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ABSTRACT 

This dissertation deals with an analysis of fatigue behavior at 

stress-concentration sites under cyclic loading. Specifically, the 

study treats sheet specimens containing a central hole under remote 

uniaxial cyclic loading. This investigation was conducted in 

three phases: an analysis of local cyclic stress-strain conditions 

at the •stress-concentration site, an investigation of fatigue crack 

initiation, and a study of the initial stage of crack propagation for 

.cracks growing from the stress-concentration site. 

Because fatigue cracks in structures originate at stress 

concentrations, rational methods for estimating crack initiation 

must be based upon cyclic stress-strain conditions at typical stress­

concentration sites. For the specimen configuration considered in 

the present study, this point of maximum stress and strain was on the 

boundary of the hole and consequently was in a uniaxial stress state. 

Cyclic stress and strain were estimated for this point by cycling 

uniaxial coupons between calculated limits for the local stress and 

strain. The adequacy of this "analytical-control" procedure was 

demonstrated by a comparison of calculated results with experimental 

results obtained on a companion specimen. Comparisons were made for 

constant-amplitude two-level, and random loading. 



The first level of the two-level loading was designed to,produce
 

residual stresses that altered local fatigue damage accumulation for
 

the second loading level. This nominal stress interaction was typical
 

of those experienced in structures. To obtain estimates of crack 

initiation that accounted for this stress interaction, the analytical-'
 

control testa from the first phase were continued until the uniaxial
 

'coupons failed by fatigue. The accuracy of this procedure was
 

* illustrated by comparison of estimated and observed crack-initiation
 

periods.
 

'To complete this study of the role of stress concentrations in
 

fatigue, the initial stage of crack propagation from a stress­

concentration site was,investigated. Short -cracks emanating from
 

stress-concentration zones are influenced by the local stress field
 

corresponding to the stress concentration. Through the use of a
 

Westergaard stress function for concentrated loads on a crack surface
 

together with a boundary-collocation technique, a general procedure
 

was developed for calculating stress-intensity factors for cracks
 

growing from a hole in a sheet specimen. Stress-intensity factors
 

were used together with a "master curve" characterizing crack growth
 

for the sheet material to calculate crack-growth curves for cracks
 

growing from the hole. These calculations were made for local stress
 

fields corresponding te the constant-amplitude and two-level loading
 

of the first two-phases of the study. The crack-initiation tests of
 

the second phase were continued to obtain experimental crack
 

propagation results. Reasonable correlation was found between the
 

calculated and experimental crack-growth curves.
 



The generally close correlation between calculated and observed
 

results throughout this study demonstrated the utility of local stress
 

analyses in the prediction of fatigue behavior for structural
 

components containing stress concentrations. The procedures used
 

herein are expected to be generally applicable for fatigue analyses
 

involving more complicated configurations and loading than those
 

considered in this investigation.
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1. ThTRODUCTION
 

1.1 General
 

The importance of fatigue considerations in the design and use of 

structures has been well recognized for many years. However, in spite
 

of intense efforts to develop analytical methods for predicting
 

structural fatigue, most fatigue evaluations must be based upon ad hoc 

tests of prototype structures. These tests are usually time consuming 

and may result in expensive design changes. Analytical predictions of 

structural fatigue would be preferred at an early design stage of a 

new structure. 

One of the primary deterrents to the analysis of structural
 

fatigue has been the problem of local stress analysis. Virtually all 

structures contain fasteners, fillets, or other such abrupt changes in 

configuration that act as stress raisers during service loading. The 

material at each of these stress-concentration sites is highly stressed 

(often into the plastic range) during the cyclic loading and, con­

sequently,. these sites become fatigue critical areas. Fatigue cracks
 

originate at and propagate from these critical zones. To predict the
 

initiation of fatigue cracks, stress-strain conditions within these
 

zones must be determined. Moreover, during the early stages of crack
 

propagation, a crack is under the influence of the local stress field.
 

Consequently, the problem of local stress analysis may also complicate' 

the analysis of fatigue crack propagation.
 

1.
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1.2 	Specific Objectives
 

The present study was undertaken to investigate typical effects of
 

stress concentrations on the fatigue behavior of sheet specimens. This
 

a study of local cyclic stress­study was conducted in three phases: 


strain conditions at the stress-concentration site, an investigation
 

of crack initiation, and an analysis of the initial stage of crack
 

propagation at this site.
 

Because fatigue cracks originate at the most highly stressed zone
 

of a stress-concentration site, attention was restricted to this zone
 

during the first phase of the study. As a further simplification, thin
 

specimens containing a central hole with inplane loading were con­

sidered. For this type of specimen, the vicinity of the stress
 

raiser is in a state of plane stress and the fatigue critical zone on
 

the stress-free boundary of the hole is under simple uniaxial stress.
 

