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ABSTRACT
 

Guinea pigs were exposed to backward and forward facing (+Gx) and
 

tail first (+Gz) impact accelerations in two types of support and restraint
 

systems at entrance velocities of 40, 60, and 80 ft/sec. After exploratory
 

experiments to determine the approximate 50% lethal G level (LD50),
 

-estimates of G levels for 40 and 60% mortality were made and 20 guinea pigs
 

were exposed at each level. This was accomplished for each orientation at
 

each velocity in each of the two systems. Using probit analysis, the
 

refined LD50 G level was calculated and the results tabulated for com-_
 

parison of the two systems for survival potential. Regarding protection,
 

the system employing the isovolumetric principle was markedly superior in
 
4 x impacts, slightly superior in -Gx impacts, and approximately equal in
+


orientation. Protection of the cardiovascular system by the
the -tCz 

impacts but only
isovolumetric system was markedly superior in dGx and +Gz 


Comparison of the two thoracic-abdominal
slightly better in -Gx impacts. 


systems was made possible by the concomitant use of a previously developed
 

The LD50 values using average
support and restraint system for the head. 


G ranged from 209 to 325 for +Gx, 287 to 350 for -Gx, and 103 to 135 for
 

the 40z.
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SECTION I
 

INTRODUCTION
 

The development of support and restraint systems (henceforth.
 
referred to as SARS for convenience) for crew members of aerospace
 

vehicles is an engineering task augmented by data obtained through
 

biological investigation. These biological data provide the basis for
 

design criteria which, in turn, establish the performance of an operational
 

SARS. Comfort, efficiency, and survival, in that order, have been the key
 

factors in evolution of the current SARS technology with engineers having
 

made educated guesses where the biological data were lacking. This has
 

led to the bioengineering type of research in which both the physical and
 

biological sciences are used to study basic problems with the goal of
 

providing adequate information for engineering design. With more adequate
 

information it is hoped that design engineering activities could then
 

develop SARS' that would permit higher vehicle performance specifications.
 

The basis for design for tolerance and survival during emergency and
 

hard or crash landings has been a given G level (where G = acceleration/
 

32.2) and a given direction of application. Unfortunately, the degree of
 

rapid acceleration protection provided by current aerospace vehicle SAIS
 

involved in emergencies and hard or crash landings indicates that improve

ments are necessary.
 

The tolerance and survival limits of man to impact accelerations in
 

the various orientations are known approximately, but only under certain
 

conditions of support and restraint. The design principles upon which
 

these SARS are based may not be entirely valid or complete enough to
 
systems using essentially
provide maximum protection in the system. -Current 


flat torso supports and strap restraints for the pelvic and pectoral girdles
 

and support, but no restraint for the head, depend greatly upon the
 

strength of certain tissues to resist the distortion incurred by impact
 

acceleration. In the -x orientation the torso support permits the torso
 

to distort or flatten out, especially in the abdominal area, with possible
 

tension failure in various tissues in the viscera. In the -Gx orientation
 

without restraint, the inertia of the head and the abdominal contents
 

places high tension loads on ligaments, fascia, and other tissues with
 
In the +Gy orientations
potential injury directly or upon elastic rebound. 


the lack of sufficient restraint permits similar distortions, perhaps even
 

more pronounced. In the 4Gz orientation the inherent weakness of the body
 

has been more fully recognized with the result that the current SARS
 

provide a relatively high degree of protection.
 

The accumulated evidence substantiates that man can withstand
 

extremely high impact forces provided he is restrained and supported
 

Stapp (1955, 1964) has shown that human volunteer subjects
adequately. 

have peak G tolerance levels in excess of -

45Gx, and +35Gx with the
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specific support and restraint system used. Snyder (1963) has analyzed
 
data on 137 individuals who survived extremely abrupt impacts in free
 
fall. These data show that man can survive impact forces considerably
 
greater than those presently used as survival limits for design purposes.
 
Using guinea pigs and monkeys, Lombard (1964a, 1966) isolated several
 
significant factors that influence survival potential. By keeping the
 
torso in a contoured support with an essentially full coverage restraint,
 
a semi-isovolumetric condition for the torso was maintained during impact.
 
Restraint of both the head and the torso in a manner to prevent sharp
 
bending of the cervical spine and, use of a contoured and properly padded
 
head support to prevent cerebral hemorrhage and skull.fracture resulted in
 
a substantial increase in survival to -Gx impacts. The latter work
 
indicated that survival from impact accelerations can be increased by
 
proper orientation and containment of the body. The principles used in
 
the design of support and restraint equipment responsible for this improved
 
survival were evolved by finding the site and mechanism of injury through
 
the correlation of pathology and forcing function parameters. A serious
 
shortcoming of the work already performed, however, is the lack of statis
tical significance of the findings. This is largely due to the numerous
 
permutations of impact variables (G, entrance velocity, orientation, and
 
support-restraint, among others) and the corresponding requisite for large
 
numbers of -experiments. The present study was initiated to establish
 
statistically valid data in a comparison of "isovolumetric, versus current
 
state-of-the-art support-restraint concepts. Over 1200 small animals were
 
exposed to impact in either the -Gz (tail first), -G (forward facing), or
x 

+Gx (backward facing) orientations at entrance velocities of 40, 60, and
 
80 ft/sed using the two modes of support-restraint. The specific program
 
objectives included determination of LD5O survival levels for guinea pigs,
 
using the two representative support and restraint systems, and correlation
 
of pathological change with impact acceleration parameters.
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SECTION II
 

APPARATUS
 

The impact experiments were conducted on the Northrop Horizontal
 
The decelerator facility includes a sled
Decelerator (see figure 1). 


with means for containing various support and restraint systems (SARS),
 

a track upon which the sled travels, a shock cord 
propulsion system that
 

accelerates the sled, and an anvil-inertia block that 
retains the
 

crushable material used to rapidly decelerate the 
sled and its contents.
 

The aluminum-magnesium composition sled features an adjustable 
yaw ring
 

that allows positioning of the installed SARS 3600 about 
the vertical
 

axis. The particular SARS is attached to the yaw ring via 
two trunions
 

. 
 Desired impact

that permit adjustment of subject pitch through 3600


orientations can be achieved by various combinations of 
yaw and pitch
 

adjustments. The sled track consists of two steel rails 30 feet in 
length
 

A steel anvil is mounted on a 20-ton steel
 and spaced 30 inches apart. 


reinforced concrete inertial mass located at the end 
of the sled track.
 

The anvil contains means for mounting and retaining metal 
honeycomb
 

column(s) that provide controlled impact deceleration 
when crushed by
 

Sled propulsion is accomplished by a length of shock
 the oncoming sled. 

The amount of tension (controlled by a power
cord (bungee) in tension. 


winch) and the location of the sled release point determine 
the entrance
 

velocity. The term "entrance velocity" as used in this work refers 
to
 

the final sled velocity at the initial point of sled-honeycomb 
contact.
 

Entrance velocity measurement was accomplished by detecting the average
 

sled velocity over the last 3 inches of travel (before honeycomb 
impact).
 

A velocity term often used in connection with impact is velocity 
change
 

or entrance velocity plus rebound velocity. In the experiments
(A) 

described herein at 40, 60, and 80 ft/sec entrance 

velocities, the
 

corresponding velocity change values were approximately 50, 70, 
and 90
 

ft/sec, respectively.
 

This decelerator facility is capable of producing deceleration 
pulses
 

up to 1200 peak C. Attainable entrance velocities range from 20 to 100
 

ft/sec with corresponding velocity changes (AV) from 30 to 
110 ft/sec.
 

The range of attainable impact durations is a function 
of G and velocity
 

and may be determined for specific values using
 

AV(I) 
G-32.2
 

where
 
AV = velocity
 
G = a/g
 

The characteristic pulse shape may be varied in rise time or onset 
by
 

appropriately configuring the impact face of the honeycomb column 
although
 

Near rectangular
this was not necessary for the work described herein. 
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FI E 1 	Northrop Horizontal Decelerator Facility Viewed from Breech End
 
with Sled in Firing Position. Anvil with Honeycomb Mounted and
 
Inertia Block are Visible at End of Track in Background.
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pulses can be achieved with flat face honeycomb columns up to P 500 G.
 
In and above this regime, the pulse assumes a more trapezoidal shape
 
because of the short peak deceleration times. Deceleration pulses typical
 
of flat or near flat face aluminum honeycomb column impacts over the G
 
range explored in this work are shown in figure 2. The type of honey
comb used in this work was aluminum 5052 alloy, 0.003 inch foil thickness,
 
and 0.1875 inch cell diameter, conforming to military specification
 
MIL-C-74380. The approximate density and compressive strength of this
 
material was 8 lb/cu ft and 1200 psi, respectively. Sled acceleration
 
down the track is relatively constant and ranges from two to four C,
 
depending on the preset of the bungee cord to provide the desired impact
 
entrance velocity. A typical down-the-track acceleration profile is also
 
given in figure 2D. The bungee, or rubber strand shock cord, used to
 
propel the sled , included first 0.75-inch and then 1.0-inch-diameter
 
types (MIL-C-5651); the smaller cord was used for the 40 ft/sec experiments.
 
In general, a single, 120-foot length of either 0.75- or 1.0-inch cord was
 
installed in the decelerator apparatus through several pulleys and a winch
 
tensioning system. The winch was then used to adjust bungee tension from
 
slack to 50% elongation (with the sled resting against the anvil).
 
