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SUMMARY

This report describes the state of the art in sequential processing
techniques for trajectory estimation as seen by the authors. Some of the
material presented is a tutorial interpretation and summary of well known
results; other material is new. A major topic discussed is the effect of
nonlinearities, with the aim of developing and justifying practical algori-
thms for treating the problem. Since nonlinear, maximum likelihood esti-
mation theory has been successfully used in orbit determination.for some
years, this approach has been emphasized over the more recently suggested

nonlinear minimum variance technique.

Section 1 is the Introduction, and outlines the technical problems
to be discussed. Section 2 describes the minimum variance estimation
technique and some of the approximations which have been suggested in order
to make the algorithm practical. Section 3 discusses maximum likelihood
estimation, control, and error analysis of the form presently employed for
orbit determination. Section 4 derives the maximum likelihood estimator
for unknown acceleration (state noise), and develops a practical algorithm
for solving the problem. Section 5 discusses some nonlinear and numerical
properties of sequential orbit determination algorithms, and derives a
theorem which is fundamental to some forms of sequential estimation.
Section 6 analyzes estimation in the presence of a slight nonlinearity, and
compares several reasonable estimators. Section 7 treats orbit parameters
which, for some reason such as computer limitation, have not been included
in the estimation process (systematic errors). Section 8 discusses the
treatment of correlated data which does not have the usually assumed

Markoff property.

This report describes the work of six individuals. Sections 1 and 3
were contributed by C. G. Pfeiffer; Head, Mathematical Physics Section,
Guidance and Analysis Dept., TRW Systems Group. Section 2 by R. E.
Mortensen; Assistant Professor of Engineering, UCLA, and consultant,

TRW Systems Group. Section 4 by C. G. Pfeiffer and D. D. Morrison; Staff
Engineer, Analytical Research Operations, TRW Systems Group.  Section 5 by
D. D. Morrison. Section 6 by J. V. Breakwell; Professor of Enéiﬁeéring,

Standford University, and consultant, TRW Systems Group. Sectien 7 by

vii




W. H. Berry; Member of the Technical Staff, Guidance and Analysis Dept.,
TRW Systems Group, and C. G. Pfeiffer. Section 8 by M. H. Merel; Member
of the Technical Staff, Guidance and Analysis Dept., TRW Systems Group.
Attempting to maintain continuity between the rather diverse subjects
treatea, compilation and minor revision was done by C. G. Pfeiffer.

Editing and typing was performed by D. A. Henderson.

In order to avoid duplicate publication, not all of the analyvsis
completed under this contract has been included here. Thus to complete the
discussion on sequential processing techniques the reader should refer to
"Mathematical Problems of Modeling Stochastic Nonlinear Dynamic Systems"
by R. E. Mortensen, issued as NASA Report CR-1168, and '"On the Identification
of Observable Orbit Parameters, with Application to Lunar Orbiter Tracking'"
by C. G. Pfeiffer, which is scheduled to appear in the January-February
1969 issue of the Journal of the Astronautical Sciences. (The latter work
was also partially supported by NASA contract NAS 9-4810, administered by
Manned Spacecraft Center, Houston, Texas). In addition, two other papers
not covered by this contract should be considered as part of this discuss-
ion: "Maximum Likelihood Recursive Nonlinear Filtering" by R. E. Mortensen,

published in Journal of Optimization Theory and Applications (Vol. 2, No. 6,

1968, pp 386-394), and '"Methods for Nonlinear Least Squares Problems and
Convergence Proofs" by D. D. Morrison, published in the Jet Propulsion
Laboratory Tracking and Orbit Determination Seminar Proceedings (February

23-26, 1960, Pasadena, California).
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1. INTRODUCTION

In the orbit determination problem we are given a nonlinear dynamic

system of the form

dx dw

- = + (— <T 1.1

o= £x(0), u(e), ©) + (D 0st (1.1)
where x is the state vector, consisting of position and velocity of the
spacecraft plus any parameters which affect the acceleration of the vehicle
(in which case Ezi = 0, X, = constant); u(t) is a control (guidance) to be
applied, such as one or more acceleration impulses to be supplied by the
spacecraft engine; and %% is state noise, such as random solar wind or
leakage of the spacecraft attitude control system. We know that sometime

during the flight we will be given a sequence of data points

z(W) = [z(t ), z(ty) -+ z(ty)] (1.2)

and that this data will be used in some way in real time to predict
(estimate) the state at the final time T, x(T), or at some earlier time.

It is feasible to do this, for if (1.1) is thought of as a discrete equation,
so that there are a finite number of state disturbances dw(ti), then we can

model the data as
z(N) = HN(X(O), dw) + n(N) (1.3)

where x(0) is the initial condition, dw is a vector of state disturbances

up to t and, n(N) is data noise. Thus, via (1.1), (1.3) and the assumed

N’
apriori statistics of x(0), dw, and n(N), a statistical relationship

between z(N) and x(T) can be derived, and, given z(N), a meaningful estimate
of x(T) can be obtained. If such an_estimate is made at tK < tN’ based upon
a partial set of data z(K), and the estimate is later revised at tJ > tK’
based upon the larger data set z(J), the estimation procedure is said to be
sequential. Sequential estimation is almost always required for space
missions, for the guidance corrections must be applied before-a%i‘th;‘data
has been obtained.  §ff




The ultimate sequential estimation procedure is to revise the estimate
of x(T) after each new data point Z(ti) is obtained. It is in general neither
necessary nor practical to do this, but, for the special case of linear
systems with Gaussian, white disturbances n and dw, Kalman has shown [1],[2]
an elegant way to do this. His work was generalized in [3] to obtain for
an arbitrary stochastic process the necessary and sufficient conditions
which must apply (i.e., the wide sense Markoff property) if the procedure
is to yield the minimum variance estimate. It was then pointed out in [4]
that, if the necessary and sufficient conditions apply, the stochastic
process can always be modeled as a linear dynamic system with white Gaussian

disturbances.

Thus in the nonlinear case it is not at all clear how to do sequential
estimation. Several approaches have been tried or suggested:

(1) apply the linear Kalman filter, hoping that enough data will
be obtained to cause the estimate to converge to a reasonable
answer

(2) apply a modified form of the linear Kalman filter which includes
nonlinear correction terms

(3) calculate the true minimum variance estimate, which is the first
moment of the conditional probability density function of the
state, given the data

(4) derive some approximation to the true minimum variance estimate

(5) calculate the true maximum likelihood estimate by iterating over
all the available data to find the root of the differentiated
likelihood function ,

(6) derive an approximation to the true maximum likelihood estimate

Methods (1) and (2) sometimes work, but theoretical justification is lacking
and counterexamples can be constructed where such an approach is poor.

Method (3) is elegant and intuitively satisfying, but is at present not
practical because a multidimensional, nonlinear partial differential equa-
tion must be solved. Method (4) is another way of arriving at Method (2),
and suffers the same limitations. Method (5) is presently used in orbit
determination work, where a sequential estimate is needed at only a few times
during the mission. This approach has been highly successful, but has the

potential disadvantage for future applications that some time and computer




S

capability is required in order to find the estimate. Method (6) has
received little attention, mainly because Method (5) has been available and

the computational load and time lag have not been an important factor.

In this report we discuss certain questions arising in nonlinear sequen-
tial orbit determination. In so doing we will have in mind the following

problem areas:

(1) stochastic modeling - It is not at all clear what meaning can be

given to a solution of the nonlinear differential equation (1.1) when state
noise (%%) is present. This question, which requires that the analyst take

a position on the 1to vs. Stratonovich calculus, has been treated under this
contract and is discussed in [5]. We shall not repeat that work here; suffice
it to say that the Stratonovich interpretation will be assumed unless it is
stated otherwise .

(2) minimum variance vs. maximum likelihood estimation - Either of

these well known estimators could be employed, depending upon factors such
as ease of mechanization for a particular problem and personal taste. These
two forms will be discussed in Sections 2 and 3.

(3) combined estimation and control - Although this report is primar-

ily devoted to the estimation problem, it is well known that the combined
estimation and control problem leads to some new and puzzling consideratioms.
For example, the partial differential equation of Method (3) above should

be modified so as to obtain the equivalent of the dynamic programming
solution. The combined problem is discussed in Section 3 from the maximum
likelihood point of view in an attempt to justify the presently employed
procedure in orbit determination and guidance work.

(4) the effect of nonlinearities - This question, which is central to

this report, is discussed from various points of view in Sections 2 - 6.

(5) numerical considerations — It is well known that even in linear

systems numerical roundoff error can cause the estimate to diverge from
the true value. This question is discussed in Section 5.

(6) convergence properties - If one is willing to iterate=over some .-

or all of the data in order to get an estimate, it needs to-bﬁ?sﬁown that
the chosen algorithm will converge and that the converged answer will be

unique. This question is discussed in Section 5 and in Reference [6].

-3-




(7) selection of observable orbit parameters - Whatever algorithm is

employed, it is clear that the number of orbit parameters (i.e., initial
condition components and acceleration parameters) should be restricted to
the minimum required to model the data, that is, only the '"observable"
parameters should be estimated. This question was treated under this
contract, and is discussed in Reference [7].

(8) consideration of systematic errors - As a practical matter, it is

usually true that some of the observable parameters are left out of the
model because of, say, computer limitations. The treatment of these unes-
timated parameters, which are called systematic errors, is discussed in
Section 7.

(9) treatment of correlated data - Derivations of orbit determination

algorithms usually assume uncorrelated (white) data noise, supposing that
correlated data could be easily incorporated as part of the model of the
dynamic system. This is not necessarily true, especially if the data noise
is not a first order Markoff process. This question is discussed in

Section 7.




2. MINIMUM VARIANCE ESTIMATION

2.1 INTRODUCTION

The various techniques of sequential stochastic estimation have their
origins in the early least-squares differential correction schemes for orbit
determination. One justification for these early schemes is the theory of
maximum likelihood estimation to be discussed in Section 3. An account of
the development of orbit determination methods is given in the paper by
Mowery [8]. The nonlinear minimum variance sequential estimator follows
from the suggestion of Stratonovich [9] that the fundamental entity in
sequential estimation is the conditional probability density function
p(E,tIy[t t]) for the current state (£) being estimated, given the record
of the obgérvational data (y[t t])' In Sections 2.3 and 2.4 the partial
differential equations for thig’function are discussed. The basic problem
is to make inferences concerning the behavior of a certain Markov stochastic
process, using only the information to be gleaned from a knowledge of a

model for generating the process together with the past history of obser-

vations of a related process.

In other words, we are given a model which generates two related
stochastic processes. The problem is to compute the conditional probability
distribution of the current state of the first process, given the past his-
tory of observations of the second process. Stratonovich [20] attacked this
problem in accordance with the standard approach used in the study of
Markov processes, namely, to find a partial differential equation for the
transition probability density function. Stratonovich derived a nonlinear
stochastic partial integro-differential equation which he asserted is obeyed
by the conditional probability density for the current state of the first
process given the record of observations of the second process. Somewhat

[10]

later, the same equation was rederived by Kashyap .

[11
Still later, Kushner published.a paper ] in which he claimed

Stratonovich's results were in error because of a failure to take into
account certain second order terms. This issue arises because the observed
process contains additive white noise. As a consequence, the partial diff-
erential equation for the conditional density effectively contains a white

noise forcing term. This means that certain mathematical pathologies arise

-5~




in dealing with this equation. 1In a revised version[lz] of his paper,
Kushner clarified this issue somewhat and effectively recognized that the
discrepancy between his results and those of Stratonovich is related to the
divergence between the Ito and Stratonovich stochastic calculi[S]. In a
correspondence item, Bucy[l3] emphasized the importance of the Ito calculus
and presented some results which are equivalent to some of those of Kushner.
The subject of nonlinear filtering has been the topic of a number of
reports and papers (See References 14-27) since Bucy's note[l3]. The purpose
of this Section is to present a tutorial discussion of the main results
which have been obtained so far, attempting to resolve some questions which
have arisen concerning these works, and to discuss some suggested approxi-

mations intended to simplify the calculation of the nonlinear minimum var-

iance estimate.
2.2 THE MODEL AND THE PROBLEM

In this Section, the problem and the main results will be stated first
in Stratonovich form, in order to be as intelligible as possible to those
not familiar with the Ito Calculus. Following that, the same material will
be presented in Ito form. See Reference [5] for an explanation of the
Stratonovich and the Ito stochastic calculus. For simplicity, only the case
of scalar-valued random processes will be treated in detail, since the

generalization to the vector-valued case is quite direct.

Consider a plant described by a nonlinear differential equation with

a white noise forcing term:

x(t) = £ (x(t), t) + n, {t) (2. 1Y

The state x(t) is not directly observable. Rather, in general one observes
a nonlinear time-varying function of x(t) which is corrupted by more white

noise:

¥ (e) = holkit), ) n, () £2:2)

At the initial time ks the initial state has a probability distribution
which has a density function denoted as po(g). One knows the function
po(g), and also one knows the history of y(t) over the interval t sTSt.

Denote the record of this function over the whole interval as y[t N
o’

6




In Reference [5], it is explained that the Markov stochastic process
generated by equation (2.1) is characterized by its transition density
function p(E,tln,s). This density function is obtained as a solution to

the Fokker—Planck—Kolmogorov partial differential equation.

The problem is to find out how this density function is modified when
one conditions only on the information contained in the record of observations

y[t £] rather than on any exact knowledge of the state at some time prior
o’ .

to t.

Define the conditional density function p(E,t[y[t t]) by
o’

P(E,t[y[to’t})di = Pr é < x (t) < £+ 4 Iy[to,t]$° (2.3)

The problem, then, is to compute this function.
2.3 THE PARTIAL DIFFERENTIAL EQUATION FOR THE CONDITIONAL DENSITY

We assume explicitly that the noise terms ny and n, in (2.1) and (2.2)

are gaussian and independent, and that

E = OVtaT;

{nl(t)$ - {n2<t)} -0 ; E{nlmnz(r)

E }nl(t)nl(1)§ = §(t-1) ; E {nz(t)nz(r)g = §(t-1) (2.4)

Let p(&,t|n,to) be the transition function for the Markov process
generated by (2.1), and let P, be the probability density for the initial

state. For convenience, define the function q(&,t) by

co

q(E,t) = fp(E,tln,tO) po(n) dn (2.5)

-_—00

Let Ex denote mathematical expectation taken over the space of sample
paths of the x(t) process alone, i.e., Ex denotes averaging over-only the

ensemble of realizations of solutions of (2.1). Let B(X[to,t]’ y[to,t])

i

¥




denote the quantity

E
B(X[to,t]’ y[to,t])= exp-{/ [h(X(T),T)Y(T) - il— h2 (x(r),r)] d’l'} (246)
E
o
Let r(g,y[t t] ,t) denote the quantity
L
r(E,y[to,t],t) = Exge(X[to’t]’y[to’éplX(t) - E}q(é,t) ¢2:7)

It is shown in References [14] and [19] that the sought-for quantity in

(2.3) may be written

r(g,y [to’t] gie)

P(é,t|ylto,t] Jod | e
r(E,Y[to’t] yt) dE (2.8)

-00

So far, all the equations we have written have the correct form
regardless of whether the Ito or the Stratonovich calculus is to be used.
However, from this point on it makes a difference whether the integral in
the exponent in (2.6) is interpreted as an Ito integral or a Stratonovich
integral. We will proceed from this point following the Stratonovich

approach.

It is shown in Reference [19]that r(g,y[t t],t) satisfies the forward
O’

equation
2
S ) AL Bl ol e
oo~ L [feor] + 3 —3€2+[h(£,t)y(t) > h (E,t)]r (2.9)

Now define

b (t)

Sl

r(E,Y[to’t],t)dg ¢2..10)

- 00
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Equation (2.8) becomes

(2.11)

_ -1
p(ez,tly[t ’t}) = D) r<a,y[t <] t)
o) o)
Employing the usual rules of calculus, one has
ap _ ~1 sr -2 : 2,12
5t LN CO B (e P(e) ot (2.12)
After some manipulation and the use of (2.8) - (2.12), one arrives at

the following forward equation for p(E,t,y[t t]):
o,

2
3P . _ 2 lap - 1,2
Tt 5t [f(g,t)p] + 5 agz + [h(g,t)y(t) 5 b (E,t)J P

@©

- 7 f[h(a,t)y<t> - —ﬁ—hzaz,t)J p(a,tly[t t]>d€ (2.13)
o’

—00

In general, the solution of the nonlinear filtering problem requires

that (2.13) be solved in real time, as the data y(t) is received. The

boundary conditions on (2.13) are

lim p(g,t|y[to’t]) = PO(E)

t >t
(o]

(2.14)

where po(E) is the apriori density for the initial state at time to’ and

lim p(a,tly[to,t]) = 0 (2.15)

IEI ->00

The minimum mean—-squared error Bayes estimate of the current state

is given by

0

(2.16)

®(t) = E {X(t)ly[to’t]é =[ £ p(E,tly[to,t]) de

-0

—9-




In general, it is not possible to find an ordinary differential equation

obeyed by x(t) and forced by y(t) which can be solved directly without first

finding p(E,tIy[t t]), because direct differentiation of (2.16) leads to an
o’

ordinary differential equation for x(t) which involves the unknown higher

moments of p(E,t'y[t t]). In the special case when both f(£,t) and h(g,t)
o’

are linear in &, then p(E,tly[t t]) will be gaussian. In this case, one
O’

may assume

2

P(istly[t ,t] JISE [2” o (t)]—l/2 exp {— (2.17)
0

[t - x)? }

262 (t)

Substitution of (2.17) into (2.13) and matching coefficients of
powers of (£-x) leads eventually to the well-known Kalman-Bucy filter equa-
tions for %(t) and oz(t). The same approach applies when ﬁ(t) is a vector
and oz(t) is a matrix. See Reference [15]for a typical derivation of the
Kalman filter using this approach. 1In carrying out this approach, of course,
the differentiation of (2.17) with respect to t and substitution in (2.13)
is all done according to the rules of ordinary calculus, i.e., x(t) is
treated just as if it were a deterministic function of t rather than a ran-

dom process.
2.4 THE ITO FORMULATION

In order to recast these results in Ito form, it is necessary to begin

by rewriting equation (2.3). Let

f:: (=
wz(t) = f nz(T)dT SRz (= fy(r) (< i (2.18)
to to
and rewrite (2.2) as
dz(t) = h(x(t),t) dt + dwz(t) a (2.19)

The segment z[t t] contains exactly the same information as y[t £]? SO now
(o) o’
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one conditions on z rather than y[t 7 In place of the quantity
0’

([t st]
defined in (2.3), we write pI(E,tlz[t t])' The subscript I stands for Ito.
0’

The quantity defined in equation (2.6) is now replaced by

t t
BI(X[to,t]’ z[to,t] ) = exp [ h(x(t),t)dz (1) -% [ h2(x(1),1)dtr}
O (o]

(2.20)

In (2.20), the first integral in the exponent is to be interpreted as an Ito

integral.