Conditions at this critical point were referred to as "local"
 

conditions. As a result of this uniaxial stress state, local
 

conditions were investigated by simulating local cyclic stress-strain
 

behavior in unnotched uniaxial specimens. This simulation was
 

performed by cycling the unnotched specimens between prescribed
 

An equation relating local
local 	elastoplastic stress-strain limits. 


stress- and strain-concentration factors for nonlinear material
 

For an evaluation of
behavior was used to calculate these limits. 


this "'analytical-control" procedure, local cyclic stress-strain
 

conditions were also determined experimentally using a "companion-


The calculated and experimental results were compared
specimen" method. 


for constant and variable-amplitude fatigue loading.
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To demonstrate the importance of analyzing fatigue crack initia­

tion from a local cyclic stress-strain approach, loading levels and
 

sequences were selected to produce stress interactions. These stress
 

interactions were caused by residual stresses and damage acceleration
 

at the stress-concentration site and were typical of those found in
 

service. Fatigue crack-initiation periods for the notched specimens
 

were estimated by continuing the analytical-control tests from the
 

first phase until cracks appeared in the unnotched specimens. The
 

adequacy of this prediction method was assessed by comparing estimated
 

results and observed crack-initiation periods in notched specimens.
 

The effect of the stress concentration on fatigue exists beyond
 

the initiation of a fatigue crack at the stress-concentration site.
 

The high,stresses i-n the immediate vicinity of a stress raiser
 

increase the drack propagation rates for small cracks originating at
 

the critical site. In addition, for variable-amplitude loading
 

involving local plasticity, residual stresses may exist in the
 

vicinity of the stress concentration that alter crack-growth behavior.
 

'Consequ6ntly, a third phase :of this study investigated the effects of
 

stress raisers during the initial'stage of crack propagation.
 

Through the use of a Westergaard stress function for concentrated
 

loads on a free crack together with a boundary-collocation procedure,
 

a general procedure was developed for calculating stress-intensity
 

factors for cracks growing from a central hole in sheet specimens.
 

Stress-intensity factors for cracks propagating through residual
 

stress fields were determined with the aid of elastic and approximate 

elastoplastic analyses of stresses near the circular hole. These stress
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intensity factors were used together with a "master curve," character­

izing the crack-growth behavior for the specimen material, to calculate 

crack-growth curves for several.types of constant and variable­

amplitude loading considered in the first two phases of this study.
 

The accuracy of the estimates of stress-interaction effects on initial
 

crack propagation behavior was-determined by comparing estimated
 

crack-growth curves with test results.
 

The correlation between calculated and experimental results
 

demonstrated in this study illustrates the utility of local stress
 

analyses for the prediction of fatigue lives for structural components
 

containing stress concentrations. The procedures used in this study
 

to estimate fatigue behavior are expected to be generally applicable
 

in fatigue analyses involving more complicated configurations and
 

loading sequences than those considered in this investigation.
 



2. LITERATURE REVIEW
 

2.1 General
 

Fatigue failures in machine and structural components
 

characteristically originate at stress concentrations such as bolt
 

holes, fillets, or other abrupt changes in configuration. Because of
 

this localized nature of fatigue crack initiation, rational methods
 

for predicting fatigue must be based upon analyses of local stress
 

and strain at the stress-concentration sites. In weight-critical
 

structures, because of the high design stresses, local conditions
 

often extend into the plastic range. This literature review will
 

briefly survey the problem area of elastoplastic analysis of cyclic
 

stress-strain conditions at stress concentrations. In addition,
 

methods for predicting fatigue crack-initiationperiods based on local
 

stress are reviewed in the second part of this literature survey.
 

To complete the review of the effects of stress concentrations on
 

fatigue, the third part of this review deals with the initial stage of
 

crack propagation for'cracks growing from stress-concentration sites.
 

2.2 Local Cyclic Stress-Strain Studies
 

The analysis of local elastoplastic stress-strain behavior at a
 

stress-concentration site is quite complicated even for monotonic
 

loading. For cyclic loading, the local stress and strain depend also
 

upon the loading sequence which severely complicates theoretical
 

analyses. Furthermore, many materials exhibit stress-strain properties
 

that are altered by cycling. As a result of these complicating factors,
 

5
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numerical or approximate techniques have been used to analyze local
 

conditions for cyclic'loading.
 

2.2.1 Numerical Analyses 

Several numerical analyses have been conducted for plane specimens
 

under cyclic loading. Denke [ used a finite-element approach to
 

obtain a numerical solution for the elastoplastic stress distribution
 

near a central hole in a plate during one cycle of loading. Material
 

behavior was assumed to be elastoplastic during loading and entirely
 

elastic during unloading. From this solution residual stress
 

distributions were determined and used to estimate fatigue behavior.
 

Ibrahim, McCallion, and Dudley [2] also investigated the elasto­

plastic deformation around a circular hole under one cycle of loading.
 