Retraction of the sled to the furthermost position down the track provided
 
an additional 50% bungee elongation. The maximum bungee tension was,
 
therefore, 100% elongation including both preload tension and sled retrac
tion tension. Typical load values (measured with a tension strain gage)
 
for the 1.0-inch cord tensioned via sled retraction (with no preload
 
tension) were 580 pounds at 12% elongation, 700 pounds at 25%, and 980
 
pounds at 50%. During experiment operations the sled release point was
 
located at a point along the track distant enough from the anvil to
 
provide the approximate desired entrance velocity. Adjustment of bungee
 
preload and test runs enabled the final setting for the desired velocity.
 

Shortly after the decelerator was installed in this laboratory,
 
tests were conducted to determine low frequency resonance spectra of the
 
intact sled structure. Using a large scale electrodynamic shaker equipment,
 
the sled (with one of the SARS included) was subjected to sinusoidal
 
vibration from 0 to 700 Hz in the direction of sled impact. Three
 
resonance modes were observed, namely; 355 Hz = 4 F, 600 Hz = 2 F, and
 
640 Hz = 10 F where xF is the amplification of the input force F. The
 
approximately equivalent single-pulse periods are 3.0, 1.6, and 1.5
 
msec, respectively. Analysis of the actual impact pulse rise and
 
decay times (T) obtainable with the current apparatus indicates that the
 
worst case with respect to sled resonance (most rectangular pulse) still
 
provides a large enough T to effectively avoid excitation of the higher
 
frequency resonance modes.
 

The required impact acceleration levels were obtained by accelerating
 
the sled (containing one set of the two SARS) up to a given velocity,
 
whereupon contact and crushing of a specifically configured honeycomb
 
column occurred. The relationships used to find the specific honeycomb
 
column dimensions for a required impact level are
 

G F 
cr 

A 
(2)

w 
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0 

C 	 = 95
 
mean peak 

® avg = 86 

t =33 ms 
onset = 62.000 G/sec 

C t 

mp 
 Gmean peak 37
= 

avg = 237
Gavg
 

t 	 = 11.5 ms
 

= 175,000 G/sec
onset 


G 	 - 600
 
mean peak
 

Gavg = 357
 

t = 4.2ms
 
onset 	 = 420,000 G/sec
 

0 

Release 

Transit Time 

Impact -

I 
nn 

Peak Transit G (initial) 

Avg. Transit G 
Transit Gat impact 
Entrance Velocity 

Total Transit t 

= 4.0 

= 3.6 
= 3.1 
= 40 ft/sec 
= 420 ms 

FIGURE 2 Typical Impact Pulses and Sled Transit 

Data for Northrop Horizontal Decelerator. 
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where 

F = honeycomb compressive strength (along cell axis), psi
cr2
 

A = honeycomb column impact face area, in.
 

W = total weight of sled, lb
 

= a.
 
C = desired impact C level (G 32. 2
 

and V(2
 S 20g(3
2Gg
 

where
 

S = amount of honeycomb column crush (along cell axis),in.
 

V = entrance velocity, ft/sec
 

2
 
= 32.2 ft/sec
g 


For a given required G level then, the honeycomb face area was calculated
 

using the known steady state compressive strength of the particular
 
The final length of the column after crushing was then
honeycomb in use. 


determined. Addition of a safety factor of 3 inches to this value gave
 

the minimum column length permissible for the particular test. At the
 

higher G levels, a slight contour was cut on the column impact face to
 

reduce the high frequency shock produced at the onset of crushing. At
 

these high G levels the extreme initial shock with a flat face column
 

could damage or destroy the impact accelerometer.
 

Instrumentation for detecting and recording the deceleration pulse
 

consisted of an Endevco Model 2261C + 2500 G piezoresistive acceleration
 

transducer and a CEC recording oscillograph (Model 5-124) using a CEC
 
The paper
7-342 galvanometer with a frequency response of 0 to 135 Hz. 


speed used in this work was 64 inches per second. The output of the
 

accelerometer was calibrated and fed through a balance box to the oscillo

graph. Entrance velocity was determined over the last 3 inches traveled
 

by the sled to break two in-line electrical circuits. The time pulse
 

was recorded on the oscillograph as well as displayed on a Hewlett-


Packard electronic counter Model No. 5223L. The acceleration data obtained
 

reflect sled acceleration only, since the impact accelerometer was mounted
 

on a cross member of the sled structure. A small number of experiments
 

(+Gx impacts) were carried out with an Endevco Model 2264M1 subminiature
 
Although the restraint
accelerometer taped to the animalts sternum. 


further stabilized this mounting, the rigidity of the attachment was still
 

less than that required for obtaining highly accurate data. The data
 

obtained from this arrangement were therefore used for subjective
 
comparison only.
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SECTION III
 

SUPPORT AND RESTRAINT SYSTEMS
 

The two Support and Restraint Systems (SARS) used in this work are
 

designated SARS Ila and SARS IIIa. SARS Ila represents the compromised
 

isovolumetric concept, while SARS IlIa approximates the current state-of-

The II and III
the-art in aerospacecraft-type support-restraint. 


nomenclature stems from previous related SARS developed and studied by
 

this laboratory and reported on in the literature. SARS I (not used in
 

this work) was the earliest isovolumetric type system developed by this
 

laboratory and consisted of a fully enclosing rigid shell molded to the
 

guinea pig's surface. This system is described in full by Lombard
 

The original SARS II and III are also described by
(January 1964). 

Lombard (January and September 1964); the Ia and Ila systems used in 

this work differ in the type of restraint harnesses employed. 

SAPS Ia essentially consisted of a rigid, contoured support and a
 

one-piece fabric apron-type thoracic-pelvic restraint (see figure 3).
 

The support was fabricated from fiberglass molded to the guinea pig dorsal
 

surface. The molded fiberglass shell was attached to a steel box and the
 

box innerspace filled with high-density rigid polyurethane foam. The
 

accompanying restraint harness was designed to cover the principal
 
The harness was
ventral thoracic-abdominal area of the guinea pig. 


constructed of 0.50-inch-wide Nylon web strap overlaid with Dacron cloth
 

as shown in figure 4. Retention straps were provided in the shoulder,
 

upper chest, lower abdominal, and crotch regions. Clamp-type retainers
 

located on the rear surface of the support secured the straps. The
 

guinea pig's head was restrained with an open-ended cone-shaped mask
 

retained at ear level on both sides and at the top or crown (see figure 5)
 

The head restraint was fabricated of Dacron cloth and Nylon web strap.
 

During the initial experiments a 0.25-inch-thick pad of resilient foam
 

was secured to the contoured support in the head region. Because of a
 
high incidence of brain hemorrhage that occurred where this arrangement
 
was used, the head pad was changed to 0.50-inch-thick rigid foam (con

toured to the head as well as the support). This pad was used throughout
 

the remainder of the experiments.
 

The SARS lia support was fabricated from sheet steel and consisted
 

of flat plates for the back support and the seat portion at 900 to the
 

back (see figure 6). The restraint harness used with this support
 
differed from the SARS Ila restraint in two important respects (see
 
figure 7). First, no overlaid material was used; the 0.50-inch-wide web
 

strap geometry was otherwise identical. Second, the SARS Ilia restraint
 
was a two-piece assembly; the abdominal-crotch webbing was physically
 
separate from the thoracic webbing. The head restraint used on SARS IIIa
 
was the same as that used with SARS Ia. As with the SARS Ila head
 
support, the lia initially had only a 0.25-inch-thick pad of resilient
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FIGURE 3 Three-Quarter View of Contoured SAPS IIa Support with
 
Nonresilient Foam Pads Located in Head and Neck Region.
 



I , i 

!15 	 oz Dacron Sail Cloth
 

/ / I\ \ t

i.,I I ! x L
'1II 	 V 

/ in 500 lb Tensile 

1v1 Nylon Webb 

FIGURE 4 	SARS IIa Restraint Harness Layout and Installation
 
for the Guinea Pig.
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FIGURE 5 Three-Point Cloth Cone Head Restraint Used with
 
both SARS lla and lIla (Shown in place in SARS lIla
 

Head Support Bracket).
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FIGURE 6 Three-Quarter View of SARS Ilia Support
 
with Head Support Bracket in Place.
 



-t)
 

15 oz Dacron Sail Cloth
 

in 500 lb 	Tensile
 

Nylon Webb
 

lia Restraint Harness Layout and Installation
FIGURE 7 	SARS 

for the Guinea Pig.
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foam bonded to the flat plate in the head region. This was soon,modified,
 
for the reason given earlier. The final SARS lia head support was
 
composed of a contoured aluminum bracket and a correspondingly contoured
 
0O.50-inch-thick rigid foam insert.
 

Both types of SARS were fabricated and mounted on the sled in
 
duplicate to accommodate two animals each in side-by-side fashion,
 
allowing exposure of two subjects to impact in the same type of SARS
 
per each sled firing.
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SECTION IV
 

PROCEDURE 

The specified impact exposure parameters combined with the two
 
modes of support-restraint resulted in 18 sets of test conditions. In
 
order to determine the lethal impact dose for 50% of the subject animal
 
population (LD50) an exploratory group, of up to ten guinea pigs, was
 
exposed to increasing dose levels until a 50% mortality level was
 
approximated. Twenty animals were then exposed to a G level estimated
 
to be 10% higher than the exploratory 50% mortality dose ( LD50) or an
 
approximate LO60, and another 20 animals exposed to an approximate LD40
 
( LD50 - 10%) G level. The actual LD values from these two groups of 
experiments were analyzed, using the probit regression line technique
 
and the actual LD50 level determined for the particular SARS, orientation,
 
and velocity combination. The LD50 data for both SARS iIa and IIa were
 
then plotted against G level and duration of impact (for each orientation)
 
to provide G-t curves and concomitant energy transfer data,
 

The guinea pigs used in this investigation ranged in weight from
 
300 to 400 g. The animals were fasted for 24 hours before impact. The
 
guinea pigs were placed in the SARS just before the decelerator was
 
readied for firing. SARS strap tension and general fit was snug but not
 
to the point of impeding respiration or circulation. Immediately post
exposure, rapid observation was made for SARS failure and obvious trauma.
 