In analogy to (2.7), define

to,t]’t) = Ex {BI(X[to,t]’z[to,t] ) | x(t) = &}iq(g,t) (2.21)

rI(g,Z[
In analogy to (2.8), we now have

r. (&,z ,t)
pI(E_,,t|z[to’t] )y = OO,I, [to’t‘]

/ rI(g’z[to,t] ,t£)dE (2.22)

-0

It is shown in Reference {19]that by applying the rules of Ito calculus

to (2.20) and (2.21), it is possible to obtain the following forward equation

for rI(F,,z[t ] ,t):
o
3 1 aer
ar; = |- 7 [f(&,t)rl] + oz = dt + h(E,t)r dz(t) (2.23)

It should be noted that equation (2.23) is not obtained from equation (2.9)
just by making the formal change of varijables indicated by (2.18) and (2.19).
The two equations are different because the partial differential with respect

to t in (2.23) is an Ito differential, whereas the partial derivative with

'8
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\f-h’y“ .
IR

respect to t in (2.9) is understood in the Stratonovich sense. Now define

lPI(t) = f T (&, z ],t)dé (2.24)

Equation (2.22) becomes

| pI@ »t z[to,t])

(2.25)

e R4

(t) r; (&,z[t t] ,t)

Employing the Ito stochastic differential rule along with (2.24) and (2.25),

one obtains © 2
d,.p = w_l dr - ¢—2 r.d_¢_ + ¢_3 r h(g,t)rdg -
tl I t I I't'I I i
w}z hr/ h(g,t)r dg|dt (2.26)

Define
o0

;l(t) = /h(g,t) Pi(g’tlz t ,t)dg = l1(’_1(1:) /h(f;',t) r(ggz[t ’tJ ’t)dg
° ° (2.27)

-00

-Q0

Equation (2.26) may be rewritten
-1 -2 ) [A
= - - dt 2.28)
dp wI dtr wI rIdtwI + pIh(t) h(t) h(E,t)J (
Equation (2.28) should be compared with the corresponding Stratonovich form,

which is equation (2.12). After some manipulation and the use of (2.23) -
(2.25) and (2.28), one arrives at the Ito form of the forward equation for

PI(E,tlz[to,t]):

2

3 p
! _'a_[ ] 1 1
4 dth = 3% f(E,t)pI + 5 5 dt
Y o
IR
o + [h(g,t) - h(tD] [dz(t) - h(t) dt] (2.29)
75y
iy ~12-
LAY
e



Again in the special case when both f(£,t) and h(g,t) are linear in

£, in exact analogy to (2.17) one may assume

[Zﬂcz(t)]—llz exp _.'k_:~3££2L_E. (2.30)

pI(g’tlz[to’t] T 202(t)

Substitution of (2.30) into (2.29) and matching coefficients of powers
of (£-X) will again lead to exactly the same well-known Kalman-Bucy filter

equations for x(t) and oz(t), provided one uses the Ito calculus for comput-

ing the stochastic differential with respect to t. This is a point which

can lead to controversy (for example, see Reference [15]). For examples of
. . , ~oL 2 . .

such a derivation in the case where x is a vector and ¢~ 1is a matrix, see

References [24], [25], and [26]. The extension of this derivation to the non-

linear case is also discussed in these references.
2.5 THE ONE-DIMENSIONAL LINEAR PROBLEM
In the linear time-invariant case, equations (2.1) and (2.2) become

x (t)

ax (t) + nl(t) (2.31)

1l

y (t) c x (t) + n,(t) (2.32)

where a and c are constants.

The Stratonovich form of the partial differential equation for the
conditional density is equation (2.13). 1In the present case, this equation

becomes

2
BT=-§-€(a£p) +%§E§+[c€y(t) -%‘-czizl P

- p/ [egy(t) - % c%e?] pde (2.33)

As suggested in Section 2.3, we assume a solution of the form of
equation (2.17), and substitute it into the partial differential equation
in order to obtain ordinary differential equations for x(t) and oz(t).

When this is done, the resulting equations are
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) - ag() + () [y(t) - oi(t)] (2.34)
g_t [cz(t)] =1 + Zaoz(t) - czdh(t) (2.35)

A boundary condition must be imposed on the solution of the partial diff-

erential equation, as given in equation (2.14). In the present case, let
us take
= - (2.36)
p.(8) = 6(€ - x_) |
i.e., the initial state x(to) = X is non-random and known exactly.

In order to satisfy this boundary condition, we must apply appropriate
corresponding initial conditions to equations (2.34) and (2.35) above. The
correct initial conditions are

i(to) = X (2.37)

0 (2.38)

i)

cz(to)

Equations (2.34) and (2.35), subject to (2.37) and (2.38), may be solved by

standard methods. The solutions are found to be

2,y _ sinh A (t - t,) _ 2.39)
a"(t) = v—5mm ME =T ) - = simh AT -E) (
t
»_ +e [ osinh A(T -t )y (t)dr
A (o] O
x(‘t‘,) = tO

A cosh A(t - to) - a sinh A (t - t) (2.40)

where

A= Vat g et (2.41)

Equation (2.40) makes it clear that a sufficient statistic on the past

history of the data is the linear functional

t
[ sinh A(T - to) y(t)at

o
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2.6 A ONE-~-DIMENSIONAL NON-LINEAR EXAMPLE

In order to understand the nonlinear case, it is cbnvenient to have
at hand a nonlinear problem for which the exact solution is known. Using
the preceding results, we can manufacture such a problem, Our idea is to
construct a nonlineér problem which is actually equivalent to the preceding
linear one by making a suitable nonlinear transformation of the state vari-

able in both the plant and the observation equations.

Consider the nonlinear change of variables
v(t) = sinh [x(t)] (2.42)

This particular nonlinearity has already been discussed in pp. 14-20 of
Reference [5], so we expect that its introduction is going to cause a diver-
gence between the Stratonovich and Ito forms of the nonlinear filtering
equations. Although this makes the problem more subtle, no actual paradoxes

will arise so long as we remember the content of Reference [5].

Let us continue using the Stratonovich form of the equations. The

plant equation (2.1) now becomes

v(t) = a 1+ vo(t) sinn™t {v(t)]

Y14 vE(t) n, (t) (2.43)
The observation equation (2.2) now becomes

g(t) = c sinh™ T [v(£)] + n, () (2.44)

Thus, equations (2.43) and (2.44) along with the nonlinear change of variables
R
x(t) = sinh [v(t)] (2.45)

are completely equivalent to equations (2.31) and (2.32). However, we can
pretend that we were given only eqs. (2.43) and (2.44), and asked to find

the optimal nonlinear filter for this model.

Let us write down the exact answer. Since the minimum variance Bayes

estimate is the conditional mean, we have

-15-



¥(6) = £ {v(t) | y, , t] }
(0]

=B {sinh [x (£)] | Tt t]}
[¢]

= f sinh € P(E,t | Y[t t]) g
=00 o’
o LR,
= [2ma® (2)1 1/2f sinh € e 2090t qe e

In' (2.46)", cz(t) and x(t) are of course still given by (2.39)" and (2.40)

respectively.

Making use of a known result, we have at once from (2.46) that

= /2 @ = [era glay®
[2x o ¢t)] / L sinh € e Zdzgt) dg

2
1/2ac)
= e sinh X(t) (2.47)

For emphasis, let us review what we have done up to this point. We
know the optimal estimate %(t) for the linear filtering problem defined by
(2.31) and (2.32). We make the nonlinear change of variables (2.42). By
(2.46) and (2.47), we therefore find that the optimal estimate G(t) is

2
() = e Y2970 gunn [x(2)] et
This is, therefore, the exact solution to the nonlinear filtering problem
defined by (2.43) and (2.44).
2.7 THE FILTER EQUATIONS

We now wish to explore whether this optimal estimate G(t) can be
obtained as the solution to some nonlinear filtering equations analogous to
the linear filtering equations (2.34) and (2.35) for x(t). 1In the present

case because of the fact that the quantity

-




Y

t
~/ﬂ sinh A(t -~ t ) y(7)ax
o

t

o
is a sufficient statistic for computing x(t), it is also a sufficient stat-
istic for computing v(t). Consequently, in the present case there will
exist some exact nonlinear filtering differential equations whose solution

is v(t).

This is to be contrasted with the general nonlinear filtering problem
in which there does not exist a sufficient statistic, and comsequently
there are no exact (finite dimensional) nonlinear filtering equations. In
the general case, the only exact equation would be the partial differential

equation for the conditional probability density itself.

The most direct way to find the exact equations for G(t) is simply to
differentiate (2.48) directly, making use of (2.34) and (2.35). 1In doing
this differentiation, we must be careful to recall the discussion in
Reference [5]. If we differentiate (2.48) according to the rules of the
Ito stochastic calculus, then we will get an Ito stochastic differential
equation which must be solved by the rules of the Ito calculus in order to
get the right answer. On the other hand, if we differentiate (2.48)
according to the rules of ordinary calculus, the resulting differential

equation will be in Stratonovich form and must be solved accordingly.

We emphasize that we really are free to follow either route at this
point. The correct form for the conditional density for x(t) is gaussian,
with variance cz(t) and mean ;(t), as given by (2.39) and (2.40) respect-
ively. This gaussian conditional density is simultaneously the Stratonovich
solution of equation (2.13) and the Ito solution of equation (2.29), keeping

in mind that, in the present case,
£(g,t) = a3 h(g,t) = ct (2.49)

Furthermore, in the present case the Ito and the Stratonovich forms of the
equations obeyed by x(t) and cz(t) coincide; either way the correct equatiomns
are (2.34) and (2.35). Strictly speaking, of course, the change of notation
represented by equations (2.18) and (2.19) should be made in order to cast

equation (2.34) into the proper Ito form, but this does not alter the truth
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of the statements we have just made.

Let us continue, using the Stratonovich calculus for purposes of

exposition.

Differentiating equation (2.48) by the rules of ordinary calculus,

we have
1 2
~ 5 o (1) R
gzé%l = e2 sinh [x(t)] g;— %—oz(t)]
1 2
= o (t) -
+ e2 cosh [%(t)] dx(t) (2.50)

dt

Substitution of (2.34) and (2.35) into (2.50), simplification, and use of

the inverse of (2.48), namely

1 2
- -1 T2 0.
x(t) = sinh e v(t) (2.51)
yields finally
1 2
~ 2 ) _ - 5 o (t)_
dele) \/30 ® 1 3%ty {asim™t|e? v(t)J
2 -1]° % 0" (6), 1
+ co“(t)ly(t) - c sinh e v(t) j
29D [1+ 2a 07(0) - Foto)] (2.52:

Equation (2.52) along with equation (2.35) thus constitutes the
Stratonovich form of the optimal nonlinear filter for the nonlinear filter-

ing problem represented by the Stratonovich eqs. (2.43) and (2.44).

2.8 APPROXIMATIONS OF THE ESTIMATION EQUATIONS

The solution of the general minimum variance nonlinear estimation
problem is very difficult to mechanize. Consequently, it appears necessary
to search for'sub—optimal estimators which are easier to compute, and which

still possess near-minimum estimation error. Since the exact minimum vari-

ance sequential estimator is known for the linear problem with gaussian nois
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namely the Kalman-Bucy filter, one approach to sub-optimal estimation is to
attempt to find correction terms for the Kalman-Bucy filter for the case of
slight non-linearity. The remainder of Section 2 will be devoted to a

discussion of this approach to sub-optimal filtering.

The literature on this problem may be classified in several different
ways, according to the basic approach adopted for the estimation procedure
and the underlying assumptions about the model. The approach to the
problem may be either statistical or non-statistical. 1In statistical pro-
cedures, the existence of certain underlying probability distributions must
be postulated, and statistical-type estimates such as maximum likelihood or
minimum-variance Bayes are sought. In.non-statistical procedures, the
problem is viewed as one of choosing an estimate which achieves the optimum
curve fit to the actual data according to some criterion such as least-~
squares or Chebyshev. The underlying model may be either static or dynamic.
For dynamic systems, the state space may be either continuous or discrete,
and time may be taken either as a continuous variable or as a discrete

variable.

The compilation of a bibliography which is exhaustive in all of these
categories would be an enormous task, and consequently will not be attempted
here. A few isolated references to the literature will be given to illustrate
some of the categories. Most of the cited references themselves contain
fairly extensive bibliographies, so that the reader interested in a parti-

cular area should at least be able to find a lead.

It should be pointed out that much more of the published literature is
devoted to theoretical formulations than to actual numerical solutions of
particular problems. Consequently, it is not really possible to make a
meaningful comparison among the various possible approaches and models which
might be applied in a given situation. Therefore, there are only rather
vague guidelines available to aid the uninitiated engineer in choosing a
method of attack for his particular problem. Adding to the bewilderment
is the fact that established workers in the field tend to have developed
strong preferences for a particular approach, to the exclusion of all others,

which they can justify only on a subjective basis.

Any book on statistical estimation theory should serve for an initial
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orientation for static problems. One starting point might be the chapter

by Balakrishnan in Reference [28].

References [8] and [6] treat the subject as a least squares curve
fitting problem in discrete time. Section 6 is an interesting discussion

of one aspect of the subject from this same standpoint.

Reference [29] treats the subject as a problem of computing
maximum l1ikelihood estimates in continuous time, although it is also
possible to interpret the approach taken there as continuous time least

squares curve fitting.

Reference [21]discusses a problem of continuous-time minimum-variance
Bayes estimation of the state of a system with discrete state space. This
reference shows particularly clearly how the discrepancy between the Ito
and Stratonovich calculi appears in continuous-time stochastic estimation

problems, a difficulty which does not arise in discrete-time problems.

Finally, References[22]-[23]provide good starting points for investi-
gating the problem of finding minimum-variance Bayes estimates of the state

of continuous~time nonlinear dynamic systems with continuous state spaces.
2.9 EXAMPLES OF SIMPLIFYING APPROXIMATIONS

A close study of the simple example discussed in Section 2.7 should
enable us to resolve some questions about the validity of various plausible

approximations, at least in this special case.

The crudest approximation is complete linearization. This means we
expand all nonlinearities in the model, egs. (2.43) and (2.44), in Taylor
series, and retain only first order terms. The effect of this is to yield
approximate equations for the model which look exactly like the original
linear equations (2.31) and (2.32), with x(t) replaced by v(t). Naturally,
the exact Kalman filter for this approximate linearized model turmns out to

be given by equations (2.34) and (2.35) with x(t) replaced by G(t).

This approximation is tantamount to making the approximation
sinh [x(t)] = x(t) (2.53)

in (2.42) and so naturally we come out with the approximate estimate
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v(t) = x(t) (2.54)

It should be pointed out that the above procedure is not equivalent
to first deriving the exact nonlinear filter (2.52) and then linearizing
it. This can be seen by comparing eqs. (2.42) and (2.48). Whereas the
linearization of (2.42) yields (2.54), the linearization of (2.48) yields

1 2

. 39 (B,
vit) ® e x(t) : (2.55)

Consequently, linearization of (2.52) must lead to (2.55) rather than (2.54).

Another approximation frequently suggested is the so-called maximum
likelihood filter (e.g., see Reference [29]). Although this filter can be
obtained through a formal derivation from basic assumptions, it amounts to
just retaining the form of the Kalman filter, eqs. (2.34) and (2.35), but
replacing the linear terms in eq. (2.34) by the corresponding model non-
linearities from (2.43) and (2.44). 1In the present case, the result is of

the form

W) o, V1195 sinn Tt [5(0)]

dt

+ coz(t) gy(t) - c sinh—l [v(t)] (2.56)

Although this resembles (2.52) somewhat, it is simpler.

Incidentally, it should be pointed out that according to maximum like-
lihood estimation theory, if it is known that %(t) is the maximum likelihood
estimate of x(t), and if it is known that equation (2.42) connects v(t) and

x(t), then mnecessarily the maximum likelihood estimate of v(t) is given by
v(t) = sinh [x(t)] (2.57)

Thus, we may compare equations (2.48) and (2.57) to see the theoretical
difference between the minimum variance Bayes estimate and the maximum

likelihood estimate.

This comparison is meaningful in the present case only because of the

fact that, for the linear, gaussian problem to which the Kalman filter applies
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exactly, the minimum variance and maximum likelihood estimates coincide.
Thus, the x(t) given by (2.40) is simultaneously the minimum variance and

maximum likelihood estimate of the x(t) generated by (2.31).

Incidentally, equation (2.56) should not be taken too literally. It
is only intended to indicate the form of the filter equations which results
when the procedure described in Reference [29] is applied to the nonlinear
system (2.43). However, this procedure encounters difficulties which do
not occur in Reference[29], because of the coefficient VvV 1 + VE(t) multi-
plying nl(t) in (2.43). As pointed out in Reference [5], the presence of
a state dependent coefficient multiplying white noise immediately leads to
the Stratonovich-Ito divergence. As a matter of fact, the correct form of
the likelihood functional, given by eq. (5) of Reference [29], is no
longer clear when there are state dependent nonlinearities. Therefore we
should say only that the procedure described in Reference [29], when extra~
polated in a plausible way, appears to lead to a filter equation having

the form represented by eq. (2.56).

For the same reason, the coefficient 02(t) in equation (2.56) is
probably not the same function given by eq. (2.39) and obtained as a
solution of eq. (2.35). The procedure described in Reference [29] can be
made to lead to a differential equation of Ricatti type for this coefficient,
but it will contain terms which depend on G(t), thus coupling the oz(t)
and %(t) equations, because of the presence of the factor V1 + v (t)

multiplying nl(t) in (2.43), as just mentioned.

For reasons given earlier, it seems correct to believe that the
v(t) given by (2.57) is the correct maximum likelihood estimate of wv(t).
However, direct differentiation of (2.57) and use of (2.34) does not yield

(2.56). Again, there is a discrepancy caused by the factor v 1 + v2(t).

A detailed investigation of the nonlinear filtering problem when the
noise enters with a state-dependent coefficient appears difficult. Such an
investigation was felt to exceed the scope of the present effort. Conse-
quently, we content ourselves here with pointing out some of the questions

which arise in such a case.
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3. MAXTMUM LIKELIHQOD ESTIMATION, CONTROL AND ERROR ANALYSIS

3.1 INTRODUCTION

Sequential orbit determination must be carried out in real time for
space missions so that control (guidance) corrections can be applied. The
method presently employed is straightforward. A model of the motion of the
spacecraft is constructed, and probability density functions describing the
random behavior of initial conditions, trajectory disturbances and data
noise are postulated. Then given a data record at time tk’ consisting of
all data obtained up to tk’ estimates of the initial conditions and dis-
turbances are calculated by applying an iterative Newton-Raphson technique
to find the root of the differentiated likelihood function. The control
(guidance) is then determined by treating these estimates as though they
were the true values for a deterministic system, and error analysis is per-
formed by linearizing the equations of motion about the estimated trajectory.
This intuitively reasonable procedure has been used with much success. Tt
is the purpose of this Section to discuss the theoretical justification for
the presently employed estimation, control, and error analysis algorithms.
The results will not apply to the most general form of the stochastic con-

trol problem, and an exception will be discussed in Section 3.2.

