fixed radius­

thickness ratio R/t of 100 and a length-radius ratio A/R of 0.7. 

The helical wrap angle of the cylinders was varied in an attempt to 

identify configurations of minimum imperfection sensitivity. 

The investigation of the sensitivity index was limited to a few
 

specific configurations because of the tedious and expensive nature of 

the calculations. It was found that buckling loads using the theory of 

reference 41 could be extracted by computer with only moderate difficulty.
 

However, many additional computations were required in certain instances
 

to obtain a buckliig mode shape sufficiently accurate to pursue post­

buckling calculations.
 

The elastic constants for the single fiber-reinforced layer in each 

cylinder were estimated by the procedure summarized in an appendix of 

reference 1. In th-isprocedure elastic cohstants along principal axes 

of unidirectionally reinforced material,were obtained from the theoretical
 

study by Hashin and Rosen (ref. 33). The upper bound of the random
 

fiber array model described therein was employed in the present study.
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Elastic constants for the helically wrapped layers with filaments 

oriented at ± from the cylinder axis were estimated using transforma­

tion equations of orthotropic elasticity together with the concept of 

effective stiffness of cross-plied laminates (refs. 35, 36). This 

technique has been shown to give predictions in reasonable agreement 

with experiments to determine elastic constants of glass-epoxy (ref. 1) 

or boron-epoxy (ref. 4) cylinders. Constituent material properties and 

layer properties are summarized in table I. 

Glass-Epoxy Cylinders
 

The cylinders investigated were composed of a single helically
 

wrapped layer (±m). The constituent properties and fiber volume fraction
 

vf selected for the investigation are typical of well-made filament­

wound cylinders. Buckling predictions for cylinders whose wrap angle
 

varies from 0 to 900 are shown in figure 3. The predictions are based
 

on boundary conditions of simple support in which 

Nxl = 0 

=0 

l= 0 

vI 


Mx ,=0 

The solid curves of figure 3 labeled "consistent theory" ,were obtained 

from reference 41 from a theory which considers nonlinear effects of 

change in shape of the cylinder due to load prior to buckling. The dash­

dot curves of figure 3 labeled "classical theory" were obtained from the 

theory of reference 2 which assumes a membrane state of stress in the 
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Figure 3.- Buckling loads for glass-epoxy cylinders (R/t = 100, A/R 0.7, vf 6.65). 
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cylinder prior to buckling and ignores changes in shape due to loading.
 

The dashed curve labeled "axisymmetric collapse" can be obtained from
 

either classical theory with n equal to zero (ref. 2) or by a limiting
 

solution of equations governing axisymnetric deformations prior to
 

buckling (e.g.) eq. (17))-. 

From figure 3 it can be seen that on the basis of classical theory,
 

cylinders with helical'wrap angles from 30 to 600 are expected to collapse
 

axisymmetrically. Consistent theory predictions, however, do not suggest
 

this mode, but rather gives loads based on asymmetric modes which are
 

substantially lower than axisymmetric collapse predictions. The relative
 

position of axisymmetric collapse predictions to consistent theory
 

buckling predictions is extremely important in the present considerations
 

of imperfection sensitivity, because the sensitivity index b is
 

undefined when axisymmetric collapse is.the predicted mode~of failure.,
 

Thus, because consistent theory predictions are less than axisymmetric
 

collapse predictions for all values of the helical wrap 'angle, the
 

sensitivity index can be defined everywhere. 

Substantial differences between consistent theory and cla-sgical 

theory predictions are indicated in figure 5. The differences are 

functions of the helical wrap angle and are greatest foi ae4ual to 
.
450 At this angle, consistent theory predictions are about 80 percent'
 

of classical theory. For isotropic cylinders with the same radius­

thickness ratio, length-radius ratio and boundary conditions, consistent
 

theory predictions are also about 80 percent of classical theory
 

(ref. 43). The results suggest that prebuckling deformations in
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filamentary shells possessing high shear stiffness are an important
 

consideration for accurate buckling predictions.
 

Imperfection sensitivity indices for the simply supported glass­

epoxy cylinders are shown in figure 4. Calculations of the index b
 

were made using the present theory (solid curve), as well as the theory
 

of references 23 and 24 (dashedcurve). The results for the sensitivity
 

index b have been normalized by the index biso for an isotropic
 

cylinder having the same R/t and A/R as the present cylinders. The 

values of biso obtained from the theory of references 23 and,24 agreed 

well with unpublished data (ref. 44) by J. W. Hutchinson. In plqtting 

results on figure 4, computed data have been linked by straight -lifie 

segments to indicate the points at which discrete calculations were made. 

The results shown in figure 4 indicate similar'trends in kelative
 

imperfection sensitivity predictions based on the two theories con~idered.
 

The differences in magnitude of the imperfection ensitivity indices
 

are attributed to differences in definition of the perturbation p@raketer
 

£. In figure 4, the normalized sensitivity index .'b/bj o takes on its 

smallest values for helical wrap angles from 3Oto 600. Thus, both 

theories suggest that glass-epoxy cylinders with these wrap angles are 

desirable configurations since they have a relatively low index. Because 

of the high index values for a equal to 750; this configuration is 

presumed to be undesirable. 

The results of a recent imperfection study by Khot (ref. 14) using 

a classical approach which ignores load-induced deformations prior to 

buckling but considers an initial imperfection of specified shape, should 
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also be noted. For three-layer glass-epoxy cylinders possessing 0, 

-a, +m, or 90, -a, 4m, degree configurations, Khot found that maximum 

compressive buckling loads for small amplitude imperfections occur for 

shells where a is 450. This result coupled with the present results 

suggests that the use of wrap angles near 450 in glass filament-wound
 

cylinders may improve their buckling strength due to reduced sensitivity
 

to initial imperfections.
 

Boron-Epoxy Cylinders
 

Buckling predictions for single layer, simply supported, boron­

epoxy cylinders are presented in figure 5. In contrast to the glass­

epoxy cylinders, consistent theory predictions for boron-epoxy cylinders
 

indicate that axisymmetric collapse will occur for some wrap angles. As
 

mentioned previously, the Koiter sensitivity index is undefined for
 

these wrap angles. Note from figure 5 that consistent theory and
 

classical theory predictions do not yield identical wrap angles for
 

axisymmetric collapse. For consistent theory, collapse is predicted
 

for wrap angles from 15 to 350 whereas for classical theory, collapse
 

is predicted from 30 to 600.
 

As was the case in glass-epoxy cylinders, agreement between
 

consistent and classical theory for boron-epoxy cylinders is a function
 

of the helical wrap angle. Maximum differences between the 'two theories
 

occur for wrap angles of 45 and 750. For these wrap.angles, consistent
 

theory yields predictions which are roughly 85 percent of classical
 

theory. Both classical and -consistent theory buckling loads are
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Figure 5.- Buckfling loads for boron-epoxy cylinders (R/t = 200, A/R = 0.7 f 0.50) 
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relatively high for cylinders with a wrap angle of 150. The magnitude 

of load is believed to be a consequence of the high axial extensional 

and axial bending stiffness of boron filaments in this configuration, 

coupled with unusually large values of the product of Poisson's ratios 

lxy (see table I). Since most of the structural stiffnesses of the 

shell are proportional to 14 - Pxj) large values of Px Ly result in 

increased stiffness.
 

Imperfection sensitivity indices for boron-epoxy cylinders are 

presented in figure 6. Again, agreement in trend between the present 

theory and the theory in references 23 and 24 is good. Because of 

axisymmetric collapse, the sensitivity index is undefined for helical 

wrap angles where 15 - m $-35. Note from the figure that values of 

sensitivity indices adjacent to the zone of axisymmetric collapse may
 

be quite different. For a equal to 100, the sensitivity index (as well
 

as the buckling load) is relatively high. On the other hand, for a
 

equal to 400, both the sensitivity index and the buckling load are low.
 

These results demonstrate that cylinders which buckle near axisymmetric
 

collapse loads are not necessarily desirable from the standpoint of
 

reduced imperfection sensitivity.
 

A comparison of the magnitude of the sensitivity index for glass­

epoxy cylinders (fig. 4) with boron-epoxy cylinders (fig. 6) in regions 

of minimum imperfection sensitivity reveals that boron-epoxy shells -are 

less sensitive. Thus, shells with wrap angles around 450 would appear 

to be an attractive configuration in boron-epoxy cylinders. Khot's
 

imperfection study (ref. 14) indicated that the 450 wraps in o, -aM, -i,
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Figure 6.- Inerfection sensitivity indices for boron-epoxy cylinders. 
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and 90, -m, +a, configurations gave higher buckling loads for small
 

amplitude imperfections. He also concluded that boron-epoxy cylinders
 

were less sensitive to initial imperfections than glass-epoxy cylinders. 

Boron-Aluminum Cylinders
 

In the studies of glass-epoxy and boron-epoxy cylinders, it was 

concluded that cylinders with wrap angles of 450 had-reduced imperfection 

sensitivity. A shortcoming of this wrap angle in the simple configuration 

investigated (t m) is its relatively low buckling load compared to other 

angles, especially in the case of boron-epoxy cylinders (see fig. 5). It 

seemed desirable to investigate more complex configurations, perhaps 

with other materials, which might possess both reduced imperfection 

sensitivity while still retaining relatively large bucklig strengths. 

An interesting concept in fiber-reinforced structures now 'being 

pursued by the NASA is that of employing a metal 'substrate and overlaying 

on it boron-epoxy tapes., This concept of selective reinforcement is
 

attractive in that it reduces practical attachment problems and dosts, in 

using expensive filamentary material, yet at the same time provides good 

possibilities for structural weight savings. A recent study of tubular 

columns (ref. 45) in which metal tubes were overlayed with axially 

oriented boron filaments has produced some spectacular results for ­

compressive buckling.
 

Because of current interest in the selective reinforcement concept,
 

boron-aluminum cylinders were investigated. The cylinders were composed
 

of two layers of equal thickness, one of aluminum, the other of boron-­
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epoxy with filaments at it. Based on total thickness, the cylinders 

had the same radius-thickness ratios as the glass and boron cylinders 

already mentioned. The boron-epoxy layer was located on the outer
 

surface of the aluminum. Preliminary 6alculations using classical 

buckling theory indicated that substantial differences in buckling load 

occurred depending on whether the boron layer was located on the inner 

or outer surface of the aluminum. The highest buckling loads were 

developed for the ,configuration chosen. This effect of layer sequence 

is the counterpart of the stiffener eccentricity effects discussed in
 

references 9 and 38.
 

Buckling predictions for the boron-aluminum cylinders are presented
 

in figure 7. Although classical theory ,predictions suggest axisymetric 

collapse for 30 _ m' 5 45, consistent theory predictions yield only 

asymmetric modes so that the imperfection sensitivity index exists 

everywhere. Note from figure 7 that substantial differences exitst between 

consistent and classical theory predictions.: Th4 large'st differences 

occur for ma equal to zero where the consistent theory prediction is 

about 73 percent of the classical prediction. The maximum load carried 

by the boron-aluminum cylinders occurs for a wrap angle of 600. The 

reason why cylinders with this wrap angle perform so well is not obvious, 

since the effects of prebuckling deformations and eccentricity in
 

multilayered shells have not been thoroughly investigated. The only 

unique feature of the 600 wrap is its large value of py (see table 1).
 

Imperfection sensitivity indices for boron-aluminum cylinders are
 

presented in figure 8. Again, reasonable agreement in trends occur for
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Figure 8.- Imperfection sensitivity indices for boron-aluminum cylinders. 



the two versions of the Koiter theory. An interesting and encouraging
 

result is the negative values of the normalized imperfection sensitivity 

index which occur for m equal to 900 . Negative values indicate a' 

positive slope of the load-shortening curve for the cylinder in the post­

buckling region. While this result is somewhat unexpected, it may be. 

explained by observing that for m equal to 900, the cylinder behaves 

as a ring-stiffened shell with very closely sp&ced, stiff (borbri-epoxy) 

rings located on the outer aluminum surface. There is,some evidence 

in the literature that ring-stiffened shells have unusual postbuckling 

behavior. In postbuckling studies, both Thielemann (ref. 16) and 

Shang (ref. 12) have found relatively large minimum postbuckling loads 

for ring-stiffened cylinders, thereby-suggesting that they possess little
 

imperfection sensitivity.
 

Relatively small imperfection sensitivity is also indicated for the
 

459 configuration. The magnitude of the normalized index, however, is
 

much closer to unity than that for boron and glass cylinders with the
 

same wrap angle. Thus imperfect boron-aluminum shells in this config­

uration would be expected to perform about the same as imperfect 

isotropic shells.
 

A somewhat frustrating law appears to evolve from the present
 

investigation. As the compressive-load carrying capability of fiber­

reinforced cylinders is improved by varying the filament orientation,
 

the structure's sensitivity to imperfections becomes larger. An 

attractive fiber-reinforced cylinder configuration has been identified,
 

however. Because of a positive slope in its postbuckling load-shortening
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curve and its reasonably good load-carrying ability, the 900 or circum­

ferentially wrapped boron-aluminum cylinder appears to be the most 

desirable of the configurations investigated herein. Whether its 

performance will be superior to configurations with greater potential 

load-carrying capability but greater imperfection sensitivity can only 

be determined by experiment. 



X. EXPERIMENTAL INVESTIGATIOIT
 

Test Specimens
 

To investigate the buckling behavior of fiber-reinforced cylindrical
 

shells, compression tests were conducted on 12 filament-wound, glass­

epoxy cylinders. The test specimens had an inside diameter of 30 inches,
 

were 30 inches long, and had a nominal thickness of 0.072 inch. The
 

cylinders were wrapped in helical layers composed of two half layers,
 

with filaments oriented at angles +m or -a measured from the cylinder
 

axis. The variables in the test program were the helical wrap angle a
 

and the cylinder wall configuration.
 

Six of the cylinders had walls composed entirely of five helically 

wrapped layers in the sequence ±a, ±m, t +-, . The walls of the other±a 


six cylinders were composed of four helical layers and four circumferen­

tially wrapped layers in the sequence im, 90, _+, 90, ±a, 90, ±m, 90, where 

the last circumferential wrap (+90) formed the external surface of the
 

cylinder. Photomicrographs of the two cylinder wall configurations are
 

shown in figure 9. For cylinders containing circumferential wraps, the
 

helical layers at ti can be seen to be roughly twice the thickness of
 

the circumferentially wrapped layers.
 

Table II contains material data for the'cyliner. constituents. The
 

properties shown for glass fibers are typical of those usually employed
 

for type E glass filament. Values of modulus and density shown'for the
 
ERL-2256 epoxy resin were obtained from compression tests of four 5-inch­

diameter, solid resin cylinders about 6 ±hches long. The cylinders were
 

cured with the same curing cycle as the test specimens, that is, 250P F
 

for 2 hours. The solid cylinders were instrumented with tothTuckerman
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optical strain gages and differential transformer gages. The four cylin­

ders were tested in compression at a loading rate of 20,000 pounds per
 

minute. A typical stress-strain curve generated on an X-Y plotter by the
 

transformer gages is reproduced in figure 10. All cylinders appeared to
 

be capable of straining indefinitelyat maximum load so that the tests
 

were terminated when about 6 percent compressive strain had been experi­

enced by the cylinder. No apparent damage could be observed at the
 

conclusion of the test. Based on the test results, ERL-2256 appears to
 

have a proportional limit of about 10 ksi in compression.
 

The dimensions and helical wrap angles of the glass-epoxy test
 

specimens are presented in table III. The values of total wall thickness
 

t shown are the average of several measurements taken at random loca­

*tions. The scatter in individual measurements was ±4 percent of the
 

value tabulated and is attributed to the irregular outer surface of the
 

specimens. It should also be noted that the outer surface of each
 

specimen was reinforced at each end with circumferentially wrapped
 

layers about 1-1.3 inches wide wth thickness equal to that of the shell.
 

The purpose of this reinforcement was to prevent local crippling due to
 

the end loads.
 

The fiber volume fraction vf, the resin volume fraction vr, and
 

the void volume fraction vv, expressed as percentages, are also
 

presented in table III. The fiber volume fractions were determined by
 

elevated temperature exposures of two or three coupons cut from,the wall
 

of each specimen. The coupons were subjected to a temperature of 11000 F
 

for a period of 3 hours to permit virtually.aLi'of the resin in the,
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coupon to decompose. The remaining glass was weighed and the equivalent 

fiber volume fraction was calculated using the valu~s of density 

presented in table II. Prior to heating, the volume of each coupon was 

determined using Archimedes' principle. The resin and void 'cntents 
I .3 

were then calculated using the glass volume fraction together with the
 

total volume and the density of resin quoted in table II. Although" 

widely used, this method of determining void content is not extremely 

accurate, so that the true void content probably can be determined only 

to the nearest half a percent. It should be noted that the volume
 

fractions of table III together with studies of photomicrographs of
 

specimen walls suggest that the quality of the test specimens was only
 

fair. Well-made glass-epoxy, filament-wound cylinders usually possess
 

fiber volume fractions of about 65 percent while those of the present
 

specimens are about 51 percent.
 

Test Procedure
 

Each of the 12 cylinders was instrumented with 16 wire-resistance
 

strain gages with a gage length of 6 inches. The gages were bonded in
 

back-to-back pairs on the surfaces of the cylinder and oriented in the
 

axial and circumferential directions at the middle of the cylinder about
 

900 apart. The purpose of the axial gages was to measure initial strains 

from which the axial extensional modulus could be calculated, and to 

detect any bending deformations which might suggest buckling of the,
 

cylinder wall. The circumferential gages were present to measure strains
 

from which Poisson's ratio jix, associated with loading in the axial
 

direction, could be determined. Additional instrumentation consisted of
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two linear differential transformers which were used to track the
 

relative motion of the testing machine platens.
 

For testing purposes, a 3/8-inch plywood bulkhead was inserted at
 

each end of the cylinder to ensure that the ends of the specimen would
 

remain circular. -The cylinders were tested flat-ended in compression in
 

the Langley Research Center's 1,200 kip-capacity testing machine. The
 

loading head of the testing machine was carefully alined to promote
 

uniform loading of the cylinders by checking strain distributions in the
 

axial strain gages under small loads. The buckling test consisted of a
 

single load cycle to failure at a loading rate of 5,000 pounds per 

minute. During the test, data were recorded at a virtually continuous
 

rate on the Langley Central Digital Data Recording System. 

Test Results 

Elastic constants.- The data obtained during the tests were reduced 

by computer and presented in the form of load-strain or load-displacement 

curves for each specimen. A sample plot of data for cylinder 10 is shown 

in figure 11. Data from the axial and circumferential gages have been 

plotted so that back-to-back pairs of gages have the same origin. For 

convenience, only the magnitudes of strain have been plotted. The average 

slope of the axial strain data was linear over a wide range of the loading 

history, and values of slopes determined from individual pairs of gages 

were in good agreement. The average of the linear slopes of the axial 

gages expressed as a Young's Modulus is presented in table III as 

Values of E. deduced from the transformer measurements of overall
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shortening after corrections for the cylinder end reinforcement were in
 

reasonable agreement with the axial strain-gage data.
 

Data from the circumferential gages were somewhat more nonlinear,
 

and in some cases, substantial differences in individual gage slopes
 

existed. The initial slopes of the circumferential gages were used to
 

determine Poisson's ratio of each cylinder by dividing Ex by the
 

average of the circumferential slopes. The Poisson's ratio associated
 

with circumferential strain induced by axial load 7x is also shown in
 

table III. The underlined values in the table are values in which large
 

variations in individual circumferential gage slopes were present.
 