The animals were then quickly removed and placed in a prone position.
 
-All exposed animals were weighed immediately postimpact. Subjects that
 
expired were autopsied within 30 minutes. Live animals were replaced in
 
cages with food and water and observed for 24 hours. Animals that did
 
not die within 24 hours were considered survivors. Those animals
 
exhibiting paralysis for over one hour postexposure were considered
 
nonsurvivors and euthanized.
 

• The autopsy procedure for gross pathology included macroscopic
 
examination of the abdominal and thoracic contents, ribs, vertebral
 
column, and brain. A midline incision of the dermis was made from just
 
'above the genital opening to the neck region. The dermis was separated
 
from the muscle layers via blunt dissection. The skin and muscle layers
 
of abdomen and thorax were examined for gross pathology. The muscle
 
layers were then incised along the midline exposing the abdominal viscera.
 
The viscera were inspected and gross pathological changes noted. Thoracic
 
viscera were exposed by incising the diaphragm, ribs, and intercostal
 
muscles and reflecting the sternum. Thoracic viscera were inspected for
 
gross pathology. Thoracic and abdominal viscera were then removed and
 
the vertebral column was examined for signs of injury (fractures and
 
dislocations). Heads were removed from the body, skinned, and fixed
 
in a 10% formalin solution for at least 7 days. This storage period
 
facilitated the identification of hemorrhage resulting from the impact.
 

15
 



At the end of the period the heads were rinsed with water, the cranium
 
opened, and the brain examined for signs of injury. In this way blood
 
vessel disruption caused by opening the cranium would not be confused
 
with that caused by impact.
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SECTION V
 

RESULTS
 

The acceleration force expression chosen for the LD50 analysis
 
was the total applied impact force averaged over the total pulse duration.
 

This expression, 0avg , provides a good measure of total force applied and,
 
in combination with the duration, an accurate representation of energy,
 

particularly when the impact pulse is other than an ideal rectangular
 
envelope. A practical compromise requiring that the measuring acceler
ometer be located on the sled rather than on the test subject qualifies
 
the data somewhat; however, this arrangement is not without precedent
 
(Lombard, January 1964).
 

Summarized data for the 18 test groups relating mortality, velocity
 

change, G, duration and onset are given in tables I, II, and III. The
 
body of statistically significant data represents 720 impact exposures.
 
Over 1200 animals were exposed in obtaining these data. Many of the
 

additional animals were used in approximating the LD50 levels and in
 

achieving the 5% accuracy for exposure iterations at the same G level.
 

Derivation of the regression equation for each set of LD points at the
 
same velocity change allowed calculation of the 50% lethal dose.
 
Regression lines corresponding to these equations are given in figures
 

8 through 13 for each set of test conditions. The LD50 values obtained
 
from the statistical data are given in table IV. Each LD50 value.
 
represents 40 exposures; 20 at one mortality G level and 20 at a second
 
level. Applying the method described by Finney (1962) for determining.
 
fiducial or confidence limits shows a 95% confidence interval of
 

approximately + 17% for the LD50 mortality values. In other words, in
 
95% of n number of repeated trials at a given LD0 G level, mortality
 
would range no lower than 33% and no higher than 67%. The G-t curves
 
for LD50 G levels are plotted for each orientation in figures 14, 15,
 

and 16. These curves effectively present the energy versus 50% mortality
 
relationship over the range of impact durations studied. Gross pathology
 

data for the 341 nonsurvivors (out of the 720 subject total) are tabu
lated in tables V, VI, and VII. The tables are divided into injury
 
categories of frequent or significant occurrence. This delineation
 
includes injuries of the following nature: pulmonary, cardiovascular,
 
hepatic, gastrointestinal, paralysis, and miscellaneous. Table VIII
 

gives the time of death after impact exposure for all nonsurvivors.
 

The impact acceleration data oscillograph recordings were reduced
 
by hand to give mean peak or plateau G (Gmp), time of onset or rise time
 
(Tl), time of plateau (T2), time of offset or decay time (T3), and total
 

pulse time (see figure 8). Average G (Gavg) was calculated from
 

T1 + 2T2 + T3
 

avg mp 2(T1 + T2 + T3 )
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TABLE I . SUMMARIZED IMPACT DATA FOR 4-G
 

ORIENTATION;SARS Illa and Ila
 

SARS illa 

AV Ve LD 
Average 

0 
Plateau 

t 
(ms) 

OOnset 
0 x 1000/sec 

48 40 15 184 257 8.1 143 

52 40 65 220 318 7.3 167 

70 60 55 240 317 9.1 180 

71 60 85 282 394 7.8 225 

92 80 25 239 304 11.6 189 

89 80 65 288 383 9.6 227 

SARS IIa 

48 40 20 276 443 5.4 292 

52 40 55 327 539 4.9 341 

68 60 45 311 444 6.8 323 

71 60 85 363 548 6.1 380 

91 80 40 302 379 9.4 292 

91 80 90 347 460 8.1 359 
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TABLE II. SUMMARIZED IMPACT DATA FOR -Gx 
ORIENTATION, SARS IIIa AND IIa 

SARS IIIa 

AV V LD% G G t Onset 
e Average Plateau (ms) G x 1000/sec
 

49 40 30 260 450 5.9 260
 

60 40 70 317 513 5.9 292
 

70 60 50 315 483 6.9 296
 

73 60 90 368 587 6.2 360
 

95 80 55 310 417 9.5 258
 

94 80 90 351 508 8.2 282
 

SAPS lIa
 

47 40 30 286 484 5.1 299
 

49 40 60 347 593 4.4 429
 

70 60 10 293 409 7.2 291
 

72 60 40 338 484 6.6 360
 

94 80 50 311 404 9.4 343
 

92 80 75 353 482 8.1 378
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TABLE III SUMMARIZED IMPACT D&TA FOR -G 

ORIENTATION, SARS lila and Ila 

SARS Illa 

AV V LD% G
Average 

G
Plateau 

t
(ms) 

Onset
G x 1000/sec 

47 40 35 83 96 17.6 118 

47 40 45 96 113 15.2 128 

68 60 25 100 112 21.2 83 

70 60 50 116 131 18.7 90 

89 80 20 99 109 28.0 83 

88 80 35 117 131 23.4 95 

SARS Ila 

50 40 25 87 100 17.9 54 

47 40 40 104 124 14.0 67 

74 60 30 98 110 23.4 58 

74 60 55 114 130 20.1 80 

*92 80 10 88 95 32.4 68 

89 80 40 106 116 26.0 88 
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FIGURE 8 Mortality versus G at Three Entrance Velocities, +Gx' SARS fla.
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FIGURE 9 Mortality versus G at Three Entrance Velocities, +G , SARS IIla. 
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Mortality versus G at Three Entrance Velocities, -Gx, SARS Ila.
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FIGURE 11 Mortality versus G at Three Entrance Velocities, -Gx, SARS lia.
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FIGURE 12 Mortality versus G at Three Entrance Velocities, +Gz, SARS TIa.
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FIGURE 13 Mortality versus G at Three Entrance Velocities, +Gz, SARS lila.
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TABLE IV AVERAGE G LDS0 VALUES USING PROBIT INTERCEPT 

SARS IlIa SARS IIa, 

V +G -G -4- +G -G +G e x x z x x 
 z 

40 209 287 103 326 325 116 

60 235 315 116 316 350 111 

80 269 306 135 309 311 111 

10 
9 
8 O= SARS Ia 

A= SARS IIIa 
7 

6 

5 

4 
00 

x*3 

2 A.00/ 

2 3 4 5 6 7 8 9 i0 20 30 

t x 1
0 -3 

FIGURE 14 LD50 G versus Duration Curves for +G Impact Orientatinn 

24
 



10 

9 

8 	 0= SARS Ila 
A=SARS lia7

6

5 

0o4

3 

2 

1I 1 I I I I I I I 

1 2 3 4 5 6 7 8 910 20 

t x 103 

FIGURE 15 LD0 G versus Duration Curves for 	-G Impact-Orientation.
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FIGURE 16 LDS0 G versus Duration Curves for +Gz Impact Orientation.
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INCIDENCE OF MAJOR PATHOLOGY IN NONSURVIVORS EXPOSED TO +G IMPACT

TABLE V 


SARS IIIa SARS IIa 

ENTRANCE VELOCITY (ft/sec) 40 60 80 40 60 80 

TOTAL NONSURVIVORS 16 28 18 15 26 -26 

PATHOLOGY 

Pulmonary 
hemorrhage 16 20 15 15 26 26 

Cardiovascular 
vena cava laceration at diaphragm 

vena cava laceration at caval/renal junction 

blood in pericardium. 