It should be noted that a sequential estimation procedure of this type
does not permit the control to be applied immediately after receiving the
last data point, because some time is required in order to process the
total data record. This consideration has thus far not been important in
orbit determination and guidance problems, where efficient numerical tech-
niques have been developed. Considering the capability of present-day
computers, and the many simplifications which can be introduced if one is
willing to accept some approximation error, there is no reason to believe
that the computational time lag will-be a limiting factor for future missions.
In any case, this is a practical problem which can only be discussed by
referring to a specific application, recognizing that the alternatives to
the maximum likelihood algorithm are the numerical solution of a nonlinear
partial differential equation, or some approximation of that solution, or

dynamic programming.
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3.2 OPEN LOOP MAXIMUM LIKELIHOOD CONTROL

The combined estimation and control problem might be best understood
by first considering a relatively simple example of open-loop maximum like-
lihood control, where the control correction is based upon only apriori

information rather than data gathered during the mission.

Suppose that at time t0 a single correction impulse vector u is to be
applied so as to cause the "most likely" state at the final time T to be a
desired value. Let the equations of motion be

dx

T f(x, t) t0 <ts<T (3.1)

(+)

where x is the state vector. The initial condition at to is X s where
X is a Gaussian vector with covariance matrix Ao and mean equal to
[u + Ku). The K is supposed to be a given matrix. Thus the control u

impulsively changes the state at to according to

- )y _ )

x = x(tO ) = x(tO ) + Ku (3.2)
where x(té_)) is a Gaussian vector with mean equal to p and covariance AO.
Assuming a one-to-one mapping of X to the final state X = x(T) of the
form Xp = g(xo), the probability density function of Xn is

oX
- f_ 1 T, -1 | |—2
Pplxp) = cexp - 5 [qGxp ] A fa(xp]| ale (3.3)

where ¢ 1s the coefficient of the Gaussian density function of X s and

-1
q(xp) =g " (xp) - (Ku+ w) (3.4)
Sxo Bg_l(XT)
lﬁ—— = determinant |——— (3.5)
XT BXT

Define the 1likelihood function

1 T , -1 9%,
L(XT) = - 1n pT(xT) = E‘q(XT) Ao q(xT) - 1n ls;;l - 1n c (3.6)
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But |S;_l is the inverse determinant of the state transition matrix ]3;—|,

and it can be shown that (see [30], pp. 28)

ox

T
[S;Q = exp {-j~ trace E%i (t; xo(xT))]dt (3.7)
T t

[o}

Then the most likely value of Xp is that value ﬁT which satisfies

BL(xT) T

-1 3 of

s 0=A " alxp) + —axT t_/' trace [37] dt (3.8)
(8]

But for hamiltonian systems where the state transition matrix is symplectic

9X
(see [31], pp. 306) it can be shown that |3;1| = 1 and hence trace [%5] = 0,
o

In this case we have q(ﬁT) = 0, and
-1 .~
Ku =g (xT) -y (3.9

In other words, for any desired final state iT we can find the control u
from (3.9), just as though the initial conditions were not random. (i.e.,
hamiltonian systems can be treated as though they were deterministic)
Although this property is also assumed in present orbit determination work,
where data is processed and an estimate of X is obtained before the control
is applied, it is not at all clear that such a procedure is theoretically
justified. One purpose of the discussion to follow is to show that under
certain conditions, such a separation of the estimation and control problems

is indeed legitimate.

Clearly the simple result (3.9) does not apply when trace [%5] £ 0,
in which case a statistical 'bias'" must be introduced. This should not
be an unexpected conclusion, for a similar result applies if one sought to

control the expected value E[xT]. For example, in the simple case
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with x,(0) = x,°(0)

xl(T) =aT + xl(O)

Xz(T)

1]
»
NN
~~
(=)
o

and

I
Q

E(XZ(T)) 1

where 012 is the apriori variance of xl(O). Note that we have

Jof, _ 00 _
trace (Bx) = trace [O O} =0
. s . 2
and even so the statistical bias o4 occurs. One should not apply the
maximum likelihood algorithm in this case, however, for the assumption of

a one-to-one mapping between X and Xy is violated.

3.3 A MAXIMUM LIKELIHOOD ESTIMATION AND CONTROL TECHNIQUE

In this Section we shall formulate a general maximum likelihood esti-
mation and control technique which leads to a algorithm which is consistent
with present practice in orbit determination and guidance. Consider a
discrete, nonlinear dynamic system described by the vector differential .

equation

In
t
In

dx(i) = f(x(1i), uss ti) dt + G(ti) dwi 0 T (3.10)
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1 "2
ti, . tN-l’ tN = T}, x(i) is the dynamic state at time ti’ dx(i) = x(i+l1l)-
x(i), u; is a constant control applied in the interval dt, and dwi is the

where ti is one of a closely spaced set of discrete times {0, t t, *°°

state disturbance applied in the interval dt.t To sidestep mathematical
difficulties we shall assume that dx(i) is defined by (3.10), where dw(i)
is state noise in the Stratonovich sense. At each time ti data will be

obtained which is of the form

z, = h(x(i), ti) + n, (3.11)

where n, is data noise. For simplicity we shall assume z; is a scalar. We
assume that the control u, applied at each time ti is a function of the
entire data record up to ti’ where this function is supposed to be specified

apriori. Defining the data vector

T 1 = . e
z (1) = [zo, 215 2, Z,_1s 241 (3.12)
we have
T
u (2) = [u (2(0)), u (2(1)), uy(z(2))+--u (z(N)] (3.13)
Let the total state of the system be
Tox, dw, dw, dw,--dw ] (3.14)
Yo T o o @yps G YN :

Since x(i) depends upon Yo and {uo, u }, it follows that, for any

A S
specified function u(z), the u and z are implicitly complicated functions

In particular, if z(i) is written in the

T
of v, and n~ = [no, n, --nN].

form

z(i) = Hi[yo, u(i-1)] + n(d) (3.15)

where Hi is a vector function and

tThe state may include certain constant "acceleration" parameters X
in which case dxk = 0.
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T 1 —3 e e o
n (i) = [nO’ nls nz; ni]

T, .y _
u (i-1) = [uo, Ugs Uy, ---ui_l] (3.16)

then the partial derivatives of z(i) with respect to yO are obtained by the

recursive relation

é——az(i) _ (28], |24, Bu(i-1) [az(i-l)
[ Yo ] ) [§§$} * &ga%i-l{![az(i—l)] gyo ] (3.17)
where
2zlo) ) |28, (3.18)
52 - (%)
Similarly,

ESBERESE SR SIS

where n, is one component of n, and

du(i)
Byo

on,

] and[éﬂ&ilJ can be calculated.
i

From these expressions [

Suppose that an apriori probability density function of Yo and the
total noise vector n = n(N) is available, denoted by po(yo, n). Let the
final state be yg, = [x(T), dwo, e dWN], and assume that there is a
one-to-one mapping of (yo, n) to (yT, z), where z is the total data vector

z(N). Then

yp = 8(y s w
where u is the total vector u(N), which is a function of yo and n.
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Applying the inverse relationships, the apriori probability density function

of the data and final state is

Pp(¥p,2) = 2 (¥, (v Z)_, n(yp 2)) l

a(y ;) n)

5 (YT) Z)

where I..I is the determinant of the inverse Jacobian matrix

where I is the identity matrix.

i
(

Byo

o}

dn

ayT

e

N
) o
N g

[»]

v
)

S’

.
veocssecovdoscecncssnee

d

o

But from (3.19)

since (—-

zeros on the main diagonal. Then I%E =

9H
Ju

oz

)

du

)

Z

|

Z] - I+[(%I-

[é_
on

3z
on

1

) can be shown to be
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g § dg d3u §
ayo ; du dz I é
§ dz :
o I ( :
: 5—):
)J : 4V
1 : -1
(Ag_ : _(22 )" (28)(2u
oy : ayo duf\az
Ceeetieean B e eteaoeetienitctnnnanseannnn .
1 : - -
z(zg (@ggzlﬂaz 25 \!
y Byo on/ . \3n Byo Byo
Then
3(y,, n) e |5 122 |7
aZyT, z) = ayo dn
1 0 0o 0 o0 .
)(_8_3)(8__2_)] ) x 100 0 .
0z/ \on x x 1 0 0 .
x x x 1 0 .

(XA XXX Y X T

)

[o]

(3.21)

(3.22)

a lower triangular matrix with

1 and (3.21) becomes Igs |-1.



This is the inverse of the determinant of the well known deterministic state

transition matrix (including the dw variables), evaluated for a given
YO(YT, z) and u(z).

Suppose that at some time t, we are given the data vector z(K) and

K
the previously applied control u(K-1). The probability density conditioned

upon z(K) is

b, (yq 2(N-K)[2(K))= [fgfg%f%%%%—] (3.23)
where .
Pzr (2 (X)) =ff Pp(yqs 2) dy, dz(N-K) (3.24)
and z(N-K) is the data to be obtained after t,. Let the superscript "

K
denote the maximum likelihood estimate. Define the likelihood function

LK) = 1n [p(yp 2(N-K)[2(K))] = 1n py(yp,2) = In p_ (2(K)) (3.25)

Then §T(K), the anticipated data %(N-K), and the present plus anticipated

control u(N-K) are obtained as the values which simultaneously satisfy

B J= [a(m Pp) | (3.26)
oy, @ Loy,

(3.27)

o oL ] [P P
9z (N-K) dz (N—K)J

where u(N-K) = [uK, Upigs » v uN] = u(z(N-K)) (The PZK(z(K)) does not
enter into (3.26) or (3.27) because z(K) is given.) The instantaneous
u(K) is then the first element of u(N-K). This algorithm is supposed to

be applied at all times tK where data is introduced.

Note that there is another maximum likelihood estimation procedure

which can be devised. Suppose that the subset of components of §T which

~ T
appear in the performance index P are denoted by Yy o where y$ = [yg s Yo ].
1 1 2
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Define the marginal distribution

PO > 2(N-K) [ 2(K)) = f P (vps 2(-K) [2(K))dy,, (3.28)

-0

Then equations similar to (3.26) and (3.27) are developed but with pﬁ
replacing Px and §T replacing §T' In this case the uninteresting components
Yp are integrated out prior to finding the estimates and the control, and
we are controlling the "marginal mode" of the trajectory. If the entire

Vr vector is estimated and the components §T are selected, which occurs
when py is used, we are controlling the "modal trajectory'". It can be

shown that these two techniques yield identical results when the system

is linear, otherwise they do not. Control of the marginal mode has the

most esthetic appeal, but for computational convenience we shall work with
the modal trajectory. Essentially, we wish to avoid calculating a proba-

bility density function in real time.
3.4 ON THE SEPARABILITY OF ESTIMATION AND CONTROL

The combined estimation and control algorithm developed in Section 3.3
might not be practical to apply. Analogous to the open loop control problem
discussed in Section 3.2, where the solution can be divorced from statistical
considerations, we seek to introduce assumptions which allow the estimation
and control problems to be separated. That is, we wish to justify a pro-

cedure whereby the initial condition y, can be estimated at t given data

K’

up to t and this estimate can be treated as though it were the true state

K,
of a deterministic system for the purpose of computing the control.

Suppose that dt in (3.10) is sufficiently small so that the state

- ] P . .
transition matrix fgg—] can be represented by its continuous analegue.
Yo
Then, as in Section 3.2,

T

= exp —f trace [—g{'z (x(t; Y3 u),tldt (3.29)
0

-1
g
ayo

For many applications it is true that trace [%£] = 0, and hence |%§—| = 1.
o

For example, this condition applies when the continuous form of (3.10) is
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2 Hamiltonian system. Then let us assume that

-1

o(y_,n)
° CF-30 (3.30)

4 -
(o]

B(yT,z)

(B) the apriori probability demsity function po(yo, n)

is of the form
p (v, m) = py(yo) p,(n) (3.31)
where Y, and n are both Gaussian variables with zero mean.
(C) the n, are uncorrelated, i.e.
T .
E[nn’] =T = diagonal
Then, using (3.15),

- In pT(yT,Z) = —%{yz A—l Yo + (z-H)T F"l (z—H)} (3.32)

where A and T are, respectively, the apriori variances of Vor and n. The
Yo and H(yo, u) are considered to be implicit functions of Yo and z.

Because of the form of (3.32), the likelihood equations (3.26) and (3.27)

become

oy
_y.T -1 T . ~1,]/3H 9H 3u(N-K) 0
0 —{YO A~ - [z=H] [T ][(B_y—> + (Bu(N—K)) ( 3y ):l} By] (3.33)
o (o] T.
oy
_J. T -1 T ,.~1.{f/38H 9H du(N-K) o
0= {yo AT - [z-H]" [T ][<Byo‘) + (au(N-K))( oy, ) Bz(N—K)]

T 0
.+ [z-8T) [J':(r}-li)'] (3.34)
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where I(N-K) is the (N-K) dimensional identity matrix. But

[ oHy ] o (3.35)

du(N-K)

Let §o be a solution of

3
0=y it - @ - u)” [ HK] (3.36)

Then, because of (3.35) and assumption (C), it follows that (3.33) and
(3.34) are satisfied by this value of §o along with

(¥, u(K), u(N-K)) (3.37)

z(N-K) = He . (5

where u(N-K) the anticipated control, which depends upon the control law

u(z), and u(K) is the previously determined (fixed) control.

Since we have as yet made no assumptions about the apriori specified
function u(z), it is now legitimate to define the anticipated control
4(N-K) as a function of §T(K), where §T(K) is the solution of (3.10) with
yo(K) used to define the initial conditions X and the disturbances dwi.
The u(N-K) might be determined, say, by minimizing some performance index

J(§T(K), u(N-K)). Then

oJ

Eazﬁjiy (3.38)

|
O

defines the control. For example, (3.38) would be the Euler~Lagrange
equation if the control were continuous and the system were deterministic.
This a(N-K) has the property that at each time t, some function of the anti-
cipated maximum likelihood estimate of the final state is minimized. Since

u, at every time t, is in this way a function of §T(K), which in turn is a

K
function of z(K), it follows that u(z) is a well defined function. Then

the combined estimation and control procedure is as follows:

(a) find §o from (3.36)
(b) wusing this value in (3.10) and (3.38), find the anticipated

control u(N-K) and hence u(tK) as the first element of ﬁ(tK)
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Equation_(3.37) can be used to determine E(N—K), but this is not re-
quired to define u(N-K). Note that E(N—K) is the data which would be real-
ized if §o did describe the true values of X and the past and future dis-
turbances dwi, and if the future data noise were to be zero. Thus z(N-K)
is the data calculated at times t, < £, < t_ on the modal trajectory defined

" k TSty
by yO(K) and G(N-K).

The estimation and control equations developed here might be simpler
to implement in continuous, rather than discrete, form. As pointed out
above, the continuous form of (3.38) is the Euler-Lagrange equation. The
continuous form of the estimation equation (3.36) including the effects of

continuous state noise, will be developed in Section 5.
3.5 THE MOMENTS OF THE CONDITIONAL ESTIMATION ERROR

For error analysis purposes it may be necessary to compute at time tK

certain statistics of the estimation error e, = Yo §O(K) associated with

K
the estimate §o° To avoid the necessity of deriving a complicated error
probability density function, an approximate expression for the moments of
€g can be developed, which becomes exact under certain asymptotic conditions.
For convenience we will henceforth drop the subscripts K and 0, and € will

be understood to mean € = [yo - §O(K)lz(K)].
Suppose r.at the estimation equation (3.36) is written

0=215-AT rtm @) +a-HG)] (3.39)

where H(y) is understood to mean HK(y, u(K-1)), with u(X-1) fixed at its

predetermined values, and

A = (& G| (3.40)
oy J

Then (3.40) implicitly defines the random variable § (y,n), which can

be expanded about an arbitrary point y = a, n = b in the form
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Jom) = § (aw) + | @) | (v-a)

. [-g-g- (2,0)| (a-0)

+ higher order terms (3.41)

Applying the implicit function theorem, (3.41) yields

-

-1
3y -1 N - N R
P—-g o A6 A - B TGl am)| G
v-aA 1 - _l
-1 T - ~ ~ ~ -
f§%1 = Wreate rtae - B(y,n,¥) Al i (3.43)

where, assuming T' is diagonal, B is the symmetric matrix with elements

2 A
-1 19 H O

B.. = b 7
13 L ory (ysm,9) Ty — (3.44)
Y <Y 3
and r is the residual vector
r(y,n,y) = H(y) + n - H(Y) (3.45) ~

The higher order terms can be evaluated by repeated differentiation of
(3.42) and (3.43).

~

Suppose we are given a data vector z which yields the estimate vy.
Choose a = § and b = z - h(a) in (3.41), which implies that y(a,b) = a.
This value of b is the best estimate of n, given z. Holding z fixed, so
that ¥y = a is fixed, the estimation error conditioned upon z is ¢ =y -y

=y - a. Then from (3.41) we have
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0 = [&-@p [e+|F@mn | () (3.46)

+ higher order terms.

The series (3.46) implicitly defines & (n~b). Since e(o) = 0, we can apply
(3.46) to obtain

. de . .
= | -b| + higher order terms in (n-b)
p -1 "t 1
= |ATT"T A AT (n-b) + ... (3.47)

The moment generating function for & is

ME(G) = fmexp [OT £(n-b)] pn(n) dn

o]

-1
T TT
= c_mfexp e e(n-b) - n - nl dn (3.48)
where 06 is a parameter vector and c is the coefficient of the Gaussian
density function P - The pth moment of the ith component of € is then
given by
P
da*M (e)
E(ef] = € (3.49)
ae,P
i
€ =0

Alternatively, one could evaluate the moments of & directly from (3.47),
since n is a zero mean, Gaussian variable with known covariance. In either
case it would be necessary in practice to delete some of the higher order

terms in (3.47). This can be justified if terms of the form
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- P p
(a e) (n-b)
E —_—) Ag=s
P/ P

are negligibly small for large p, which is implied if the variance of € is

small.

Note that the first moment Efe] is the difference between the maximum
likelihood and minimum variance estimates, which is defined by the property
that.E[e] = 0. Thus the minimum variance estimate is {a + E[e]}. if only
the linear term in (3.47) is significant, as would be the case if the
asymptotic conditions to be discussed in Section 3.6 apply, then both esti-
mates are (approximately) the same, and both produce a Gaussian estimation
error with wvariance (AT F_l A). This expression will be developed in

Section 3.6.
3.6 THE ASYMPTOTIC MOMENTS OF THE CONDITIONAL ESTIMATION ERROR

A simplified (truncated) form of (3.47) can be devised under certain
"asymptotic" conditions, which can apply if state noise is not present.
Assume that the system (3.10) is observable and asymptotically well condi-

tioned, where

Definition: A dynamic system is said to be completely observable at
time tK if the normal matrix (information matrix) has full rank for all
¢y, where

normal matrix = [A;(;) P_lAK(§)] = NK(§) (3.50)

A system is said to be asymptotically well conditioned if the eigenvalues
of NK(§) go to infinity as t, goes to infinity.