The test data for elastic constants are compared in figures'12 to 15 

with theoretical predictions for total extensional 'stiffness of the 

cylinder wall based on references 33 and 35. It can be seen that theory 

and experiment are in good agreement for the extensional modulus of the 

cylinder wall and in fair agreement for Poisson's ratios'in spite of the 

scatter in data. The results suggest that th& techniques employed 

herein for predicting elastic constants yield good engineering estimates 

of structural stiffnesses. 4 

Buckling.- Failure of most of the test specimens was accompanied by 

a loud report and the appearance of two tiers of large, diamond-shaped 

buckles uniformly distributed around the cylinder. As suggested in the 

load-strain curves of figure 11 which are plotted up to maximum load, no 

strain reversal was apparent prior to failure. The maximum load carried 

7by the cylinder exp is presented in table III. A photograph of a
 

buckled cylinder is presented as figure 16. An observation associated
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with the two specimens having 300 helical and circumferential wraps
 

(cylinders 3 and 4) should be noted. On both these specimens, buckles
 

appeared only on roughly one-half of the shell surface. As a matter of 

routine, before unloading, the specimens were prepared for photography 

by removing instrumentation wiring. In both cylinders' during this time 

period, a uniform buckle pattern suddenly developed, replacing the
 

original, nonuniform pattern with no large changes in load'or platen 

shortening. Since all specimens were tested with the same procedure, it
 

appears that nonuniform buckle patterns 'might be an intrinsic charac­

teristic of that wrap configuration. 'The particular configuration 

(±30, 90) happens to possess two-dimensional isotropy with regard to 

bending and extensional stiffness (but not cbplete isotropy due to lack 

of symmetry about the shell midsurface). It seems, experimentally, that 

less isotropic wrap configurations possess more uniform postbuckling
 

patterns.
 

Comparison of Theory and Experiment
 

The experimentally obtained buckling loads for the test cylinders
 

with alternating helical and circumferential wraps are compared with
 

theoretical predictions in figure 17 and table III. The theoretical
 

loads 2'cr were based on the simple support boundary conditions
 

previously mentioned. The computations were performed using the con­

sistent theory taking into account nonlinear prebuckling deformations 

(ref. 41). A few calculations using the clamped boundary conditions
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Figure 17. - Comparison of theoretical 'and experimental buckling 
loads for test cylinders with alternating helical and 
circumferential wraps.
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Nxl 0 

V= 0 

Wl= 0 

Wl,x = O 

suggested that differences between clamped and simple support calcula­

tions were small because of the length of the test specimens.
 

The trends shown in figure 17 indicate that the greatest difference
 

between theory and experiment occurs for a wrap angle of 300 in
 

cylinders 3 and 4. As mentioned previously, these cylinders possess
 

two-dimensional isotropy with respect to bending and extensional stiff­

ness, and behaved somewhat differently at buckling than the other, less
 

isotropic cylinders in the test program. If the data in figure 17 for
 

wrap angles of 300 and 450 are compared, it is evident that, for 

cylinders with nearly identical radius-thickness ratios, agreement between 

theory and experiment is much better for the less isotropic confignra­

tion (that is, 450). Moreover, from table III it can be seen that
 

° analytically, the 30 configurations were expected to carry more load 

than the 450 configurations, whereas experimentally the reverse was true.
 

Presumably, the reason for this unusual phenomenon is associated with the 

150 configuration being less imperfection-sensitive than the nearly
 

isotropic configuration. 'Thus, the present tetsoffer experimental 

evidence that certain filament orientatiois can' 'enhancethe buckling 

strength of a cylinder due to their decreased imperfection sensitivity.
 

Direct comparisons between the 150 and 300 configurations are complicated
 

due to the differences in radius-thickness ratios.
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Imperfection sensitivity indices for cylinders I to 6 are presented 

in figure 18. The indices have been normalized by the index biso for 

isotropic cylinders of the same geometry. Results are shown for both the 

present theory and the theory of references 23 and 24. Agreement between 

the two theories is fair except for a wrap angle of 150. The large value 

obtained for the sensitivity index at this angle from the referenced 

theory is not presently understood. 

The trend of data from the present theory however, is quite
 

°
encouraging in that maximum values of the sensitivity index occur at 30
 

Thus the Koiter theory predicts that cylinders 3 and 4 should be most 

imperfection sensitive. This result is in agreement with the experimental 

data, if it is hypothesized that the more sensitive buckling of a struc­

ture is to geometric imperfections, the lower is its value of Aexp/Acr.
 

It was expected that the sensitivity index for wrap angles of 300 would 

be about the same as an isotropic cylinder so that b/biso - 1. The 

lower value of the normalized index shown in figure 18 is believed to be
 

a consequence of the antisynmetry of the wall of the cylinder.
 

The experimentally obtained buckling loads for the test cylinders 

with helical wraps are compared with theoretical predictions for simply 

supported cylinders in figure 19 and table III. From figure 19, the only 

obvious trend in the data is the lack of reduction in values of hexp/?cr 

as R/t is increased from 160 to 225. In isotropic cylinders, of course, 

some reduction would have been expected even in this relatively small 

change of R/t. 
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For the 150 configuration, the data for cylinders 7 and 8 are
 

inconsistent. From table III it can be seen that even though
 

cylinder 7 was thinner than cylinder 8, it carried more load. Volume
 

fractions and thicknesses were carefully reinvestigated but no reasons
 

were apparent to explain the discrepancies in the data.
 

Imperfection sensitivity indices for cylinders 7 to 12 are presented 

in figure 20. Agreement between the two theories presented is fair 

except for large disagreement for a helical wrap angle of 450. This 

anamoly was unexpected, since the agreement for this wrap angle for 

glass-epoxy cylinders with' R/t = 100 was much better (see fig. 4). In 

figure 20, variations in R/t make comparisons between wrap angles 

difficult. However, the trend of the indices for the present theory 

suggests that cylinders with wrap angles of 300 and 450 should perform 

better than isotropic cylinders of the same radius-thickness ratio. The 

high values of 'exp/%cr shown in figure 19, especially for the largest 

R/t (cylinders 11 and 12), tend to support this prediction. The 

sensitivity indices for cylinders with the lowest radius-thickness ratio 

suggest that their buckling behavior should be about the same as isotropic 

cylinders. The values of Aexp/Acr for cylinders 7 and 8, and the scatter 

in data seem to support this prediction also. Thus the trends in buckling 

data suggested by the sensivitity indices of the present theory are in 

fair agreement with experimental buckling data. 



XI. CONCLUDIG REMARKS 

A theory has been developed to assess the, sensitivity of buckling
 

of axially compressed, fiber-reinforced cylindrical shells to small
 

geometric imperfections in the shell wall. Following the work of Koiter
 

(ref. 19), an index of imperfection sensitivity is obtained by investi­

gating the character of the initial postbuckling region for a geometric­

ally perfect cylindrical shell. The theory presented herein differs from
 

existing applications of Koiter theory in that it is developed by using
 

techniques of perturbation theory. The theory represents an extension to
 

cylindrical shells of the plate postbuckling theory derived by Stein 

(ref. 25). Using Donnell-von Karman strain-displacement relations, the 

postbuckling equations are obtained for a multilayered, orthotropic 

cylinder in which the principal axes of orthotropy in each layer are 

alined with the longitudinal and circumferential coordinates of the shell. 

The imperfection sensitivity index is identified by suppressing secular 

terms in the perturbation and employing a suitable definition of the 

perturbation parameter. The governing equations were solved by finite 

difference techniques and by exploiting Gaussian elimination. A computer 

program to solve the large systems of simultaneous equations resulting 

was developed for the CDC 6600 series computer. 

The results of an investigation of the imperfection sensitivity
 

index for fiber-reinforced shells have been presented. Glass-epoxy,
 

boron-epoxy, and boron-aluminum shells having various helical wrap angles
 

were studied in order to identify wrapping configurations of minimum 

imperfection sensitivity. In conducting the investigation, both the
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present theory and an extension of existing theory to multilayered, 

orthotropic shells were employed. Agreement between predicted sensitivity
 

indices based on the two theories was reasonably good. Computed results
 

for buckling in this investigation suggest that substantial differences
 

(up to 27 percent) can exist between classical and consistent theory
 

predictions for buckling, depending on the wrapping configuration. The
 

differences are attributed to the neglect of load-induced prebuckling
 

deformations in classical theory.
 

° 
The studies of helically wrapped cylinders indicated that 45 was a 

desirable wrap angle in both glass-epoxy and boron-epoxy cylinders. For 

wraps with small imperfection sensitivity boron-epoxy shells appeared to 

be more desirable than glass-epoxy shells. The most desirable shell con­

figuration uncovered in the investigation was that of an aluminum shell 

overwrapped with a circumferentially wound boron epoxy layer. This con­

figuration was found to possess a positive postbuckling slope and appears 

to behave much like a ring-stiffened cylinder. 

The results of an experimental program to investigate the buckling 

behavior of fiber-reinforced, glass-epoxy cylinders have been presented. 

Compressive buckling tests were conducted on twelve 30-inch-diameter 

filament-wound cylinders with various wrap angles. Elastic constants 

derived from data prior to buckling were compared with analytical pre­

dictions. The agreement between theory and experiment suggests that the 

approximations employed to estimate structural stiffnesses of the cylin­

der wall are valid. Cylinder buckling loads varied from 50 to 90 percent 

of consistent theory predictions depending on wrap angle. Comparisons
 

of calculated sensitivity indices with the cylinder buckling data show
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that the indices are in fair agreement with the experimental data trends. 

Both the theoretical and experimental results reported herein demonstrate
 

that certain fiber orientations can enhance the buckling strength of 

geometrically similar cylinders. These configurations appear to possess 

reduced sensitivity to geometric imperfections present in the cylinder
 

wall prior to loading. The present results suggest the desirability of 

further experimental investigations into the 'buckling behavior of config­

urations such as the circumferentially wrapped boron-aluminum cylinder.
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XV. APPENDIX A
 

In this section program SICK is described in detail. A flow diagram
 

for the program is presented as figure 21. The input data required are as
 

follows: 

R radius of cylindrical shell to reference surface 

A length of cylindrical shell 

DELBAR distance from inner surface of shell to reference surface 
(for the present calculations t/2) 

BC boundary condition code BC = 1 simple support
(Nxl =v W1 = Mxl1 0) 

BC = 3, clamped(Nl=v!=wl = wl,x = 0) 

NXB applied axial compression load at buckling, 7 cr 

,N number of full waves in circumferential buckle pattern, n 

EX(I) elastic modulus for shell layer in axial direction, Ei 

EY(I) elastic modulus for shell layer in circumferential direction, 

Ey 

NUTX(I) Poisson's ratio of shell layer associated with load applied in 
axial direction, l 

NUY(I) Poisson's ratio of shell layer associated with load applied in 
circumferential direction, 4 

GXY(I) shear modulus of shell layer, Gx 

H(I) thickness of shell layer 

LAYER total number of layers in shell wall 

ST code to detect stiffening ST = 0 cylinder is unstiffened 
ST = 1 cylinder is stiffened 

NSTAT number of finite difference stations, N 

1O6
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NORM code to specify normalization NORM 

NORM 

= 

= 

0 

1 

jZil is 
factor 
Wmax/t 
normalizing 

normalizing 

is 
factor 

IPRINT code to specify type of output printed 
IPRINT = 0 gives minimum output 
IPRINT = 1 gives maximum output 

If ST = 1 the following additional input is required: 

ER modulus of ring 

AR area of ring 

IR moment of inertia of ring about its centroid 

ZR distance from reference surface to ring centroid 
ring is external) 

(+ only if 

GRJR torsional stiffness of ring 

RS ring spacing 

ES modulus of stringer 

AS area of stringer 

IS moment of inertia of stringer about its centroid 

ZS distance from reference surface to stiffener cent
if stringer is external) 

roid (+ only 

GSJS torsional stiffness of stringer 

BS stringer spacing 

Some conversions between the program notation and the notation of
 

the paper which may not be self-evident are:
 

WOX w,x 

WOXX w* 
O,xx 

WOXL w* x 
0, x?7 

WOL W 
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MODRES modified residual resulting from taking determinant of left­
hand side of buckling equations (see left-hand side of
 
equation (62))
 

A listing of the program together with a sample case for the circum­

ferentially overwrapped boron-aluminum cylinder follows.
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COMPUTE PREBUCKI!NG QUANTITIEIS 

SET
 

mTP.P 250 

SET Tip p, Bi , Ci MATRICES IN 

Ai~i I + BiZi + CiZi+1 

300
 
p.P.I 

fTEST m 

M=0
 

COMPUTE DETERMINANT COMPUTE D{ AND SOLVE COMPUTE Di AND SOLVE 
OF 

Zji- + BiZi + CiZi+I 

AiZi 1 + BiZi + CiZi+l D 
USING P/TTER TO GET 

AZi-1 + BiZi + CiZ+l 
USING PiTTER TO GET 

Dj 

(M DREs) U2 2, V2 2 , "122 ETC. U20' V2 0 , W2 0, ETC. | 
AND EIGETVECTOR TO 
GET ti1, V1, W1 , ETC. _____ 

GTET In21 
* INTEGRATE TO FIND b BY 

SET in 0PRESENT THEORY AND BY EXTENSION 
OF REFERENCES 23 AND 24 

Figure 21., Flow diagram for program SICK.
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C 	 PROGRAM SICK (SENSITIVITY INDEX FOR CYLINDERS EX KOITER)
 
PROGRAM SICK (INPUT,OUTPUT)
 

10 FORMAT(///* IMPERFECTION SENSITIVITY OF AXIALLY COMPRESSED CYLINDE 
1R*/ * 
I CARD-SYKES A2338 RDF367 OCTOBER,1968) 

11 FORMAT(I/* LAYER*,6X*EX*,9X*EY*,9X*NUX*,8X*NUY*,8X*GXY*,9X*H*)
 
12 FORMAT(15,3X,6E1.3)
 
13 FORMAT(//13X*11*,17X*12*,17X*22*,17X*66*/)
 
14 FORMAT(IX*B*,13,E16.8,3(3XE16.8))
 

15 FORMAT(1X*C*,4(3XE16.8))
 
16 FORMAT(1X*D*,4(3XE16.8))
 
17 FORMAT(1X*K*,4(3XE16.8))
 
18 FORMAT(*1*,4X*STATION*,9X*WO*,17X*WOX*,17X*WOXX*,16X*WOXL*,
 

116X*WOL*)
 
19 FORMAT(18,4E20.8)
 
20 FORMAT(////* MODRES=*E16.8)
 
21 FORMAT('//5X*W1 VALUES*/)
 
22 FORMAT(I5,E20.'8)
 

DIMENSION WO( 61),WOX( 61),WCXX,( 61),WOXL( 61),EX(2O),EY(2O'),NUX(2
 
1O),NUY(20),GXY(20),H(20),B1(20)8BI2(20,B22(20),S(20),SS(20),SSS(
 
220),B66(20), NYOL( 61), WOL( 61)
 
DIMENSION AA( 61,4),B( 61,4,4)hC( 61,4,4),AB(2,4,4),BB(2,4,4),
 
1CB(2,4,4),DUMA(4,4),DUMB(4,4),DUMC(4,4),DUMAB(4,4),DUMBB(4,4),
 
2DUMCB(4,4),B(4,4),Cl(4,4),AN(4,4),BN(4,4),'P 61,4,4),R1( 61,4,4),

3RIMIC4,4),RI(4,4),PI(4,4),U( 61),Vl( 61),W1( 61),M1( 61'),Z1( 61,4
 
4),Z(4),PD(4,4.),,- ZISQ(1), ZD(4)

DIMENSION K( 61),UIX( 61),VlX( 61),W1X( 61),W1XX( 61),WO2L( 61'),
 

"*W13X(61-,WO3L( 61),NX1( 61),NY1( 613,NXY1( 61),D( 61,4),
 
2SMAT( 6It14,4),DMAT( 61,4),PP( 61,4,4),QQ( 61,4),Z20( 61,4),

3Z:22( 61,4),UZO( 61),V20( 61),W20( 61),M20( 611,U22( 61),V22( 61),
 
4W22( 61),M22-( 61),W20X( 61hU20X( 61),U22X( 61),V22X( 61),W22X( 61
 
5),W2oXX( 61),W22XX( 61-),NX20( 611,NY2O( 61),NX22( 61),NY22( 61),
 
6NXY22( 6 1 ), DB(4), DUMD(4), W2OXXX( 61), W22XXX( 61)
 
DIMENSION DP3( 61,4),EP3( 61,4),DUMDE(244),Z1T(244),.FOFX( 61)-,
 
IXTE(I,XTD(1) ,Z1V(244), DPB3(2,4), EPB3('2,4)
 
REAL M1,NYOL
 
REAL IR,IS,NUX,NUY',K11,KI2,K22,K66,NXB
 
REAL NXI, NYI, NXYi, M20, P22, NX20, NY2O, NX22, NY22, NXY22
 
INTEGER 'BC,ST.
 
REAL M, LAMIl, LAM12, LAM13, LAM17, LAM21, LAM22, LAM23, LAM24,
 

1 LAM32, LAM41, LAM42, LAM43, LAM45, LAM14, LAMIS, LAM16,
 
2 LAM25, LAM26, LAM31,.LAM33, LAM34, LAM35, LAM36, LAM44,
 



3 MOORES 
INTEGER SUBTRAC , TRANSPO 
NAMELIST/INPUT/R,ADELBAR,BCNXB,N,EXtEYNUXNUY,GXYHLAYERSTNS 

ITAT,NORM, IPRINT
 
NAMELIST/STIFF/ER,AR,IR,ZR,GRJR,RSESAS,IS,ZS,GSJS,BS
 

1000 	READ INPUT
 
PRINT INPUT
 
PRINT 10
 
PRINT 11
 
DO 50 L=l,LAYER
 

50 PRINT 12, Li EX(L), EY(L), NUX(L), NUY(L), GXY(L), H(L)
 

CALCULATE B VALUES
 

TEST3=0.
 
DO 60 L=J;LAYER
 
B11(L)=EX(L)/(1.-NUX(L)*NUY(L))
 
B12(L)=NUY(L.)*811{L)
 
'BZ2(L)=EY'L)/(I.-NUX(L)*NUY(L))
 

60 B66(L)=GXY(L)
 

CALCULATE C, K. AND 0 VALUES
 

L=LAYER
 
CALL 	-SUM(1,L,B11,H,Cl)
 
CALL SUM(1,LB12,HC12
 
CALL SUM(1,L,822,HC22)
 
CALL SUM(1,LB66,HC66)
 
S{1)=H(1)
 
Sl=S(I)**2-2.*DELBAR*S(1)
 
KI=.5*Bi( 1)S
 
K12=.5*812( 1 *S
 
K22=.5*B22-( 1)*S1
 
K66=.5*B66(1)1S
 
S2=S(1)**3-3.*DELBAR*S I)**2+3.*DELBAR**2*S(1)
 
blI=BI(1*S2/3.
 
D12=B12(1)S2/3.
 
D22=B22(1)*S2(3.
 
D66=B66(1)*S2/3.
 
IF(LAYER.EQ.11 GO TO 80
 
00 70 1=2,LAYER
 
S(I)=S(I-1)+H(I)
 
SS(I)=S(I)**2-5(I-1)**2-2.*DELBAR*(S(I)-S(I-1)) 

http:IF(LAYER.EQ.11
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70 	SSS(I)=S(t)**3-S(I-1)**3-3.*DELBAR**(S(I)**2-S(I-l)**2)+3.*DELBAR**
 
12*(S(.I)-S( I-1})
 
CALL SUM(2,L,BII,S-S,ANS)
 
K11=K14+.5*ANS
 
CALL SUM(2,L,B2,SS,ANS)
 
K12=K12+.5*ANS
 
CALL SUM(2,L,822,SS,ANS)
 
K22=K22+.5*ANS
 
CALL SUM(2,L',B66,SS,ANS).
 
K66=K66+.5*ANS
 
CALL SUM(2,L,B11,SS.S,ANS)
 
0h1=D11+ANS/3.
 
'CALL SUM(2,L,B12,SSS,ANS)'
 
D12=D12+ANS/3.
 
CALL SUM(2,L,B22,SS.S,ANS)
 
D22=D2.2+ANS/3.
 
CALL SUM(2,L,B66,SSS,ANS)
 
D66=D66+ANS/3.
 

80. IF(ST1)51,51,,52
 
52 	READ STIFF
 

PRINT STIFF
 
D11=DT1+ES*IS/BS+ES*AS*ZS**2/BS
 
D22=D22+ER*IRYRSER*AR ZR**2,/RS
 
K11=K11+ES*AS*ZS/BS
 
K22=K22+ER*AR*ZR/RS.
 