2 
17 3 

1 

Hepatic 
laceration 4 16 15 2 

Gastrointestinal 
stomach hemorrhage 
caecum hemorrhage 
intestinal hemorrhage 

stomach laceration 

1 
1 

4 

3 

1 

5 
1 
2 

1 
.2 
1 

2 
4 
2 

Paralysis 

Brain
hemorrhage 13 21 4 12 24 25 

Other 
genital hemorrhage 
subdermal hemorrhage thoracic region 

subdermal hemorrhage occipital region 

spleen laceration 
renal vessel laceration 1 

1 
1 

2 
I 

1 2 1 

1 

rib fracture 3 3 
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INCIDENCE OF MAJOR PATHOLOGY IN NONSURVIVORS EXPOSED TO-Gx 
IMPACT
 

TABLE VI 


SARS IlIa SARS IIa
 

ENTRANCE VELOCITY (ft/sec) 	 40 60 80 40 60 80
 

21 28 29 18 10 25
TOTAL NONSURVIVORS 


PATHOLOGY
 

Pulmonary
 
21 24 26 16 8 15
 

hemorrhage 

1


laceration 


Cardiovascular
 
2 2 1
 

vena cava laceration at entry to atrium 

4 6 3 1
 

vena cava laceration at diaphragm 

4 4 1
 

vena cava laceration at caval/renal junction 


pulmonary vein laceration 1 
1
 

aortic laceration 

2 2
 

atrium laceration 

1
ventricle laceration 
 1 1
 

pericardium laceration 

1
cardiac hemorrhage 
 2 6
 

blood in pericardiim 


Hepatic
 
19 23 23 7 3 14
 

laceration 


Gastrointestinal
 
3 2 6 1 2
 

stomach hemorrhage 

4 15 7 1 1 4
 

caecum hemorrhage 

1 4 2 1


intestinal hemorrhage 

1 3
stomach laceration 

2 7
 caecum laceration 


1
intestine laceration 


Paralysis
 

Brain
 
11 9 12 9 4 9


hemorrhage 


Other
 
5 8 8 14 7 17


jugular hemorrhage 

4 10 16 14 6 21


axillary hemorrhage 

1


subdermal hemorrhage thoracic region 	 1 

l
 

diaphragm hemorrhage 

1 4
kidney hemorrhage 


hemorrhage around heart 
4
 

muscle hemorrhage along spinal column 
2
 

1 "3 2 3

genital hemorrhage 


1
gall bladder hemorrhage 


1 2 3
iliac hemorrhage 

urinary bladder hemorrhage 2
 

2 1 8 1 5
spleen laceration 


1shoulder laceration 

3 5 4

forearm laceration 

2 3

genital laceration 

1
abdominal laceration without evisceration 


1 2 6
evisceration 

1 1
axillary laceration 

1 	 I


hindlimb fracture 

4 6 

forearm fracture 
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TABLE VII INCIDENCE OF MAJOR PATHOLOGY IN NONSURVIVORS EXPOSED TO +CZ IMPACT
 

SARS Ilia SARS Ila 

ENTRANCE VELOCITY (ft/sec) 40 60 80 40 60 80 

TOTAL NONSURVIVORS 15 14 11 13 17 11 

PATHOLOGY 

Pulmonary 
hemorrhage 13 10 9 3 6 4 

Cardiovascular 
vena cava laceration at entry to atrium 
vena cava laceration at caval/renal junction 
azygos laceration 
aorta laceration 

2 3 
1 
1 
2 

2 

atrium laceration 
cardiac hemorrhage 
pericardial laceration 

2 
1 
2 

2 
3 

1 

Hepatic 

laceration 1 1 1 

Gastrointestinal 
caecum hemorrhage 
intestinal hemorrhage 

2 4 5 
2 

Paralysis 
spinal fracture 
undetermined 

1 
1 

1 
1 

4 
5 

3 
9 

5 
16 

8 
11 

Brain 

hemorrhage 7 2 3 4 4 1 

Other 
jugular hemorrhage 
axillary hemorrhage 
subdermal hemorrhage 
subdermal hemorrhage thoracic region 
retroperithoracic hemorrhage 

pelvic hemorrhage 
muscle hemorrhage along spinal column 
rib fracture 
hemorrhage around heart 
genital hemorrhage 

1 
2 

2 

I 

1 
2 

4 
1 

1 

1 

2 
3 

1 
3 

1 
4 
I 
4 

2, 
1 
2 
5 
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TABLE VIII TIME OF DEATH OF NONSURVIVORS
 

Death Occurred 
Within: 

5 minutes 

10 minutes 

30 minutes 

1 hour 

6 to 24 hours 

Total 

5 minutes 


10 minutes 


30 minutes 


I hour
 

6 to 24 hours 


Total 


5 minutes 


-G 
x
 

Entrance Velocity and Type of SARS
 

80 ft/sec
60 ft/sec
40 ft/sec 


IIa IIa Ia IIa 
 IIIa IIa
 

15 16 20 5 21 23
 

4 1 1
 

1 3
 

2
 

1 4 2 1 2
 

19 17 28 9 22 25
 

+G
 
x
 

16 14 23 25 11 26
 

1
 

3 1 4
 

1 1 3
 

16 15 28 26 18 26
 

+G
z 

15 131
 

(All -Gz nonsurvivors either expired within 5 minutes
 

or exhibited bilateral hindlimb paralysis immediately
 
postimpact.)
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Velocity change (AV) was calculated from
 

AV = Gavgg(T I + T2 + T3) (5) 

Entrance velocity data were calculated from the sled transit time T
 
over the last 3 inches before impact with the honeycomb column. Tht
 
time values were taken from either a digital counter readout or from

the oscillograph record where the same data were recorded graphically.

Entrance velocity was determined by
 

1000
v 
e 4T (6) 

where
 

Ve = entrance velocity in ft/sec
 

Tt = transit time over 3 inches in milliseconds
 

Each test condition included a statistical group of 40 animals;

20 at one G level and 20 at a second G level with the orientation, SARS,

and entrance velocity heldcconstant for all 40. 
 The two data subgroups

were each reduced to obtain a set of values for percent mortality, Gavg,

Gmp, Ve, AV, impact duration, and onset. All values are averages for 20
 
exposures in each subgroup-. 
 Certain of these data for the two subgroups
 
were then subjected to the probit transformation (Finney, 1962) as a means
 
of approximating the impact dose level for 50% mortality. 
The probit

transformation relates the percent mortality, in probit units, to the
 
impact dose or C so that the typical sigmoidal response curve is expressed

in terms of a linear equation of the general form,
 

Y =5+1 (x- (7) 

where
 

Y = percent mortality in probit units
 

= variance of the distribution
 

= center of the distribution
 

x = dose (G) 

The median lethal dose or LD50 is that value of x which gives Y = 5. A
 
linear regression equation derived from the above expression is
 

Y = a + b log x (8)
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where
 

a = constant for the intercept
 

b = slope constant for the regression line
 

Although the data from this investigation provided only two points
 
for determination of a particular LD50 value, it was thought that the
 
probit transformation would still be of value in correction of graphical
 
plotting error due to the sigmoidal response characteristic, especially
 
when one of the two data points lay at an extreme from-the median. (The
 
effect of the probit technique is naturally maximized with a greater
 
number of data points.) The percent mortality and Gavg data for each
 
of the 18 test.groups were used to develop discrete regression equations
 
for each group. Corresponding LD50 G levels were then obtained from the
 
regression equations.
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SECTION VI
 

DISCUSSION
 

The mechanisms of injury to a biological system exposed to impact

are related to the impact energy functions, the support and restraint
 
system variables (if. any), and the orientation of the subject to the
 
forcing fufnction. By keeping all variables constant except one, the
 
effect of this one variable upon the injury mechanisms can be studied.

By alternating the variables to be studied, the most protective or least
 
injurious exposure conditions can be determined. In this study, two
 
types of support and restraint systems were compared in the 4 Gx ahd the

+Gz orientations, and impact entrance velocities of 40, 60, and 80 ft/sec

using LD50 as the criterion. Thus, the basic variations were the support
restraint systems with the evaluation being conducted under the given
 
test conditions. Although the test subjects were guinea pigs, the
 
mechanisms of injury are, in the main, functionally relatable with those

of man and the comparison of the two support and restraint systems should
 
provide an insight into analogous human functional response.
 

PATHOLOGY
 

Gross pathological findings suggest that SARS Ila provided a
 
greater degree of impact protection than did SARS IIIa. This was
 
especially true with cardiovascular pathology and injury to abdominal
 
viscera. Lung hemorrhage was the most frequently occurring injury under
 
most of the impact conditions, regardless of the system used. 
The
 
exception was in +Gz 
with SARS Ila where only 32% of the nonsurvivors
 
exhibited this type of trauma. Brain hemorrhage occurred throughout

the test program with the highest incidence found in +Gx . However, in
 
most instances where brain hemorrhage occurred, other lethal injuries

were found throughout the body. Hepatic laceration occurred most fre
quently with SARS IIIa, especially in +C-x. Incidence of cardiovascular
 
pathology was higher with SARS IIIa than with SARS Ia. 
 The highest

incidence of injury to organs of the gastrointestinal tract occurred in
 
-Gx with SARS IIIa. Pathology of this type generally involved the caecum.
Bilateral hindlimb paralysis was 
restricted to the -Gz orientation
 
(spinal fractures were subsequently observed at autopsy). In the +Gz
impact protection from lung hemorrhage and CVS injury in BARS Ila over

that in SARS IIIa appears to have been made at the expense of the vertebral
 
column. Tables IX and X give the percent occurrence of major pathology

for 341 nonsurvivors in terms of separate and combined entrance velocities,
 
respectively.
 