Definition: The asymptotic form of (3.47) is the series obtained by
l|2

deleting terms of order |N_
The linear terms of the asymptotic form are as given by (3.42) and

(3.43). The higher order terms can be evaluated by noting that

1. -1
I+n+rt gl (3.51)

R
=

L (a,)
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Then if

-1 '
SN = o Nt = terms of order
Ny,n) T [a(y n)

s L i

1J

it follows that (symbolically)

where <ég—> involves terms of the type <;—E> » Since
3y

Similarly,

-1
A - _l .
[%-{—(a,b)]z E\1+N-B]Arl%N a rt

so that (symbolically)

. 2
82

y - (a,b) | ~ terms of order (N'l) ~ 0
Bn

=] -1 T
o) Y _ dA r‘l
ey (WP = N |5
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(3.53)

(3.54)

(3.55)

(3.56)



Thus to second order (3.46) is approximately linear in (n-b) and quadratic
in €. If the cubic terms in (3.52) are negligible, and if ‘BA l is of order

N—l, then only the linear terms of (3.47) are significant 3y and

e =n 1 al pl (n-b) (3.57)

The estimation error is then (approximately) a Gaussian variable, with

Ble] =-N ATty =-ytiala (3.58)

, -1 -1 .. , . .
since AT r b=A a. This is the correction term which makes the estimate

for a linear system unbiased over the ensemble of all data realizations
(Recall that e is the error obtained holding the data fixed). The variance
is

1 -1

E[le - N =~ A a]2 =Nl AT pL ATyt -1

r N =N (3.59)

Assuming the linear approximation is reasonable, the asymptotic mean of ¢
could be obtained without inverting the series (3.46) by taking the expecta-
tion of (3.46) and substituting E[ep] as obtained from the Gaussian approxi-
mation for all p > 1.
3.7 THE ASYMPTOTIC STATISTICS OF THE ESTIMATION ERROR FOR PARTTIALLY
OBSERVABLE SYSTEMS
An asymptotic form of the error statistics can be developed for some
components of the state of a partially observable system, where the normal
matrix does not have full rank. This situation is to be expected when

state noise is present.

Suppose the state vector is decomposed into two parts according to

yT = [yI, yg], and let (3.42) and (3.43) be written

REET
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Moy

12

22

Moo

M, My, Ny, Nypp
My My Ny By
. J L
- T 1 7
T
Mpy My, Ay N
= il
T
Moy My Ag
T o1 o1
(A, T A)) (A T77A))

-1,y - B (N

40—

12)

-1
(Nyp - Boy)  (Agp + Tpp = Byp)

(3.60)

(3.61)

(3.62)

(3.63)

(3.64)

(3.65)



<=

In (3.65) we have assumed that vy and y, are apriori uncoupled, so that

A12 = 0 and A21 = 0. From (3.60) and 3.61) we have
N -1 “LM.N, -N,) (3.66)
5y, | My Nyg + K (MG My Ny - By
2y -1 -1 (3.67)
%, = M) Npp + K (My) M7 Nyp - Ny) y
A%
1y -1 T 1 -1 T T el
= ) = M A I + K (Mgl My A - A2) T (3.68)
where
K = M1 M ( FoMT oM )-l
= My My WMy, - M My, M, (3.69)

Suppose that there is a weak coupling between vy and Yoo in the sense

that N ~ 0, and hence M_.,= 0. Then

~ 0, B 12

12 12

vy 1 (3.70)
v, ) ~ M1 Ny

bt 0 (3.71)
3y

1 21T 1
=) My AT (3.72)

In particular, this is the case if is the unobservable portion of
p ’ Yz P

the state vector, for then A2 = 0. Thus if Nll asymptotically goes to

infinity while N remains small, we assert that the analysis of Section 3.4

22
can be applied essentially unchanged to the observable components of the
state. This conclusion is important when there are many system parameters

to be considered, e.g., when state noise is present.
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3.8 APPROXIMATE DIFFERENTIAI EQUATIONS FOR THE ESTIMATION ERROR BIAS

In Section 3.6 it was shown that the conditional estimation error
becomes asymptotically Gaussian, and it was suggested that the error bias
(mean) in the non-asymptotic case (finite normal matrix) might be approxi-
mated by using the Gaussian assumption to calculate the higher moments in
the (3.46). Consistent with this approach, it is possible to derive an
approximate differential equation for the estimation error bias. The
method can only be rigorously justified for observable systems with no

state noise, but the effect of state noise will be included for completeness.

Let io and dw(t) be the estimates of the initial conditions, deter-

mined from data z(K), where t < tK. Define
e(t) = x(t) - %x(t)
d{sw(t)] = dlw(t) - w(t)]

Expanding the right hand side of (3.l1) about [x(t), d@(t)], and (for sim~

plicity) deleting the control, we have

dsi Bfi . 1 Bzfi R
e E o (x,8)| ej(0) +3 2 mg (%,t) ej(t) e, (1)
k| h| i,k h|
+ higher order terms +-§E [Gwi(t)] i,j,h=1,..n

(3.73)

Let E[ei(t)ej(t)] = pij(t). Then introducing the Gaussian assumption for
the purpose of calculating moments on the right hand side of the differen-

tial equation (e.g., first moment is zero, etc.), we have

[dei} . ( azfi )
e R e [
dt 2 ik axjaxk jk

4
1Ly o5
A (ijaxkaxlE)xm) (ij Pin)

j,h,1m

+ terms of order (p,k)4 i,je-=1,""n
. (3.74)
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The p;j(t)can be calculated from

dp. . a de, (t) de, (t)
—11l - &= = S -1
It EI5 [ei(t)sj(t)] E [ T ej(t) + E ei(t) e
_ z:(af of
T \ox, ps) * o, (pkl)
3
o f
1 i
+_
31 kEm <Bxk8x13x )(pkl pm3>
3
. < 7%, )( )
+ 37 ———1—(p . p .
3! K.l,m Bxkaxlaxm k1l "mi
+ terms of order ( )4 + v i,j,*'=1,**°,n
Pij i3 sJd> N N
(3.75)
where

Y35 (€) dt = E[{déw, (£)} {d(Swj(t)}]

Consistent with the Gaussian assumption, the initial conditions for (3.74)
and(3.75)are, respectively, E[ei(O)] = 0 and E[pij(o)] = N;i where NXo is that
portion of the normal matrix of (3.50)which describes the initial conditions.
Similarly, the Yij(t) would be calculated as though the system were linear.
This should be done by finding the error covariance associated with the
continuous estimator of (%%), to be discussed in Section 6. Alternatively,
one could find an approximate yij(t) from the well known Kalman filter

equations.

Note that this method of finding the estimation error statistics
differs from other approximation techniques employing Gaussian moments in
that the modal trajectory x(t) is used as the reference, rather than the
apriori trajectory. Recalling the discussion of the asymptotic properties
of the estimation error of Section 3.6, it appears that moment truncation
can only be justified if one expands about the modal trajectory. This will

be the basis for the linearized analysis to be presented in Sections 7 and 8.
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4. ESTIMATION OF UNKNOWN ACCELERATION

4.1 INTRODUCTION

The maximum likelihood estimation algorithm developed in Section 3
requires that the initial conditions and the random acceleration function
be simultaneously estimated. The resulting solution includes the "smoothed"
(rather than "filtered') estimate of the acceleration function at every
instant in time, based upon the entire data record. This property, plus
the fact that linearity is not assumed, distinguishes this approach from
the treatment of state noise in Kalman filtering. The Kalman form of the
estimator can be extended to treat the linear data smoothing problem, how-

ever, as is shown in [32].

This type of problem arises in many applications, such as the recon-
struction of lift/drag histories for re-entry vehicles, or the analysis of
trajectories perturbed by random thrust acceleration, or the determination
of orbits which are perturbed by model errors of unknown origin. Probably
the most important application is the latter. In this case one assumes
that an unknown acceleration is acting, pretends that it is white noise
with some hypothetical variance, and recovers an estimate of the unknown

function which is hopefully a reasonable approximation of physical reality.

In this Section we shall develop a continuous expression for a
more general form of the estimation algorithm presented in Section (3.5),
by using a variational approach (see also [33]). A practical numerical
algorithm for solving the problem will be developed, as well as a successive
approximation technique which may be adequate for some applications. A
simple example will be discussed, and the associated estimation using the

algorithm to estimate non-white acceleration will be analyzed.
4.2 FORMULATION OF THE PROBLEM

Let the equations of motion be
dx = f(x, t)dt + G(x, t) dw (4.1)

where x is the n-dimensional the state vector, composed of the position and

velocity coordinates plus all parameters which affect the tracking problem
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(fi =0 if X, is a constant parameter); the m—dimensional vector

al(t) = [ (t)] is the random (unknown) acceleration function, and G(x, t)
is a matrlx which depends upon the state and time. For example, if x is

a six dimensional vector, where (x gs X ) are velocity components and

1 *
(x4, Xg, X )are position components, then a p0551ble form of G is [ 1,
where I is the 3 x 3 identity matrix. In this case n = 6 and m = 3. Let
the differential of the i'Eh data type (e.g., the incremental change of the

doppler integral) be given by

dpi = hi(x(t), t)dt + dni(t) i=1, .. .k | (4.2)

where k is the number of data types, hi(x(t), t) is some nonlinear function
of x and t, and dni(t) is data noise. Suppose that Wi(t) and ni(t) are
uncorrelated, zero mean, Gaussian stochastic processes, where, at each time

t,

e}
[a B
&
I
N
I
—
Q
g
-
N
—_—
[a 1)
t
[
[
=
-
g

Thus Wi(t) and ni(t) are Wiener processes. Furthermore, suppose that the
apriori distribution of the initial state X is Gaussian, with mean p and
covariance matrix A. Considering the vectors dw and dn composed, respect—

ively, of the dw(ti) and dn(ti) at the discrete times {to, ti,...tN},

toseen
l,
the joint apriori probability density function (p.d.f.) for {xo, dw, dn}

is of the form

[p.d.f. (xo, dw, dn)] = [p.d.f. (xo)]'[p.d.f.(dw(to))]---

---[p.d.f.(dw(tN)]-[p.d.f.(dn(to))]"-[p.d.f.(dn(tN))] (4.3)

where each [p.d.f.] is Gaussian. Let z, ( ) Taking the negative of

the logarithm of (4.3), substituting [zi - hi(x, t)] dt for dni(t), and

passing to the 1imit as dt - 0, the likelihood function for {xo, n, al is
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-1 _ T -1 -
P—z(xo WA (xo W)

+%§ [ (t) f [ —h(x, t)] dt

i=1
m -1 T
v iz-::l [owiz(t)] f aiz(t)dt (4.4)

where t - 0 and T is the duration of tracking. Given data z(t), the proble
to choose estimates of the initial condition, io’ and acceleration function,

&(t), which maximizes the likelihood function p.
4.3 THE FORM OF THE ESTIMATION EQUATIONS

The estimation equations can be obtained as the solution of a calculus
of variations problem of the Mayer type. Define the additional state vector

component p(t), with

p(o) ='% (x_ - uw A (x -1 (4.5)

and

o 1 }li [ 2(t)]—1 2, - by, 0]
i=1 "™
3 5 kol 2o

Thus p(T) is the likelihood function, as per (4.4). Adjoin the p to (4.1)
and construct the variational equation describing variations from the best

estimate of the trajectory (denoted by "), given by

4 Sx F 01[8x G
de |sp "B o Gp] * [gT:' So (4.7)
where §x(t) = ;(t) - x(t), Sa(t) = a(t) - &(t), and
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-1 -1
T 2 ~ 2 X
g (t) = {[owl (t)] al(t), cens [c;wm (t)] am(t?} (4.8)
~ T ~
r(e) = [REEED ] gt [0 G0. 0 (4.9)
ox 9xX
k © o, 1[n (x(0), ©) A
H(E) = - 3 [on (t)] s [z, - b, (R(8), ©)] (4.10)
i=1 i
G(t) = G(x(t), t) (4.11)

Introduce the state transition matrix associated with the variational equation

(4.7), which is of the form

ax(t)\ ' (ox(t)
(ax<s>) | (ap<s>) uce, s)

f
v 0
|
________ i [ SIS t2s
)
ap(t) ) ' (3p(t)’ T '
(az<s>>: (8p(S) At s L
where U(t, s) is the familiar matrix [%ﬁ%&%} , and the row vector AT(t, s)
has the property that, for fixed t,
j—s AT(t, s) = - [AY(t, ) F(s) + H(s)] (4.12)

Note that A(T, s) is the Lagrange multiplier vector of [33]. The solution

of (4.7) can then be written in the form

-t
sx(t) = U(t, o) 6x_ + f U(t, s) G(s) a(s) ds (4.13)
(o]

T t
Sp(t) = l:)\(t, o) +3§f{3)—J sx_ + f [)\T(T, s) G(s) + &(s)TR—l(s)]Ga(s)ds
[o] o

(4.14)
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where

R(s) = w

0 w (4.15)

If p(T) is to be maximized with respect to arbitrary variations in io and
&(t), it follows that Sp(T) must be zero for all variations Sxo and Sa(t),
for if this were not true we could improve the value of p(T) by a first-

order change in these quantities. Thus, (taking the transpose)

ACT, o) + AT (x, - w =0 (4.16)

R(s)GT(s)A(T, s) + a(s) = 0O (4.17)

where [ﬁ%ﬁgl] was obtained from (4.5). The solution for A(T, s) can be
o

explicitly obtained in terms of U(s, o), for it can be shown that

%g U(s, o) = F(s)U(s,0) (4.18)
Then
S s, o) = - UG, )] F(s) (4.19)
and it is easily verified that
T T -1
AT(T, s) =[ f H(t) U(1, o) dt] U " (s, o) (4.20)
8
satisfies (4.12). Define the familiar row matrix
5h. (3 T oh, (£) "
A (t) = [ 120, 0) ] [U(t, o)] = l——l———] (4.21)
i % on
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Then, from (4.10), (4.16), (4.17) and (4.20), we have

L T k -1 A
0=nt - w - Of iz=:1 [oniz(t)] [AiT(t)] [zi(t) - b, (D), t)] at
(4.22)
K -1
0 = a(s) - R(s) [U (s, o) a(s)1” fT ) [cn 2(1:)] [AiT(t)] [zi(t)
s i=1 i
- by (x(0)e) [ae (4.23)

Equations (4.22) and (4.23) are the results we seek. The solution of the

estimation problem is the io and a(s) which satisfies these equations.

4.4 A NUMERICAL ALGORITHM FOR SOLVING THE PROBLEM

Suppose that observations are made at discrete times {ti}, where the

measured observation vector is, according to 4.2, dp(ti) = p(ti) - p(ti—l)°
The computed (predicted) observation at tss given the estimate of the state

at ti—l’ is [h(x(ti_l), ti_l)]dt. Assume the data has been normalized so

that o 2(t) =1 for all i =1, 2, ... k, and define the data residual
i
= = = -_— 4.24
r; r(ti) thx(r, ), ti_l)]dt dp(t,) ( )
If p(t) is a k dimensional vector (usually k = 1) then [gi%gy] is a k by n
matrix (usually n = 6) and the matrix
oh ,~ T
AL = At = B R(ty_ ), £, )1 10Ce; )] (4.25)

is also a k by n matrix, where U(t) denotes the state transition matrix
U(t, o). Suppose that the apriori variance of X is infinite (A_l = 0),

so that the discrete form of (4.22) is
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x T = T = T
3, A, r.=0=3% A r.+ 3 A r, (4.26)
=033 = T B B R

Setting U—l = V, and employing (4.26), the discrete form of (4.23) is

i
~ _ T T T
a(t) = [R(ty) 67 (r;) V (t)] jz:ll Aj Ty B, St St (4.27)
If we let
L T
B, = 3. A, r, (4.28)
s B B

then (for dt sufficiently small) the equations of motion are

%= £(x, t) + G(x, t) a(t) = f + (GRGV)B = £ + 48 (4.29)

Each time a data point is passed, B is changed simply by B + ATr > g, 1If
B = 0 after the last data point is processed, then the problem is finished.

If not, then X must be changed. To see how much X, must be changed, define

N(t) = 2B so that a variation 8§x results in a variation 68 given b
oX o y

o
§B = NGXO. We also define M = M(t) so that 8x(t) = U(t) M(t) Gxo. Now

6x satisfies the differential equation
(8%) = Féx + ¢38 (4.30)
If M satisfies the differential equation where F = F(t) is defined by (4.9)
M=V¢N, (4.31)

then 6x = U M 6xo will satisfy the required differential equation as may be

seen by substitution:
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6%) = %E (U M 6x )"

]

]

F

]

"

ﬁ Méx + U M dx
o o

UMSx + UV ¢ N 8x
o o]

F d§x + ¢ N §x
o

Féx+¢3d8B .

At each data time, the variation in r can be computed

Now the change in the variation of

T

_BZC_
ax. | °%4
[0X; ]
_BZC_
5%, ue,) M(ti) 8%
A M Sx

[o]

B at each data time can be computed:

B +A r~>B

§8 + AL St -+ &8

N §x + ATA M §x > N 6x
o o o

T

N+ A" AM->N

Finally, if B + O after the last data time then a variation of Gxo =

[N(t)]_l B(T) should make it near zero.

In summary, we have established the following algorithm:

Initial conditions for integration

x(t)

(o]

Il

M(0)

X = approximate initial state vector (6 x 1 vector)

U(0) = I (6 x 6 matrices)
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B(0) = 0 (6 x 1 vector)

N(0)

0 (6 x 6 matrix)

Equations to be integrated

%= f(x, t) + ¢ B , where ¢ = (G R GTVT), v=yt
U = FU
M=V ¢N

Data processing (performed each data time)

T [h(x)Idt - dp
B+A r—>8
N + ATA M~ N

Initial state correction (performed after all data has been processed)

sx_ = - (D17 8(D)

If Gxo = 0, the problem is finished; otherwise X + Gxo > X, and the
integration is restarted. After convergence, the acceleration function is
given by a(t) = [R(t) G (t), V' (£)] B(L).

Note that the inverse of the state transition U(t) can be simply

obtained. The standard variational equations are

U = FU, Ut ) = I, U(t) = 6 x 6 matrix

where F is the matrix of partial derivatives of components of f with respect
to components of q. The inverse of U is called the adjoint matrix : V = U_l.

This matrix can be computed by V = J UT.JT , Where

)

This is known as the '"Jacobi inverse' of U. To prove that this is the

inverse of U note first that F has the form
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T

where WT = Y. It follows that FT J + JT F = 0. Letting ¢ = VU, it follows

=T _T

Cthat $ = VU + VO = J0F JT U+ Jut 3T 0= gut ¥ T u+ Jut gt pU =

JUT (FT JT + JT F)U = 0. Since ¢(to) = I and & = 0, it follows that ¢ = I

and V = U L.