ClI=C1l+ES*AS/BS
 
C22=C22+ER*,AR/RS
 

51 pRINT 13
 
DO 53 L=1,LAYER
 

-
53 	PRINT '14,, L, B11CL),, B12(L[ , B22(L), B66L)
 
PRINT 15, CII, C12, C22, C66
 
PRINT 16, DI, .D12, D22, D66
 
PRINT 17, KlI, K12, K22, K66
 

C 	 PREBUCKLING QUANTITIES
 
RGt=(-Cl1*C22-Cl2**2)/(Dl*C11-KI-**21
 
RG2=(K11*C02-K12*C11I/(Dll*CI1-K11**2)
 
RG3=(R*CI1)/(2.*DI*Cll-2.*Kll**2
 
RGB=(SQRT(RG1) RG2-NXB*RG3)/(2.*R)
 
RGG=(SQRT(RG1)+RG2+NXB*RG3)/(2.*R)
 
BETA=SQRT(RGB)
 
GAMA=SQRT(RGG)
 
BET.AL=-C11/ (8.*BETA*,( DI I*CI-K1**2i)
 
GAMAL=Cll/(8.*GAMA*(Dll*CI-Kl**2)},
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P1=(R*C2)/(CII*C22-C12**2)
 
SS=SINH(BETA*A/2.)*SIN(GAMA*A/2.)
 
SC=SINH(BETA*A/2.)*COS(GAMA*A/2.)
 
CC=COSH(BETA*A/2.)*COS(GAMA*A/2.3
 
CS=COSH(BETA*A/2,)*SIN(GAMA*A/2.)
 
SHCH=SINH(BETA*A/2.)*COSH(BETA*A/2.)
 
SNCN=SIN(GAMA*A/2.)*COS(GAMA*A/2.)

GO TO(1,2,2),BC
 

I GI=NXB*Plt(BETA**2-GAMA**2)-(K11*NXB)/(DII*C1 K11**2)
 
G2=2.*NXB*PI*BETA*GAMA
 
DBAR=D1I*Cl1-K11**2
 
GIL=P1*(BETA**2-GAMA**2+2.*NXB (BETA*BETAL-GAMA*GAMAL))-K11/DBAR
 
GZL=P1*t2.*NXB*(BETA*GAMAL+GAMA*BETAL)+2.*BETA*GAMA)
 
G12=GI*CC-G2*SS
 
G21=G1*SS+G2*CC
 
G=2.*BETA*GAMA*(SS**2+CC**2)
 
F1=G2/G
 
F2=-G21/G
 
PRINT 999, BETA, GAMA, Fl, F2
 

999 FORMAT(7/* BETA=*E16.8,5X*GAMA=*E16.8,5X*F1=*E16.8,5X*F2=*EI6.8)
 
FOL=2.*G12*(BETA*GAMAL+GAMA*BETAL)*(SS**2+CC**2)/G**2+2.*GI2*GAMA*
 

IBETA*A*(BETAL*SHCH-GAMAL*SNCN)/G**2
 
FIL=G1L*CC/G-G2L*SS/G+ASC(Gl*BETAL-G2*GAMALI/(2.*G)-A*CS*(Gl*GAM
 

1AL+G2*BETAL)/( 2.*G)-FOL

F2L= -GL*SS/G-G2L*CC/G+A*CS*(G2*GAMAL Gl*BETAL)/(2.*G)-A*SC*(Gl*GA
 
1MAL+G2*BETAL)/(2.*GI+FOL*G21(G12
 
GO TO 3
 

2 G=BETA*SNCN+GAMA*SHCH
 
FI=NXB*Pl*(BETA*SC-GAMA*CS'i/G
 
F2=-NXB*Pl*(BETA*CS+GAMA*SC)/G
 
G12=FI*G
 
G21=-F2*G
 
FOL=NXB*P1*G12*(BETAL*SIN(GAMA*A)4A*BETA*GAMAL*COS(GAMA*AI+GAMALS(
 
1-EXP(BETA*A)-EXP(-BETA*A))/2.4A*GAMA*BETAL*(EXP(BETA*A)+EXP(-BETA*A
 
2) /2.)/(2.*G**21

FIL=PI*G1Z/G+NXB*P1*(BETAL*SC-GAMAL*CS)/G+A*NXB*P*CC*(BETA*BETAL­
1G
 
IAMA*GAMAL)/(2.*G')-A*NXB*Pl*SS*(BETA*GAMAL+GAMA*BETAL)j(2.*G)-FOL
 
F2L=-PI*G21/G-NXB*P-l*(BETAL*CS+GAMAL*SC)/G-A*NXB*PI*SS*(BETA*BETAL
 
I­
1GAMA*GAMAL)1(2.*G)-A*NKB*PI*CC*(BETA*GAMAL+GAMA*BETAL)t(2.*G)+FOL*
 
2G21/GI2
 
3 PRINT 18
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DO 4 I=l,NSTAT
 
J=I-1
 
IF(1-1)5,5,6
 

5 XB -A/2.
 
GO TO 7
 

6 X=FLOAT(J)*A/FLOAT(NSTAT-1)
 
XB=X-A/2.
 

7 SXSX=SINH(BETA*XB)*SIN(GAMA*XB)
 
CXCX=COSH(,BETA*XB)*COS(GAMA*XB)
 

"SXCX=SINH(BETA*XB)*COS(GAMA*XB)
 
CXSX=COSH(BETA*XB)*SIN(GAMA*XB)
 
WO{I)=F1*SXSX+F2*CXCX+PI*NXB
 
WOX(I)=(Fl*BETA-F2*GAMA)*CXSX+(Fl*GAMA+F2*BETA)*SXCX

WOXX( I)=(Fl*(BETA**2-GAMA**21-2.*GAMA*BETA*F2r|*SXSX+(2.*GAMA*BETA*
 

1F1+(BETA**2-GAMA**2,)*F2)ICXCX
 
F1LL=F1L*(BETA*CXSX+GAMA*SXCX)+F2L(BETA*SXCX-GAMA*CXSX)
 
BILL=BETAL*(.FI*CXSX+F2*SXCX+XB*(Fl*BETA-F2*GAMA)*SXSX+XB*(FI*GAMA+
 

1F2*BETA)*CXCX)
 
GILL=GAMAL*(FI*SXCX-F2*CXSX+XB*(FI*BETA-F2*GAMA)*CXCX-XB*(F1*GAMA+
 

1FZ*BETA)*SXSX)
 
WOXL(I =FILL+B1LL+G1LL
 
WOL(I)=FIL*SXSX+F2L*CXCX+XE*(FI*BETAL-F2*GAMAL)*CXS'X+XB*(F*GAMAL
 

1+F2*BETAL)*SXCX+Pj
 
IF(IPRINT.EQ.0) GO TO 4
 
PRINT 502,, 1, WO(I), WOX(I), WOXX(I), WOXL(I), WOL(I)
 

4 CONTINUE
 
T=O.
 
DO 55 L=I,LAYER
 

55 	T=H(L)+T
 
M=1.
 
FORM L.H.S. OF EQUILIBRIUM EQUATIONS A*ZII-1)+B*Z(,I)+C*Z(I+I)
 

250 	CONTINUE
 
DEL=A/FLOAT(NSTAT-1)
 
LAM11=Cli-K11**2/D11 
LAM12=-C66*(M*N/R)**2
 
LAMT3=(CIZ+C66-K12*Kll/D11)*M*N/R
 
LAM17=Kll/D11
 
LAM2l-(C12+C66sMW*N/R
 
LAM22=C66
 
LAM23=-C22*(M*N/R)**2
 
LAM24=(K12+2.*K66)*M*N/R
 
LAM32=-2.*K66*M*N/R
 
"LAM41=-Kll
 



LAM42=-Kl24,M*N/R
 
LAM43=Dll
 
LAM45=,(Dl2*(M*N/R)**2+Kl2/Ri
 
NEND=NSTAT+l 
IF(ST.NE.0) GO TO 99 
GSJS=O.
 
GRJR=O.
 
BS=I.
 
RS=l.
 

99 DO,100 I=INSTAT 
LAM14=(Cll-Kll**2/Dll)*WOX(I). 
LAM15=(Cll-Kll**2/Dll)*WOXX(I)+(Cl2-Kl2*K'11/Dlll/R+(K12+2.*K66-Kll 
1*012/Dll)*(M*N/R)**2 
LAM16=-G66*WOX(1)*(M*N/R)**2 
LAM25=-'(CI2+C,66)*WOX(I)*M*N/S 
LAM2'6=-C66*WOXX(I)*M*N/R-C22*M*N/R**2-K22*(M*N/R)**3 
LAM31=C12/R+(Kl2+2.*K6 )*(M*N/R)**2-Cll*WOXX(f) 
LAM33 C22*M*N/R**2+K22*(M*N/R)**3-Cl2*WOXX(I,)*M*N/R 
LAM34=NXB-KlZ/R-(4.*D66+GSJS/BS+GRJR/,RS+DI2,).*(M*N/R)**2+Kll*WOXX(I 

'I) 
LAM35=(CI2/R+(Kl2+2,..*K66)*(M*N/R,)**2)*WOX(I)-Cll*WOX(I)*WOXX(l) 
LAM36=((CI2*Kll/Cl-14:2.*(K66-KI2)1*(M*N/R)**2-CI2/R)*WOXX(I,)+l./R*( 
Ic 
122-Cl2**2/Cll)*(M*N/R)**2*WO(I) +022*(,M*N/R)**4+2.*K22/R*( M*N/R-)** 
22+C22/R**2-Cl2*(M*N/R)**2*NXBICII 
LAM44=-Kll*WOX(I), 
AA(.1,1,1)=LAM11 
AA('I,1,2l=-DEL*LAM13/2. 
AA(,Ivl,3) =LAM14-DEL*LAM15/2. 
A'A(Itl?4)---DEL*LAM17,/2. 
AA(1,2,,I)=-DEL*LAM2L/2. 
AA(.Ii,2t2)=LAM22 
XA(I,,2,3)=LAM24-DEL*LAM25/2.
 
AA(1,2t4)=O. 
AA(I,3,li=-DEL*LAM31/2.
 
AA(I,,3,?-)=LAM32 
AA(I,3,3)=LAM34-DEL*LAM3512.
 
AA(lt3t4)=-I.
 
AA(It4vl)=-DEL*LAM41/2.
 
AA(1,4.t2)=O.
 
AA(lv413)=LAM43-DEL*LAM44/2.
 
AA(.l,4t4)=O.
 
,B(*I,1,1-):F-2.*LAM11+DEL**2*LAMI-2 
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BCI,1,2)=0.
 
B(1,1,3)=-2.*LAMr4+DEL**2*LAM16
 
B(I,1,4)=O.

B(l,2tl| G.
 

B(I,2,2)=-2.*LAM22+DEL**2*LAM23
 
B(I,2,3)=-2.*LAM24DEL**2*LAM26
 
BfI,2,4)=0.

B(1,3tI) D.
 

B(I,3,2) -2.*LAM32+DEL**2*LAM33
 
,BCI,3,3)=-2.*LAM34+DEL**2*LAM36
 
B(I,3.4)=2.
 
B(I,4,11=O.
 
B(I,4,2)=LAM42*DEL**2
 
B(,4,3)=-2.*LAM43+DEL**2*LAM45
 
B(I,4,4)=DEL**2
 
C(I,1,l)LAMI1
 
C(I,1,2)=DEL*LAM13/2.
 
CCI,1,3)=LAM14+DEL*LAM15/2.
 
C(I,1,4),=OEL*LAM17/2.
 
CCI,2,1)=DEL*LAM21/2.
 
C(I,2,2)=LAM22
 
C(I,2,,3)=LAM24+DEL*LAM25/2.
 
C(I,2-,4)=0.
 
C(I3,1l) DELMLAM31/2.
 
CCZ,3,2)=LAM32
 
C(,3,3)=LAM34+DEL*LAM35/2.
 
C(I,3,41=-i.
 
C(I4,1)=DEL*LAM4I/2.
 
C(I,4,2)=0.
 
CII,'4,3)=LAM43+DEL*LAM44/2.
 

100 	C(I,4,41=0.
 
GO TO(lO,.1O2,JO3),BC
 

101 	AB(1,1,1)=-C11*DEL/2.
 
AB( I,It2)=0.
 
ABC1, 1,3)=-KI1-CII*DEL*WOX(1)f2.
 
AB(1,1,41=0.
 
BB(I.,I,I)=O..
 
BB(1,1,2)=C12*M*N*DEL**2/R
 
BB(C1,1,3)=C12*DEL**2/R+2.*Kll+K12*DEL**2*(.M*N/R)**2
 
BBC1,1,4)O.
 
BBC1,2,1)=0.
 
BB(1,2,2)=I.O
 
BB(1,2,3|=0.
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C 

BR(1,2,41=O.
 
BB(1,3,1)=O.
 
BB( 1,3',2)=0.
 
BB(1,3,3)=1.0
 
BB(1,3,4)=0.
 
BB( 1,4,11=O.
 
BBC 1,4,2)=0'.
 
BB(1t4,3)=O.
 
BB(1,4,4)=1.0
 
CB(1,1,l)=Cl*DEL,/2.
 
CB(1, 1,2)=0.
 
CB(1,1,3)=-K1+CI*DEL*WOX(1)/2.
 
CB( 111,4)=Q,.
 
DO 110 J=2,4
 
DO 110 K=1,4
 
AB(1,J,K)=O.
 

110 	CB(1,J,KI=O.
 
DO 111 J=1,4
 
DO 111 K=V'4
 

STATION2 CORRESPCNDS TO THE NSTAT BOUNDARY IN AB 

AB(2,J,K)=AB1,J,K)

BB{2t,,K)=BB(1,JK), 
,CB.(2,JK)=CB(1,J1K)
 
AB(2,1,31=-K11-Cl1*DEL*WOX(NSTAT}/2.
 

111 CB(2,1,3)=-KI+C,*DEL*WOX(NSTAT)/2.
 
IF(M.GT.O.)GO TO 105
 
DO.510 J=1,4
 
AB(2,,J]=0.
 
BB(2,'1J)=O.
 

510 CB(2,1,J1=O.
 
BB(2,1,13=1.
 
GO TO 105
 

102 DO 112 J=1,4
 
-DO 112, K=1',4
 
AB(1,4,K)=O.

BB(1,J,K)=O°
 

CB(1,J,K)=O.
 
AB (2 1J,JK')0.
 
BB(2 ,J,.K)=O'
 

112 	CB(2 ,J,K)=O.
 
AB(1,4,3)=-DEL/2.
 
AB( 2,4, 3')=-DEL/Z.
 
BB(,,1)=1.
 

BB AND CB
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BB(lv2t2)=l.
 
BB(1,3,3)=I.
 
BB(2 11,11=1.
 
BB(2 ,2,2)=l.
 
BB(2 ,3,3)=l.
 
CB(1,4,3)=DEL/2.,
 
CB(214,3I=DEL/2.
 
GO TO 105
 

103 	DO 113 J=1,'4
 
DO 113 K=1,4
 
AB(1,JtK)=O.
 
BB(I,J,K)=O.
 
CB(1,J,K)=O.
 
AB(2 ,J,K)O.
 
BB(2 ,J,K=O.
 

113 	CB(2 JtK)=O.
 
AB(Ct1,,)=-C11*DEL/2.
 
AB(llt3)=-KlI-C11*DEL*WOX(1)/2.
 
BB1,1,2)=C12*M*N*DEL**2/R
 
BB(1.1,3)=C12*DEL**2/R+2.*K11+K12*OEL**2*(M*NfR)**2
 
CB(1,1,1)=Cll*DEL/2.
 
CB(1,1,3)=-K11+CII*DEL*WOX(I,)t-2.
 
AB(1,4,3)=-DEL/2.

AB(2,1,1k=AB( 1,,1 )
 

AB(291,3)=-Kll-C11*DEL*WOX(NSTAT,)2.
 

B8(2, 1,31=B8(1,1,3)'
 

CB(2,llh=CB(1,ltl)
 
CB(2tl,3h=-K1+CII*DEL*WC)(NSTAT)/2.
 
AB(2,4v3')=-DEL/2.
 
BB(l12)=I.
 
BB(13,3)=1.
 
BB(2 ,2,2)=1.
 
BB(2 3,3)=I.
 
CB(1,4,3)=DEL/2.
 
CB(2,4,3 =DEL/2.
 
IF(M.GT.O.IGO TO 105
 
DO 511 J=1,4
 
AB(2',1,J)=0.
 
BB(2,1J):O.
 

511 	CB(2,1,J)=O.
 
BB(2.1,1)=.
 
GO TO IC5
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C FORM B1,C1,AN,BN AT BOUNCARIES
 
105 	DO 120 J=1,4
 

DO 120 K=1,4
 
DUMA(J,K)=AA(1,J,K)
 
DUMB(JK)=B(1,JtK)
 
.DUMC(J,KI=C (1,4J,K)
 
DUMAB(J,K)=AB(1,JK)
 
DUMBB(J,K)=BB(I,J,K)
 

.120 'DUMCB(J,KI=CB(1,J,K)
 
INVERT=10
 
MULTIPL =20
 
SUBTRAC =22
 
CALL MATRIX'(INVERT,4,4,0,DUMA,4,DETERM).
 

C -1
 
C DUMA=A1
 

CALL MATRIX(MULTIPL ,4,4,4,DUMAB,4,DUMA,4,DUMA,4)
 
C -1
 
C DUMA=AB1 * Al
 

CALL 'MATRIX(MULTIPL ,4,4,4,DUMA,4,DUMB,4,DUMB,4)
 
C1 -1
 
C DUMB=ABi * Al * BI
 

CALL MATRIX(SUBTRAC,4,4,0,DUMBB,4,DUMB,4,,B1,4)
 
C -l
 
C BI=BB1-ABI*A1 *B1
 

CALL MATRIX(MULTIPL ,4,4.,4,DUMA,4,DUMC,4,DUMC,4)
 
C -1
 
C 'DUMC=AB1*A1 *Cl
 

CALL MATRIX(SUBTRAC ,4,4,0,DUMCBi4,DUMC,4,Cl,4),'
 
C -1
 
C C1=CB1-ABl*A1 *ClJ
 

DO 121 J=l,4
 
DO 121"K:,.4
 
OUMA(J,K)=AA(NSTAT,JK)
 
DUMB(J,K)=B(NSTAT,,JK)
 
DUMC(J,K)=C(NSTAT,J,K)
 
DUMAB(J,K)=AB(2 ,J,K
 
DUMBB(J,K)=8B(2 ,J,KI
 

121 OUMCB(J,K)=CB(2 ,J,K)
 
CALL MATRIX(INVERT,4,4,0,DUMC,4,DETERMl)
 
,CALL MATRIX(MULTIPL ,4,4,4,DUMCB,4-,DUMC,4,DUMC,4)
 
CALL MATRIX(MULTIPL ,4,4,4,UMC,4,,DUMA,4,DUMA,4)
 
CALL MATRIX(SUBTRAC,4,4,0,DUMAB,4,DUMA,4,'AN,)
 

C 	 -1 
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C 	 AN=ABN-CBN*CN *AN
 
CALL MATRIX(MULTIPL t4,4,4,DUMC.4,DUMB,4,DUMB 4)
 
-CALL MATRIXCSUBTRAC,4,4,0,DUMBB,4DUMB,4BN,,41
 

C -1
 
C 	 BN=BBN-CBN*CN *BN
 

DO 122 J=1,4
 
DO 122 K=1,4
 
B(1,J,K)=BIJ,K)
 
Cc1,J,K)=C1I(J,K)
 
AAC'NSTATJ,K)=AN(J,K)
 

122 B(NSTAT,J,K) BN(J,K)
 
C TEST M AND ROUTE TO 1ST OR 2ND.PERTURBATIN EQUATIONS
 

300 MT=IFIX(M)
 
IF (MT-1)210,211,212
 

211 CONTINUE
 
IF (TEST3.GT.O.)GO TO 4C7
 

C TRIANGULATICN OF A B AND C MATRICES FOR BUCKLING EQUATIONS
 
C 'FIRST PERTURBATION
 

CALL MATRIX(INVERT,4,4,0,B1,4,MODRES)
 
C B1='(B1)INV
 
C MODRES=DET(zB1)
 

CALL MATRIX'CMULTIPL ,4,4,4,B1.,4,C1,4,PIM,4)
 
C -1
 
C P(I-1)=B1*C1
 

DO' 130'J=1,4
 
DO 130 K=1,4
 
P(I,J,.K)=PIMI(J,K)
 

130 R1(1,JK)=B(1,J,K)
 
SCALE=ABS(MODRES)
 
MODRES=MODREStSCALE
 
DO 135' I=2.,NSTAT
 
'DO 136 4=1,4 -
DO 136 K=l,4

PlMI'(J,K)=P(I-I,J,K)
 

DUMA(J,K)=AA(,IJ,K)
 
DUMB(JK)=B(I,JK)
 

136 'DUMC(J,K)=C('I,JK)
 
CALL MATRIX(MULTIPL 4,4,4,DUMA,4,PIMI,4,'DUMA,4
 
CALL MATRIX(SUBTRAC ,494,0,DUMB,4tDUMA,4,RI,4)
 

C 	 R(I)=B-A*PtI-I)
 
DO 137 J=1,4
 
DO 137 K=1,4
 

1'37 R1(I,J,K)=RI(J,K)
 



CALL MATRIX(INVERT,4,4,0,RI,4,DETRI)
 
CALL MATRIX(MULTIPL ;4,4,4, RI,4,DUMC,4,PI,4)
 
DO 138 J=1,4
 
DO 138 K=1,4
 

138 	P(I,J,K)=PI(J,K)
 
SCALE=ABS(DETRII
 
IF(I.EQ.NSTAT) SCALE=1.
 