Pulmonary Hemorrhage
 

Lung pathology included petechial hemorrhage and acute surface
 
hemorrhage involving entire lobes. 
 Hemorrhage of varying degree was
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TABLE IX PERCENT OCCURRENCE OF MAJOR PATHOLOGY IN
 

NONSURVIVORS AT THREE ENTRANCE VELOCITIES
 

Illa -Gx Ila 

40 '60 80 40 60 80 

Brain Hemorrhage 52 32 45 50 40 36 

Pulmonary Hemorrhage 100 86 90 89 80 60 

Cardiovascular Pathology 19 43 34 11 30 20 

Hepatic Laceration 91 82 79 39 30 56 

Gastrointestinal Pathology 43 89 90 6 20 28 

Paralysis 0 0 0 0 0 0 

lia 4G Ila 
x 

Brain Hemorrhage 81 75 22 80 92 96 

Pulmonary Hemorrhage 100 71 83 100 100 100 

Cardiovascular Pathology- 12 96 17 0 0 0 

Hepatic Laceration 25 57 -83 0 0 8 

Gastrointestinal Pathology 6 18 33 53 15 31 

Paralysis 0 0 0 0 0 0 

Illa -G Ila 
z 

Brain Hemorrhage 47 14 27 31 24 9 

Pulmonary Hemorrhage 87 71 82 23 35 36 

Cardiovascular Pathology 33 78 27 0 0 0 

Hepatic Laceration 7 0 9 8 0 0 

Gastrointestinal Pathology 13 0 36 0 0 64 

Paralysis 7 7 45 69 94 100 
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TABLE X PERCENT OCCURENCE OF MAJOR * 

PATHOLOGY - CUMULATIVE VELOCITIES 

IIIa Ila 

-G 
xx 

+G -G 
z 

-O 
-x 

+G 
S 

+G
Z 

Brain Hemorrhage 

Pulmonary Hemorrhage 

Cardiovascular Pathology 

Hepatic Laceration 

Gastrointestinal Pathology 

Paralysis 

Total Nonsurvivors 

42 

91 

33 

83 

77 

0 

61 

82 

52 

56 

19 

0 

180 

30 

80 

48 

5 

15 

18 

42 

74 

19 

45 

19 

0 

91 

100 

0 

3 

30 

0 

161 

22 

32 

0 

2 

17 

80 

40 to 80 ft/sec entrance velocities. 
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more common in the periphery of the lobes and was occasionally seen in 

the hilum. No microscopic examinations were conducted during this program;
 

however, this type of pathology has been previously studied in this
 
The latter investigation
laboratory and reported by Lombard (1964b). 


reported varying degrees of alveolar hemorrhage and areas of emphysyema
 

adjacent to areas of atelectasis. In the -Gx orientation the incidence
 

of lung hemorrhage was high in both systems, occurring in 91% with SARS
 

lla and 74% with SARS Ila. Many of the affected animals exhibited
 

acute surface hemorrhage in areas adjacent to the ribs (rib marks).
 

Injury to the periphery of the lobes was generally more severe than at
 

the hilum. One case of lobe laceration occurred in a subject exposed in
 

the 80 ft/sec regime. Lung hemorrhage occurred in all nonsurvivors in
 
Hemorrhage
the -H orientation with SARS Ila and in 82% with SARS Illa. 
x 


was more frequent at the peripheral aspects of the lobes. The incidence
 

of lung hemorrhage was greater in SARS IIIa than in SARS Ila in +Cz.
 

Hemorrhage tended to be restricted to the lower aspects of the lobes
 

adjacent to the diaphragm. In the Gz impact more protection was afforded
 

the thoracic organs with the full torso restraint of SARS Ia than with
 

the separate chest and pelvic strap restraint of SARS Ila.
 

Cardiovascular Pathology
 

Cardiovascular pathology included trauma to the heart and the major
 

blood vessels i.e., vena cave, aorta, and pulmonary vessels. Failure of
 

the vena cava occurred with the greatest frequency. In lethal -Gx
 

exposures, the incidence of cardiovascular damage was relatively low for
 

both systems, occurring in 33% with SARS IIIa and 19% with SARS Ila. SARS
 

Ia appeared to provide a greater degree of protection to the vena cava
 

than did SARS IIIa. Thirteen cases of laceration of the vena cava at the
 

level of the diaphragm were noted with SARS IIIa, whereas this injury
 

This could be attributed to the support
occurred only once with SARS Ila. 


given the liver by the torso restraint of SARS Ia. The separate chest
 

and pelvic restraints of SARS IIIa most likely allowed the liver a higher
 

degree of relative movement during impact. The resultant displacement of
 

this large organ with its considerable mass could apply shear forces on
 

the vena cava in the area of hepatic attachment. These forces could
 

account for the frequent incidence of laceration. The SARS Ila restraint
 

minimizes liver displacement, thereby reducing shear forces on the vena
 

cava. Eight cases of laceration of the vena Cava occurred at its junction
 

with the renal vein with SARS Illa, whereas only one case was noted with
 

SARS lie. The SARS Ia restraint, by minimizing visceral displacement,
 

may reduce the internal stresses responsible for injury to the major blood
 

vessels in the abdomen. This increased protection afforded the abdominal
 

blood vessels appeared to be at the expense of the thoracic vessels,
 

suggesting a hydraulic compression wave. Five cases of laceration of the
 
la. This
vena cava at the entrance to the atrium were noted with SARS 


pathology was lacking with SARS Illa. Laceration of the atrium was noted
 
d 


twice with each system. One case of pulmonary vein laceration an ventricu

lar laceration occurred with SARS IIIa and one case of aortic laceration
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occurred with SARS Ila. Hemorrhage was found in the area around the
 
heart in four nonsurvivors with SARS Ila. The origin of this pathology
 
was not found.
 

In 4Gx exposures, SARS la afforded a greater degree of protection
 
to cardiovascular components than did SARS lia. No 0VS damage occurred
 
in nonsurvivors exposed in SARS Ila, whereas 52% of those tested with
 
SARS Ilia showed evidence of trauma. The greatest incidence was in the
 
60 ft/sec runs where 10 cases of laceration of the vena cava occurred at
 
the level of the diaphragm and 17 cases at the junction of the vena cava
 
and the renal vein.
 

The full torso restraint provided by SARS Ila apparently prevented
 
serious injury from occurring to the cardiovascular system in -G . No
z

cardiovascular injury occurred in the 40 and 60 ft/sec experiments. In
 
the 80 ft/sec tests, two nonsurvivors exhibited hemorrhage in tissues
 
surrounding the heart but the site of injury was not determined. Of the
 
nonsurvivors exposed to impact in the SARS Illa, 48% exhibited CVS injury.
 
This included seven cases of rupture of the vena cava at its entrance to
 
the atrium, and one case of laceration at its junction with the renal
 
vein. Five animals had atrial lacerations, and four cases of cardiac
 
hemorrhage were recorded. Aortic lacerations occurred at the ascending
 
portion of the vessel. Azygos laceration was reported once and two cases
 
of pericardial lacerations occurred.
 

Hepatic Laceration
 

Varying degrees of laceration of the liver were observed. These
 
ranged from small surface tears a few millimeters in length to subtotal
 
hepatic mastication. In the -Gx orientation hepatic laceration occurred
 
more frequently with SARS IIla (83%) than with SARS Ila (457). The SAIS
 
lila restraint element evidently permitted a greater degree of liver 
displacement at impact,resulting in a higher incidence of hepatic 
mechanical trauma. High unit area force loading was evidenced by strap 
abrasions. With the SARS Ila restraint, liver displacement was apparently 
reduced by the more uniform restraint load distribution. Hepatic lacera
tions in the I-x orientation were observed in 56% of the nonsurvivors with 
SARS Ila and only 3% for SARS Ila. Both of the cases occurring with SARS
 
Ila were at 80 ft/sec. Liver damage occurred at all three velocities
 
with SARS IIIa. With SARS lila, small lacerations occurred at the anterior
 
margin of the liver near the exit of the vena cava in many subjects. The
 
incidence of hepatic laceration was low for both SARS in the 40 orientaz 

tion (5% for SARS IIIa and 2% for SARS Ia).
 

Gastrointestinal Pathology
 

Gastrointestinal pathology included hemorrhage and lacerations to
 
organs of the GI tract, namely, the stomach, caecum,.and intestines.
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At -Cx injury to gastrointestinal organs occurred in 77% of the non
survivors with SARS Ilia and in 19% with SARS Ila. 
The most commonly
 
occurring pathology was hemorrhage of the caecum. Such hemorrhage was
 
usually localized with no apparent preferential site. The caecum was
 
generally well distended with fecal material in spite of the 24 hour
 
fasting,period before exposure. The position of the caecum relative to
 
the SARS lia restraint was adjacent to the pelvic strap, which could
 
possibly account for high area loading in this region. 
Laceration of the
 
caecum occurred in nine animals exposed in SARS Ilia. 
Gastiic laceration
 
occurred with both SARS. 
Other pathology included hemorrhage of the'
 
intestines. Injury to organs of the gastrointestinal system were relatively

few in number in the +Gx orientation. Of the nonsurvivors, 19% sustained
 
this type of pathology with SARS lia and 30% with SARS Ila. 
Four cases
 
of gastric hemorrhage, and three cases of caecum hemorrhage were observed
 
with SARS IIla. One case each of intestinal hemorrhage and gastric

laceration occurred. Eight cases of gastric hemorrhage and seven cases
 
of caecum hemorrhage occurred with SARS Ila. 
Five cases of intestinal
 
hemorrhage were also seen. 
Little injury occurred in the +Oz orientation
 
for either system. Gastrointestinal pathology for SARS lIla was limited
 
to six cases of caecum hemorrhage. Five cases of caecum hemorrhage and
 
two cases.of intestinal hemorrhage occurred in SARS Ila.
 