4,5 A SUCCESSIVE APPROXIMATION TECHNIQUE FOR SOLVING THE PROBLEM

Existing orbit determination computer programs solve the nonlinear
estimation problem when no random acceleration is present by a modified
Newton-Raphson method. That is, equation (4.22) is linearized about the
KEE estimate of X s the (K + l)§£ estimate is obtained by solving a set of
linear equations, and the procedure is iterated to convergence. This pro-
cedure will obviously give an approximately correct estimate of the para-
meter vector X if only small amplitude random acceleration is present.
It, therefore, seems reasonable to suppose that the presently employed
parameter estimation algorithm could be modified so as to reflect the

presence of small applitude acceleration. Such a method will be developed

here.
Assume the data has been normalized so that On 2(t) = 1 for all i,
i
and let
QOK = the KEE estimate of x0

&K(t) = the KE}—l estimate of a(t)
Holding &K(t) fixed, expand (4.22) to first order in %o to obtain

T

-2 1= e T o M2 - nGE @, ol
0

-1

- a7t RS- Wl (4.34)
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where [A(t)]K, [U(t, o)]K, and [G(t)]K are the previously defined matrices,
evaluated on the KE}—1 estimated trajectory, and the normal matrix is

k T
o= Y e a 1% at (4.35)
i=1 0

The revised estimate of a(t) is

T
() ' = [Res) 6T() VI 1F [ N0 120 - a6 ), ©1de (4.36)
' ]

This algorithm is to be iterated to convergence, where the partial derivative
matrices could be changed at each iteration in order to introduce the effect
of nonlinearity. Note that equation (4.34) is identical to the form presently
implemented in orbit determination programs, except that the calculated
residuals reflect the effect of &(s) and successive iterations introduce

changes in a(t) as an intermediate step.

It is not at all clear that the suggested successive approximation
technique will converge. The solution of the linearized problem can be
thought of as a successive approximation technique for inverting a matrix.
To see this, suppose that there is only one data type which is linear in
X and o(t), that is

oh - dn
z(t) = A(t) X + [5; (tﬂ Jf U(t, s) G(s) a(s) ds +-EE (4.37)

Suppose that pu = 0 and o 2(t) = ovz for all t, and let equations (4.22) and
i

(4.23) be written in the symbolic form (think of o(t) as the infinite-

dimensional vector o)

TR X+ Pa = £(2) (4.38)

o 2 £,(2) (4.39)

2 A 2 A
[T + o, M] o + o, on v
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e

the operations

where P, M and Q are linear integral operators denoting, respectively,
o

.
[ oI 1 f e, 8) 6 ale) ds de
o

and

T t '
W hs,0 61" f OB (01 f U, 0 60 o) dr de
S o

T
[0 s,0) 61T f 1aT(e) A(D)] de
S

T
fl(z)=of A z dt

!

T
£,(2) = [0 1,0 ae)1" f 4 zat
s
Using equation (4.39) to eliminate a from equation (4.38), we have
2
o

-1 -
4+ N - o, PII + o, M] Q) X, = (fl(z) -0 P[T + a,
If

2 -1
M7 £,(2))
(4.40)
o is sufficiently small, an approximate solution for io is
~ ~ "l _l
~ .41
X [Ao + N] fl (z) (4 )
and the corresponding approximation for o is
&=0 % [£,(2) - Q%] (4.42)
o =0, (2 Q X .
This procedure can be iterated, yielding
~ i+l ~ .1 -1 -1 -1 ~ a1
(=] - [x 17 = [A ) 7+ N1 7 {£,(2) - [A ) © + Nl[x,]

- plalty
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61 = 0 2 (5, - u a1 - o™Th (4.44)

It can be shown that this process converges to the correct answer if o,

is sufficiently small. Recalling the meaning of the operators P, M, and Q,
equations (4.43)and (4.44) are identical to equations (4.22) and (4.23) for
the linear case. Thus it appears that the successive approximation technique

will converge for linear systems if ovz is sufficiently small.

4.6 ON THE ERROR STATISTICS ASSOCIATED WITH ESTIMATING UNKNOWN,
- NON-WHITE ACCELERATION

The estgmation equations for determining %o and a(t) depend upon the
pazameters On , which is the apriori wvariance of the white data noise, and
a, which is the apriori variance of the white random acceleration. In
practice, one might apply such an algorithm to simplify the task of esti-
mating an unmodeled acceleration which is not white; that is, the postulated
model is to be thought of as an approximation to physical reality. Given
onz, a s;b—optimal estimator is then obtained which depends upon the para-
meter o - Given the true error statistics of the unmodeled acceleration,
the analyst must then determine the resulting estimation error statistics
as a function of sz and choose sz so as to achieve an acceptable result.
In this subsection such an analysis will be illustrated by treating a sim-
plified trajectory model which describes the motion over a short tracking
arc. Considering the inevitable uncertainties in the apriori statistics,
it is probably true that the simplified analysis will be adequate for deter-

. . 2
mining a rule for selecting the 9, parameter.

4,6.1 The Simplified Problem

Suppose the one component of the velocity variation from a perturbed

trajectory over a short arc can be described by
v = a(t) (4.45)

where v is the velocity variation and a(t) is the unknown acceleration.t

TThis model assumes that the gravitational acceleration can be represented
as a function of time, so that gravity variations are zero in equation (4.45),
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. . . . . . 2
We postulate that a(t) is white acceleration noise with wvariance O, » and
that the apriori variance of the initial condition vy is infinite. The data

consists of

t
z(t) = v(t) + n(t) = vy + jﬁ a(s)ds + n(t) (4.46)
0

where n(t) is white data noise. Let

t
B(t) =f o(s)ds (4.47)

o}

Then, applying Section 4.3, the maximum likelihood estimates (denoted

by *) of v, and B(t) are found from

A
vo ' (T) =

=

T
jn 2(t) - 3*(t)] dt (4.48)
0

L

. ® t [ * *
() = 2 [0 26s) -87(s) v ]ds (4.49)
O

where

If a(t) is indeed white acceleration noise the value of A is determined;
otherwise, A is a parameter to be chosen. In this section the dependence of

the estimation error statistics upon A will be examined.

4,6.2 The Estimation Error Statistics

Let
e, = VO* -v, (4.50)
eg(t) = B¥(£)-B(¢) (4.51)
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then, substituting equation (4.46),

T
e, = -,}—f [n(t) - eB(t)J dt (4.52)
0
ty = —AZ/t [n(s) - e, (s) —ev]ds - o (4.53)
(o]
and
;8 - AZ Eq = AZ [ev - n - f§-J (4.54)
Since
e, (0) = 8°(0) - 8(0) = 0 (4.55)
'eB(O) = -a(0) (4.56)

the solution of this equation is

eg(t) = - (“}EO)) sinh At

+

%{:sinh A(t-s) [ev—n(s)—éf%l-]ds

- Aftsinh A(t-s)[sv - n(s)] ds
o]

t
-f cosh A(t-s) a(s)ds (4.57)
(o]
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where we have integrated by parts to eliminate the 4(s) and &(o) terms.
Assuming for the moment that E[evz] is negligibly small, the integrated

acceleration (B) estimation error is described by the autocorrelation

function

r(t,t) E [EB(t) EB(Tﬂ

2. 2 (7. .
A o sinh A(t-s) sinh A(t~-s)ds
o

t,T
+././‘cosh A(t-sl)cosh A(T—SZ)R(sl,sz)dslds2 (4.58)
0o

where t > T and

4.59)
2 6(51—52) (

i
Q

n

E [n(sl)n(sz)]

E [()L(Sl)acsz)] = R(Sl, SZ) (4.60)

Note that E[esz(t)] = r(t,t). The initial condition estimation error is

described by (see equation (4.52):

2
g .
2 2 n 2 sinh AT ]
- - -1
% E[EV ] T T
. T T
s jfr(sz,sl)dsldsz , (4.61)
(o} o]
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since, from equation (4.57),

-Ao 2 %2 sinh A(s, - s) §(s,-s)ds
n 2 1

(o)

E[n(sl)EB(SZ)]

2 .
-(Aon ) sinh X(sz—sl) S, > s

2—-"1
= (4.62)
0 sl > 52
and hence
2
2 TT On ) T) (4. 63)
- (-7?>_/.J[ E[n(sl)eg(sz) dslds2 = 2 (——7?> <51nh AT - A .
T AT
00
We also have
T.T 2
.[ fE[n(sl)n(sz)]dslds2 =0, T (4.64)
00 ’

Equations (4.58) and (4.61l) are the results we seek.

4.6.3 Selection of the Tracking Time and Estimation Parameter

The wvalues of T and A can be chosen so as to minimize a bound on the

. 2 . . . . .
error variance OV . Since a(t) is not white noise there is an M such that

R(sl, 52) <M (4.65)
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From equation (4.48) we have

2 2
Ao T
r(t,1) < 2n -[[cosh A(t + T - 2s)-cosh A(t-T)] ds
o}

t
+ M f cosh A(t-s)ds[Tcosh A(t-s)ds
o o

by 0n2
2

[cosh At sinh At - At cosh A(t - 1)]

+

sinh At sinh At
A

(4.66)

Then the last term on the right hand side of equation (4.,61) is bounded
according to

1 e n
—E-j"/" r(t,7)dt di < —— (cosh AT - 1) (sinh AT - AT)
52 20T

2

,._]

+-i175 (cosh AT - l)2
AT

and a bound on © 2 has been established.

Suppose that we assume that AT
is sufficiently large so that the (sinh AT cosh AT) terms dominate equation
(4.61), and define

2
Ao
o 2(bound) = —5— [cosh k (sinh k - k) + 3 sinh k - k]  (4.67)
M 2k
+ ? 2.(cosh k - l)2
Ak
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where k = AT. Minimizing equation (4.67) with respect to A and T yields

1/3
\ =(_‘%) (4.68)
ag
n
k = AT=1 (4.69)

Thus we conclude that A should be chosen according to equation (4.68) and
2

the optimal tracking time is T = 1/A. The corresponding bound on o, is

then

o 2 < 1.48 A o 2 (4.70)
v n

Note that we get the intuitively obvious result that A > © and T -+ 0 as
M+ o, or as Onz > 0. Conversely, A > 0 and T > ©» as M > 0 or as an > o,
The latter case is usually assumed in orbit determination; that is, it is
postulated that random acceleration is negligible and the entire random

component of the data residual is attributed to data noise.

4.6.4 An Application to Lunar Orbiter Tracking

As an example of the application of these results, consider the case
of tracking a spacecraft in orbit about the moon. Suppose the unmodeled

gravitational effects produce a periodic acceleration of the form

+tThe dimensions of equation (4.68) are compatible, for if M is in units of
(ftz/sech) and onz is in units of (ftz/sec), we have A in units of (1/sec).
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a(t) = a cos wt (4.71)

where o, = lO—4 m/secz. The corresponding speed error would be

B(t) = j-ta(s)ds = %-sin wt (4.72)
o

and the maximum B is described by (oa/w) 0.5 m/sec for 1/w = 5,000 sec

(approximately 1.4 hours). The acceleration autocorrelation function is

R(t,t) = oaz cos wt cos wt (4.73)

-8 2 4 . . 2 -2

and M = 10 " m" /sec . Let the doppler data noise variance be o, = 60(10 )
m2/sec, corresponding to a omne sigma "counted' doppler data error of 0.1

m/sec for a 60 second count. Then

4oty V3 24
Yoo loony! T aes (79
T = % = 245 sec (4.75)
o, < 06 m/sec (4.76)

Al ternatively, if o, = 60(10_5), corresponding to a one sigma counted
doppler error of 0.0032 m/sec for a 60 sec count, we have T = 24.5 sec.

In this case, only a very short tracking interval is indicated, which implies
that a sequential filtering technique should be employed with a dynamic

model which includes state noise (a Kalman filter).
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5. PROPERTIES OF SEQUENTIAL ORBIT DETERMINATION ALGORITHMS

5.1 INTRODUCTION

It is shown in Reference [6] that the iterated, weighted least squares
(maximum likelihood), nonlinear orbit determination algorithm will converge
under certain hypotheses. It is not possible, however, to give a similar
pfoof for the particular sequence of computations known as the Kalman
filter. 1In this method the information contained in early data points
(or batches of data points) is stored in the form of an estimate and an
error covariance matrix, and the revised estimate which incorporates the
most recent data point (or batch of data points) is obtained as though the
system were linear. 1In this case the neglected nonlinear effects could lead
to divergence, which means that a given data point could cause the estimate
to move away from the "true" value. A second source of divergence, which
can also occur in the weighted least squares form of the estimate and in
linear systems (where the weighted least squares and Kalman forms are
theoretically identical), is numerical roundoff error. Both of these
sources of divergence will be discussed in this Section, and a theorem
which is the basis for sequential estimation will be presented. In
Section 6 an analysis of the effect of nonlinearities in certain sequential

estimators will be carried out in detail.
5.2 THE LEAST SQUARES ALGORITHM

We measure an N dimensional data vector zM (that is, we take N
observations), and calculate for corresponding ﬁimes the N dimensional
vector zC(x) which would be observed if the spacecraft were on the tra-
jectory implied by the initial state vector x and the given perturbation

model. We take the difference between the Zy and z called the residual,

c?
weight it according to the reciprocal of the standard deviation expected
for that observation plus any cross correlations between observations.
These are generalized in an N x N variance-covariance matrix W_l. If the
apriori variance of the initial conditions is infinite (/\0_1 = 0), then
the orbit determination problem is to determine x = x  so as to minimize

the scalar expression
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£(x) = (2c(x) - ZM)T W (2o -2 | (5.1)

If a decomposition of W can be found of the form W = RTR, and if new

R z , are introduced, (5.1) becomes

variables gC(x) =R ZC(X)’ 8y = M

r(x) = (gg0) - gM)T_ (gcl(x) - gy) o ©F
= Ject - ey (5.2)

A program which minimizes (5.1) is called a minimum variance program, and

a program which minimizes (5.2) is called a least squares program. It is
sometimes said that the minimum variance formulation is more general than
the least squares formulation and that to solve the minimum variance problem
it is necessary to invert a very large matrix, W_l. Neither statement is
quite true, since, as seen above, any least squares program that permits

the above sort of change of variable will solve the minimum variance pro-
blem, and, in simplifying, it is only necessary to know the matrix R; it

is not necessary to know W. The latter fact is important since R is gen-
erally simpler to compute and, in practical cases, is a simpler matrix to

handle than W.

We consider that we want to minimize expression (5.2), which we

rewrite as
r(x) = |hx)?

where h(x) = gC(x) - g Let A be the matrix of partial derivatives of

M’
the components of 8¢ (and hence of h) with respect to the components of x.
The partial derivatives are evaluated at the point x . Let X be an

approximation. Then, expanding for a first order Taylor series about X

we have

r) = |hex) + Alx - x )| (5.3)
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Let ®(v) be defined by

®(v) = |h, + Av"z

where v = x - X and h0 = h(xo). Then (5.3) can be written r(x) = o(v).
Hence, choosing x to minimize r(x) is approximately the same as choosing v

to minimize &(v).

The problem of minimizing ®(v) is a linear, least squares curve fitt-

ing problem with the solution

The differential correction process consists of finding the wvector A

letting X, + v be the next approximation, and repeating the process.

The above abstraction is actually much oversimplified. In the
practical problem, for example, ®(v) is minimized subject to the side con-
dition that the components of v should be within prescribed bounds. This
prevents divergence in many nearly singular and/or nonlinear problems. As
the iterations proceed, the bounds are permitted to grow or forced to shrink,

depending on whether the iterations are successful.
5.3 SIMPLE SEQUENTIAL PROCESSING

In the following, a subscript of 1 indicates old data, and a sub-
script of 2 indicates new data. The problem is to minimize @l(v) + @2(v),
where @i(v) = lhoi + Aivlz. Before the new data comes in, one can already

find the solution

-1
_ T T
vy T - (Ai A1) A_1 h01
With the new data the solution is
T T -1 T T
V2 = - (A1 A1 +A2 A2> <A1 ho1 +A2 h02> (54>
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Note that one can find v, by adding the ''mew normal matrix" A T A to the

2 2 2
"0ld normal matrix" Al Al’ and the new set of coefficients A2T h02 to the
old set of coefficients AlT hol' Hence it is, in general, not necessary

to solve the whole problem anew each time new date comes in.

Note that X + v, is the solution for the old data, and X + v, is

the solution with all iata. Note that both corrections are intended to be
added to the same nominal vector. Since the basic problem is nonlinear,
after all the data has been processed, the final derived correction should
be added to X s and the process then repeated with all data collectively.
The above process is then the ordinary differential correction process,
except that one can point out intermediate results; one simply takes the
matrix ATA and the vector ATho for the data "so far,” and prints out the
solution

_1
(AT A) AT h

for this data. Only when all the data has been processed does one actually
use the solution v as a correction to X5 the intermediate results are only

for information.

One can prove the convergence of the general method described above
under suitable hypotheses; but this is beyond the present scope. Two things
are fairly simple however: (a) for a process to converge, it should have
the property that if one starts out with the right answer, one stays there;

¥

and (b) if the normal matrix
-1
()

is nonsingular, the method under discussion has property (a). To prove
(b), one notes that the vector of partial derivatives of r with respect to

the components of x is just
T
AT +(ATh)
o o
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Hence at a solution

5.4 SEQUENTIAL PROCESSING WITH SHIFTING NOMINAL TRAJECTORY

In this method, one finds the solution v, for the o0ld data, corrects

1
the nominal trajectory immediately by X = X + E and processes the new

data with the new nominal. This results in a slight simplification since
the AlT hol term drops out of the right side of (5.4),simply because AT h=20
is a solution to the problem.

More precisely, let a superscript of (0) mean evaluated at X s and a

superscript of (1) mean evaluated at x Then the sequential processing

1
method consists of evaluating

Vi 7T [(A1(0)>T (Ai(oﬂ—i (A1(O))T b

Xy = xo-i-v1
T T -1 T
- (1) (1) (0) (0) (1) (1)
V2 7T [(Az ) Ay T (A1 ) Ay ‘ (Az ) by
XZ = X1+VZ

As the processing continues, the nominal value of x changes each time new
data is added. If the process is not iterated the algorithm is the Kalman

filter.

The claim is sometimes made that the above process avoids the need
for iterations. A more accurate statement would be that it prevents one
from iterating even though one should. The difficulty is that even if one
starts out with the correct answer, one does not stay there, and hence the

previously mentioned property of converging processes is not met.
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To prove the last statement, let x be the true solution. Then

<A1(0))T b (0 (Az(o>>T b0 -

Now excluding the exceptional case when x(o) is a solution to the old data

alone and the new data alone:
T
A O (0
1 1
Hence vy # 0 and Xy # X - Expanding h2 in a Taylor series about X gives

(1) _ 4, (0) (0)
hy' = h, AT v+ e

where in general the remainder term e is nonzero.

Let

(1) (0)
A2 - AZ )

T T
R SR I AR ) RN
F = (AZ ) .A2 - QAZ ) A2
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satisfies

[(A1(0)>T A1(0)+ <A2(1)>T A2(1)] v, = - (A2(1)>T hz“)

Va

2

[(A 1(0))T NOR (Azw))T OIS (Az(o>>T h (1) ETp (1

T T
_ (0) (0) (0) (0)
= - (Az ) h, '(AZ ) Ay vy

T
- (AZ(O)) e .ET h2(1)

T T
- (0) (0) (0) (0)
= - (A1 ) by - (Az > By

- (s 1<0>>T A0

Hence

[(A 1(0)>T NN (A2(0)>T A

T
{ (vi+v,) = -Fv, - (AZ(O)> e -ET h2(1)

This shows that if the problem is linear (that is, if E = F = ¢ = 0) then

v, + v, = 0, and we would stay at the correct solution. If the problem is

not linear, however, vy + v, # 0, and we would not stay at the correct
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solution. Iterating on the data obviously will not correct this problem.
5.5 RATE OF NONLINEAR DIVERGENCE OF THE KALMAN FILTER

In this section we will investigate the extent to which the non-iter-
ated sequential processing methods with shifting nominal (the Kalman filter)
does not converge. Instead of attempting to prove convergence, we will
outline a proof that under certain hypotheses the divergence is not too

severe.