DETRI=DETRI/SCALE
 

135 MODRES=MODRES*DETRI
 
PRINT 20, MODRES
 

C EIGENVECTOR CALCULATION
 
DO 160 J=1,4
 
DO 160 K=1,4
 

160 DUMA(J,K)=RI(NSTAT,J,K)
 
U1(NSTAT)=DUMA(1,2)*DUMA(2,3)*DUMA(4,4)+DUMA(1,3)*DUMA(2,4)*DUN
 
1,2)+DUMA(1,4)*DUMA(2,2)*DUMA(4,3-DUMA(4,2)*DUMA(2,1*DUMA(1,4)
 
2MA(4,3)*DUMA(2,4)*DUMA(1,2)-DUMA(4,4)*DUMA(2,2)*DUMA(1,3)
 
Vl(NSTATI=DUMN{4,1)*DUMA(2,3)*DUMA(1,4)+DUMA(4,3)*DUMA(2,4)*DU
 
1,1)+DUMA(4,4)*DUMA(2,1)*DUMA(1,3)-DUMA(1,1)*DUMA(2,3)*DUMA{4,4)
 
2MA(1,3)*DUMA(2.4)*DUMA(4,1)-DUMA(1,4)*DUMA(2,1)*DUMA(4,3)
 
W1(NSTAT)=DUMA(l)*DUMA(2,2)*DUMA(4,4)+DUMA(1,2)*DUMA( ,4)*DUP
 

1,1)+DUMA(1,4)*DUMA(2,1)*DUMN(4,2)-DUMA(4,1)*DUMA(2,2)*DUMA(1,4
 
2MA(4,2)*DUMA(2,4)*DUMA(1,1)-DUMA(4,4)*DUMA(2,1)*DUMA(1,2)
 
MI(NSTAT)=DUMA(4,1)*DUMA(2,2)*DUMA(1,3)+DUMA(4,2)*DUMA(2,3I*DU


1,1)+DUMA(4,3)*DUMA(2,1|*DUMA(1,2)-DUMA(1,1)*DUMA(2,2)*DUMA(4,31
 

2MA(1,2)*DUMA(2,3)*DUMA(4,1)-DUMAI1,3)*DUMA(2,1)*DUMA(4,2)
 
Zl(NSTAT,1)=U1(NSTAT)
 
Z1(NSTAT,2)=VI(NSTAT)
 
Zi(NSTAT,3)=W1(NSTAT)
 
ZI(NSTAT,41=MI(NSTAT)
 
WMAX=WI(NSTAT)
 
NSI=NSTAT-

DO 170 II=1,NS1
 
I=NSTAT-II
 
DO 171 J=1,4
 
DO 171 K=1,4
 
PD(J,K)=-P(I,J,K)
 

171 	Z(K)=ZI(I+l,K)
 
CALL MATRIX(MULTIPL ,4,4,IPD,4,Z,4,ZD,4)
 
DO 1,72 K=1,4
 

172 Z1(I,K)=ZD(K)
 
C ZI(I)=-P(I)*ZI(I+I).
 

U1(I)=Z(L,1)
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VI(I)=Z({1,2)
 
W1(I)=Z(II,3)
 
IF(ABS(W(Il)).GT.WMAX) WMAX=ABS(W1(I))
 

170 MI(I)=Z(I,4)
 
PRINT 23
 

23 	FORMAT(*1*t4X*STATION*,9X*U1*,1TX*Vl*t7X*Wl*I
 
00 173 I=1,NSTAT
 
W1,(I)=W1(1)/WMAX
 

24 FORMAT(t8,3E20.8)
 
173 PRINT 24,1, UI{),V1(I),WCI()
 

C NORMALIZE Z VECTOR BY ITS MAGNITUDE
 
PRINT 30
 

30 FORMAT(/114X*STATION*,9X*U1*,17X*V1*,1YX*Wl*,17X*M*)
 
ZMAG2=0.
 
DO 180 I=I,NSTAT
 
WI(I)=WMAX*WI{I)
 

180 	ZMAG2=U1(I)**2+VI(I)**2+W(II)**2+M(II)**2+ZMAG2
 
ZNORM=SQRT(ZMAG2)
 
IFCNORM.GT.O) ZNORM=WMAX/T
 
DO 181 I=,NSTAT
 
UlI()=UI)(/ZNORM
 
ViI()=V(I)I/ZNCRM
 
W1(I)=Wl(I)/ZNORM

MI(I)=Ml{I)/ZNORM
 
ZI('II]=UI{I]'
 

Z1(I,2)=VIII)
 
ZI(I,3)=W1(I)
 
Z1I,4)=MI(I)
 
IF(IPRINT.EQ.0) GO TO 181
 
PRINT 31, I, UI(I), V1(H), WI1I), MI(I)
 

31 FORMAT(I8,4E20.8)
 
181 CONTINUE
 

C CALCULATE WIX,.W1X,W1XXX,WOXXLWOXXXL
 
DEL=AIFLOAT(NSTAT-1)
 
X(1)=O
 
DO 200 I=2,NSTAT
 

200 X(I)=X(I-1+DEL
 
PRINT 92-1
 

921 	FORMAT(////4X*STATION*t9X*wfX*,17X*U1X*,17X*VlX*16X*WXX*) 
DO 201 I=r',NSTAT 
WIX(II=DIF(I,1,NSTAT,X,W) 
UIX(I)zDIF(I,i,NSTAT,X,UI-)
VlX(I)=DIF{I,T,NSTAT,X,Vl)
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WlXX(I)=KI1*(U1X(I)+WOX(I)*WIX(I))/D11+K12*(N*VI(I)/R+W(.I)/R)/
 
1+D12*(N/RI**2*Wl(I)/D11-M1(I)/DlI
 
WO2L(I)=DIF(T,1,NSTATX,WOXL)
 
NYOL(I)=(C2*K1/C11-KI2)*WC2L (I)+(C22-C12**2/C11)*WOL(I)/R-C1
 
iCil
 
IF(IPRINT.EQ.O) GO TO 201
 
PRINT 922, I, WIX(I), UIX(I), V1X(I), W1XX(I)
 

922 FORMAT(18,4E20.8)
 
201 CONTINUE
 

PRINT 	923
 
923 	FORMAT(/f//4X*STATION*,9X*NX1*,17X*NYI*,17X*NXYI*,17X*NYOL*)
 

00 202 I=I,NSTAT
 
W13X(I)=OIF(I,1,NSTAT,X,WXX)
 
WO3L(I)=DIF(IINSTATX,WO2L)
 

C 	 CALCULATE NX1,NY1,NXYI
 
EPSX=UIXLI)+WOX(I)*WIX(I)
 
EPSY=N*VI(I)/R+W1(I)/R
 
EPSXY=-N*UlAI)/R+V1X(I)-WOX(I)*N*WI(I)/R
 
NXI(I)=Cl1*EPSX+C12*EPSY-Kl*WXX(I)+(N/R)**2*W1(I)*K12
 
NY1I()=C12*EPSX+C22*EPSYrKI2*WIXX(I)+(N/R)**2*Wl(I)*K22
 
NXYI(I)=C66*EPSXY+2.*K66*N*W1X(I)/R
 
IF(IPRINT.EQ.O) GO TO 202
 
PRINT'924, I, NXI(I), NYI(I), NXY1(1) ,NYOL(I)
 

924 FORMAT(18,4E20.8)
 
202 CONTINUE
 

M=O.
 
GO TO 250
 

210 CONTINUE
 
C SECOND PERTURBATION TO OBTAIN U20,V20,W20
 

225 DO 226 I=I,NSTAT
 
D(I,1)=-Cl*W1X(I)*WlXXCI)*DEL**2/2.-(DEL*N/R)**2*C12*W(I)*Wl-'
 

1/2.
 
D(I,2)=0.
 
DL2=PEL**2
 
EI=DL2*K11*(WIXX(II**2 +WIX(I)*W13X(I))/2.
 
E2=DL2 *(N/R)**2*(K12/2.)*Wl(I).*W1XX(I)
 
E3=DL2*(K12*(N/R)**2/2.+(C1l*WOXX(1)-C12/RL-/4.)*W1X(I)**2
 
E4=DL2*(N/R3**2/4.*(C12*WOXX(I)-C22/R)*Wl(1)**2
 
E5=DL2*NXI(1)*WIXX(I/2. N/R*NXY1(1)*WrX(I,*DL2-(N/R)**2*DL2/2.

II{I)*WlII)
 

D(1 3)=EI+E2+E3+E4+E5
 
226 D(I,4)=O.
 

GO TO (220, 221, 221),BC
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C 


C 


C 


FORM Dl AND ON AT BOUNDARIES
 
220 D(1) DEL***C1*W1X('1)**2/4.
 

DB(2.)=O.
 
DB(3)=O.
 
DB(4)=-DEL**2*K11*WIX(,I)**2/4.
 
DO 700 J=1,4
 
DO 700 K=1,4
 
DUMA(J,,K)=AA(1,J,K)
 
DUMC'(J,K)=C(NSTAT,JK)
 
DUMAB(J,K)=AB(1,J,K)
 

700 	DUMCB(J,K)=CB(2,J,K)
 
CALL MATRLX,(INVERT,4,4,0,DUMA,4,DEtERMI)
 
GALL MATRIX(INVERT,4,4,0,DUMC,4,DETERMI)
 
CALL MATRIX'(MULTIPL,4,4,4,DUMAB,4,DUMA,4,DUMA,4)
 
CALL MATRIX(MULTIPL,4,4,4,DUMCB,,4,DUMC,4,DUMC,4)
 
DO 701 J=1;4
 

701 DUMD(J)=D(1,J)
 
CALL MATRIX(MULTLPL,4,4,1,DUMA,4,DUMD,4,DUMD,4)
 
'CALL MATRIXASUBTRAC,4,1,0,DB,4,'DUMD,4,DUMD,4¢
 
DO 702 J=1 4
 

702 D(1,J)=OUMD(J)

DBCI}=O
 

DB(21=0.
 
DB(3')=O.
 
IOB(4)=,pEL**2*K1I*WX(NSTAT)**2f4.
 
00 703 J=1,4
 

703 DUMD(JI'=D(NSTAT,JJ)
 
'CALL MATRIX(MULTIPL,A,4,1,DUMC,4,DUMC,4,DUMD,4)
 
CALL MATRIX(SUBTRAC,4,1,0,DB,4,DUMD,4,DUMD,4)
 
-00 704 J=1,4'
 

704 D(NS-TAT,J)=DUMO.(J)

* 
 GO TO ,227
 
221"D0 223 J=1,4
 

D(-l,J)=O.
 
2-23 D(NSTAT,J)=O.
 

CALCULATE Z20 BY GAUSSIAN ELIMINATION
 
227"CALL POTTER (AA,B,C,D,NSTAT,4,SMAT,DMATPPQQtZ20, f1,4)
M=2.
 

GO TO.250
 
212 DL2=DEL*2,
 

SECOND PERTURBATION TO OBTAIN U22,V-22,W22
 
235 bO 23'6 I=I,NSTAT
 

D(IL,1)=-DL2*C1'l*W1X(I)*WlX,(I)/2.+DL2*(N/R)**2*(C122.+C66)*W1(,
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IWIX(I)
 
EI=DL2*N/(2.*R)*(C2+C66)*WIXI)**2
 
E2=-DL2/2.*(N/R)**3*C22*W(I)**2
 
E3=DL2*N/(2.*R)*C66*(WlXX(I)*W1(l))

O(I,2)=EI+E2+E3
 
E4=K11/2.*(W1XX(I)**2+W1X(I)*Wl3X(I)I
 
E5=(N/R)**2*(K2/2.+2.*K66.)*WI(I)*WIXX(I)
 
E6=((C11*WOXX(I)-CI21R)/4.-(N/R)* 2*3.*K12/2.+2.*K66)*WlX(I)*
 
E7=((N/R)**4*K22+(N/R)**2/4.*(C22/R-C12*WOXX(I)))*W1(II**2
 
E8=NX1(I)*WIXX(I)/2.+N/R*NXY1(I)*WIX(I)I(N/R)**2/2.*NY1(1)*W(I
 
D(1,3I)=DL2*(E4-E5+E6+E7+E8)
 

236 	D(I,43=0.
 
GO TO (230,231,231),BC


230 	DB(l)=-DEL**2*CII*W1X(1)**2/4.
 
DB(2)=0.
 
OB 3)=0.
 
DB(4)=-DEL**2*K11*WX(1)**214.
 
DO 800 J=1,4
 
DO 800 K=1,4
 
DUMA(J,K)=AA(1,J,K)
 
DUMC(J,K)=C(NSTAT,J,K)
 
DUMAB(J,K)=AB(I1,J,K)
 

800 	DUMCBCJ,K)=CB(2,J,K)
 
CALL MATRIX(INVERT,4,4,0,DUMA,4,DETERMI)
 
CALL MATRIX(INVERT,4,4,0,DUMC,4,DETERMI)
 
CALL MATRIX(MULTIPL,4,4,4,DUMAB,4,DUMA4,DUMA41
 
CALL MATRIX(MULTIPL,4,4,A,DUMCB,4,DWMC,4,DUMC,41
 
DO 801 4=1,4
 

801 DUMD(J)=D(I,J)
 
CALL MATRIX(MULTIPL,4,4,1,DUMA,4,DUMD,4,DUMD,4)
 
CALL MATRIX(SUBTRAC,4,1,0,DB,4,DUMD,4,DUMD,4)
 
DO 802 J=1;4
 

802 	D(I,J)=QUMDJ-)
 
DB(1)=-DEL**2*C1*WX(NSTAT)**2/4.
 
DB(2)=O.
 
083)=0.
 
DB(4)=-DEL**2*K11*WIX(NSTAT)**2/4.
 
DO 803 J=1,4
 

803 	DUMD(J)=D(NSTATJ)
 
CALL MATRIX(MULTIPL,4,4,1,DUMC,4,DUMD,4,DUMD,4
 
CALL MATRIX(SUBTRAC,4,1,0,DB,4,DUMD,4,DUMD,4)
 
DO804 J=194
 

804 	D(NSTAT,J)=DUMD(J)
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C 


C 


C 


GO TO 237
 
231 DO 232 J=1,4
 

D(1,J)=O.
 
232 D(NSTAT,J)=O.
 

CALCULATE Z22 BY GAUSSIAN ELIMINATION
 
237 	CALL POTTER (AA,B,C,D,NSTAT,4,SMAT,DMAT,PP,QO,Z22, 61,4)


CALCULATE W20X,W20XX,W20XXX,W22X,W22XX,W22XXX
 
PRINT 25
 

25 	FORMAT(//*1*,4X*.STATION*9X*U20*,17X*V20*,17X*W20*,17X*M20*)
 
00 249 I=I,NSTAT
 
U20(I)=Z20( 1,1)
 
V20(I)=Z20(I,2)
 
W20(I)=Z20(1,31
 
M20(I)=Z20( 1,4),
 
IF(IPRINT.FQ.0) GO TO 249
 
,PRINT 31,1, U20(I)', V20(l), W20(I), M20(I)
 

249 CONTINUE
 
,PRINT 26
 

26 FORMAT(.//*1*,4X*STATION*,9X*U2.2*,1VX*V22*,17X*W22*,1YX*M22*)
 
DO 899 I=1,NSTAT
 
U22(I)=Z22(I,1)

V22(I)=Z22(I,2)
 
W22(I)=Z22(I,3)
 
M22(I1=Z22(),4)
 
IF(IPRINT.EQ.0) GO TO 899
 
PRINT 31,1, U22(I), V22(1), 22(I), M22(I)
 

899 	CONTINUE
 
PRINT 500
 

500 	FORMAT(///4X*STATION*,9X*W20X*,17X*W22X*,17X*W20XX*,17X*W22XX*
 
DO 251 I=I,NSTAT
 
W20X(I)=DIF(I,l,NSTAT,X,W20)
 
U20X(I)=DIF(I,I,NSTAT,X,U20)
 
W22X(I)=DIF(I,1,NSTAT,X,W22)
 
U22X(I)=DIF(I,I,NSTAT,X,U22)
 
V22X(I)=DIF(I,1,NSTATX,V22)
 
W20XX(I)=Kl*(U20X(I)+WOX('I)*W20X(I))/Dhl+KI2*W20(I)/(R*D11)-MZ
 

1)/DIli
 
W22XX(I)=K1*(U22X(I+WOX(I)*W22X(If))/Dl+KI2*(2.*N*V22(I)/R+W2
 
1)/R)/Dll+D12*(2.*N/R)**2*W22(I)/DllM22(I)1DlI
 
IF(IPRINT.EQ.0) GO TO 251
 
PRINT 924, I, W20X(I), W22XfI), W20XX(1), W22XX(I)
 

251 CONTINUE
 
CALCULATE NX20,NY20,NX22,NY22,NXY22
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PRINT 501
 
501 FORMAT(./-/I,1-4X*STATION*,9X*NX20*,15X*NY20*,15X*NX22*,15X*NY22*v 

115X*NXY22*)
 
DO 302 I=INSTAT
 
W20XXX(l) DIF(I*INSTATXiW20xx)
 
W22XXX(I)=DIF(IINSTATXW22XX)

EPSX=U20X(I)+WOX(l),*W20X(I)

EPSY=W20(-I )/R 
NX20(1)=CII*EPSX+Cl2*EPSY-Kll*W20XX(I)
 
NY20,(I)=CI2*EPSX+C22,*EPSY-Kl2*W20XX(I)
 
EPSX=U22X(I-)+WOX(l),*W22X(l)
 
EPSY=2.*N*V22(I)/R+W22(li/R

EPSXY=-2.*N*U22(I)/R+V22X(l)-WOX(I)*2.*N*W22(1,)/R
 
NX22(I,)=Cll*EPSX+CI2*EPSY-Kll*W22XX(I)+(2.*N/R)**2*W22,(I)*Kl2
 
NY22(l.)=CI2*EPSX+C22*EPS-,Y-Kl2*W22XX(I)+(2.*N/R)**2*W22(I)*K22
 
,NXY22(1)=C66*EPSXY+2.*K66*2.*N*W22X(I)/R
 
IF(IPRINT.EQ.0) GO TO 302
 
PRINT 5021 It NX20(I); NY20(l),NX22(1)tNY22(I)tNXY22(I)


502 FORMAT(I8,5E20.8)
 
302 CONTINUE
 

C CALCULAT-,ION OF SENSITIVITY INDEX BY PRESENT THEORY 
DO 400 1=1,NSTAT 
DP3(1,11=-Cll*(WlXX(I)*WOXL(I)+WlX(I)*WO2L(I))+(N/R)**2*WOXL(l) 