Paralysis
 

Animals surviving impact but exhibiting unremitting paralysis were
 
categorized as nonsurvivors in accordaned with the experiment procedure.

Such animals were euthanized and autopsied in the usual manner. 
The
 
category of paralysis does not include animals that, although expiring
 
upon impact, may have suffered ONS damage that would have resulted in
 
paralysis. Close examination of the spinal column was conducted on non
survivors to determine if vertebral failure had occurred. Spinal
 
fractures were found in several, but not in all subjects where paralysis

had occurred. Incidence of paralysis was markedly higher for SARS Ila
 
(80%) than for SARS Ilia (18%). Most vertebral failures occurred in the
 
thoracic segment of spinal column in both systems. One case of lumbar
 
vertebral failure occurred with SARS Ila. 
Two animals that exhibited
 
paralysis immediately postimpact recovered and were ambulatory by the end'
 
of the 24-hour survival period. Several animals exhibiting paralysis had
 
no other apparent signs of injury.
 

Brain Hemorrhage
 

Early in the course of this work an improved mode of head support
 
was developed in a separate laboratory effort to minimize frequency of
 
nonsurvivors due to severe brain injury at relatively low G levels. 
With
 
this improved head support, subsequent areas of hemorrhage were generally

restricted to the surfaces of the cerebellum and the medulla oblongata.
 
Brain hemorrhage as referred to herein refers 
 to disruption of meningeal
 
blood vessels,resulting in areas of hemorrhage on the surface of the brain.
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In severe cases clots were present beneath the floor of the brain; on
 
the surface of the cerebrum, medulla oblongata, and cerebellum; between
 
the cerebrum and cerebellum; and in the longitudinal cerebral fissure.
 

In the -Gx orientation, more animals exhibited brain hemorrhage

with SARS 
lila than with SARS Ia; however, the percentage of nonsurvivors
 
with this pathology was equal when the data from the different velocities
 
were combined. 
Also, animals exposed in SARS Ila were subjected to
 
higher G levels than those in SARS IIIa. 
In the 4Cx orientation, brain
 
hemorrhage appeared in 61% of the nonsurvivors with SARS lila and 91% of
 
the nonsurvivors with SARS Ia. 
 Again, animals tested with SARS Ila were
 
exposed to higher G levels than those impacted using SARS ila. The
 
incidence of brain hemorrhage was relatively low for both systems in
 
+Gz, occurring in 30% with SARS IIIa and 22% with SARS Ia.
 

Other Pathology
 

In the -Gx orientation, jugular and axillary hemorrhage were fre
quently observed in animals exposed in both SAIS. 
These areas were
 
adjacent to restraint straps, suggesting high surface tractions and
 
induced shear stresses. 
Two animals with SAIS IIIa had lacerations of
 
the dermis in the axillary region. Three nonsurvivors tested with SARS
 
IlIa sustained severe lacerations of the shoulder muscles. Splenic

laceration occurred with bott SARS. 
Renal hemorrhage occurred with
 
SARS lila. Nine animals in SAMS IlIa eviscerated at impact,resulting

in severe trauma to abdominal viscera. Lacerations were located between
 
the chest and pelvic straps in the region not supported by the restraint.
 
No preferential direction of tearing was apparent, since lacerations
 
extended longitudinally, laterally, and intermediately between these
 
extremes. 
 In many animals tested with SARS Ilia, fur adjacent to the
 
straps was abraded. One subject had a longitudinal laceration of the
 
dermis covering the abdomen but the muscle wall maintained its integrity.

No eviscerations or indications of partial abdominal wall failure
 
occurred with SARS Ila. 
Severe trauma to the forelimb was noted with
 
both systems. Four subjects tested with SARS 
Ila and six tested with
 
SARS Ila sustained forelimb fractures. Dermal laceration of the forelimb
 
occurred in eight animals with SARS IIIa and four with SARS Ila. 
These
 
lacerations were located in the elbow region and ranged from simple
 
tears to complete dermal severance around the limb with the dermis
 
reflected back to the wrist. 
Survivors exhibited similar forelimb
 
pathology. Three cases of forelimb fractures and one case of forelimb
 
laceration were observed among the survivors with SARS IlIa. 
SARS Ila 
survivors sustained six cases of forelimb fractures. Among the non
survivors in + x exposures six cases of rib fractures occurred with 
SARS IlIa. The spleen was injured in two cases and one case each of 
renal vessel failure and adrenal hemorrhage were seen with SARS llIa.
 
In -Cz exposures, several animals that exhibited paralysis lacked any
 
accompanying pathology. This occurred once with SARS IlIa and in ten
 
cases with SARSIIa. Jugular and axillary hemorrhage occurred with
 
both systems. 
Two animals impacted in SARS IlIa had severe hemorrhage
 

38
 



located retroperitoneally in the pelvic region. With SARS Ila two
 
cases exhibited hemorrhage in the muscles along the spinal column but
 
no evidence of fracture was found. Three cases of rib fracture were
 
reported with SARS Ila.
 

Trends in Incidence of Pathology
 

The incidence or frequency of pathological categories for each of
 
the 18 test combinations was studied to elucidate patterns correlatable
 
with changes in entrance velocity, LD50 G level, duration, or other impact
 
parameters with each particular SARS-orientation combination (see table
 
IX). Pulmonary hemorrhage was the most uniformly appearing pathology
 
across the spectrum of G levels and velocities. Except for a slight 
tendency towards increased occurrence at 40 ft/sec, the incidence of 
pulmonary injury in nonsurvivors remained fairly constant as velocity 
and G level were changed in each test combination. In the test combinations 

showing any incidnece of cardiovascular injury (all but SARS Ila, +Gx and 
+Gz), a marked peak in percent of occurrences was noted at 60 ft/sec. 
Although, in two of four of the combinations exhibiting this behavior, 
the LD5O G level was highest at 60 ft/sec. The trends in incidence of 
liver injuries varied greatly for each combination. In-SARS lia at -Gx 
the percent of occurrences was fairly constant for the span of G and 
velocities, while with SARS la in the same orientation the incidence 
rises with increasing velocity and correspondingly decreasing LD50 G. 
In +Gx the frequency of hepatic injury rises directly for SARS IIIa with 
increasing entrance velocities and increasing LD50 G level, while for 
SARS Ia there was only negligble occurrence. Gastrointestinal injury 
generally increased in incidence with increasing velocity (but not LD50 G) 
in all test combinations. The exception was seen with SARS Ila in 40x 
where the highest incidence appeared at 40 ft/sec coinciding with the 
highest LD50 G level for this combination. Paralysis was restricted to 
subjects exposed to -Gz impacts and appears at a frequency directly pro
portional to LD50 G with SARS IIIa and inversely proportional to LD50 G 
with SARS Ila. In both cases, however, the variance is direct with 
velocity. 

In sum, no strong or distinct patterns of incidence of pathology
 
were readily correlatable to changes in G level or velocity or, in a
 
more direct expression, to changes in the energy of the forcing function
 
for a particular test combination. Over the range of impact variables
 
studied, the trend in occurrence of pathology seems constant with few
 
exceptions, especially if changes in occurrence of less than 10 to 20% are
 
considered insignificant. Regardless of incidence trends, it is apparent
 
that the survival limiting factors within the torso for SARS la are gross
 
lung trauma in 4Gx (with hepatic injury influential in -Cx) and spinal
 

damage in +fGz. By comparison, the injury patterns seen with SARS Ila in
 

50% mortality impacts are manifold in all three orientations.
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STATISTICAL RESULTS
 

+Gx Orientation
 

The results for impact exposures in the +Gx orientation primarily
 
reflect the action of the support element of each system. The comparative

value of the two systems is, in fact, maximum in this orientation because
 
of the high isovolumetric quality of the rigid, contoured SARS Ia
 
support. The restraint elements play the lesser role of reducing lateral
 
bulging or wraparound and rebound motion. The significant difference in
 
LD5O levels between the two systems at all three velocity profiles points 
up the modification of failure mechanisms resulting from contoured support.
The difference is greatest at the lower velocity, being about 117 Gavg. At
 
80 ft/sec the gap narrows to 40 Gavg suggesting a match point at some
 
higher entrance velocity level. Comparison of the individual mortality
 
curves for the two systems (see figures 8 and 9) shows the slopes for
 
SAIS Ila varying directly with velocity while the same data for SARS lIla
 
indicates no such dependence. Actually, only three of the nine sets of
 
test conditions exhibit the expected linear dependence on velocity (+G
x
 
and +fGz in SARS Ila and -Gx in BARS IIIa). The G-t profiles for +-x 
further emphasize the approaching matchpoint and velocity independence of 
SARS IIla. Two related mechanisms are suggested for the anomalous behavior 
of SARS IIIa in this orientation. First, the possibility exists that the
 
somewhat narrow range of At's involved lay in or near a resonance boundary

for SARS IIIa. Unfortunately, no data are presently available for resonance
 
spectra of this particular SARS-animal system. If, however, a resonance
 
mechanism is acting, the C-t data indicate its location near the shorter
 
impact durations (s7 ms). The second related explanation involves the
 
dependence of peak impact force in the system or either acceleration or
 
velocity change. For a single-degree-of-freedom spring-mass system and
 
rectangular pulse inputs, Stech and Payne*(unpublished) have shown that
 
the peak force transferred to the system is a function of the velocity

change when the pulse duration is shorter than the natural period of the
 
system (tn). Conversely, when the pulse duration exceeds the natural
 
period, the peak force is directly related to peak pulse acceleration.
 