The basic problem is to choose x to minimize lh(x)lz. A necessary

condition for the minimization of h(x) is that
AThx) =0

where the partial derivative matrix A is evaluated at x.

In the Kalman filter method, suppose that the problem has been solved
for all previous data, new data has arrived, and one wishes to solve the
problem with the old and new data combined. A subscript of 1 will refer
to old data and a subscript of 2 will refer to new data. The vector x; is
the orbital element vector after processing the old data and X, is the
orbital element vector after including the new data. A superscript of
1 and 2 will refer to where a matrix or vector is evaluated. For example
hz(l) means the residual vector for the new data evaluated at the old

orbital element vector xl.

After having processed the old data, one has an error

(1

_ @, T
E, = (Al ) hl

If the old data had been processed exactly we would have El = 0.

In the sequential processing method, one computes a correction v

by solving the system of equations

a Nz(l))v - (Az(l))T p (D

N 9

1
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and letting

The main problem now is to evaluate

o @7 (@ @\, (@
E2 = (Al ) hl + (A2 ) h2

(2) and h (2)

Expanding hl 9

in power series about the point X gives

@ _, W, , ®

h v + €

1 I} 1 1
(2) . (D (1)
h2 = h2 -+ A2 v + 82
If the functions were linear, the errors €1 52 would be zero. Also, the
errors
L@, W
Pp =4 By
_ L@ W
Py =4 Ay

would be zero if the functions were linear.

@, T, (@

2),T | (@)
1 ) b

E, = (A1 + (A2 9

(1) (1) (1) (1) W, , @,

+ A 2 2)

T T
= (Al + Pl) (hl 1 v + al) + (A2 + P2) (h2

T T
(l)) h D + N L v + (Al(l)) e, +P T h 2)

(Al 1 1 1 1 1

T T
f o, WPy a,M) o v

- T
B+ 1o, @y v @,y o,

1

2

(1))T €, + P t h (2 + P ' h ()

W, T
) 2 1 1 2 2

+ (A + (A2

1 1

T T
= E, + (Al(l)) e, + (Az(l)) €y + PlT hl(z) + PZT hz(z)

2 1

I
|

1
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This formula indicates the growth of the error in the Kalman filter
processing method. The added error in each step occurs because of the
nonlinear terms reflected by €15 €55 Pl’ PZ‘ (By iterating on the new data

it is possible to get rid of the terms involving €, and st as will be dis-

cussed in Section 6.) ’
It is possible to use the mean value theorem to express the errors

€15 €9» Pl’ P2 in terms of second partial derivatives of the residual com-

ponents with respect to components of xj and then use the above formula

to prove a rigorous theorem about the growth of the error in terms of

bounds on these second partial derivatives. Since these bounds are usually

not estimated easily it is felt that such a theorem would be of largely

academic interest.
5.6 DIVERGENCE DUE TO NUMERICAL ROUNDOFF ERROR

It has been frequently observed that the sequence of computations
called a Kalman filter sometimes produces numerically unstable results,
even in the linear case. This can be caused by numerical roundoff error.
In order to shed more light on this phenomenon, we will examine fairly
completely the simplest non trivial problem in which a Kalman filter is
applied. Even in this simple case, some of the results are fairly hard to
obtain. It is hoped that a complete understanding of the simple case is

useful in understanding the more general case.

The results which will be shown are: (a) The "instability" is not
really an instability in the usual sense. It is an increase in the variance
and a bias in the mean of the estimate, and the increase and bias can be
theoretically predicted. (b) The same phenomenon occurs by the "least

squares' algorithm, but it shows up later.

The case considered here is the simple problem of finding the mean

of a set of number v; with mean § and standard deviation 1.

=1
ak_ka;lyj
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We will consider two algorithm for computing.y sequentially:
k

I :C =0
0o
S =0
(o]
oy =G +1
Speq = St Y k=0, 1, ...
- St
L T C
IT: vl =1
S1° 7
2 -1
Viel = Vi TV (V)
a

e+l © Vil Skl

These two methods are generally called the least squares method and
the Kalman filter method in somewhat harder problems. (Actually method 2
is the "Kalman filter method without shifting nominal". This fact

does not affect the present argument.)

If the arithmetic were done exactly, the results of both processes
I and II would be the same. However, since the computations are done on

computer with finite word length, the results will be different.

Consider a floating point machine with, say, 3 decimal digits.

Suppose that S, is computed exactly. This is a reasonable assumption if

k
the mean of the random numbers Y is near zero; in this case there is no

appreciable growth of roundoff error in the computation of Sk'

In method 1, there will be no error at first, and one will have
Ck = k. As soon as k = 1,000, however, the computation 1000 + 1 will
result in 1000 on the 3 place computer. Successively adding 1 will not
change the succeeding values of Ck' Hence the computer will produce for

method I
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k
I: (computer) ay =i]<: Zy. for k < 1000
1 J
1 k
a = 7000 ?yj for k > 1000 .

The mean and standard deviation of a, can be easily computed

o8]
]

” v, ok=1/,/k , k < 1000

3 k__ s S YE o 1000

% “ 10007 * % T 1000 °

This shows that the computer estimate of the mean will be biased and that

the standard deviation of the estimate will grow for k > 1000.

An analysis of method II can be given in similar fashion. There is
a difference in that the computations are not done exactly for early values
of k; one can however show that the roundoff errors are stable. Hence

assume that the computations in method II are carried out exactly for early

value of k; vy =-% at first. The computations will break down when Vi +1
is indistinguishable from 1 on the computer. This happens when v, = .005

or k = 200. At this point also, vk2 is indistinguishable from Vi and we

have Virr = Vi for k > 200. Hence method II produces the result
1 k
IT: (computer) a =% 2: V. k < 200

cpng [N
J

a=—1—'2y k > 200 .

k 500 ¢ i’

j=1

The two methods are compared in Figures 5.1 and 5.2 with the results
with no machine error. They illustrate that there is in fact a bias and

and incréasing standard deviation for both methods I and II.

-75-

AR



A Mean of
estimate
"
50 5,
O 1Y
o N
No rounding error
- k
Figure 5.1
AStandard deviation
\if estimate
5
*006 >
et
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o
Q\}G . e‘fr'o{
A0
10““61
—_ N
= - Kk
Figure 5.2

One might object to the above simple case as being unrealistic for the

reason that before the "instability" would show up on a realistic computer

one would have to process an unrealistic number of data points;

ample, 1038

years.

for ex-
24

data points on an IBM 7094, which would require about 10

The problem would show up in a realistic time however, if one in-

cludes an apriori first estimate of the mean with a small standard deviationm.

When this happens, the above analysis still holds, except that the instab-

ility occurs somewhat sooner.
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5.7 A THEOREM FUNDAMENTAL TO SEQUENTIAL DATA PROCESSING

This Section concerns a method of obtaining and understanding a number
of identities which are important in sequential orbit determination and
other branches of applied mathematics. The idea is that a large number of
results come from one simple theorem. It is hoped that this will provide
some further insight into the nature of computations which are performed

now and also suggest some new methods.

Let m and n be two integers. While the theorem below does not depend
on the relative size of m and n, the applications are generally for m > n.

For example, in the orbit determination problem one typically has m = 6,

n=1.

Let B, D, and A be fixed matrices. The matrix P is a variable matrix

in the theorem below. The dimensions of these matrices are

A: m xm
B: mxn
Dinxm
P: nxn

It is assumed that (DAB)_l exists.

Now define the m x m matrix VP as follows

Definition: V, =T + B(DAB) T (P - I) DA (5.5)

Note that the computation of VP requires the inversion of an n x n matrix.

The basic result is

Theorem: VPVQ = VPQ (5.6)
The theorem is easily verified by simply multiplying the two matrices VP’

V. and collecting terms.

Q
The importance of the theorem is that a certain subset of m x m
matrices is isomorphic to the multiplicative group of n x n matrices. 1In
other words, matrices which look like the matrix V_ can be operated on

P
(multiplication, inversion, square root extraction) by doing these operatior
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on the smaller matrices P. Since the dimension of P is smaller than the
dimension of VP a savings in computer time can result. This will be made
clearer by the examples below.

The following results can be obtained immediately from the theorem

v, o= I (5.7)
-1

V,o =V _ (5.8)
P pl

1/2

VP VPl/2 (5.9)

Application 1: The Schur Identity

As a first application, consider, the problem of finding the inverse

of a matrix of the form W_l + TUV. One can write

-1
wtl+tomt=w a+ ovsH
-1
=WV,
=WV _, (5.10)
P
To identify the matrix I + TUVS ' with the matrix Vp, we let
T =38
-1
U = (DAB) (P ~-D
V=D
W=A (5.11)
The matrix P is hence computed from
P=1I+ (WI) U (5.12)
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Now suppose that W is known and one needs the inverse of W~ + TUV).

One can obtain the inverse of this large (m x m) matrix by forming and in-

verting the small (n x n) matrix P, finding V -1 and then W V -1°
P P

The above result is a disguised form of the well known matrix identity:

wl+rrm™tow-wrw?+ wr L ow (5.13)

To prove this note that

Pl ou ! w4+ wn (5.14)

and

-1
v = I + T(VWT) (1>"l - I) VW
-1
P
_l _l
=T - T(WT) (P-1)P " W
-1 11 -1
=1 - T(WT) (VWT) VU = (U ~ + WWI) VW
-1 L1
=1 - T(U = + VWT) VS (5.15)

It then follows that W V . agrees with the right hand side of (5.13).

P 1

Application 2: Orbit Determination - Kalman Filter

The matrix
o +8 8Nt

appears in orbit determination theory; usually with N and B being 6 x 6
and 6 x 1 matrices respectively. If one knows the inverse of N one can

find the inverse of (N + B B') as in the last section.
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-1
w+eg) =t a+se vh

where

N=at

B =38

B' =D

P=1+8"N7Tg (scalar) .

If one performs the algebra corresponding to equation (5,15) above, the
result is the "Kalman filter" equation. This is expected, since the Kalman

filter equation is known to be a special case of the Schur identity.

Application 3: Orbit Determination - Square Root Method

Suppose that one knows a matrix R such that
R'" R=2¢C
and one wishes to find a matrix Rl so that

-1 v_l_ 1
(C - +8B 8" =R Rl

This can be done as follows

«l+pent=r x+rBa rRDIR
= R' v, R
= R (S RRV I
= (VP1/2 R (VPl/z R)
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Hence R1 =V 1/2

In the above derivation we set

A=T1
B = RB
D=B'R'

(DB)_l P-1)=1

P=l+|RB|2

We also used the fact that V
P

1/2 is symmetric.

Application 4: Variations (Partial Derivative)

In orbit determination, one frequently has occasion to compute the

derivatives of a function like
£x) = x |x|F

Where X is a vector; the variation of this expression is given by

B P
Sf(x) = |X]| Vo, 8K
where
T
_ XX
Voyp = I+ P———|XI2

This expression is useful in deriving, for example Taylor series
methods for integrating equations. It is also useful in deriving varia-

tional equations. For example, if the equations of motion are
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one can write the variational equations immediately:

S
(6%) = FE V_, 8X .
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6. ESTIMATION WITH A SLIGHT NON-LINEARITY

6.1 INTRODUCTION

The effect of non-linearities has been discussed throughout this
Report. In general, little can be said about this source of error, or
about any corrective approximation which might be introduced, unless the

non-linearities are small.

It will be assumed that the dynamics is noise—-free so that only the
data is contaminated by noise. The state variables x of the system will
here be chosen to be certain constants of the motion, such as orbital
elements or initial position and velocity. The only non-linearities arising
are then those in the relations between the observations V4 and the state x.
These non-linearities will be assﬁmed small. We shall consider, then, the

problem of estimating quantities X, given a set of observations

Vi = 354 %y + €108 ¥a ¥ +n, (6.1)

where the ni's are independent standard normal variables, and summation is
understood over repeated Greek indices. The coefficients EiaB of the non-
linear terms are understood to be small, and their squares and products will
be neglected throughout. It may be assumed that the apriori covariance A

of the X, is infinite; alternatively, apriori information may be included as

a first data point.

Three forms of the estimator will be analyzed and their biases compared.
These will be (i) The least squares fit, (ii) The sequential (Kalman) estimate
with linearization of the latest residual about the previous estimate, and
(iii) An "iterated-sequential scheme involving iteration through the latest

data point designed to reduce the non-linearity in the latest residual.
6.2 THE LEAST SQUARES FIT

This estimator obtains that set of wvalues X, which cause
2:(y. -a. x - g X X )2 = mini
. 5 1o Xg 108 *o *a = minimum (6.2)
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Thus
Z;(aia + zeiaY XY) (yi - ajp X3 ~ €ipg Xy Xg) 0 (6.3)

That is, if ﬁaB denotes Z;aia aiB , then

(6.4)

In the right member of (6.4) (neglecting 32), %3 is replaceable by

~ -1
(W)g,, ‘Lj?aia v

Substituting for v in terms of n, and X, the distribution of X, - %,

may be investigated.

In particﬁlar:

(6.5)

~

— -1 ,=-1
B3 - %) = - oy tage) g G

and
B Gy - %) Gy - )l

et AR N, [
- (N)aB -t (N)ay (N)Bi §(aiy fi6e ¥ 216 ive) ¥e  (6.6)

6.3 THE SEQUENTIAL FIT

This estimate is obtained successively as follows:

xa(i) ig that X, which causes the sum of previous squares, represented by
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nia) (xa - &éi'1>) <XB - iéi'l)) +p2 (x) = minimm, (6.7)

where the first term on the left represents the sum of squares of previous

residuals, and where pi(x) 1s the iEE-residual linearized around ;<i_1), i.e.,
~(1-1) ~(1-1) - (i-1) ~(1-1)
Py x) = i = ayq Xy - giaB xB Xq - |20 -+ 2siaB xB
x (@i-iéi—l)) (6.8)
and
; -1 ~(i-1) ~(1-1)
Nég) = Nég ). (aia * 280y X ) (aiB + 28iBG X . (6.9)
Thus
. e (5 ~(i=1 ~ _l)
P (B0 K)o () 2 V)
Hence,

(5 <)) (550 )

oy (F5Y) (o - 2 1570)

~(i-1) ~(1-1)\ (o (i-1) _ .
+ (aia + zaiayxy )(aiB + 2SiBéx6 Xa XB) . (6.11)

Substituting for v; into Ps in terms of n, and x, and summing over i from

1 to m(i.e., m data points):
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~(1-1 6.12
X [ ia © 281a¥ (* )] ? ( )
. A (i=1) |
In the right member of (6.12) the xB is replaceable by
. -1 i-1
—(1—1)]
+ IN
XB [ Be géi nj aje , Where
~1

=(i-1) _ X

Be T T 2% e (6.13)

. , . , . ~ (m S
In order to investigate the distribution of Xa( ) - X it is necessary to
(m)

observe that NaB is itself a random variable. In fact,

3

(m) _ =(m) - ~(i-1)
NOLB = NOLB + 2 Eéi asy siBY + aiB 8iaY Xy (6.14)

so that

@]™ _ [zt —(m)| ™ )] T & a(i-1
[N i ]aB B [N m-JaB -2 [N "’ a’y N(m B8 ééi(aiyaiée * aiésiye)xgl )'
(6.15)
We can now obtain:
m)

X
[e8

I EC R L (i-1), ~(i-1) _ )
B [N ]aB 1Z=:1 By Bp YRy iy X\((l ) %ip “iye \™y *y
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[(mq [(mq {2: ﬂa. €. ..+ a,. E. )iuﬁlq} 5 n.aB)
ay Bs | {4 ( iy is8e ié 1ve e _j=' J J /

on the right of (6.16) we may use

(1) _ x, +[ 1—1)J 2 n, 8,

Y k=1 (6.17)

> (m)

The distribution of x

Eg(;(m) - X )(;((m) - XB) | x} is the same as that for the least-squares
o o o _

fit to the same data, so that N is identical with ﬁ{m). The bias, however,

- X is now available, The covariance

is more serious:

6.4 THE ITERATED-SEQUENTIAL FIT

This estimator is obtained as follows:

~x(i) . . P . . .
Xa( ) is that X s obtainable as the limit in an iterative procedure, which

causes

-87-



. : 2 |
#*(i-1) ~%(1-1) A% (1-1) * o i

NGB x, - X, X - * Py (x) = minimum (6.19)

where_p:(x) is the i-EE residual linearized not around i*(l_l) but around
~% (1

the desired x (1), and

*(1) _ (i-1) ~%(1) ~3%(1) :

NaB = NaB Ll P 2 eiay XY ajg + 2 EiBG X . (6.20)

. . . . A, . ~*(i-1
The iterative procedure consists of linearizing Py firstly around x & ),

- e . . . . ~*(i)1 . -

obtaining from the minimization a first estimate x (1) , re-linearizing
~%(1)1 . . ~%(i)2 . 2 . .

around x (1) to obtain a second estimate x (1) , etc. Since € is negli-

gible, the next iteration is optional, and any further iteration pointless.

We see that

* /o sp.
36 (4~ ~3 (3 ~3(i=1 A1) .
Naél 1) (X (1) _~x(3 )) - b, (X ) (aia o

and hence

%(1) [~(1) #(i-1) (% (i-1)
Vag (XB - XB) ™ g (X - XB)

Substituting for i into Py in terms of n, and x, and summing over i from
1 to m,
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. "'X'G_
x [aia+281ayxy (6.23)

On the right of (6.23) we may use

(1) _ ()] &
x.Y x.Y + [N vE g;i n, 3¢ . | (6.24)

(m)

, given by:

-1 iy -1 -1 m .
#(m —(m) ~(m) =(m) (1)
[N ( )]aﬁ - [N(m]aﬁ " - [N ]aY {N ]Ba 2 (a- fe * 2 ¥

*
Again it is necessary to pre-multiply by the inverse of N

~k
The distribution of xa(m) -

Xa is then available.

The covariance

. 1@@) _ Xa) (;c;;'(m? i Xe) "z

is again the same as before. In computing the bias E {ﬁém) - xa},

/\* i
account must be taken of the correlation between ni and x ( ).
result is:

The
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It is noteworthy that in the sequential estimates of Sections 6.3 and 6.4

the early non-linearities €y have much greater effect than the later ones,

—a-n]™h o]
due to the presence of [N ] or [N ] . The iterated-sequential

fit, moreover, replaces ﬁ(l_l) by ﬁ(l), which by itself would be an improve-

ment, but introduces also a multiplicative factor 3, which is adverse.