1WI(I)*C66 
DP3(lt2)=N/R*C66*WO2L(I)*Wl(,I')+N/R*(C66+Cl2)*WOXL(I)*WlX(l) 
DP3(I,3)-WlXX(I)+NX1(I)*WO2L(l)-(N/R)**2*NYOL(I)*Wl(l') 
I+CII*WOXX(I)*WDXL(I)*WlX(I,) C12/R*WOXL(I.)*WIX(I)
2+Kll*(WOXL(I)*Wl3X(I)+2.*WO2L(II*WIXX(I)+WO3L(I)*WlX(II) 
3-2.*(N/R)**2*K66*W02L(I)*Wl(l),(N/R)**2*(2.*K66+KI2)*WOXL(I) 
4*WIX(I) 
DP3(1,4)=O. 
EP3(Ivll=-Cll*(WlXX(I)*(W20X(I)+.5*W22X(I))+WlX(I)*(W20XX(I)+.5 

lW22XX(l)))+(N/R)**2*Cl2*(WlX(I)*W22(I)+Wl(l)*W22X(.1)) 
2+(N/R)**2*C66*(3.*WIX(I)*WZZ(I)+1.5*Wl(l)*W22X(I)+Wl(l)*W20X(l) 
EP3(1,2)= N/R*IC12+C66)*(WlX(I)*(W20X(I)+.5*W22X(I))) 

I+N/R*C66*(WIXX(I)*W22(1)+WI(I)*(W2OXX(l)-.5*W22XX(f))) 
2+(N/R)**3*C22*Wl(l)*W22(l) 
AKI= Kll*(Wl3X (I)*(W20X(I)+.5*W22X(l))+WlXX(I)*(2.*W20XX(I)

1+W22XX( lt)4:WlXil)*(W20XXX(I )+.5*W22XXX(I )-)-) 
AK2=-(N/R)**2*KI2*(WlXX(I)*W22(I)+WlX(I)*(W20X(I)+13./2.*W22X(I 
1+'Wl('I)*W22XX(l))+9.,*(N/R)**3*K22*Wl(l)*W22(I) 
AK3=-(N/R)**2*K66*(6.*WIXX(I)*W2211)+WIX(I)*(2.*W20X(I)+9.*W22X

11) 
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2+Wl(l)*(2.*W20XX(I)+3.*W22XX(I))I
 
AK4= WOXX(l),*(Cll*WIX(I)*,(W2CX(I)+.5*W22X(l))
 

1-(N/R)**2*Cl2*WI(TI*W22('T))
 
AK5=1./R*(C22*(N/R)**2*Wl(l)*W22(l)-Cl2*WlX(I)*(W20X(I)+.5*W22X
 
2))

AK6= WlXX(I)*(3./8.*CII*WlX(I)**2+1./8.*(N/R)**2*Cl2*WI(I)**2)
 
AK7=-(N/R)**2*Wl(I)*(3./8.*ClZ*WIX(11**2+1./8.*(N/R)**2*C22*Wl(
 

1*2)
 
AK8= .5*(N/R)**Z*C66*WlX(I)**2*Wl(I)
 
AK9= NXI(I)*(W20XX(I)+.5*W22XX(I)I+ (NX20(1)+.5*NX22(1))*WIXX
 
AK10=-(N/R)**2*(2.*NY1(1)*W22(1)+Wl(l)*(NY20(I)+.5*NY22(I))I
 
AK11= (N/R)*(2.*NXY1(1)*W22X(I)+NXY22(I)*WlX(I)I
 
EP3(1,3)=AKI+AK2+AK3+AK4+AK5+AK6+AK7+AK8+AK9+AKXO+AK11
 

400 EP3(1,4)=O.
 
DO 410 J=1,4
 
DPB3(1,J)=O.
 
EPB3tlJ)=O.

DPB3(2,J)=O.
 

410 EPB3(2,J)=O.

GO TO(401,402,403),BC
 

401 	OPB3(1,1)=-Cll*WlX(1)*WOXL(l)

DPB3(1,4)=-KlI*WlX(1)*WOXL(l
 
DPB3(2,1)=-Cll*WlX(NSTAT)*WGXL(NSTATI
 
DPB3(2,4)=-Kll*WlX(NSTAT)*WOXL(NSTATI
 
EPB3(1,1)=-Cll*WIX(11*(W20X(1)+.5*W22X(l)I
 
EPB3(1,4)=-Kll*WlX(1)*(W20X(1)+.5*W22X(l)I
 
EPBB(2,1)=-Cll*WIX(NSTAT)*(W20X(NSTAT)+.5*W22X(NSTAT)I

EPB3(2,4)=-Kll*WlX(NSTAT)*(W20X(NSTAT)+.5*W22X(NSTAT)I
 
GO TO 402
 

403 	OPB3(1,1)=-Cll*WIX(1)*WOXL(l)
 
EPBB(1,1)=-Cll*WIX(1)*(W20X(!)+.5*W2'X(l))
 
DPB3(2,1)=-CII*WIX(NSTATI*WOXL(NSTAT)
 
EPB3(2,1)=-CII*WIX(NSTAT)*(620X(NSTAT)+.5*W22X(NSTAT))
 
GO TO 402
 

402 	CONTINUE
 
TEST3=1.
 
M=l.
 
GO TO 250
 

407 CONTINUE
 
00 480 J=1,4
 
00 480 K=194
 
DUMA(JK)=AA(IiJK)
 
DUMC(JK) C(NSTATJK)
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DUMAB(J,K)=AB(IJ,K)
 
480 	DUMCB(J,K)=CB(2,J,K)
 

CALL MATRIX(INVERT,4,4,0,DUMA,4,DETERMI)
 
CALL MATRIX(INVERT,4,4,0,DUMC,4,DETERMI)
 
CALL MATRIX(MULTIPL,4,4,4,DUMAB,4.DUMA,4,DUMA,4)
 
CALL MATRIX(MULTIPL,4,4,4,DUCB,4,DUMC,4,DUMC,4)
 
DO 481 J=1,4
 
DUMD( J) =DP3 (1,J)
 

481 	DB(J)=DPB3(1,J)
 
CALL MATRIX(MULTIPL,4,4,1,DUMA,4,DUMO,4,DUMD,4)
 
CALL MATRIX(SUBTRAC.4,1,0,,DB4,DUMD,4,DUMD,4)
 
DO 483 J=l,4
 

483 	DP3(1,J)=DUMD(J)
 
DO 484 J=l,4
 
DUMD(J)=EP3(1,J)
 

484 	DB(J)=EPB3(1,J)
 
CALL MATRIX(MULTIPL,4,4,1,DUMA4,DUMD,4,DUMD,4)
 
CALL MATRIX(SUBTRAC,4,1,0,CB,4,DUMD,4,DUMD,4)
 
DO 485 J=1,4
 

485 EP3(1,JI=DUMD(J)
 
DO 486 J=1,4
 
DUMD(J)=DP3(NSTATtJ
 

486 OB(J)=DPB3(2,Ji
 
CALL MATRIX(MULTIPL,4,4,,IDUMC,4,DUMD,4,DUMD,4)
 
CALL MATRIX(SUBTRAC,4,1,ODB,4,DUMD,4,DUMD,4)
 
00 487 J=1,4
 

487 	DP3(NSTATJ)=UMD(J)
 
DO 488 J=1,4
 
DUMD(J)=EP3(NSTAT,J)
 

488 	DB(J)=EPB3(2,J)
 
CALL MAIRIX(MULTIPL,4,4,1,DUMC,4,DUMC,4,DUMD,4)
 
CALL MATRIXCSUBTRAC,4,J,0,DB,4,DUMD,4,DUMD4)
 
00 489 J=1,4
 

489 	EP3(NSTATJI=DUMD(J)
 
DO 420 J=1,NSTAT
 
00 420 K=1,4
 
I=K+4*(J-1)
 
ZlV(I)=Z1(JK)'
 
DUMDE(I)=EP3(J,K)
 

420 	CONTINUE
 
XTE=O.
 
XTD=O.
 
NVARk4*NSTAT
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DO 425 I=1,NVAR
 
425 XTE=ZlV(I)*DUMDE(I)4XTE
 

DO 430 J=I,NSTAT
 
DO 430 K=1,4
 
I=K+4*(J-1)
 
DUMDE(I)=0P3(J,K)
 

430 CONTINUE
 
DO 435 I=I,NVAR
 

435 XTD=Z1V(I)*DUMDE(I)+XTD
 
DO 460 I=I,NSTAT
 

460 FOFX(I)=U1(I)**2+VI(I)**2+WI'(I)**2
 
C
 

CALL SIMP(DELNSTATFOFXAREA)
 
637 FORMAT(2X*AREA( UI, VI, kI)=*E16.8)
 

PRINT 637, AREA
 
638 FORMAT(/ZX*XTE=*E16.8)
 

PRINT 638, 'XTE
 
639 	FORMAT(/2X*XTD=*E16.8)
 

PRINT 639, XTD
 
BCARD=-2.*T**2*A*YXTE/(NXB*XTO*AREA)
 
PRINT 635, BCARD
 

635 FORMAT(2X*SENSITIVITY INDEX BY PRESENT THEORY B=*lE20.8)
 
C CALCULATION OF SENSITIVITY INDEX BY BUDIANSKY THEORY
 

DO 470 I=1,NSTAT
 
470 FOFX(I)= W1X(I)**2*(NX20(I)+.5*NX22(l))+(NR*Wl1I)I**2*(NY20(I)


1-,.5 kNY22(II))(N/R)*NXY22(I)*WIX(I)*Wl(I)
 

2+3./8.*ClI*WIX(II**4+1./4.*(N/R)**2*C12*WiX(I)**2*W1(I)**2
 
3+3./8.*(N/R)**4*C22*WlI)**4+.5*(N/R)**2*C66*(WIX(I)*W(II))**2
 
CALL SIMP(DELNSTAT,FOFX,AREAI)
 
PRINT 640, AREAl
 

640 FORMAT(2X*AREA1=*E16.8)
 
DO 471 1=I,NSTAT
 

471 FOFX(I)= NX1(I*W1X('I)*(W20X(I)+.5*W22X(I))
 
1+(N/R)**2*NY1(1l*Wl(I)*W22(I)
 
2-NfR*NXY1(I)*W1X(I)*W22(I)-N/R*NXY1(I)*W(I)*(W20X(IV-.5*W22X(I
 
'CALL SIMP(DEL,NSTAT,FOFX,AREA2)
 
PRINT 641, AREA2
 

641 FORMAT(2X*AREA2=*EI6.8)
 
DO 472 I=1,NSTAT
 

472 FOFXuII=-WlXuI;**2+(N/R)**2*NYOL(I)*W1(I)**2
 
I+WOXL(I)*{2.*NX1(I)*W1X(I)-2.*N/R*NXY1(I)*W1({I)
 
CALL SIMP(DEL,NSTAT,FOFX,AREA3)
 
PRINT 642, AREA2
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642 	FORMAT(2X*AREA3=*E16.8)
 
BBUD=.(AREA1+2.*AREA2)/NXB*AREA3)
 
PRINT 636, BBUD
 

636 	FORMAT(/2X*SEN$ITIVITY INDEX BY BUDIANSKY THEORY B=I1E20.8,1
 
GO TO 1000
 
END
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PROGRAM LENGTH INCLUDING I/O BUFFERS 
045532 

FUNCTION ASSIGNMENTS 

STATEMENT ASSIGNMENTS 
1 - 000632 2 - 001027 3 - 001207 4 - 001451 
5 - 001220 6 - 001223 7 - 001232 i0 - 007334 
II - 007356 12 - 007365 13 - 007370 14 - 007375 
1-5 - 007401 16 - 007404 17 - 007407 18 - 007412 
19 - 007423 20 - 007426 21 - 007432 22 - 007435 
23 - 007475 24 - 007503 25 - 007554 26 - 007563 
30 - 007506 31 - 007514 51 - 000341 52 - 000272 
55 - 001457 80 - 000267 99 - 001554 101 - 002163 
102 - 002322 103 - 002364 105 - 002507 137 - 003213 
138 - 003253 160 - 003312 170 - 003515 172 - 003474 
181 - 003633 200 - 003644 201 .- 0C3764 202 - 004103 
210 - 004107 211 - 003052 212 - 0C4517 220 - 004237 
221 - 004467 225 - 004107 227 - 004500 230 - 004704 
231 - 005137 235 - 004521 237 - 005150 249 - 005220 
250 - 001464 251 - 005402 300 - 003045 302 - 005553 
401 - 006216 402 - 006276 403 - 006255 407 - 006301 
425 006647 435 - 006674 460 - 006702 483 - 006434 
485 - 006500 487 - 006545 489 - 006612 500 - 007572 
501 - 007601 502 - 007612 635 r 007642 636 - 007662 
f37 - 007627 638 - 007634 639 - 007637 640 - 007651 
641 - 007654 642 - 007657 701 - 0C4350 702 - 004404 
703 - 004424 704 - 004460 801 - 005015 802 - 005051 
803 - 005074 804 - 005130 899 - 005255 921 - 007517 
922 - 007526 923 - 007531 924 - 007540 999 - 007451 
1000 - 000003 

BLOCK NAMES AND LENGTHS 

VARIABLE ASSIGNMENTS 
A - 041304 AA - 011401 AB - 017161 AKI - 041444 
AK1O - 041455 AKI - 041456 AK2 - 041445 AK3 - 041446 
AK4 - 041447 AK5 - 041450 AK6 - 041451 AK7 - 041452 
AKS - 041453 AK9 - 041454 AN - 017521 ANS - 041342 
AR - 041314 AREA - 041460 AREAl - 041462 AREA2 - 041463 
AREA3 - 041464 AS - 041321 8 - 013321 BB - 017221 
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BBUD - 041465 BC - 041245 BCARD, - 041461 BETA 041350 
BETAL - 041352 BN - 017541 BS - 041324 B1 017461 
'BILL - 041406 ari -- 010773 812 - 011017 B22 011043 
B66 - 011163 C - 015241 CB - 017261 CC 041356 
CS - 041357 CXCX - 041402 CXSX - 041404 Cl 017501 
'lI - 041327 C12 - 041330 C22 - 041331 C66 - 041332 
D - 025741 DB - 036411 OBAR - 041364 DEL - 041411 
DELBAR - 041305 DETERMI- 041440 DETERMI- 041416 DETRI - 041421 
DL2 - 041432 DMAT - 030245 DPB3 - 041216 0P3 - 036613 
DUMA - 017321 DUMAB - 017401 DUMB - 017341 DUMBB - 017421 
OUMC - 017361 DUMCB - 017441 DUMD - 036415 DUMDE - 037563 
DI0 041335 D12 - 041336 022 - 041337 D66 - 041340 
EPB3 - 041226 EPSX - 041427 EPSXY - 041431 EPSY - 041430 
EP3 - 037177 ER - 041313 ES - 041320 EX 010603 
EY - 010627 El - 041433 E2 - 041434 E3 041435 
E4 - 041436 E5 - 041437 E6 - 041441 E7 041442 
E8 - 041443 FOFX - 040533 FOL - 041374 Fl 041372 
F1L - 041375 FILL - 041405 F2 041373 F2L 041376 
G - 041371 GAMA 041351 GAMAL - 041353 GRJR 041316 
GSJS - 041323 GXY - 010123 G1 - 041362 GIL - 041365 
GILL 041407 G12 - 041367 G2 - 041363 G2L 041366 
G21 - 041370 H - 010747 I - 041341 II - 041424 
INVERT - 041414 IPRINT ­ 041312 IR - 041236 IS - 041237 
J - 041377 K - 041413 KI - 041240 K12 - 041241 
K22' - 041242 K66 - 041243 L - 041325 LAMIl - 041250 
LAM12 - 041251 LAM13 - 041252 LAMi4 - 041265 LAMi5 - 041266 
LAM16 - 041267 LAM17 - 041253 LAt21 - 041254 LAM22 - 041255 
LAM23 - 041256 LAM24 - 041257 LAM25 - 041270 LAM26 - 041271 
LAM31 - 041272 LAM32 - 041260 LAM33 - 041273 LAM34 - 041274 
LAM35 - 041275 LAM36 - 041276 LAF41 - 041261 LAM42 A 041262 -

LAM43 - 041263 LAM44 - 041277 LAM45 - 041264 LAYER - 041307 
M - 041247 MOORES - 041300 MT - 041417 MULTIPL- 041415 
M1 - 023770 M20 - 034374 M22 - 034760 N - 041306 
NEND - 041412 NORM - 041311 NSTAT - 041310 NSI - 041423 
NUX - 010653 NUY - 010677 NVAR - 041457 NXB - 041244 
NXY1 - 025644 NXY22 - 036314 NX1 - 025452 NX20 - 035730 
NX22 - 036122 NYOL - 011207 NYI - 025547 NY20 - 036025 
NY22 - 036217 P - 017561 PD - 024455 PI - 023461 
PIMI - 023421 PP - 030631 P1 - 041354 QQ - 032551 
R - 041303 RGB - 041346 RGG - 041347 RG1 - 041343 
RGZ - 041344 RG3 - 041345 RI - 023441 RS - 041317 
R1 021501 S - 011067 SC - 041355 SCALE - 041420 
SHCH - 041360 SMAT - 026325 SNCN - 041361 SS - 011113 
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SSS 
SXSX 
TEST3 
U20 
VI 
V22X 
WOX 
4O3L 
W13X 
W2OXXX 
W22XXX 
XTE 
ZNORM 
ZISQ 
Z22 

-

-

-
-

-
-
-

011137 
041401 
041326 
034105 
023576 
035344 
010314 
025355 
025260 
036421 
036516 
040630 
041426 
024475 
033521 

ST -
51 -
TRANSPO-
U20X -
VIX -
WMAX -
WOXL -
WI -
W20 -

W22 
X 
Z 
ZR 
ZIT 

041246 
041333 
041302 
035152 
024674 
041422 
010506 
023673 
034277 
034663 
024502 
024451 
041315 
040147 

SUBTRAC-
S2 r 

Ul -

U22 
V20 -
WO 
WOXX -
WIX -
W20X -

W22X -
XB -
ZD -
ZS 
Z1V 

041301 
041334 
023501 
034471 
034202 
010217 
010411 
024771 
035055 
035441 
C41400 
024476 
041322 
040632 

SXCX 
T 
UIX 
U22X 
V22 
WOL 
WO2L 
WIXX 
W20XX 
W22XX 
XTO 
ZMAG2 
Zi 
Z20 

-
-
-
-
-
-
-
-
-
-
-
-
-
-

041403 
041410 
024577 
035247 
034566 
011304 
025163 
025066 
035536 
035633 
040631 
041425 
024065 
033135 

START OF CONSTANTS 
007326 

START OF TEMPORARIES 
007671 

START OF INDIRECTS 
010053 

UNUSED COMPILER SPACE 
003400 
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SUBROUTINE SUM (IL,XYANS) 
000006 DIMENSION X(L), Y(L) 
000006 ANS=0. 
000007 DO 1 J=I.L 
000010 1 ANS=ANS+X(JJ)*Y(J-) 
000015 RETURN 
4000016, END 
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SUBPROGRAM LENGTH
 
000026
 

FUNCTION ASSIGNMENTS
 

STATEMENT ASSIGNMENTS
 
1 - 000010
 

BLOCK NAMES AND LENGTHS
 

VARIABLE ASSIGNMENTS
 
J - 000025
 

START OF CONSTANTS
 
000020
 

START OF TEMPORARIES
 
00O021
 

START OF INDIRECTS
 
000023
 

UNUSED COMPILER SPACE
 
033100
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SUBROUTINE SIMP (DEL,NSTAT,FOFX,AREA)
 
OOOO-6 DIMENSION FOfX(NSTATI
 
000006 MS=(NSTAT-1)/2
 
000010 TOT=O.
 
000011 00 480 KI1,MS
 
000012 480 TOT=TOT+4.*FOFX(2*K)+2.*FOFX(2*K+)
 
000023 AREA=DEL/3.*(FCFX(1)+TOT-FOFX(2*MS+1))
 
000030 RETURN
 
000030 END
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SUBPROGRAMLENGTH'
 
000051
 

FUNCTION ASSIGNMENTS
 

,STATEMENT ASSIGNMENTS
 
480 - 000013.
 