Figures 17 and 18 illustrate the mortality regression curves for SARS Ia
 
and IIIa strictly as a function of G. Figure 18 demonstrates the influence
 
of G on mortality in SARS IIIa and strongly jinfers 
that t may be independent

in this particular G-t representation. A third explanation may lie in the
 
relatively narrow range of t explored and natural data scatter which could
 
result. Kornhauser (1964), in his impact sensitivity work with mice, noted
 
a similar discontinuity in the 50 to 80 ft/sec velocity change profile.

With some reservations, he indicates the possibility of onset and pulse
 
shape variations as causative mechanisms in his tests. The increased LD50
 
level of SARS Ila appears to be the product of a significant reduction in
 
cardiovascular and hepatic injury in contrast to SARS Illa. 
Concomitant
 
with the abatement of trauma in these two areas, however, was 
a total
 
occurrence of pulmonary injury at all three entrance velocities. The
 

*Ernest L. Stech and Peter R. Payne, Frost Engineering Development Corp.,
 
Contract AF-33(657)9514, unpublished data.
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absence of lung laceration or rib fracture with SARS la suggests the
 

mechanism of extreme thoracic pressure transients. The relatively high
 
ila was accompanied by several cases
incidence of lung injury in SARS 


of rib fracture due probably to the rapid plastic deformation of the
 

torso against the flat support and the resulting surface tractions
 

occurring in the descending chest strap regions.
 

-Gx Orientation
 

Experiments in the -Gx orientation provided data which, converse to
 

+Gx, relate mainly to restraint element performance. Here, as expected,
 

the performance gap is decreased to LD50 differentials of 38 Gavg at 40
 

ft/sec and 5 Gavg at 80 ft/sec. Examination of the SARS Ila and IIIa
 
shows a reversal in velocity dependmortality curves (figures 10 and 11) 


ence from that seen in the IGx data. Instead, SARS Ila indicates a
 

discontinuity in the 60 ft/sec regime whereas SARS IIIa displays a direct
 

velocity dependence. Again, this behavior may be traced to the relative
 

velocity independence when t>tn . The curves of mortality versus Gavg over
 

the range of entrance velocities (figures 19 and 20) are practically
 
having a 33 Gavg superiority
equivalent in slope and intercept with SAILS Ia 


in LD50 level for the summed velocities. The G-t profiles for -Gx are
 
Also,
exceptional in that they conform to the anticipated model response. 


The pathology pattern for the
 a matchpoint is seen at -9msec duration. 

two SARS are quite similar; the exceptions being gastrointestinal and, to
 

a lesser extent, hepatic injuries. In general, the onset of mortal injury
 

within the same pattern appears to be delayed in SAILS Ia to a higher G
 

level (modified slightly by the two exceptions). A notable aspect of the
 

pathology trend seen in all three exposure orientations concerns the
 
In all cases where such pathology
frequency of cardiovascular injury. 


occurs, the highest incidence is seen in the 60 ft/sec entrance velocity
 

range. (In two of these cases the maximum LD50 G level is also at 60
 

ft/sec.) With SARS Ila in +Gx and +Gz exposures, this pattern is absent
 

because no cardiovascular injury was observed in these two test conditions.
 

The primary failure mechanism in SARS Ila at this orientation appears to
 

be centered in the cardiovascular system elements as witnessed by high
 

incidences of jugular, axillary, coronary, and other great vessel injury.
 

This response is in marked contrast to the general lack of cardiovascular
 

trauma seen with SARS Ila in the 4Ox orientation where exposure G levels 

were comparable. The regular incidence of cardiovascular lacerations with 

SARS Ia in -Gx points towards destructive tissue deformation in the 

hydraulic elements. The damping-coefficient and natural frequency for the
 

SARS Ila animal system would be lower in -Gx impacts than in +Gx.
 

4Gz Orientation
 

Experiments in the +G z orientation demonstrated the least disparity
 

between the two systems. The mortality regression curves (figures 12 and
 

13) show a velocity dependence for SARS Ila and the opposite for SARS IIIa.
 

At the lower velocity, SARS Ila is slightly superior while the LD50 values
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at 80 ft/sec entrance velocity indicate 
a marked improvement for SARS
 

In effect, the two systems almost balance 
out to equality over the
 

lia. 
(see figure 16) indicate a
The G-t profiles for +Gz
velocity range. 


lia at P20 msec. However, the degree

rapid performance shift for SARS 


to which mortality is a function of t for 
this condition is subject to
 

The G versus mortality in 4z for cumulative 
velocities (figures
 

question. 
 The existence
 
21 and 22) reveals an important point regarding 

SARS Ilia. 


of data scatter and/or heterogenity is 
apparent, making a reliable per-


Coupled with this error factor is a striking
 formance estimate difficult. 
 Thus, with the
 
difference in injury mechanisms between the 

two SARS. 


present data for IGz, specific cross-correlation is of diminished 
value.
 

7 
Initially we thought that the increased lateral 

support and restraint
 

la would provide substantial "hoop tensiont, 
thus reinforcing


with SARS 
 The increased Coulomb
 
the total torso-trunk column in compression 

loading. 

These factors
la was also considered positive.
friction inherent in SARS 


did not seriously alter the outcome in terms 
of an increased LD50 level;
 

however, the injury mechanisms compared to 
SARS Illa were significantly
 

evidently

The increased body column rigidity with SARS 

Ia 

modified. 

reflects directly on spinal column compression 

loading,producing a high
 

Neither system contained any padding or force
 incidence of paralysis. 
 Both SARS
 
attenuation media in the ishial tuberosity 

contact region. 


"seat" or actually hind leg pans were composed 
of a flat 0.25 inch plywood
 

spacer over the steel SAIlS frame.
 

The SARS IIIa permitted a greater degree of 
plastic deformation of
 

This is borne out directly

abdominal and thoracic surfaces and contents. 


in frequency of pulmonary, cardiovascular, and 
gastrointestinal injury.
 

That the former two types of pathology predominated 
further indicates the
 

Kazarian
 
possibility of an ascending compression wave 

trauma mechanism. 


(1968) has reported on thoracic-abdominal 
compression waves due to +Gz
 

The
 
impacts in relation to vertebral body injury 

in small primates. 


relatively low incidence of paralysis with SARS 
Ila may indicate that
 

certain injury modes are frequency sensitive 
since in the mechanically
 
the injury pattern is
 

stiffer (and hence higher frequency) SAIlS Ia 


reversed with a high paralysis rate and relatively 
low thoracic-abdominal
 

injury.
 

ANALYTICAL CONSIDERATIONS
 

The basic components of the body such as bone, 
muscle, and ligament
 

exhibit viscoelastic-plastic properties which 
can be defined by physical
 

constants, such as bulk moduli, elastic moduli, shear moduli, 
yield values,
 

and damping coefficients. It therefore appears logical that survival
 

limits at different values of the forcing function 
variables, for similar
 

injury mechanisms, can be studied by employing 
principles of mechanics.
 

In order to investigate the influence of support 
and restraint systems,
 

orientation, and-forcing function variables 
on survival, it is necessary
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to consider the transfer of energy during impact. Energy transfer
 
considerations are an essential prerequisite to a suitable formulation
 
of a mathematical model of subjects exposed to impact acceleration.
 

Energy Transfer
 

To study the energy transfer during impact the energy change of sled
 
or support and the transfer of energy between subject and restraint must
 
be considered. The energy change of the sled or support is controlled by
 
a forcing input to the sled as a known function of time. Energy profiles
 
for a rectangular sled input areshown in figure 23 at velocity changes of
 
40, 60, and 80 ft/sec. A typical near rectangular pulse input is illus
trated in figure 2A. In controlling the values of the forcing function
 
variables for establishing LD50 curves, it is possible to vary G by keeping
 
t constant, as shown in figure 24, or vary G by keeping AV constant, as
 
shown in figure 25. The representative points on a G-t curve for these
 
conditions are shown in figures 24D and 25D. Since the survival curves
 
from previous laboratory data closely parallel the energy profile repre
sentation, use of the constant AV approach was highly desirable in eco
nomically limiting the number of animals used.
 

The rate of energy transfer between the subject and the restraint is
 
governed by the properties of support and restraint, the value of the
 
forcing function variables, and the orientation. The energy potential of
 
mechanical forces producing impact injury is governed by two types of
 
forces in dynamic equilibrium; transient body forces (inertia force-body
 
volume) and transient surface tractions (force-surface area). Transient
 
body forces from inertial loading perform work by inertial deformation.
 
The potential WPB of inertial loading is given by
 

W B =- (9) 

V 

where U is the displacement vector and F is the force vector over the 
volume V. The work of body forces produces organ laceration, tissue 
distortion, and vessel hemorrhage. Damage is assumed to be caused 
primarily by rotary inertia, hydraulic loading, bending and shear dis
tortion effects.
 