6.5 AN EXAMPLE

Suppose that we are making repeated measurements of a single quantity

x with varying non-linear coefficients €55 and that we have an apriori

- 1
estimate x of x with variance ¢ Here we put a_ = — , € =0, a, =1
o o o g, o i
(i 2 1). The least-square bias is
m
1
E {ﬁ-x} = - 28 (6.27)

The sequential bias is
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and the iterated-sequential bias is

L }E: £,
_3___) ﬁ ( °i )_ o= Al (6.29)
1 1 1

o}

' ~*(m) |, .
Except for the first non-linearity, whose effect in x (m) is less than in

ﬁ(m), at least if o, is large (i.e. > > 1), the early non-linearities,

X . ~%(m . ~(m

which have the larger effect, are more serious in x (m) than in x( ),
. ~(m .

whereas the most recent non-linearities affect x( ) about three times as

A Ade \
much as they affect either x or x (m)‘ This rather paradoxical feature

is not apparent in the simpler two-batch analysis in chapter 5 (see

1st paragraph on p.73). In the case of equal biases (Ei= €) and
large m, we have:

, E :i(m) - x} ~ i Inm |, (6.30)

and

. %i*(m) _ X} ~3% 90 . (6.31)
m

It is tempting to conclude that a sequential fitting procedure should be

iterated only at the outset. (!)
6.6 ANOTHER SEQUENTIAIL PROCEDURE

An estimate equivalent (for negligible 82) to the least-square fit is
available if third as well as second degree terms are carried forward in
the expression representing the sum of the previous squares. This

"higher-order sequential estimate" I s defined as that x which minimizes
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o7 qy () = W) (xa . if(i‘l’) (x - i§(1‘1)>

3R e - D) [ ) i) 2
(6.32)

)

Again, this is obtained by first linearizing Py around §+(1—1 » expanding

. ~(i-1 - . .
(x) to 2nd order in x - x( ), obtaining thus a first estimate

-1
A i -~ ) I :
xT( )1. Q1 (x) and p; are then re-expanded around x+{l)l to obtain

+

~+(1
XT( )2 ,» etc., and a further iteration is optional. The next N and E are:

FE) _ G-, oGA1) (SRE) | kG-
Nt = NaBl BBy (xt - xt )

. ~E(1) ~+(1)
+ (aia 2 Eiay X.Y ) (aiB + 2 SiBG xt ) R (6.33)
and
(1) _ o (i-1) )
Epy = Eapy T2 (?ia Cigy T %ip Siay T Ziy SiaB) (6.34)

This improved sequential estimate required, of course, not only more

storage but the calculation of all the second partial derivatives €iap"

6.7 AN APPLICATION

As a possible application of this analysis, we shall develop an
algorithm for computing the effect of non-linearity in the estimate of
position of an incoming vehicle (see Figure 6.1) based only on range

measurements from a tracking station in the plane of motion.
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Actual trajectory

Nominal trajectory

Tracking station

Figure 6.1 Tracking Geometry

Linearize the orbit description about the circular orbit through

indicated first observed position, i.e.,

L]
Il

b cos ¢ (6.35)

b sin ¢ (6.36)

<
0l

where (x,y) is a rectangular system moving on the nominal circular orbit,
b is the magnitude of the initial position error, which may be assumed

to be predominately perpendicular to the line of sight since the initial
range measurement itself should be fairly accurate, Thus ¢ = 6 , and

the 3 unknowns b, io’ §o may be assumed as zero mean with known variances
and zero correlation. Define the departure from the nominal orbit,

ignoring the initial range error, by means of

[ 2 [ b ]
5{0
A% Eil B
N Vo (6.37)
e 3.J ..



where n is mean motion on reference circular orbit.

Then:
x\. M
= B(se) A, (6.38)
y
o
where the 2 x 3 matrix B is
cos $(4 - 3 cos (s,-8)) | sin(e_-6) 2(1-cos(6,-6))

B(9) =

sin § + 6 cos 4><sin(eo—6)—60+e’)l—2@—005(90—6» I sin(eo-e )—390+39
(6.39)

The Measured range is

2 . 2
p = J(R@ +H + x - REB cos §)° + (BEB sin 6 - y) + random error (6.40)
where the random error has variance cpz, and

R.+H+x-R_.cos ©
0 = ® 52 (6.41)
x p

o Ry sin g +y (6.42)
J o)
(R. sin 8 - y)~
_ G y (6.43)
pm 3
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m,.g&'—f

(R, +H + x - %9 cos 6)2

(6.44)
v T 3
o)
. _ (R$ sin 6 - y)(ﬁQ + M+ x - R$ cos 9) (6.45)
Xy 3

P

We assume that the non-linearities in expression for p in terms of Ai

arise predominantly from non-linearities in p as a function of (x,y) rather

than in (%,y) as functions of Ai' [{These latter non-linearities have

already been ignored in writing equation (6,38)]

Then
o = p49e) + o1(e)Ble)n + 2 AT (e)o"(0)B(O N (6.46)
L S e ~ -
[x=y=0] 1x3 3X3
where
! P p
xx Xy
A=A p'(0) = lo,, pyJ , p'(8) =
A x=y=0 v Pyy
3 x=y=0
(6.47)
The previous analysis now applies (A here is x there), where
[ Il = =&
&(i)a 5P (Oi) B(ei) (6.48)
£ s s
a=1,2,3 1x3
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Heeyopll = —2—§;BT<ei> p"(0) B(e;) (6.49)

CL’B = 1,2,3 3 Xv3

We may suppose that the 1lst, 2nd, observations are counted by

i=14, 5, ... and reserve i = 1, 2, 3 for apriori variances:

6.50
o - (1. 0.0) =
b
mean motion
e
n
= —_ = 1= 6.51
Ao, (0, ===, 0) and e g =0 for i=1,2,3. ( )
%o
_ n (6.52)
@30, T (O’ 0, 3. )
Yo
kl Akl
We can now proceed to compute the biases in K2 » say sz .
A
3 A7\3

(1) according to (6.5), for the least-squares fit,

(ii) according to (6.18) and (6.26) for the sequential fits.

Finally the biases in extrapolated in-plane position, at say e=e*,

are given by:

Ax AA
= B(g%) AN, (6.53)
oy
A
M
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7. CONSIDERATION OF SYSTEMATIC ERRORS

7.1 TINTRODUCTION

As a practical matter it is usually not feasible to estimate all of
the orbit parameters if the dimension of the state vector is high. For
example, it is obviously impossible to estimate all of the coefficients of
the spherical harmonics describing the gravitational potential of the
central body, even though any or all of them might have a significant effect
upon the solution of the orbit determination problem. Ideally, one would
like to apply the method described in Reference[7]to determine those linear
combinations of parameters which affect the data weakly so that they can be
deleted from consideration. In practice, this is done on some intuitive
basis, and perhaps some significant parameters are left out. These unesti-

mated parameters are called systematic errors.

In the presence of systematic errors one sometimes resorts to a
"consider option," which can take on several forms: (1) weighted least
squares - estimate the desired parameters as if the systematic errors were
not present, where the inverse data noise covariance is the weighting
matrix, but reflect their contribution to the estimation error in the
calculation of the estimation error covariance matrix. (2) minimum
variance -~ reflect the presence of the systematic errors in the estimate
of the desired orbit parameters and in the calculation of the estimation
error covariance matrix, in such a way as to obtain the minimum error in
the estimated parameters. This approach is equivalent to estimating all
the orbit parameters, including the systematic errors, (3) general form -
choose an arbitrary form of the estimator which is computationally
convenient and produces an acceptably small error covariance matrix in the
presence of systematic errors. The general form of course includes (1)

and (2) as sﬁecial cases.

It is the purpose of this Section to develop a collection of methods
for obtaining estimation error covariance matrices when the general form
of the consider option is employed. A linearized relation between the
data and state will be assumed, which, from the point of view of the non-

linear theory of Section 3, can be thought of as a linear expansion about
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the converged modal trajectory. It will be further assumed that no state

noise is present, but this case will be treated in Section 4.
7.2 THE CONSIDER OPTION FOR A SINGLE DATA BATCH

Suppose the vector z of observation residuals is given by
z=Ax + Bs + n (7.1)

where x, s, and n have the usual meanings, i.e. x is the vector to be esti-
mated, s is the vector of system parameter errors, and n is the random
vector of observation noise. It will be assumed in Subsections 7.2 and 7.3
that the apriori variance of x is infinite (./\—l = 0). A linear estimator

L converts z into an estimate X of X : X = Lz. In view of (7.1) this

relation becomes
X = LAx + LBs + Ln (7.2)

The estimator L will be called unbiased if LA = 1. This property defines
the general form of the consider option, and will be assumed throughout.

Hence

IBs + In

»
|
b
I

Cs + Dn (7.3)

There are two interpretations of the vector s. It may be regarded as
a constant but unknown vector. We know only that the best estimate s of s
is 8 = 0, and that our confidence in this estimate is given by a covariance
matrix ZS. We may then define E(s) = s = 0, and E(ssT) = ZS. With these
conventions s may be handled mathematically as if it were a random vector
with mean O and covariance ZS. This is the second interpretation. In

either case, (7.3) implies

2 = cov(kx - xX) = DanT + czscT (7.4)

where T = E(nnT) and it is assumed that E(snT) = 0,
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Two well known estimators are the following:

Weighted Least Squares Estimator This tried and true estimator is given by

L T-1,.-1,T -1
Lg= (AI A AT .

The corresponding estimate will be denoted by §LS; the covariance matrix

(7.4) by g

Minimum Variance Estimator This estimator provides the minimum covariance

matrix (4.4). It is given by

Ly = AW
-1 T < s . .
where W =T + BZSB . This is easily shown: Any other estimator may be
expressed as L = K + (ATWA)'lATw. Then LA = I implies KA = 0, and it

follows that (7.4) reduces to

ki kT o+ (ATWA)_l

This is a minimum for K = 0. It follows that ZMV = (ATWA)_l.

It is usually impractical to use L in making estimates of x alomne,

MV
since the calculations required are equivalent to those required to estimate
s in addition to x. The matrix ZMV is calculated by using a weighted least
squares estimator to estimate the vector (g) from the data

()62 ) (2,

ZS. The estimator in this case is

where E(n nT)
s s

SR I G 0 Gy
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The resulting covariance matrix (7.4) is

ATP_lA ATT'lB

T -1 T 1

BT A gip1

B+ I
S

The upper left portion of this matrix, which is just cov(x - x), is equal

to ZMV as may be shown using the Schur identity.

The main interest in ZMV is that it gives a lower bound for the

obtainable tracking accuracy.
7.3 THE CONSIDER OPTION FOR TWO DATA BATCHES

Suppose two tracking runs result in observations

1 Alx + Bls + nl

N
I

A.x+ B.s+n (7.5)

2 2 2

N
il

2

Suppose linear estimators Ll and L2 are applied to give estimates

%l = LiAjx + LiBis + Long
= x + Cls + Dlnl
%2 = L,Ax + L,Bys + Lon,
=x + CZS + D2n2
It is desired to combine these estimates to give an estimate §3 which is
better than either and to compute the covariance of the error X, - X.

3

Assuming a linear unbiased combination, all schemes may be written as

;23 = M;}l + N§2 , (7.6)

where M+ N =1
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e T

Thus,

n
1
Xy = X + (MCl + NCZ)S + (MDl, NDZ) ( ) (7.7)
n
2
and
_ Ay T, T T T
23 = cov(x3 x) MD1 FlDlM + NDZIEFDZN
+ (MC, + NC,) & (MC, + NC )T
1 2 s 1 2
Zl ¢} MI
= (M’N)
0T 1 NT (7.8)
2
where
', = E(n nT) . =1L + z =D, T DT + C.Z CT i=1, 2, and 6 = C_% CT
i i“i’? "4 in ic i i 74 i“s7i? > 7 1"s72 °

These definitions will be used frequently in what follows.

The foregoing is quite straight forward but it emphasizes the fact
that, once the matrix M is selected (and hence also N = I - M), the
resulting covariance matrix (7.8) is determined and needs merely to be
calculated. Looking at the matter differently, whenever a matrix 23 is
purported to be the covariance matrix of a combined estimate, there must

be a corresponding choice of M related to £, by (7.8). Any deviation from

3
this rule may be regarded with suspicion unless accompanied with an estimate

of the difference between 23 and a covariance matrix calculated from (7.8).

Two combinative procedures will be discussed.

Weighted Least Squares Combination Using the notation of (7.5), this

method consists of letting

T

_ T -1 T
Mpg = (AW Ay + AJWHA.) & (AJW.A))
T T -1 T
N = (AT A+ ATWA) T (ATWoA,)
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where wl = Pi-l, WZ = Fz_land it is assumed that n, and n, are independent.

If %1 and §2 were obtained using the weighted least squares estimator de-
scribed in the previous section, then this choice of M and N results in a
simple combination of data batches 1 and 2 into a larger batch which is
then processed with a weighted least squares estimator. In other words,

T

|
the tracking matrices [AfWiAil AiWiBi]’ i =1, 2 are combined to form the
|

tracking matrix

i
T T T
)
[A1W1A1 + A12:W2A2| AlwlB1 + A2w2B2] .
This is no longer valid if %l and %2 were formed in any other way.
Minimum Variance Combination If the estimators Ll and L2 are fixed, then
how can M be chosen to obtain the minimum covariance, 23, of §3 -x?
Assuming E(nlng = 0, the answer is given by
[ -1 r.-1 |7t -1
MMV = _(Zl - 8) + (22 - 067) | (Zl - 9)
[ -1 N T, -1
NMV = (Zl - 6) + (22 - 87) (22 - 87) .

where Zl, 22, and 6 are as given by (7.8). This is easily shown by re-
placing N by I - M in (7.8), expanding in M and completing the square.

The resulting covariance is

T
8 M

5L\']
3
g

-1
T
Zy - MMV(Zl + 22 - (6 +67)) M
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Any other choice of M results in a covariance matrix 23 where

Ty = By = (M- M (I, - (6 + 6T)) (M - MMV)T.

Although the minimum variance estimator LMV of Section 1 is difficult to

calculate, the choice M = MﬁV is easily calculated if the matrices Ci’ Di’

ZS and Ti are available. These in turn depend upon the estimators Ll

and L2, which may well be taken as least squares estimators. In this case

the C and D matrices may be readily computed.
7.4 THE INFLUENCE OF APRIORI INFORMATION

Suppose the estimate X, is available along with a covariance matrix

1

L., the "a priori" covariance, but that the dependence of Zl on Zs and

' is not known. We may assume that

1
X =X + Cls + Dl nl R
but the matrices Cl and Dl are not known. They may be regarded as variable
T T
X r - .
but constrained so that ClZSCl + Dl 1Dl Zl

It is often stated that the covariance of the combined estimate is

given by I, which is computed from the augmented tracking matrix

3

T -1 VT
|
[A2W2A2 + zl 'AZWZBZ]

in the same manner employed for a weighted least squares estimator. This

is a dependable covariance matrix corresponding to the combinative pro-

1,71 ~
) £;7 if ¢ = 0. If C; T 0, the matrix 2,

= (AL -
cedure M = (A2W2A2 + Zl

is not correctly calculated. It is the purpose here to investigate the

magnitude of the error.
Consider the combinative method given by

M= (ATW A+ %

Wohy + 2,7 Iy
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Let 23 be the corresponding covariance matrix computed from (7.8).

The following formulas are easily established:

T
Zl 6 M
L, = (M,N)
3 T
§] 22 N
T
_ Zl 0 M
L, = (M,N)
3 ’ T
0 22 N
T
1 9\ Mw
ZMV = (MMV’NMV)
GT z NT
2 MV (7.9)
hence
~ T T T
23 - 23 = MBN~ + N6 M .

It is seen that this error will be small compared to the size of 6 if
M=~ 0 or N~ I, i.e. if the noise errors are much smaller than the system

parametric errors. But 0 is about the same size as the matrices ZlC and

~
hence, in this case I, is a reasonable approximation of 23.

Zoc? 3

Since the pseudo covariance matrix I, could be unrealistically small,

3
it would be useful to know under what circumstances it is at least greater
than the minimum variance covariance matrix ZMV' Equation (7.9) shows that

T T T
3 7 Iy T MM RN - Myt My

™
I
o1
i

T T T
v~ N My Nt 2w

T
= NMVQNMV + N(Z2C - (Zl + Zzn))N s

where Q = (Zl - 08) + (22 - GT).
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It is clear that 23 > ZMV if ZZC > Zl + ZZn' Otherwise the situation is

not so clear.

A possible approach to establishing that Eg 2 ZMV would be to show

the existence of matrices M and N = I - M such that Es may be computed from
(7.8) using M and N. However it can be shown that a necessary and suffi-

This

-~

cient condition for the existence of such matrices is 23 -3 ZMV'
approach then is not helpful.

7.5 A SIMPLIFIED ANALYSIS OF STEADY STATE ORBIT DETERMINATION

Suppose we have a steady state (constant geometry) orbit determination
situation where the state of the system can be estimated quite well during
a short tracking interval, but where the effects of state noise and unmod-
elled parameters add disturbance between tracking intervals. In order to
optimally weight the data and to describe the tracking error, it is
necessary to determine a realistic error covariance matrix which is charac-

teristic of the operational tracking system.

Assuming one continuously estimates some limited number of system
parameters, ignoring state noise and unmodelled parameters, the hypothe-
tical error variance (ATWA)._l would go to zero as time goes to infinity,
(Figure 7.1 — curve 1l). Consideration of these unmodelled effects in the
calculation would yield an error variance (7.4) which becomes unacceptably
large with time, (Figure 7.1 - curve 2). Neither of these calculations is
meaningful, however, for in an operational system one would de-weight early
data to reflect the information loss due to unmodelled effects, (Figure 7.1 -
curve 3). For example, previous information might be completely ignored by
using only the most recent tracking interval to estimate the state. Such
an approach is a special case of the data weighting methods discussed above,
where the covariance matrix describing prior information is degraded in

some less arbitrary fashion.

Theoretically, de-weighting prior information corresponds to postu-
lating systematic errors acting between tracking intervals. Thus the most
rational way to treat the problem is to determine the statistics of this
disturbance, and weight the data according to the true error covariance..

A broken curve will result since the tracking is intermittent (Figure 7.1 -

curve 4). The necessary calculations can be carried out with existing
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computer programs, for it is only necessary to compute the normal matrices

corresponding to the individual tracking intervals and add impulses to the

error covariance matrices between intervals. In this subsection an approxi-

mate treatment of the steady state orbit determination problem will be

presented.

Such an analysis hopefully will be useful for illustrating the

type of results to be expected, for approximate error analysis, and for

suggesting a realistic operational data weighting scheme and tracking

policy.