BLOCK NAMES AND LENGTHS 

VARIABLE ASS:IGNMENTS 
K - 000050 MS 000046 TOT - 0C0047 

START OF'CONSTANTS
 
000032
 

START OF TEMPORARIES
 
000036
 

START OF INDIRECTS
 
000042
 

UNUSED COMPILER SPACE
 
033100
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$INPUT 

R = 0.IE+02, 

A = 0.7E+01, 

DELBAR = 0.5E-01, 

BC = 1, 

'NXB = 0.4374E+04, 

N 7,
 

EX = .105E 08, O.20BE+07, I, I, 1,-1, 1, 1, 1, 1, I, I, I, I, 1, I, 1, 1, 1, 1,
 

EY = 0.105E+08, 0.3025E+08, I, 1, I, 1, I, I, I, I, I, I, I, I, I, I, I, I, I, I,
 

NUX = O.BE+00, 0.23E-01., I, I, 1, I, 1, I, I, I',I, I, I, I, I, I, 1, 1, 1, 1,
 

NUY = 0.3E+00, O.346E+00, I, I, I, 1, I, I, I, I, I, I, I, I, I, I, I, I, I, I,
 

GXY = 0.4038E+07, 0.5249E+06, I, I, I, 1, D, I, 1, I, I, 1, 1, 1, I, 1, I, I, I, I,
 

H = 0.5E-01, 0.5E-01, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
 

LAYER = 2,
 

ST = 0,
 

NSTAT = il
 

-NORM 1,
 

IPRINT 1,
 

SEND
 

IMPERFECTION SENSITIVITY OFAAXIALLY COMPRESSED CYLINDER
 
CARD-SYKES A2338 RDF367 OCTOBER,1968)
 

LAYER EX EY NUX NUY GXY H
 
1 1.050E+07 1.050E+07 3.000E-01 3.O00E-01 4.038E+06 5.000E-02
 
2 2.030E+06 3.025E+07 2.300E-02 3.46CE-01 5.249E+05 5.000E-02
 

11 12 22 66
 



B I 1.15384615E+07 3.46153846E+06 1.15384615E+07 4.03800000E+06 
8 
C 

2 2.04628433E+06 
6.79237293E+05 

7.08014378E+05 
2.08477642E+05 

3.049266C6E+07 
2.10155611E+06 

5.24900000E+05 
2.28145000E+05 

D 5.66031078E+02 1.73731368E+02 1.75129676E+03 1.90120833E-02 
K -1.18652215E+04 -3.44190510E+03 2.36927488E+04 -4.39137500E+03 

BETA= 8.64861327E-01 GAMA= 2.60541762E+00 F1= -3.73726721E-03 F2= -5.06316344E-04 

0 



1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

STATION WO WOX WOXX WOXXL WOL 
2.77555756E-17 -9.39202292E-02 -2.12972811E-01 -6.38340345E-05 -2.16840434E-19 

-9.43477662E-03 -6.73307433E-02 2.38094963E-01 -5.45861168E-05 -6.97393851E-06 
-1.56591006E-02 -3.94024296E-02 2.36612173E-01 -3.96694748E-05 -1.25157747E-05 
-1.86874509E-02 -1.296331092-02 2.13512103E-01 -2.15387267E05 -1.61050842E-05 
-1.88273106E-02 9.81224981E-03 1.74870363E-01 -2.70999409E-06 -1.751466172-05 
-1.65973320E-02 2.74845851E-02 1.27094306-01 1.454449922-05 -1.67992660E-05 
-1.26408642E-02 3.935027932-02 7.62737380E-02 2.84273546E-05 -1.42528785E05 
-7.64363528E-03 4.537C2557EC2 2.76784827E-02 3.775814802-05 -1.03441204E-05 
-2.26240539E-03 4.60568413E-02 -I.45780364E-02 4.20246368E-05 -5.640424832-06 
2.93082941E-03 4.23253691E-02 -4.77087467E-02 4.135119542-05 -7.31185017Er07 
7.48675307E-03 3.53374049E-02 -7.027123932-02 3°640038941-05 3.84133164E-06 
1.10984861E-02 2.63490635E-02 -8.20603689E-02 2.822836352-05 7.63667727E-06 
1.36046071E-02 1.65776227E-02 -8.390771592-02 1.8116507,5E-05 I.C3524436E-05 
1.49781298E-02 7.09526524E-03 -7.74229136E-02 7.400997342-06 1.18405203E-05 
1.53049163E-02 -1.24526635E-03 -6.47106142E-02 -2.68118246E-06 1.21042672E-05 
1.47553472E-02 -7.852044162-03 ,4.809278271-02 -1.111558392-05 1.12793952E-05 
1.35530000E-02 -1.24044245E-02 -2.98600010E-OZ 1.71940708E-05 9.60270610E-06 
1.19437024E-02 -1.48370413E-02, -1.20684496E-02 -2.05554152E-05 7.37356574E-06 
1.01677135E-02 -1.530327352-02 3.60792435E-03 -2.11839876E-05 4.91312030E-06 
8.437040932-03 -1.41248559E-02 1.596716122-02 'I.937185322-05 2.52586750E-06 
6.91911945E-03 -1.17342989E-02 2.431362332-02 -1.565251282-05 4.67394790E-07 
5.72732590E-03 -8.616218692-03 2.84437569E-02 -1.07162548E-05 -1.07897797E-06 
4.91814755E-03 -5.25270695E03 2.85928363E-02 -5.31763699E-06 -2.01511955E-06 
4.49429144E-03 -2.07666385E-03 2.53535307E-02 -1.85131595E-07 -2.33024837E-06 
4.412638762-03 5.64257145E-04 1.95772032E-02 4.05834697E-06 -2.09311060E-06 
4.5957121§E-03 
4.94522392E-03 

2.43167610E03 
3.40815449E-03 

1.22679684E-02 
4.-7804212E-03 

6.957220962-06 
8.26277345E-06 

-1.43586290E-06 
r5.32013051E-07 

5.35628760E-03 3.497065332-03 -2.78888593E-03 7.94822892E-06 4.288346282-07 
5.73098460E-03 2.81190581E-03 -8.66133500E-03 6.19950036E-06 1.266562022-06 
5.99014918E-03 1.55676931E-03 -1.24674719E-02 3.38379209E-06 1.833718332-06 
6.082457092-03 0. -1.378429482-02 0. 2.63393063E-06 
5.99014918E-03 -1.55676931E-03 -1.24674719E-02 -3.38379209E-06 1.83371833E-06 
5.73098460E-03 -2.8119C5812-03 -8.66133500O-03 -6.19950036E-06 1.26656202E-06 
5.35628760E-03 -3.497C6533E-03 -2.78888593E03 -7.94822892E-06 4.288346282-07 
4.945223922-03 -3.408154492-03 4.478042122-03 -8.26277345E-06 -5.32013051E-07 
4.59571219E-03 -2.43167610E03 1.22679684E-02 -6.95722096E-06 -1.43586290E-06 
4.41263876E-03 -5.64257145E-04 1.957720322-02 -4.05834697E-06 -2.09311060E-06 
4.49429144E-03 2.07666385E-03 2.53535307E-02 1.85131595E-07 -2.33024837E-06 
4.91814755t-03 5.25270695E-03 2.85928363E-02 5.317636992-06 -2.015119552-06 
5.72732590E-03 8.61621869E-03 2.84437569E-02 1.07162548E-05 -1.07897797E-06 
6.91911945E-03 1.1734298S2-02 2.43136233E-02 1.56525128E-05 4.67394790E-07 
8.43704093E-03 1.412485592-02 1.59671612E-02 1.93718532E-05 2.52586750E-06 
1.01677135E-02 1.53032735E-02 3.60792435E-03 2.11839876E-05 4.91312030E-06 
1.19437024E-02 1.483704132-02 -1.20684496E-02 2.05554152E-05 7,37356574E-06 
1.355300002-02 1.24044245E-02 -2.98600010E-02 1.71940708E-05 9.60270610E-06 
1.47553472E-02 7.85204416E-03 -4.80927827E-02 1.11155839E-05 1.12793952E-C5 
1.53049163E-02 1.245266352-03 -6.471061422-02 2.68118246E-06 1.21042672E-05 
1.49781298E-02 "7.09526524E-03 -7.74229136E-02 -7.40099734E-06 1.18405203E-05 
1.36046071E-02 -1.65776227E-02 -8.39077159E02 -1.81165075E-05 1.03524436E-05 



50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 


MODRES= 


1.10984861E-02 

7.48675307E-03 

2.93082941E-03 


-2.26240539E-03 

-7.64363528E-03 

-1.26408642E-02 

-1.65973320E-02 

-1. 88273106E-02 

-1.86874509E-02 

-1.56591006E-02 

-9 43477662E-03-

2.77555756E-17 


8.57902481E-03
 

-2.60490635E-02 

-3.53374049E-02 

-4.23253691-02 

-4.60568413E-02 

-4.53702557E-02 

-3.93502793E-02 

-2.7484851E-02 

-9.81224981E-03 

1.29633109E-02 

3.94024296E-02 

6.73307433E-0Z 

.9.39208292E-02 


-8.20603689E-02 

-7.02712393E-02 

-4.77087467F-02 

-1.4578C364E-02 

2.76784827E-02 

7.62737380E-02 

1.27094306E-01 

1.74870363E&01 

2.13512103E-01 

2.36612173Er01 

2.38094963E,01 

2.12972811E-O1 


-2.82283635E-05 

-3.64003894E-05 

-4.13511954E-05 

-4.2024636BE-05 

-3.77581480E-05 

-2.84273546E-05 

-1.45444992E-05 

2.70999409E-06 

2.15387267E-05 

3.96694748E-05 

5.45861168E-05 

6.38340345E405 


7.63667727E406
 
3.84133164E-06
 

-7.31185017E-07
 
-5.64042483E-06
 
-1.03441204E-C5
 
-1.42528785E-05
 
-1.67992660E-05
 
-1.75146617E-05
 
r1.61050842E-05
 
-1.25157747E-05
 
-6,97393851E-06
 
-2.16840434E-19
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STATION Ul VI Wi 
I 4.27874577E+02 0. 0. 
2 3.68884410E+02 6.32999795E+01 -1.79131629E-01 
3 3.24059859E+02 1.23208761E+02 -3.45844320E-01 
4 2.92892596E+02 1.76618281E+02 -4.89135773E-01 

2.71058914E+02 2.21305220E+02 -6.00786467E-01 
6 2.53036603E+02 2.56227664E+02 -6.76296108E-01 
7 2.34543440E+02 2.81514898E+02 -7.15200574E-01 
8 2.13883C40E+02 2.98232210E+02 -7.20765051E-01 
9 1.91937999E+02 3.08040818E+02 -6.99192072E-01 

1.71158918E+02 3.12863031E+02 -6.58553378E-01 
11 1.54198476E+02 3.14621605E+02 -6.07657672E-01 
12 1.42793904E+02 3.15074002E+02 -5.55025237E-01 
13 1.37235502E+02 3.15726283E+02 -5.08079383E-01 
14 1.36449068E+02 3.17795660E+02 -4.72603199E-01 

1.38498385E+02 3.22193415E+02 -4.52460365E-01 
16 1.412310002+02 3.29512718E+02 -4.49546951E-01 
17 1.42827650E+02 3.40019966E+02 -4.63926709E-01 
18 1.42118431E+02 3.53657475E+02 -4.94100912E-01 
19 1.38641740E+02 3.700672622+02 -5.37368404E-01 

1.32506789E+02 3.88641394E+02 -5.90236538E-01 
21 1.24160756E+02 4.08596884E+02 -6.48846188E-01 
22 1.14158859E+02 4.29065796E+02 -7.09374473E-01 
23 1.03002921E+02 4.49186738E+02 -7.683796782-01 
24 9.10698621E+01 4.68183456E+02 -8.23057218E-01 

7.86136552E+01 4.85419537E+02 -8.71384739E-01 
26 6.58042848E+01 5.00423956E+02 -9.121483472-01 
27 5.27678145E+01 5.128883452+02 -9.44858207E-01 
28 3.96068892E+01 5.22642050E+02 -9.69577181B-01 
29 2.64003884E+01 5.29613956E+02 -9.866980082-01 

1.31945510E+01 5.33790900E+02 -9.96710530E-01 
31 5.79721572E-04 5.351813652+02 -1.00000000E+00 
32 -1.31934056E+01 5.337910412+02 -9.967108422-01 
33 -2.639928312+01 5.29614238E+02 -9.86698591E-01 
34 -3.96058450E+01 5,22642474E+02 -9.69577954E-01 

-5.27668447E+01 5.12888915E+02 -9.448590652-01 
36 -6.58033942E+01 5.004246812+02 -9.12149174E-01 
37 -7.861284002+01 4.8542C436E+02 -8.713854252-01 
38 -9.10691097E+01 4.681845582+02 -8.23057685E-01 
39 -1.03002210E+02 4.49188C922+02 -7.683799012-01 

-1.14158159E+02 4.29067465E+02 -7.09374502E-01 
41 -1.24160022E+02 4.08598952E+02 -6.48846169E-01 
42 -1.32505966E+02 3.88643962E+02 -5.90236728E-01 
43 -1.386407622+02 3.700704432+02 -5.37369177E-01 
44 -1.42117232E+02 3.53661390E+02 -4.941C2757E-01 

-1.428261802+02 3.40024734E+02 -4.63930215E-01 
46 -1.41229253E+02 3.29518447E+02 -4.49552778E-01 
47 -1.38496422+02 3.22200193E+02 -4.52469197E-01 
48 -1.36447044E+02 3.17803542E+02 -4.72615684E-01 
49 -1.37233671E+02 3.15735282E+02 -5.08096054E-01 
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50 -1.42792601E+02 3 150840762+02 -5.55464192-O1 
51 -1.-541-980C64+0'2 3.14632649E+02 -6.07683396E-01 
52 -1.71159717E+02 3.12874866E+02 -6.585832932-01 
53 -1.91940210E+02 3.08053175E+02 -6.99225388E-01 
54 -2.13886699E+02 2.98244729E+02 -7.20800513E-01 
55 -2.34548436E+02 2.81527127E+02 -7.15236500O-01 
56 -2.53042773E+02 2.56239074E+02 -6.76330484E-01 
57 -2.71066189E+02 2.21315241E+02 -6.'00817102E-01 
58 -2.92901156E+02 1.76626.352E+02 -4.89160506E-01 
59 -3.24070207E+02 1.23214404E+02 -3.45861254E-01 
60 -3.68897304E+02 6.38028653E+Ol -1.7-91393442-01 
61 -4.27890803E+02 0. 2.268291982-06 

STATION Ul V1 WI Ml 
1 1.13129929E-02 0. 0. 0. 
2 9.75329445E-03 1.67364985E-03 -1.791316292-02 -2.98697318E+01 
3 8.56813445E-03 3.25763651E-03 -3.45844320E-02 -5.623185632+01 
4 7.744e7280E-03 4.66978285E-03 -4.89135773E-02 -7.57065770E+01 
5 7.166790812-03 5.851304412-03 -6.00786467E-02 -8.59047813E+01 
6 6.690281,37E-03 6.77465294E-03 -6.762961082-02 -8.59423329E+01 
7 6.20132 60E-03 7.443246752-03 -7.152005742-02 -7.651254512+D1 
8 5.65506215E-03 7.885252052-03 -7.20765051E-02 -5.95900447E+01 
9 5.07483583E-03 8.14459139E-03 -6.99192072E-02 -3.79239207E+01 

10 4.52543744E-03 8.272C9061E-03 -6.58553378E-02 -1.448446992+01 
11 4.07700378E-03 8.3185E723E-03 -6.07657672E,02 8.01080816E+00 
12 3.77546721E-03 8.330548612-C3 -5.55025237E-02 2.74201653E+01 
13 3.62850318E-03 8.34779491F-03 -5.08079383E-02 4.23300436E+01 

- 14 3.60770990E-03 8.4025C917E-03 -4.72603199E-02 5.20594359E+01 
15 3.66189379E-03 8.518785702-03 -4.524603652-02 5.65638317E+01 
16 3.73414406E-03 8.7123C789E-03 -4.495469512-02 5.62919935E+01 
17 3.77635943E-03 8.99011927E-03 -4.63926709E-02 5.20375922E+01 
18 3.75760770E-03 9.35069467E-03 -4.94100912E-02 4.48079726E+01 
19 3.66568409E-03 9.784569012-03 -5.37368404E-02 3.57137642E+01 
20 3.50347613E-03 1.02756686E-02 -5.90236538E-02 2.58725518E+01 
21 3.28280724E-03 1.08032912E-02 -6.48846188E-02 1.63190273E+01 
22 3.01835734E-03 1.134448872-02 -7.09374473E-02 7.92006583E+00 
23 2.72339461E-03 1.18764860E-02 -7.68379678E-02 1.30096610+00 
24 2.40788484E-03 1.23767587E-02 -8.23057218E-02 -3.20585198E+00 
25 2.078543052-03 1-.28344802E-02 -8.713847392-02 -5.57837291E+0" 
26 1.73986362E-03 1.32511967E-02 -9.12148347E-02 -6.08214277E+00 
27 1.39517967E-03 1.35607548E-02 -9.448582072-02 -5.20791769E+00 
28 1.04720515E-03 1.38186425E-02 -9.69577181E-02 -3.57828578+00 
29 6.98025599E-04 1.400297952-02 -9.866980082-02 -1.83750192E+00 
30 3.48863594E-04 1.41134178E-02 -9.9671C530E-02 -5.416003122-01 
31 1.53278237E-08 1.41501817E-02 -1.000060002-01 -6.55972735E-02 
32 -3.48833309E-04 1.4134216E-02 -9.9671C842E-02 -5.41709583E-01 
33 -6.97996375E-04 1.400298708-02 -9.866985912-02 -1.83770581E+00 
34 -1.047177542-03 1.38186537E-02 -9.695779542-02 -3.57855561E+00 
35 -1.39515403E-03 1.35607699E-02 -9.44859065E-02 -5.20821202+00 



145 

36 -1.73984007E-03 1.3231215EE-02 -9.12149174E-02 -6.08240945E+00 
37 -2.07852149E-03 1.28345040E-02 -8.71385425E-02 -5.57855196E+00 
38 -2.40786495E-03 1.23787878E-02 -8.230576852-02 -3.20587938E+00 
39 -2.72337582E-03 1.18765218E-02 -7.68379901E-02 1.30115385E+00 
40 -3.01833882E-03 1.13445329E-02 -7.09374502E-02 7.92052636E+00 
41 -3.28278784E-03 1.08033459E-02 -6.48846169E-02 1.63198065E+01 
42 -3.50345437E-03 1.02757365E-02 -5.90236728E-02 2.58736773E+01 
43 -3.66565823E-03 9.78465311E-03 -5.37369177E-02 3.57152387E+01 
44 -3.75757600-03 9.35079817E-03 -4.94102757E-02 4.48097666E+01 
45 -3.77632058E-03 8.99024533E-03 -4.63930215E-02 5.20396372E+01 
46 -3.73409786E-03 8.71245938E-03 -4.495527782-02 5.62941760E+01 
47 -3.66184189E-03 8.51896493E-03 -4.52469197E-02 5.65659903E+01 
48 -3.60765639E-03 8.40271758E-03 -4.72615684E-02 5.20613637E+01 
49 -3.628454782-03 8.348C32842-03 -5.08096054E-02 4.23314989E+01 
50 -3.77543275E-03 8.33081497E-03 -5.55046419E-02 2.74208924E+01 
51 -4.07699289E-03 8.318879202-03 -6.07683396E-02 8.01057054E+00 
52 -4.52545856E-03 8.27240351E-03 -6.58583293E-02 -1.44858485E+01 
53 -5.074894282-03 8.14491811E-03 -6.99225388E-02 -3.79265118E+01 
54 -5.65515888E-03 7.88558307E-03 -7.2080C513E-02 -5.95937764E+01 
55 -6.20145470E-03 7.44357009E-03 -7,15236500E-02 -7.65171808E+01 
56 -6.69044448E-03 6.77495462E-03 -6.76330484E-02 -8.59474759E+01 
57 -7.166983152-03 5.851569342-03 -6.00817102E-02 -8.59099117F+01 
58 -7.744299122-03 4.66995626E-03 -4.89160506E-02 -7.57111183E+01 
59 -8.568408042-03 3.25778572E-03 -3.458612542-02 -5.623526132+01 
60 -9.75363534E-03 1.6737261'5E-03 -1.79139344E-02 -2.98715665E+01 
61 -1.131,34220E-02 0. 2.26829198E-07 0. 