Transient surface tractions from restraint loading perform work by
 
compressing the base. The potential WpS of surface loading is given by
 

Un n d S  
W2S f - - (10) 

S
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where un is the surface displacement vector and Tn is the stress vector
 

on the surface S. Surface tractions from restraint loading produce
 

subdermal hemorrhage, contusions and organ laceration. Hydraulic and
 
pneumatic pressure imbalances resulting from surface and/or body forces
 

may account for a redistribution of blood volume within tissues with local
 

areas of hemorrhage, ischemia, and fatal sho6k resulting.
 

Since the inertial forces and surface tractions are in dynamic
 

equilibrium, a logical rationale for support-restraint design is to
 

uniformly distribute the energy potential of mechanical forces by a uniform
 
n
traction on the torso surface f . This limits inertial deformations 0
 

well below the deforming destructive amplitude range and minimizes tran

sient pressure imbalances.
 

Model Representation
 

Dynamic model concepts of subjects exposed to impact accelerations
 
have been proposed by several investigators. Of particular interest is
 

the damped spring mass system representation.
 

The well known investigations of Ruff (1950) indicate that tolerance
 

limits of man for +Gz accelerations, based on vertebral tolerance, have a
 

plateau value of 20 G. The G-t profile illustrating these tolerance limits
 
is shown in figure 26. Kornhauser (1964), using the spring mass analogy,
 
has obtained a similar representation of the tolerance curves by his impact
 

sensitivity method. This representation, characterized by two asymptotes,
 
is based on the premise that below a certain G level no damage will occur,
 

regardless of the duration or velocity change. It is evident from prolonged
 

acceleration studies that his latter hypothesis fails. In addition,
 

earlier work in this laboratory has disproven the other limiting assumption
 
by experimentally demonstrating that damage is incurred in guinea pigs and
 
monkeys for exceedingly small durations and large G.
 

Theoretical studies by Payne (1961) and other investigators (Stanley
 

Aviation Company 1962) have demonstrated that a spring mass system approach
 

can be used to correlate experimental data on human exposure. Experimental
 

and analytical investigations by Lombard and Advani (1966) indicate that
 
protective principles can be effectively studied by spring mass system
 
representations. They indicate that isovolumetric containment of the torso
 

can alter survival limits by 300% in some orientations at velocity changes
 
of 40 ft/sec. The superior dynamic response of the isovolumetric system
 
in their study is due to the increased frequency of lumped mass components
 

and elastic elements. In the following discussion, the dynamic response
 
of a damped spring mass system to a rectangular pulse is studied. Refine
ments of this system are also presented.
 

Consider the damped spring mass system shown in figure 27 subjected
 
to a rectangular pulse of force Po and duration t1 .
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FIGURE 27 Damped Spring Mass System
 

The response of the system is given by
 

x !0 r e t Cos( 2 4t - § Ott 

k0 1 (tl  (11) 

x 1 I=- cos V- C n4t 

_1 e.__(t-t 1 ) [cos 1 - Cs4(t-t)- ] t>t 

where
 

is the natural frequency of 
the undamped system


=I 


is the damping factor
C = 

is the phase angle
cP 
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The dynamic response factor for this system, for zero damping, is shown
 

in figure 28.
 

2 L 
n 

it
 

0 
t 0.5 1.0
 

T 

FIGURE 28 Dynamic Response Factor 

A more realistic interpretation of the response is provided by
 
replacing the linear, single degree of freedom system by
 

a. Multidegrees of freedom system
 
b. Continuous system (visco elastic rod)
 
c. Nonlinear system
 

The multidegrees-of-freedom system is a logical step in the refine
ment of the single-degree-of-freedom system, since it exhibits inertial
 
coupling and elastic coupling characteristics. The general solutions for
 
a pulse rectangular input of a two-degree-of-freedom system are reported
 
by Lombard and Advani (1966). The natural frequencies in these studies
 
have been taken from vibration and resonance studies of Goldman and Von
 
Gierke (1961) and Coermann (1960).
 

Investigation by Hess (1956) indicates that the approximation of the
 
human task by an elastic rod compares with ejection seat data. Attempts to
 
approximate the human torso by viscoelastic rods have not yet been
 
rigorously applied to man. Viscoelastic continuous systems appear to be
 
potential candidates for mathematical model representations.
 

Since there is a considerable nonlinearity in the spring well below
 
the deforming destructive amplitude range, a closer approximation is
 
obtained by studying a nonlinear system with hardening characteristics.
 
The equation governing motion of such a system is
 

2 3
(x + 5X3 ) 
x w + F(t) (12)
 

In'general, no exact solutions exist for this equation. Approximate
 
solutions for the transient response of this system to step excitations
 
have been studied by Ergin (1956), Thompson (1960), Fung and Barton (1960).
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GENERAL DISCUSSION
 

It is now evident from the data that the range of impact durations
 

explored in the immediate work was not broad enough 
to provide accurate
 
Further, it was not
 

G-t representation in all systems and orientations. 


possible to develop discrete transfer functions for 
each system in each
 
Accordingly, it was
 

orientation and, concomitantly, the respective tnts. 


deemed unwise to attempt development of a mathematical 
model without
 

In the G and AV regimes studied, however,
further additions to the data. 


the acceleration value appears to be the best single 
criterion of per

formance whereas AV and t assume a secondary level 
of significance. The
 

criticality of velocity change on mortality seems 
to be seriously modified
 

in the event of adequate support and restraint versus 
lack of any pro

on guinea
Figure 29 compares data from Richmond (1961),
tective elements. 

pigs subjected to free fall impacts into a solid, 

flat surface, against
 

data for SARS Ia and IIIa. The -Gx orientation was assumed common 
and
 

G was considered independent. Richmond's data are based on 57 exposures
 

at impact velocities between 25 and 37 ft/sec while 
the combined SARS
 

Ila and IIIa results reflect 120 exposures at entrance 
velocities between
 

Although Richmond gives no data regarding exposure 
G
 

40 and 80 ft/sec. 

levels it is assumed that, in general, the animals exposed 

in the -Gx
 

orientation during the present work experienced a longer 
duration impact
 

than would occur in free fall impact into a solid 
surface at the same
 

entrance velocity.
 

Attempts were made during the course of the experimental 
effort to
 

obtain data which would be useful in development 
of energy transfer
 

functions between the decelerator sled and SARS-animal 
system. A
 

miniature accelerometer.was attached to the subject 
over the sternum,
 

against the skin and insde the restraint webbing 
or apron. Typical results
 

with this arrangement are shown in figure 30A for +Gx and figure 30B for
 

-G These data indicate, to some extent, the amount of 
damping present
 

x . 

in the SAIS Ia-animal system for two different orientations. 

The
 

smaller differential of 74 Gmp seen in -I-x reflects 
the action of the
 

animal and rigid support while the AG of 92 in -Gx 
is indicative of the
 

more resilient restraint. The natural frequencies of the same systems in
 

the two orientations would differ correspondingly.
 

The data indicate that the general pattern and type of 
lethal injury
 

mechanisms produced using the two systems differed in 
character to the
 

extent that SARS Ilia exposures produced a higher 
incidence of specific
 

injury was less
 
trauma such as laceration, fracture, etc., while SARS 

Ia 


specific, i.e., general organ or regional hemorrhage. 
This suggests that
 

the production of injury in SARS IlIa is largely a function 
of plastic
 

deformation in direct point (surface tractions) loading 
with some degree
 

of augmentation by indirect thoracicnabdominal plastic 
deformation resultir
 

from compression wave propagation and the associated internal 
pressure
 

injuries. This shift
 
gradients. The reverse appears true for SARS Ia 


is evidently related to the decreased and relatively uniform 
load per
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unit area afforded by SARS Ila and to the increased frequency of the
 
lumped mass components.
 

In general, results indicate a strong G dependence on mortality and 
a much less significant dependence on velocity over the range of G and 
AV studied. This may be partially reflected in the discontinuous LD50 
response to input energy (expressed in terms of G-t) seen in SARS lia 
at +Gx and +Gz. The discontinuities may also be due to.the inverse 
reason of critical t ( tn) for those particular SARS-orientation conditions.
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SECTION VII
 

CONCLUSIONS
 

Statistically significant data were obtained on the lethal-impact
 
dose for 50% of the guinea pig test subjects, using two types of support
 

and restraint systems, three orientations, and three entrance velocities
 

as fixed parameters.
 

a. The semi-isovolumetric SARS Ila concept provides superior impact
 
protection in the -Gx orientation over comparative conventional SARS
 

concepts.
 

b. SARS Ia with its apron type restraint provides improved impact
 
protection in the -Gx orientation.
 

c. Although the SARS Ila greatly reduced cardiovascular injury in
 
the +Gz orientation a concomitant high incidence of spinal injury was
 
incurred which, by definition, was considered nonsurvival. This factor
 

militated against a comparative improvement in impact survival for SARS
 
Ia.
 

d. Compared to previous guinea pig impact sensitivity data, both
 
1


SARS Ia and IIIa showed respective increased LD50 G levels in -Gx
 

exposures as a result of maximized head protection.
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SECTION VIII 

RECOMENDATIONS
 

Based upon the information acquired from this research effort the
 
following overall recommendationsare offered:
 

a. Additional research on the isovolumetric support and restraint
concept be conducted using larger animals and then man to establish
 
survival and tolerance limits, respectively.
 

b. Support-and restraint techniques for the head be improved for
 
concomitant use with improved support and restraint systems for the
 
torso.
 

c. Additional research on the isovolumetric support and restraint
 
concept for +Gz impact protection be conducted since it does minimize
 
serious cardiovascular injury. Reduction of spinal injury may be possible
 
with a force attenuator system.
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