Error Covariance

(2) Considering Systematic
Errors

(4) Actual System

Figure 7.1 Tracking Error Covariance
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Suppose the unmodelled parameters and state noise act only between

tracking intervals to perturb the state by an amount Ax. Then let

x, = constant (7.10)
Xipq = %y + Ax (7.11)
z;, = A X, + n, (7.12)

where x is the state vector, i denotes the ith tracking interval, Ax is the
state disturbance, n, is white data noise, z; is data. The A is a (constant)

matrix, which is supposed to be of full rank. Let the variance of Ax be

E{ax?] = R(At) (7.13)
where At is the time between tracking intervals. Thus,

At At

R = 5/. 6/~ [%%] [Q(T,S)] [%?JT dr ds (7.14)

where q is the perturbation acting in At and Q(t,s) is its autocorrelation
function. Let P be the "steady state" covariance matrix, obtained at the
end of a tracking interval (Figure 7.1). The uncertainty at the beginning
of a tracking interval is P + AR, and the information added by a tracking

. . T . . . .
interval is N = (A"WA), where W is the inverse data noise variance. The P

-1
[(P + R) + N] = P (7.15)

matrix is obtained from

The solution of (7.15) is

1/2
P = [(I +4 N1 R"l) - I]-% (7.16)

-107-



If the norm of (N_lR_l) is small, we have

I

P = [N_l - trtyls ] N1 _owlglyt (7.17)

The estimate at the end of a tracking interval is

(xj)Jr . [ATwZi + (p - R)_l (x’;” (7.18)

where [+,-] refers, respectively, to the end and beginning of the interval.
Thus (7.17) describes the desired steady state error covariance matrix, and
(7.18) shows how to optimally combine the most recent data with prior infor-
mation.+ These results can be easily extended to the case where the normal
matrix N depends upon i, or where the unmodelled parameters and state noise

act during the tracking interval.
The analysis developed here could be used in the following way:

a. define the disturbance covariance R(At) from a (perhaps
pessimistic) analysis of the state noise and unmodelled
parameters.

b. define an acceptable value of R(At) and determine the
time between tracking intervals to achieve that wvalue.

¢c. given the data z in any tracking interval, find the
estimate at the end of the tracking interval by (7.18).
Note that only the P matrix is needed for error analysis purposes and for
definition of the tracking pattern. The validity of this approach could
be checked by a Monte Carlo simulation with equation (7.18) introduced as

the "fit world" estimator.

TFrom (7.17) and (7.18) it can be seen that prior information is ignored

only if R = infinity, in which case P = N_l and (P+R)'—1 = 0.
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8. TREATMENT OF CORRELATED DATA

8.1 INTRODUCTION

The weighted least squares (WLS) form of the maximum likelihood esti-
mator can treat correlated data by employing the weighting matrix W = F_l,
where T is the data noise covariance matrix T = E[nnT]. This is a large
matrix, with dimension equal to the total number of data points, and in

general it is not practical to invert and store T.

In certain special cases the inverse is easily obtained. For example,
if the data is uniformly spaced At seconds apart and is exponentially

correlated, we have

2

Bin(e)n(e)] = o exp (- alt, = t,[)= o? yl37H (8.1

2, . . . . .
where ¢~ is the (stationary) variance, l-1s the correlation time constant,
o

and,
Y = exp (- o At)

Then

r=o Yy vy 1 v
3 2
YO ¥ Y 1 A f
. . .Y 1 (8.2)
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and

1 -y 0 0 . . -
2
-y (‘Y +l) =Y O . . .
2
0 =y (yH) v .
rloy- L

0 -y (Y41 -y
(8.3)

L - . . . 0 -y 1 _
This weighting matrix causes adjacent data points to be differenced, as can
be seen by performing the multiplication Wz, where z is the data vector.
This approach is equivalent to adding a new state variable which is the
correlated noise, as is sometimes done in Kalman filtering. Essentially,
the inverse (8.3) can be easily found because (8.1) describes a first order

Markoff process.

The treatment of more general forms of data correlation is not so
straightforward. In this Section we will develop a practical method of
processing exponential-cosine correlated data by a differencing method,
and it will be shown how a general data differencing technique can be used
to treat other types of correlation. It will also be shown how to trans-
form the problem to that of estimating an unknown acceleration. As before,
a linear system with no state noise will be assumed, which corresponds to

a linear expansion about the modal trajectory.
8.2 STATEMENT OF THE PROBLEM

Consider the problem of estimating the initial state wvector of an
orbiting vehicle from a linear combination of noisy measurements. Let the
equation relating the measurement vector z, to the initial state vector

X,» be
z=Ax_ +n (8.4)

where A = Bz/axo and n is the vector of zero-mean random noise on the

measurement. Then, the well known weighted least squares estimate of X is
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-1

%o = (ATWA) ATwz (8.5)
and the covariance of the estimate is
-1 -1
5= (aTwa)  ATwrwa(aTwa) (8.6)

WLS

where W is a diagonal weighting matrix and T = E[nnT] is the covariance of
the noise. If W—l
(8.6) becomes

= 'y, then the estimate is a minimum variance one and

-1 -1
5. = aTwa) = (aTr1a) (8.7)

MV
When T is not a diagonal matrix, i.e., the data are correlated, then
the minimum variance problem can be transformed to the WLS problem if a

matrix S = [sij] can be found such that

sTys = r~1

In this case, the estimate of X becomes

-1
io - @%we)  8Twq (8.8)

where B = SA and q = Sz. Because most- orbit determination programs do not
save more than one row of the A-matrix at a time in solving the WLS problem,
transforming the minimum variance problem to the WLS problem as indicated
above is only feasible if a small number of rows of the A matrix must be
saved. That is, only a small number of elements of each row of S are non-
zero. Section 8.1 has shown how to transform exponentially correlated

data into uncorrelated data by this data differencing technique and the
following sections will show how to treat data with an exponential cosine
correlation by data differencing. The inverse problem of determining what
type of correlation can be handled by differencing a given number of

measurements will also be examined.
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An alternative to the above approach is to augment the state vector
with noise parameters which are perturbed by white noise, and solve for
this new state vector in the presence of an "unknown acceleration,'" (see
Section 4). This approach, which is analogous to the way correlated

measurement noise is handled in the Kalman filter, is discussed in 8.5.
8.3 OPTIMAL PROCESSING OF DATA WITH EXPONENTIAL COSINE CORRELATION

8.3.1 The Noise Model

Let the autocorrelation function for the measurement noise have the

form
Rij = E[ninj]
Rij = (cos BTij + vy sin BTij) exp (- arij) (8.9)
where Tij = fti ~ tjl = Tji s ni = n(ti) = the ith component of the vector

n, and o, B, and y are constants. This is a realistic noise model since,
for y = a/B, (8.9) represents the autocorrelation function of the output of
a linear, second~order system forced by white noise. The equation of

motion for such a system is

# 4+ 2an + (a2 + Bz)n = w(t) (8.10)

. . . . , 2
where w(t) is zero-mean, gaussian white noise with variance o The auto-
correlation function of the steady-state response of this system is given
; 2 2 2 . . .
by Eqn. (8.9) if o = 4ba(a”™ + B7). This will also be true for the transient

response if the statistics on the initial conditions are

E(no) = E(ﬁo) =0

E(ni)

I
-

E(ﬁi) - o2+ g2

E(nono) =0
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8.3.2 Solution For Equally Spaced Data

For equally spaced data, the solution of Eqn. (8.10) obeys the diff-

erence equation

Pid2 TGP TS T Y (8.11)
where
TEE Tt
=241
c_ = e ,
o
cl = 2 2T cos BT ,

ti+2'r
e_ZOLT —a(t,-s)
u, = w(s) sin B(ti + 2t-s)e i ds

t.
i+t

t,

i+t
- / w(s) sin B(ti—s)e_a(ti—s)ds

ty (8.12)

The autocorrelation function of u is then

E[uiuj] = 0 if |i-j] > 1
2 . S
CEpN if |1—J| =1
2 . . .
o, if i-j5 =20 (8.13)
where 02 =1 —hat - 4 %—e_zaT sin BT cos BT
= 2e—2aT [sinh 20T —-% sin 28T ] R (8.14)
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2

p = 2 [9- sin Bt cosh ot - cos BT sinh uT]/ezaToo

B (8.15)

The new variable u, is only correlated with u,

i-1 and U0 its nearest

. . . . 2
neighbors. An uncorrelated set of variables with variance o, can now be

formed from the {ui} by letting

v, = (ui - aivi—l)//; 1 - ai (8.16)

oV]
It

p/\/l—ai_l , i>1 (8.17)

where vl

]
[=1

For N large, then the sequence of a; defined in (8.17) converges to the

value

9 1/24 1/2
(L - 4p7) * sign(p) , N >> 1 (8.18)

N |

w=|1_
a® =172

Notice that a real solution of (8.18) only exists for Ipls %; However,
from (8.15) this can be shown to hold for all positive values of o, 8,

and T.

Combining the above results with Eqn. (8.4), denoting the ith row

of the A matrix as Ai’ yields

where q. = (in - aiqi—l) Vﬂfijigfﬂ,

=]
Il
~
v
g
e
I
M)
e
=
I
o]
[N
H
\
-
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1t

L is a linear difference operator defined by

Lz, = - +
;0T Ziv2 T %1%+ T %%

. T T T T T T T T T
Thus, letting B~ = [Bl, Bos <ves BN—2] » 4 = [ql’ Qys +oes qN—2]
and W_l = 02 I, Egqn. (8.8) can be used to obtain a WLS estimate from the

new data vector q. Note that the calculation of BTWB and BTWq by summing
the individual elements BiWiBi and Bzwiqi requires the temporary storage

of A,, A
i

A Z.,, 2 A

i42° %4 141° Zi42° Bi—l’ and q_1> in addition to the

l’
Also, note that there are only (N-2) of the new

i+1?
constants c and c,.
1 2
uncorrelated observations as compared to the N original observations; no
practical way of forming N uncorrelated observations was found for data
with exponential cosine correlation. In this case, the covariance of the

estimate is

8Twp) "t

™
[

aTsT(srsTy tsay™t

e
"

(8.19)

where S is an (N-2) x N transformation matrix. If S were invertable, then
(8.19) would reduce to Eqn. (8.7) and the estimate of x becomes a minimum
variance one. However, further study is required to determine the conditions
under which ¥ closely approximates ZMV .
The above method assumes the data are equally spaced. If they are
not, then, in general the computation of 9 and Bi requires the storage of
all data prior to z,

i+2
extraordinary amount of storage and is impractical for use in a computer

and their associated Ai's. This would require an

program. Since most real data will not be equally-spaced, due to data
editing or missing points, practical implementation of the method des-
cribed in this section requires forming 'dummy" observations at the missing
data points. These "dummy' observations could be computed by interpolating

between adjacent observations.
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8.3.3 A Simple Example

To illustrate the method described in Section 3.2 and compare it to
the WLS technique, consider the problem of estimating a constant scalar

parameter. Then the measurement equation (Eqn. (8.4)) is

zZ =% +n (8.20)

and the variance of the WLS estimate is

N
z R (8.21)

-1
z T2 ij

WLS N™ i,j=1
If Ri' is given by Eqn. (8.9) and the measurements are equally spaced, then

(8.21) becomes

2
. (1+2p)

T =
WLS 2
NBl
+ Ze__ZOLT [2(l—eaT-% sin BT - e T cos BT)
2 =2a1 -Nat }// 2.2
+ po_ e + e CN N Bl (8.22)
where Bl =1 - 2¢ *Tcos Bt + e_zaT, (8.23)

c. =&t [cos(N+1)BT +-§ sin (N+l)BT] -2 [COSNBT +-§ SinNBT]

+ e 21 [cos(N—l)Br +-% sin (N—l)BT] . (8.24)

and oi and p are defined in Eqns. (8.14) and (8.15), respectively.

-116-



On the other hand, forming the new uncorrelated data type using the

technique of Section 8.3.2 transforms the measurement equation to

q = on + v (8.25)

and the variance of the estimate is

r = BLwp)"T
N-2
= 02/ £ B2 (8.26)
o N i
i=1
where
2
B, = (B - aiBi_l)/JITa'i' , (8.27)
—/\/1—2 i=2, 3 N-2 8.28)
ai‘p ai—l’l_ > 3 sy > (8.
a; = o .
For NBl large ZWLS becomes
Lo =a% (1+20)/ NB> , NB, >> 1 (8.29)
WLS o 1’ 1 ]

Approximating a; in Eqn. (8.27) by a = a» and substituting in Eqn. (8.26)

yields
oi (1 + 2p)
I = — 5 N> 1 (8.30)
NB,
Thus I ::ZWLS for NB1 >> 1. However, since Bl can be quite small for small

values of ot and Bt, N can be fairly large while NBl’ is still small. In
these cases both terms of (8.22) must be considered and it is difficult to

see how I and L compare, Table 1 shows how & z g> and £ behave for

WLS MV WL

values of at and BT ranging from .01 to 10 for intermediate values of N.
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It is interesting to note that the data differencing technique compares
very closely with MV when WLS performs poorly, and the data differencing
technique does poorly when WLS compares closely with MV. Further analysis
is required, however, to compare the MV, WLS, and data differencing techni-

ques for more realistic problems.

ot 8t N % Iols R /T
.01 .001 12 .98 1.0 38 38
.01 .01 12 .95 1.0 19 19
.01 1 12 .28 .89 .38 .43
.01 1 24 .15 .63 .18 .28
1 01 12 .79 .92 3.8 4.1
1 .1 12 66 85 1.9 2.2
1 .1 18 .55 .74 1.2 1.6
.1 1 12 .036 .044 .038 .85
1 1 12 27 29 38 1.3
1 1 6 30 .31 46 1.5
1 1 12 .16 .16 .19 1.2
1 1 24 .081 .082 .090 1.1
1 10 12 .041 .042 .045 1.1

Table 1. Variances of MV, WLS, and Data Differencing
Techniques for Different Values of at, BT, and N.
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8.4 A GENERAL FORM OF THE DIFFERENCING METHOD

The general technique of forming a normalized, uncorrelated set of

measurement from k data points can be applied to other types of correlated

data. Difference equations which the autocorrelation function of the data

must satisfy can be determined and, if an autocorrelation function which

satisfies these equations approximates that of the actual data, then this

method may be used to sétisfactorily uncorrelate the data.
paragraphs show how to form an uncorrelated measurement set from 3 data

points and the extension to k data points is easily obtained.

Form the new variable, q from the original data z; by

where

ql=zl,

4 = (25 = Ryy 21)///x =Ry >

2y 2

E(zi) =1
The requirements that
0 if
E(qiqj) =

1 if

allow a;, bi and Ki to be determined from

E(q;q;_¢) =0

E(qa; ,) =0

E(qi)

n
=
=
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i# ]
i=3

The following

(8.31)

(8.32)

(8.33)

(8.34)

(8.35)



and constrain the autocorrelation function to satisfy

E(qiqj) =0 , j<i-2 ,4i=4,5, ..., N (8.36)

Substituting Eqn. (8.31) into (8.33) - (8.35) and noting that E(qizj) =0

for j < 1 yields

2
8 = Ry i1 7 R0 Ry i/ 7 Ry 500)
b, = (R - R R, . )/(L - R )
17 Bii2 T Riai0 Byjaa i-1,1-2
1/2
Kp =t 2,001 7 PR ]

For equally spaced data, Eqns. (8.33) - (8.35) become

a, = a=R(l-R)/A-R)
2 2
b, =b = (R, - Rl)/(l - Rl)
K, =K = V'(l - R -2 Rz + R,))/(1 - Rz)
i 2 1 2 1

where Rk = R Eqn. (8.36) yields the second order difference equation

i,i-k °
R, ~aR_; -~bR =0 ,3<ksN-2 (8.37)

where k = 1 - j. The solution of (8.37) is of the form
= k k k N-2
R = Al(rl) + Az(rz) s 3 sk < N- (8.38)

where

=5 Vo,
=y - VAo,

d = cg)z +b
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[ W

A1 and A2 can be chosen to make R3 and R4
the real data.

approximate the correlation of

Thus, if the data is such that Egn. (8.38) can be used to approximate
the autocorrelation function, then the method described in this section can
be used to uncorrelate the data by differencing three terms.

8.5 TRANSFORMATION TO THE PROBLEM OF ESTIMATING AN UNKNOWN ACCELERATION

By interpreting the correlated data noise as the output of a second-
order linear system (Section 8.3), the problem posed in Section 8.2 can be

transformed to that of estimating an unknown acceleration as described in
Section 4.

To do this, augment the state vector to include n_
and n , the correlated noise and its first derivative at epoch t0 = 0.
Then, the linearized equations of motion of the new system become
X =F X + Hw (8.39)
where
T
X =

Fl 0 0
F = 0 0 1
0 -(*+8%  -20 /,
_ 8%
Fl Toax
= [0 0 1]*
The measurement equation then becomes
z = [A B C] X +v
o

(8.40)
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where B = Bz/ano , C= Szlaﬁo , and v is zero-mean white noise uncorrelated
with n. Although not included in the problem stated in Section 8.2, the white

noise v allows the problem to be formulated as in Section 4.

8.6 CONCLUSIONS

The preceding sections presented three methods of processing correlated
data. Of these, the two data differencing techniques are most easily imple-
mented in a WLS orbit determination program. Before they are actually used,
however, a comparison with the conventional WLS method should be performed
to determine whether their implementation is warranted. As Magness and
McGuire (Reference [34]) and the results of Table 1 have shown, the WLS
estimate is often quite close to the MV estimate, even in the presence of

highly correlated data.
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9. CONCLUSIONS AND RECOMMENDATIONS

Orbit determination may be thought of as a hypothesis testing problem,
in the sense that a statistical model of the data is postulated, an appro-
-priate estimator is derived, real data is processed, a 'best-estimate"
trajectory is calculated, and the data residuals are examined to see if they
are consistent with the statistical hypothesis. 1If not, the model must be
changed or a rationale for accepting the result must be devised. From the
theoretical point of view, it is necessary to develop a firm mathematical
basis for any estimation algorithm so that the fundamental wvalidity of the
estimate is not in question. From the practical point of vieﬁ, the esti-
mator must be feasible to implement. With these considerations in mind,
this report has discussed some of the theoretical and practical questions

arising in sequential processing of tracking data.

In general it can be concluded that the maximum likelihood (weighted
least squares) estimation technique, which has been much used in orbit
determination work, is still the most practical algorithm for nonlinear
orbit determination, sequential or otherwise. Several questions still
remain to be investigated, however:

(1) the separation of estimation and control -~ the discussion of

Section 3 offers a rationale for the presently used approach, but counter-
examples can be constructed to show that such a separation is not correct
in gemeral. This subject needs to be pursued further, in particular, non-
hamiltonian systems should be studied.

(2) the modal trajectory vs. the marginal mode - equations (3.24) and

(3.28) show that two different forms of the maximum likelihood estimate can
be constructed for nonlinear systems, whether control is present or not,
This subject needs to be pursued further.

(3) nonlinear error analysis - throughout this report various treat-

ments of nonlinear error analysis have been presented. For example, in
Section 3.8 it was suggested that the bias in the estimate can be found by
solving a certain differential equation. Such methods should be studied
further and tested.

(4) estimation of unknown acceleration - this problem, which arises

primarily in the treatment of model errors, has never been properly treated
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in practical applications. It needs to be.

There are, of course, many other aspects of estimation theory which
need to be examined for particular applications, such as the treatment of
numerical errors, systematic errors, and correlated data. In general, it
is recommended that some of the approaches described in this report be
tested by numerical simulation, so that experience can be gained to suggest
efficient design of future orbit determination computer programs, and, if

necessary, further research.
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