STATION WiX UiX VIX W1XX 
1 -1.58863798E-01 -1.494GC93E-02 1.47298410I-02 1.11916155E-03 
2 -1.482189942-01 -1.176367938-02 I,39612993E-02 9.12411761E-02 
3 -1.32858919E-01 -8.610949912-03- 1.284057002-02 1.720744012-01 
4 -1.092609202-01 -6.00575845E-03 1.11157196E-02 2.32462715E-01 
5 -8.02115725E-02 -4.51624898E-03 9.02087179E-03 2.65526106E-01 
6 -4.90346170-02 -4.13772Q91E-CB3 6.82261004E-03 2.689359872-01 
7 -1.905811812-02 -4.436653812-03 4.75971050E-03 2.44946853E-01 
8 6.86078625E-03 -4.82780045E03 3.C0576276E-03 1.99377221E-01 
9 2.66621454E-02 -4.84124876E-03 1.65787951E-03 1.40074651E-01 

10 3. 92290287E-02 -4.276423092-03 7.45696464E-04 7.535763382-02 
11 4.43692034E-02 -3.214158148-03 2.50534286E-04 1.27596463E-02 
12 4.26764094E-02 -1.92214544E-03 1.25175766E-04 -4.17789723E-02 
13 3.532373C62-02 -7.18959870E-04 3.084024212-04 -8.42669499E-02 
14 2.38367223E-02 1.43102627E-04 7.32817662E-04 -1.12653192E-01 
15 9.881249052-03 5.418606602-04 1.327708782-03 -1.26583493E-01 
16 -4.91414732E-03 4.905670332-C4 2.02000102E-03 -1.27051874E-01 
17 -1.90945547E-02 1.00558471E-04 2.73594334E-03 -1.160408242-01 
18 -3.14750125E-02 -4.743228892-04 3.404784602-03 -9.61955957E-02 
19 -4.12009825E-02 -1.089135288-03 3.96417396E-03 -7.05353182E-02 
20 -4.777619302-02 -1.6409C079E-03 4.365952392-03 -4.21825761E-02 
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21 
22 

-5.10591150E-02 
-5.122863852-02 

-2.07908055E-03 
-2.3974267E-03 

4.58065780E,03 
4.5994C594E-03 

-1.40960875E-02 
1.11899711E-02 

23 -4.87211768E-02 -2.616310702-03 4.43258542E-03 3.1795087!E-02 
24 -4.41450261E-02 -2.76364957E-03 4.10568981E-03 4.66532105E-02 
25 -3.81819123E-02 -2.862948092-03 3.65330574E-03 5.55715968E-02 
26 -3.14886292E-02 -2.92870017E-03 3.11260537E-03 5.91703990E-02 
27 -2.46123573E-02 -2.96853632E-03 2.51762505E-03 5.870854802-02 
28 -1.79313434E-02 -2.98780318E-03 1.89524876E-03 5.58231191E-02 
29 -1.16285781E-02 -2.99289236E-03 1.26332277E-03 5.22242850E-02 
30 -5.70085373E-03 -2.99147259E-03 6.30866394E-04 4.93938478E-02 
31 -1.34012557E-07 -2.99012959E-03 1.59941271E-08 4.83327760E-02 
32 5.70060391E-03 -2.99147873E-03 -6.30834415E-04 4.93941597E-02 
33 1.16283806E-02 72.99290383E-03 -1.26329070E-03 5.22248689E-02 
34 1.79312252E-02 -2.98781853E-03 -1.89521618E-03 5.58238967E-02 
35 2.46123346E-02 -2.96855373E-03 -2.51759097E-03 5.87094064E-02 
36 3.14887031E-02 -2.92871768E-C3 -3.11256814E-03 5.91711972E-02 
37 3.81820664E-02 -2.86296376E-03 -3.65326291E-03 5.55721736E-02 
38 4.41452246E-02 -2.76366142E-03 -4.10563819E-03 4.66533959E-02 
39 4.87213645E-02 -2.61631658E-C3 -4.43252119E-03 3.17947157E-02 
40 5.12287419E-02 -2.39748006E-03 -4.59932496E-03 1.11888976E-02 
41 5.10590459E-02 -2.07906668E-03 -4.58055602E-03 -1.40979714E-02 
42 4.77758537E-02 -1.64087313E-03 -4.365826352-03 -4.218532422-02 
43 4.12002733E-02 -1.08909268E--03 -3.96402135E-03 -7.05389113E-02 
44 3.14738412E-02 -4.74267201E-04 -3.40460476E-03 -9.61999244E-02 
45 1.90928481E-02 1.006205992-04 -2.735737672-03 -1.16045672E-01 
46 4.91186450E-03 4.90622972E-04 -2.019773182-03 -1.27056905E-01 
47 -,9.88410270E-03 5.413892008E-04 -1.32746484E-03 -1.265862482-01 
48 -2.384008122-02 1.430876202-04 -7.325660832-04 -1.12657099E-01 
49 -3.53274576E-02 -7.19041545E-04 -3.081540592-04 -8.42693537E-02 
50 -4.268028962-02 -1.92230618E-03 -1.24943930E-04 -4.177919482-02 
51 -4.43729464E-02 -3.21439633E-03 -2.50334830E-04 1.27622210E-02 
52 -3.92322823E-02 -4.276720262-03 -7.455477492-04 7.53634493E-02 
53 -2.66645226E-02 -4.841572792-03 -1.65780190E-03, 1.40083860E-01 
54 -6.861905252-03 -4.828116082-03 73.00577726E-03 1.99389580E-01 
55 1.90585836E-02 -4.43693829E-03 -4.75983619E-03 2.44961658E-01 
56 4.90368851E-02 -4.137979088-03 -6.822860342-03 2.68952081-01 
57 8.02157048-02 -4.516519872-03 -9.021250112-03 2.65541973E-01 
58 1.092667922-01 -6.00610670E-03 -1.11162155E-02 2.32476666E-01 
59 1.32866212E-01 -8.611440952-03 -1.284115762-02 1.72084825E-01 
60 1.482272242-01 -1.176434542-02 -1.39619388E-02 9.12467946E-02 
61 1.588726832-01 -1.4974854CE-02 -1.47305095E-02 1.11927182E-03 

STATION NXI RYl NXY1 NYOL 
1 -2.29851527E+01 -7.27850388E+00 2.53052034E+03 -3.17916866E-01 
2 -2.28147090E+02 -1.568302612+03 2.34620711E+03 -1.74861622E+00 
3 -4.38673734E+02 -2.98889820E+03 2.16034766E+03 -2.88541230E+00 
4 -6.148157722+02 -4.134322322+03 1.869719912+03 -3.620109752+00 
5 -7.48950954E+02 -4.90725825E+03 1.50079939E+03 -3.90657018E+00 
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6 -8.42140079E+02 -5.24970402E+03 1.08641051E+03 -3.75656675E+00 
7 -9.00767759E+02 -5.14917468E+03 6.62164909E+02 -3.23093538E+00 
8 -9.32482617E+02 -4.6394S754E+03 2.62692818E+02 -2.42626175E+00 
9 -9.43416484E+02 -3.79537928E+03 -8.18588385E+01 -1,45928193E+00 

11 
-9.37464050E+02 
-9.17188248E+02 

-2.72144103E+03 
-1.53763149E+03 

-3.48625141E+02 
-5.23796256E+02 

-4.51095177E-01 
4.87009673E-01 

12 -8.8532018E 02 -3.63633603E+02 -6.032C7130E+02 1.26475826E+00 
13 -8.45752856E+02 6.95081348E+02 -5.91772022E+02 1.82029297E+00 
14 -8.03927663E+02 1.557505052403 -5.01962552E+02 Z.12347334E+00 
15 -7.66033376E+02 2.17261658E+03 -3.51647109E+02 2.17525954E+00 
16 -7.38040382E+02 2.52021825E+03 -1.61655900E+02 2.00375664E+00 
17 -7.24638397E+02 2.60793678E+03 4.65892958E+01 1.65777415E+00 
18 -7.28529321E+02 2.46565133E+C3 2.53117913E+02 1.19890313E+00 
19 -7.50191921E+02 2.13863200E+03 4.40961911E+02 6.93138923E-01 

-7.88088504E+02 1.68044968E+03 5.97141028E+02 2.02995399E01 
21 -8.39179903E+02 1.14641334+C3 7.130997342+02 -2.19108625E-01 
22 -8.99572954E+02 5.88023364E+02 7.84633538E+02 r5.35631119E-01 
23 -9.65133732E+02 4.87413382E+01 8.11419440E+02 -7.265444642-01 
24 -1.03194735E+03 -4.38745186E+02 7.96253699E+02 -7.89764608E-01 
25 -1.09657446E+03 -8.53682478E+02 7.44128812r+02 -7.39532816E-01 
26 
27 

-1.15612420E+03 
-1.20821159E+03 

-1.18686432E+03 
-1.43886435E+03 

6.61278834E+02 
5.54313647E+02 

-6.03097453E-01 
-4.16179227E-01 

28 
29 

-1.25088126E+03 
-1.28256052E+03 

-1.61720243+C3 
-1.73289805E+03 

4.29541435E+02 
2.92545875E+02 

-2.17783623E-01 
-4.49484240E-02 

-1.302C6656E+03 -1.79695563E+03 1.48043452E+02 7.20141581E-02 
31 -1.30865394F+03 -1.817343562+03 2.02500284E-03 1.132954080k01 
32 -1.30206682E+03 -1.796957202+03 -1.48039465E+02 7.20141581E-02­
33 -1.28256104E+03 -1.73290027E+03 -2.92542038E+02 -4.49484240E-02 
34 -1.25088202E+03 -1.61720353E+03 -4.29537727E+02 -2.17783623E-01 
35 -1.2821262E+03 -1.43886189E+03 -5.54309875E+02 -4.16179227E-01 
36 -1.15612553E+03 -1.1868554CE+03 -6.61274587E+02 -6.03097453E-01 
37 
38 

-1.09657616E+03 
-1.03194956E+03 

-8.53664050E+02 
-4.38714395E+02 

-7.44123437E+02 
-7.96246304E+02 

-7.39532816E-01 
-7.897646082-01 

39 -9.65136661E+02 4.87867629E+01 -8.11408923+02 -7.26544464E-01 
-8.99576929E+02 5.88084697E+02 -7.84618653E+02 -5.35631119E-01 

41 -8.39185370+02 1.14649045E+03 -7.130791902+02 -2.19108625E-01 
42 
43 

-7.88096C34E+02 
-7.50202195E+02 

1.68054065E+03 
2.13873284E+03 

-5.97113618E+02 
-4.40926074E+02 

2.02995399E-01 
6.93138923E-01 

44 -7.285430912+02 2.465755762+03 -2.53074309E+02 1.19890313E+00 
45 -7.24656&14E+02 2.60803634E+03 -4.65373901E+01 1.65777415E+00 
46 -7.38063310E+02 2.52030250E+03 1.61715267E+02 2.00375664E+00 
47 -7.66061684E+02 2.17267379E+03 3.51712193E+02 2.17525954E+00 
48 -8.039615302+02 1.55-752315E+03 5.02030638E+02 2.12347334E+00 
49 -8.45792107E02 6.95049255E+02 5.91839455E+02 1.82029297E+00 

-8.85346112E+02 -3.63724462E+02 6.03269462E+02 1.26475826E+00 
51 -S.17236325E+02 -1.53778555E+03 5.23848516E+02 4.87009673E-01 
52 -9.37515018E+02 -2.72165737+03 3.486622252+02 -4.510951772-01 
53 -9.43469102E+02 -3.7956505CE0+3 8.18759885E+01 -1.45928193E+00 
54 -9.32535524+02 -4.6398C70+03 -2.62699493+02 -2.42626175E+00 
55 -9.00819418E+02 -5.14950791E+03 -6.62197928E+02 -3.23093538E+00 
56 -8.42188665E+02 -5.25003397E+03 -1.08647060+03 -3.75656675E+00 

57 -7.48994272E+02 -4.90755819E+03 -1.50088519E+03 -3.90657018+00 
58 -6.14851329E+02 -4.13456559E+03 -1.869827892+03 -3.62010975E+00 
59 -4.38699C442+02 -2.989C6C8CE+03 -2.16047221E+03 -2.88541230E+00 

-2.28160185E+02 -1.56836548E+03 -2.34634087E+03 -1.74861622E+00 
61 -2.29864352E+01 -7.22995077E+00 -2.53066237E+03 -3.17916866E-01 
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STATION U20 V20 W20 M20 
2.41273601E-02 0. 0. 1.01896513E+00 
2.13269831E-02 0. -1.97657114E-02 -3.20432184E+01 
1.93071340E-02 0. -3.56372344E-02 -6.35451996E+01 
1.79693584E-02 0. -4.68868029E-02 -8.92656410E+01 
1.70953699E-02 0. -5.31752511E-02 -1.04189883E+02 
1.64421698E-02 0. -5.45586954E-02 -1.04903861E+02 
1.58235981E-02 0. -5.14701927E-02 -9.11309865E+01 
1.51554210E-02 0. -4.46668458E-02 -6.58459794E+01 
1.44552341E-02 0. 3.51430195E-02 -3.41547830E+01 
1.38060730E-02 0. -2.40198473E-02 -1.64196988E+00 
1.33046449E-02 0. -1.24271216E-02 2.70780646E+01 
1.30165558E-02 0. -1.39489205E-03 4.91651691E+01 
1.29530808E-02 0. 8.23092779E-03 6.36445928E+01 
1.30723843E-02 0. 1.58405432E-02 7.09840125E+01 
1.32984847E-02 0. 2.10783089E-02 7.24552172E+01 
1.35469518E-02 0. 2.38311879E-02 6.95426326E+01 
1.37473104E-02 0. 2.41956742E-02 6.35542572E+01 
1.38562412E-02 0, 2.24322239E-02 5.54744536E+01 
1.38603356E-02 0. 1.89151310E-02 4.60091938E+01 
1.37706268E-02 0. 1.40835843E-02 3.57274431E+01 
1.36127682E-02 0. 8.39741455E-03 2.51978658E+01 
1.34167499E-02 0; 2.29945202E-03 1.50497556E+01 
1.320899182-02 0. -3.81436439E-03 5.93590994E+00 
1.30081215E-02 0. -9.61621570E-03 -1.57654950E+00 
1.28242773E-02 0. -1.48581851E-02 -7.13179143E+00 
1.26607744E-02 0. -1.93742183E-02 -1.06698764E+01 
1.251664082-02 0. -2.30727241E-02 -1.24350281E+01 
1.23888272E-02 0. -2.59214261E-02 -1.29046665E+01 
1.22735347E-02 0. -2.79272468E-02 -1.26635390E+01 
1,21667257E-02 0. -2,91148460E-02 -1.22600221E+01 
1.20642136E-02 0. -2.95076971E-02 -1.20796955E+01 
1.19616995E-02 0. -2.91151449E-02 -1.2 2 6 08 780E+01 
1.18548845E-02 0. -2.79278128E-02 -1.26651858E+01 
1.17395827E-02 0. -2.59221977E-02 -1.29069768E+01 
1.16117573E-02 0. -2.3076150E-02 -1.24378182E+01 
1.14676102E-02 0. -1.93751238Er02 -1.06729160E+01 
1.13040930E-02 0. -1.48589903E-02 -7.13481736E+00 
1.11202342E-02 0. -9.61680552E-03 -1.57928304E+00 
1.09193494E-02 0. -3.81463400E-03 5.93374460E+00 
1.07115781E-02 0. 2.29958606E-03 1.50484133E+01 
1.05155490E-02 0. 8.39800382E-03 2.51975647E+01 
1.03576838E-02 0. 1.40846392E-02 3.57283518E+01 
1.02679749E-02 0. 1.89166137E-02 4.60114189E+01 
1.02720775E-02 0. 2.24340442E-02 5.54780252E+01 
1.03810258E-02 0. 2.41976901E-02 6.35591085E+01 
1.05814C951-02 0. 2.383321112-02 6.95485724E+01 
1.08299(56E-02 0. 2.10801155E-02 7.24618991E+01 
1.10560321E-02 0. 1.58418914E-02 7.09909102E+01 
1.11753506E-02 0. 8.23158018-03 6.36509993E+01 



±49
 

50 1.11118726E-02 0. 1.39514209E-03 4.91702391E+01 
51 1.08237583E-02 0. -1.24284224E-02 2.70809163E+01 
52 1.03222844E-02 0. -2.40222635E-02 -1.64208996E+00 
53 9.67306355E-03 0. -3.51465125E-02 -3.41582972E±01 
54 8.97281262E-03 0. -4.46712635E-02 -6.58527922E+01 
55 8.30457539E-03 0. -5.14752709E-02 -9.11403898E+01 
56 7.68594871E-03 0. -5.45640712E-02 -1.04914601E+02 
57 7.03268932E-03 0. -5.31804874E-02 -1.04200410E+02 
58 6.15861785E03 0. -4.68914202E-02 -8.92744838E+01 
59 4.820710722-03 0. -3.564074682-02 -6.35513219E+01 
60 2.80065950 E-03 0. -1.97676631E-02 -3.20461907E+01 
61 0. 0. 0. 1.01907911E+00 
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STATION U22 V22 W22 M22 
1 -8.90431061E-02 0. 0. 1.01896513E+00 

2 -7.30274709E-02 -1.47056488E-02 1.90802936E-01 4.00389061E+02 
3 -5.982689482E02 -2.81948330E-02 3.68258957E-01 7.56210448E+02 

4 -4.94258779E-02 -3.93821705E-02 5.17653284E-01 1.01719279E+03 
-4.07019003E-02 -4.75223112E-02 6.27833896E-01 1.14673573E+03 

6 -3.22518435E-02 -5.23278785E-02 6.92788854E-01 1.13440683E+03 
7 -2.31462475E-02 -5.39431811E-02 7.12166139E-01 9.97377371E+02 
8 -1.32884908E-02 -5.28221558E-02 6.90661604E-01 7.733828819+02 
9 -3.31278379E-03 -4.9577S861E-02 6.36561711E-01 5.09255811E+02 

5.811766826-03 -4.48436764E-02 5.59912293E-01 2.49383911E+02 
11 1.32167244E-02 -3.91909742E-02 4.70780565E-01 2.72955045E+01 
12 1.84165903E-02 -3.30881266E-02 3.77941921E-01 -1.38195068E+02 
13 2.13749670E-02 -2.68956694E-02 2.88135857E-01 -2.42526636E+02 
14 2.24033374E-02 -2.08792292E-02 2.05865908E-01 -2.91979372E+02 

2.19890953E-02 -1.52271703E-02 1.336C7926E-O1 -2.99054597E+02 
16 2.065771188-02 -1.00665471E-02 7.22493148E-02 -2.78130674E+02 
17 1.87729674E-02 -5.47563787E-03 2.15960230E-02 -2.42279200E+02 
18 1.66994393E-02- -1.49364345E-03 -1.91696766E-02 -2.01592490E+02 
19 1.460876706-02 1.87146689E-03 -5.11428886E-02 -1.62214313E+02 

1.26064397E-02 4.636381918-03 -7.54764994E-02 -1.27584730E+02 
21 1.07417548E-02 6.83695614E-C3 -9.32717798E-02 -9.83517507E+01 
22 9.03222625E-03 8.52369422E-03 -1.05546956E-01 -7.37778267E+01 
23 7.48022923E-03 9.75798056E-03 -1.13248665E-01 -5.25283102 +01 
24 6.08279775E-03 1.06086897E-02 -1.17276720E-01 -3.33394079E+01 

4.83618762E-03 1.11488153E-02 -1.18502191E-01 -1.54188429E+01 
26 3.73657465E-03 1.14519095E-02 -1.17768973E-01 1.41458219E+00 
27 2.77808997E-03 1.15883464E-02 -1.15877499E-01 1.67979706E+01 
28 1.94954076E-03 1.16216106E-02 -1.13554875E-01 3.00159444E+01 
29 1.23136027E-03 1.16048978E-02 -1.11418357E-01 4.02329592E+01 

5.942149166-04 1.157828896-02 -1.09939291E-01 4.67022969E+01 
31 1.19329737E-07 1.15666698E-02 -1.09413405E-01 4.89179500E+01 
32 -5.9399097.7E-04 1.15784734E-02 -1.09941485E-01 4.67019157E+01 
33 -1.23118019E-03 1.16052611E-02 -1.11422694E-01 4.02320725E+01 
34 -1.94943272E-03, 1.16221409E-02 -1.13561249E-01 3.00143279E+01 

-2.77808065E-03 1.15890252E-02 -1.15885739E-01 1.67953403E+01 
36 -3.73668885E-03 1.14527109E-02 -1.17778836E-01 1.41063903E+00 
37 -4.83644820E-03 ,1.114970516-02 -1.18513354E-01 -1.54243809E+01 
38 -6.08322599E203 1.06096249E-02 -1.172887696-01 -3.33467974E+01 
39' -7.48084544E-03 9.75890899E-03 -1.13261091E-01 -5.25378040E+01 

-9.03305C65E-03 8.52455469E-03 -1.05559152E-01 -7.37897183E+01 
41 -1.07428C806-02 6.83767907E-03 -9.328303636-02 -9.83664228E+01 
42 -1.260774266-02 4.63689042E-03 -7.54860001E-02 -1.27602676E+02 
43 -1.46103387E-02 f.87167846E-03 -5.11497029E-02 -1.62236093E+02 
44 -1.67012931E-02 -1.49381483E-03 -1.91727513E-02 -2.01528586E+02 

-1.87751033E-02 -5.47627903E-03 2.159786836-02 -2;42309751E+02 
46 -2.06401051E-02 -1.006774236-02 7.225737986-02 -2.78165092+02 
47 -2.1991:6824E-02 -1.52289975E-02 1.336235956-01 -2.990911226+02 
48 -2.24060007E-02 -2.08817551E-02 2.058905746-01 -2.92014672E+02 
49 -2.13775249E-02 -2.68989433E-02 2.881707926-01 -2.42555611E+02 
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50 -1,84187998E-02 -3.30921733E-02 3.77988078E-01 -1.38211053E+02 
51 -1.32183037E-02 "-3.91957848E-02 4.70838332E-01 2.72999944E+01 
52 -5.81243829E-03 -4.48491961E-02 5.59981218E-01 2.49415844E+02 
53 3.31323694E-03 -4.95841015E-2 6.36640249E-01 5.09319862E+02 
54 1.329017-72E-02 -5.28292821E-02 6.90746958E-01 7.73479591E+02 
55 2.31491552r-02 -5.3949E540E-02 7.12254264E-01 9.97501776E+02 
56 3.22558814E-02 -5.23343576E-02 6.92874670E-01 1.13454815E+03 
57 4.07069894E-02 -4.75281994E-02 6.27911734E-01 1.14687849E+03 
58 4.94320548E-02 -3.938705252-02 5.17717513E-01 1.01731937E+03 
59 5.98343705E-02 -Z.81983293E-02 3.68304684E-01 7.563045442+02 
60 7.30365966E-02 -1.47074726E-02 1.90826646E-01 4.00438889E+02 
61 8.90542355E-02 -7.18922196E-17 0. 1.01907911E+00 

STATION W20X W22X' W2OXX W22XX 
a -1.86109762E-01 1.69265480E+00 2.05070256E-01 2.00151799E-Ol 
2 -1.52731005E-01 1.57825267E+00 2.86103633E-01 -9.80589652E-01 
3 -1.16233249E-01 1.40078721E+00 3.39572170E-01 -2.06167554E+00 
4 -7.51629285E-02 1.11246402E+00 3.64490476E-O1 -2.88100759E+00 
5 -3.28795391E-02 7.50581015E-01 3.60367627E-01 -3.32270110E+00 
6 7.30739294E-03 3.61423901E-01 3.28551207E-01 -3.34856371E+00 
7 4.23936411E-02 -9.11678781E-03 2.72927332E-01 -3.00356238E+00 
8 6.997359942-02 -3.24018S81E-01 1.99871953E-01 -2.39476093E+00 
9 8.84871362E-02 -5.60354187E-01 1.175029642-01 -1.65669974E+00 

10 9.735384822-02 -7.10490625E-0I 3.44978124E-02 -9,17067761E-01 
11 9.69640941E-02 -7.79873023E-01 -4.117931062-02 -2.72344780E-01 
12 8.85344974E-02 -7.82763033E-01 -1.033280612-01 2.22801749E-01 
13 7.38661510E-02 -7.3746E630E-01 -1.48129306E-01 5.53673738E-01 
14 5.506C20472-02 -6.622625602-01 -1.74258345E-01 7.35573166E-01 
15 3.42456203E-02 -5.72642541E-01 -1.82563101E-01 8.00770026E-01 
16 1.33601369E-02 -4.80051015E-01 -1.754737582-01 7.86513279E-01 
17 -5.995560172-03 -3.91795678E-01 -1.563381912-01 7.26435355E-01 
18 -2.26308991E-02 -3.11738192E-01 -1.288390472-01 6.45978678E-01 
19 -3.57798838E-02 -2.413149552-01 -9.657211972-02 5.61276822E-01 
20 -4.50759278E-02 -1.80552391E-01 -6.27886350E-02 4.80367134E-01 
21 -5.05034242E-02 -1.28873387E-01 -3.025416052-02 4.05558644E-01 
22 -5,23361954E-02 -8.56152245E-02 -1.16477463E-03 3.36009854E-01 
23 -5.106714742-02 -5.02704172E-02 2.29198844E-02 2.69901129E-01 
24 -4.733066012-02 -2.25151C95E-02 4.11341829E-02 2.05904145E-01 
25 -4.18200111E-02 -2.10965406E-03 5.333408502-02 1.43903662E-01 
26 -3.52051670E-02 1.12486807E02 6.00632429E-02 8.50963624E-02 
27 -2.80594619E-02 1.80604187E-02 6.24345594E-02 3.167628902-02 
28 -2.080509752-02 1.91106084E-02 6.19259728E-02 -1.36730378E-02 
29 -1.368608552-02 1.54953610E-02 6.01142322E-02 -4.83026303E-02 
30 -6.77335827E-03 8.59264914E-03 5.83896638E-02 -7.00295739E-02 
31 -1.28099958E-06 -9.40478538E-06 5.770308932-02 -7.74342077E-62 
32 6.77093272E-03 -8.61123860E-03- 5.83920030E-02 -7.00258005E-02 
33 1.36840594E-02 -1.5513272CE-02 6.01187408E-02 -4.82947724E-02 
34 2.08037045E-02 -1.912733202-02 6.19323180E-02 -1.36605409E-02 



35 2.80588881E-02 -1.80753739E-02 6.24422576E-02 3.16941071E-02 
36 3.52055345E-02 -1.12612G72E-02 6.00716800E-02 8.51201798E-02 
37 4.18213642E-02 2.10028927E-03 5.33425443E-02 1.43934045E-01 
38 4.73329557E-02 2.25096962E-02 4.11418809E-02 2.059415028-01 
39 5.10702496E-02 5.02697852E-02 2.29260154E-02 2.69945740E-01 
40, 5.23398764E-02 8.56202352E-02 -1.16098558E-03 3.36061974E-01 
41 5.05073708E-02 1.28884937E-01 -3.02533963E-02 4.05618630E-01 
42 4.50797566E-02 1.80571429E-01 -6.27914184E-02 4.80435511E-01 
43 3.57831641E-02 2.41342495E-01 -9.65787385E-02 5.61354200E-01 
44 2.26331847E-02 3.11775395E-01 -1.28849480E-01 6.460654012-01 
45 5.99642944E-03 3.91843419E-01 -1.56352039E-01 7.26530831E-01 
46 -1.33610343E-02 4.8011q25E-01 -1.75490196E-01 7.86014998E-01 
47 -3.42485130E-02 5.72713691E-01 -1.82580868E-01 8.00872407E-01 
48 -5.50651512E-02 6.62345129E-01 -1.74275786E-03 7.35666528E-01 
49 -7.38730005E-02 7.37560732E-01 -1.48144488E-01 5.53743813E-01 
50 -8.85428682E-02 7.8286886E-01 -1.03338959E-01 2.22830264E-01 
51 -9.697337762-02 7.799706002-01 -4.11840591E-02 -2.72378036E-01 
52 -9.73632433E-02 7.10579642E-01 3.45006479E-02 -9.17181240-01 
53 -8.84957142E-02 5.60424600E-01 1.17514136E-01 -1.65690520E+00 
54 -6.99803933E-02 3.24060C672-01 1.99891365E-01 -2.39505821E+00 
55 -4.23977475E-02 9.11876390E-03, 2.72953992E-01 -3.00393556E+00 
56 -7.30807043E-03 -3.61467986E-01 3.28583329E-01 -3.34898016E+00 
57 3.28827903E-02 -7.50673529E-01 3.60402854E-01 -3.32311486+00 
58 7.51703165E-02 -1.11260164E+00 3.64526167E-01 -2.88136709E+00 
59 1.162446732-01 -1.4C096086E+00 3'39605659E-01 -2.06193380E+00 
60 1.527460582-01 -1.57844E658+00 2.86132367E-01 -9.80713967E-01 
61 1.86128167E-01 -1.69286528E+00 2.05091820E-01 2.00174153E-01 

STATION NX20 NY20 NX22 NY22 NXY22 
I -4.27003039E+03 -1.351584862+03 -4.169015932+03 -1.319597512+03 -2.23187264E+04 
2 -4.064216402+03 -5.332C0981E+03 -1.66613286E+02 6.26714377E+03 -1.95453261E+04 
3 -3.37714006E+03 -8.365744372+03 3.71615523E+03 1.402313812+04 -1.76081687E+04 
4 -2.42938575E+03 -1.03720080E+04 7.49929425£+03 2.11220980E+04 -1.46462810E+04 
5 -1.497552482+03 -1.13664915E+04 1.05550344E+04 2.67224818E+04 -1.08542438E+04 
6 -8.04822677E+02 -1.14293995E+04 1.261729572+04 3.003815462+04 -6.50262129E+03 
7 -4.47337874E+02 -1.06792557E+04 1.36194109E+04 3.055718512+04 -1.929723252+03 
8 -3.86621531E+02 -9.25978969E+03 1.36579782E+04 2.82186119E+04 2.48795372E+03 
9 -4.98240165E+02 -7.337C4050E+03 1.29205064E+04 2.34532354E+04 6.38553889E+03 
10 -6.41997742E+02 -5.09815C8gE+03 1.16178044E+04 1.70746541E+04 9.46646939E+03 
11 -7.i8598211E+02 -2.74443877E+03 9.94268943E+03 1.00716883E+04 1.15482566E+04 
12 -6.93974291E+02 4.76566854E+02 8.05526466E+03 3.38241232E+03 1.25835847E+04 
13 -5.91729934E+02 1.525C9610E+03 6.08413171E+03 -2.27908768E+03 1.26523361E+04 
14 -4.66542021E+02 3.11925355E+03 4.13284049E+03 -6.505727362+03 1.19298862E+04 
15 
16 

-3.74207917E+02 
-3.49923770E+02 

4.2164840 0 E+03 
4.783438422+03 

2.28566176E+03 
6.109791022+02 

-9.190847122+03 
-1.04594777E+04 

1.06431397E+04 
9.02678721E+03 

17 -3.99698834E+02 4.8386C2832+03 -8.37596680E+02 -1.05741349E+04 7.28916146E+03 
18 -5.03952428E+02 4.44179293E+03 -2.021991722+03 -9.84632641E+03 5.59212668E+03 
19 -6.28820562E+02 3.68038622E+03 -2.92173154E+03 -8.57198265E+03 4.04482643E+03 R) 



20 -7.39598614E+0? 2.65517210E+03 -3.53615986E+03 -6.99573546E+03 2.70807466E+03 
21 -8.11515472E+02 1.46799996E+03 -3.88517453E+03 -5.29968743E+03 1.60495442E+03 
22 -8.34986350E+02 2.12480308E+02 -4.007C5004E+03 -3.60821173E+03 7.33395067E+02 
23 -8.14896701E+02 -1.03189937E+03 -3.95298490E+03 -2.00035746E+03 7.75432299E+01 
24 -7.65558684E+02 -2.20256351E+03 -3.77944156E+03 -5.23709516E+02 -3.83901715E+02 
25 -7.04100385E+02 -3.25422568E+03 -3.54033885E+03 7.93686732E+02 -6.72925490E+02 
26 -6.44928537E+02 -4.15758172E+03 -3.28117130E+03 1.93455763E+03 -8.10558067E+02 
27 -5.96814115E+02 -4.89688377E+03 -3.03621699E+03 2.88677090E+03 -8.17329540E+02 
28 -5.62743410E+02 -5.46676731E+03 -2.82872040E+03 3.64032816E+03 -7.14649243E+02 
29 -5.41632867E+02 -5.86862541E+03 -2.67297662E+03 4.18634649E+03 -5.26118866E+02 
30 -5.30672591E+02 -6.1068 814E+03 -2.57697678E+03 4.51736682E+03 -2.78160077E+02 
31 -5.27344328E+02 -6.18578545E+03 -2.54462006E+03 4.62829596E+03 2.57939538E-01 
32 -5.30671976E+02 -6.10695932E+03 -2.577C5998E+03 4.51731329E+03 2.78671261E+02 
33 -5.41631839E+02 -5.86874132E+03 -2.67314167E+03 4.18623641E+03 5.26615773E+02 
34 -5.62742352E+02 -5.46692548E+03 -2.82896457E+03 3.64015558E+03 7.15121731E+02 
35 -5.96813516E+02 -4.89706667E+03 -3.03653595E+03 2.88652720E+03 8.17766538E+02 
36 -6.44928850E-+02 -4.15776801E+03 -3.28155890E+03 1.93423176E+03 8.i094719BE+02 
37 -7.04101819E+02 -3.25439189E+03 -3.54078664E+03 7.93265502E+02 6.73252689E+02 
38 -7.65560975E+02 -2.20268593E+03 -3.77993815E+03 -5,24241070E+02 3.84150822E+02 
39 -8.14898970E+02 -1.03195622E+03 -3.95351536E+03 -2.00101533E+03 -7.73908428E+01 
40 -8.34987174E+02 2.12506610E+02 -4.00759535E+03 -3.60901151E+03 -7.3336719E+02 
41 -8.11513255E+02 1.46812C56E+03 -3.88571137E+03 -5.30064159E+03 -1.60506197E+03 
42 -7.39592261E+02 2.65538955E+03 -3.53666070E+03 -6.99684899E+03 "2.70834973E+03 
43 -6.28810306E+02- 3.68069279E+03 -2.92216522E+03 -8.,57324672E+03 -4.04529453E+03 
44 -5.03940539E+02 4.44216957E+03 -2.02232442E+03 -9.84771039E+03 -5.59281010E+03 
45 -3.99689844E+02 4.83901912E+03 -8.37793265E+02 -1.05755778E+04 -7.29007469E+03 
46 -3.49923886E+02 4.78385390E+03 6.10953220E+02 -1.04608810E+04 -9.02793115E+03 
47 -3.74223470E+02 4.21685088E+03 2.28583840E+03 -9.19207295E+03 -1.06444954E+04 
48 -4.66577147E+02 3.11952095E+03 4.13324601E+03 -6.50660414E+03 -1.19314093E+04 
49 -5.91784143E+02 1.52521542E+03 6.08478409E+03 -2.27942751E+03 -1.26539537E+04 
50 -6.94040987E+02 -4.76636093E+02 8.05617046E+03 3.38278478E+03 -1.25851962E+04 
51 -7.18665421E+02 -2.74472349E+03 9.94384079E+03 1.00728985E+04 -1.15497401E+04 
52 -6.42051866E+02 r5.0986603SE+03 1.16191760E+04 1.70767397E+04 -9.46769355E+03 
53 -4.98272441E+02 -7.33776436E+03 1.292ZC523E+04 2.34561186E+04 -6.38637825E+03 
54 -3.86635251E+02 -9.26069792E+03 1.36596286E+04 2.8220931E+04 -2.48830576E+03 
55 -4.47352913E+02 1l.0 6 8 03 QO3E+ 0 4 1.36210706E+04 3.05609648E+04 1.92992391E+03 
56 -8.04873731E+02 -1.143C5170E+04 1.26188470E+04 3.00418799E+04 6.50339429E+03 
57 -1.49767934E+03 -1.13676044E+04 1.05563471E+04 2.67258067E+04 1.08555614E+04 
58 -2.42961784E+03 -1.03730272E+04 7.50024509E+03 2.i1247382E+04 1.46480731E+04 
59 -3.37748139E+03 -8.36657151E+03 3.71665178E+02 1.40249042E+04 1.76103309E+04 
60 -4.06463862E+03 -5.33254283E+03 -3.66612457E+02 6.26794750E+03 1.95477296E+04 
61 -4.27047979E+03 -1.3517271CE+03 -4.16948156E+03 -1.31974489E+03 2.23214739E+04 

AREAC Ul, V1, WI)= 3.32926879E-02 

XTE= -1.37353058E+04 

XTD= 1.40413805E+00 
SENSITIVITY INDEX BY PRESENT THEORY B= 9.40435297E+00 
AREA1= 4.18255826E+01 p 
AREA2= 1.97430955E+02 
AREA3= 1.97430955E+02 
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'SENSITIVITY INDEX BY BUDIANSKY THEORY B= 2.39133287E+O0
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TABLE I.- ELASTIC CONSTANTS FOR MATERIALS USED IN
 

IMPERFECTION SENSITIVITY STUDY 

Constituent 

material 


Glass fiber 

Boron fiber 

Aluminum 

Epoxy 


Young's 

modulus, ksi 


10,500 

6o,ooo 

10,500 


500 


Poisson's
 
ratio
 

0.23
 
0.30
 
0.30
 
0.40
 

Properties of Helically Wrapped Layers (see refs. 33 and 35)
 

Material 


Glass-epoxy 


Boron-epoxy 


vf M Ex, ksi Ey, ksi x y Gxy, ksi 

o.65 0 7,000 2,562 0.283 0.104 709 
15 6,102 2,419 0.420 0.167 1,o54 
30 3,878 2,117 0.649 0.354 1,744 
45 2,270 2,270 o.6oo o.6oo 2,089 
6o 2,117 3,878 0.354 0.649 1,744 
75 2,419 6,102 0.167 0.420 1,054 
90 2,562 7,000 o.±o4 0.283 709 

0.0 0 -30,250 2,030 0.346 0.023 525 
15 23,800 1,900 1.179 0.094 2,339 
30 7,762 1,608 1.655 0.342 5,967 
45 1,977 1,977 o.844 o.884 7,782 " 

6o 1,608 7,762 0.343 1.655 5.967 
75 1,900 23,800 0.094 1.179 2,339 
9o 2,030 30,250 0.023 0.346 525 



* TABLE II.- TEST CYLINDER CONSTITUENT PROPERTIES
 

Young's Poisson's Density
 
Material moaulus, ksi ratio lb/cu. in.
 

ERL-2256 635 O.140 O.O445
 
epoxy
 

TYPE E 
glass fiber 10,500 0.23 O.030 

*Curea at 2500 F for 2 hours. 



TABLE III.- TEST CYLINDER DIMENSIONS AND S(ERIMENfAL RESULTS
 

(Inside diameter, 30 in.; length 30 in.)
 

t , _\ _\ pc 
Cylinder Type* deg in. Vf vr v EXexp, ksi Xexp, ksi lb/in. it/p. 

1 H + C 15 0.0796 53.8 42.1 4.1 4,780 0.165 567 711
 
2 H + C 15 0.0948 55.1 40.2 4.7 4,540 0.233 8o4 ±o43
 
3 H + C 30 0.0722 47.8 5o.4 1.8 3,310 0.2- 360 511
 
4 H + C 30 0.0717 47.2 50.3 2.5 3210 0.2F9 322 511
 
5 H + C 45 0.0720 53.1 43.6 3.3 2,560 0.-- 430 501
 
6 H + C 45 0.0697 55.0 41.4 3.6 2,750 0.229 404 501
 

Co 7 H 15 0.0943 45.9 50.4 3.7 5,060 O.73_ 717 789
 
8 H 15 0.0974 54.5 41.6 3.9 5,620 o.484 711 1037
 
9 H 30 0.0765 43.o 48.6 8.4 3,280 0.562 386 464
 

10 H 30 0.07Q4 51.9 44.1 4.o 3,500 o.6o5 341 447
 
11 H 45 0.0670 57.2 36.3 6.5 2,780 0.427 54l 386
 
12 H 45 0.0669 52.7 41.1 6.2 2 180 0.512 311 386
 

*H + C -'helically and circumferentially wrapped.
 

.H - helically wrapped.
 