A finite-difference approach together with a relaxation method were
 

used to obtain a plane-strain solution. Reasonable correlation was
 

shown between this solution and test results on a sheet containing a
 

central hole in plane stress. The elastoplastic analysis was con­

ducted for both loading and unloading to account for the reversed
 

yielding associated with unloading. 

Isakson, Armen, and Pifko [3] applied a finite-element analysis 

throughout three cyclesaof reversed loading of an edge-notched sheet
 

specimen. Specimen configuration, material behavior, and loading
 

levels were identical to those used by Crews [4] in an experimental
 

study of local behavior and a close correlation was found between
 

numerical and experimental results.
 

A finite-element technique developed by Jordan [5] was applied by
 

Mowbray and Slot [6] to investigate stress and strain redistribution
 

4t 
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in notched specimens during cyclic loading Mowbray and Slot selected 

the specimen dimensions, material, and loading used by Blatherwick and 

Olson [7] in an experimental'analysis of strain-distributon. 'Cyclic 

as effectiVe 'stress-strain curves tostress-strain diagrams were'used 

determine stress and strain redistributions resulting from the cyclic
 

strain softening exhibited by the,specimen material. The numerical
 

results were found to correlate well with measure strains reported by
 

Blatherwick and Olson.
 

2.-2.2 Stress- and Strain-Concentration.Studies
 

From a fatigue point of view, attention can be restricted to the
 

most highly stressed zone of a stress-concentration site without
 

seriousiy affecting the usefulness-of stress-concentration studies.
 

This zone becomes the fatigue critical site of the specimen for cyclic
 

loading. If fatigue cracks develop, they will originate in this zone.
 

In this study attention was consequently limited to this most critical
 

location. Conditions at this site were referred to as "local"
 

conditions. Furthermore, for the case of plane stress considered in
 

this investigation, the critical zone reduces to a point and the
 

behavior at this location can be conveniently described in terms of
 

stress- and strain-concentration factors.
 

In the second part of this literature survey several fatigue
 

prediction methods based on the use of stress- or strain-concentration
 

factors are reviewed. All of these methods are based upon either the
 

modified Stowell [8j or the Neuber :f9] equations for elastoplastic
 

stress- and strain-concentration factors.
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Stowell 'investigated the problem of elastoplastic behavior of a
 

sheet with a circular hole and with uniform loading at infinity. To 

account for local plasticity, Stowell introduced the ratio Es/B.
 

into the elastic solution where Es is the secant modulus at the
 

critical location and E is the secant modulus corresponding to the
 

uniform stress remote from the hole. This formulation led to the
 

stress-concentration factor for elastoplastic behavior of
 

KU = 1 + 2 Es (1)Eo.
 

The corresponding strain-concentration factor was found to be
 

= +'2 Es Es (2) 

Stowell compared his results with the experimental'data obtained by 

Griffith [10] for wide 2024-T3 aluminum alloy sheets also with a 

circular hole under remote uniform tension. Excellent correlation
 

was found for stress-concentration factors. However, theoretical
 

strain-concentration factors were noticeably smaller than the experi­

mental results. 

Hardrath and Obman [l] generalized the stress-concentration 

factor equation (1) by presenting the following expression in terms 

of the elastic stress-concentration factor KT
 

PIK alEsI +(KT (3)
 
- F , 
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where a is the maximum local stress and S is the nominal stress
 

at a remote location. This equation was used to calculate stress­

concentration factors for sheet specimens containing notches and
 

fillets, and results were compared with experimental data for 2024-T3
 

aluminum alloy. In addition, Hardrath and Ohman compared calculated
 

results with experimental stress-concentration factors determined by
 

Box [12]. In general, equation (3) correlated very closely with
 

experimental results.
 

Crews [13] and Crews and Hardrath [F41 considered the application 

of the generalized Stowell equation (3) for cyclic loading conditions.
 

The nominal stress sequence was divided into monotonic excursions and
 

equation (3)was applied for each excursion. The initial stress-strain
 

state for each monotonic excursion was taken as the final state from
 

the previous excursion. A generalization of the Stowell equation used
 

in this procedure can be written as
 

s
Kai= i= + (YT- ), (4)
K Zi E
$ 


where the subscript '" refers to the ith monotonic nominal stress
 

excursion \S Results from equation (4)agreed closely with
i .
 

experimental results in [13] and [14] for 2024-T3 aluminum alloy
 

specimens under one cycle of loading.
 

Equation (4)was rewritten by this author [15] as
 

i = ei Si . (5)
 

E
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where Aai and Aci are the independent variables. For given values
 

of KT and E this equation was used to establish the extreme values
 

of local stress and strain for each nominal stress excursion Si.
 

These extreme conditions for local behavior were used to control the
 

cyclic loading of unnotched specimens. The local stress-strain curves
 

found by this procedure were compared with experimental results for
 

sheet aluminum and steel specimens with stress-concentration factors
 

of 2, 4. and 6 throughout one cycle of completely reversed loading.
 

Neuber [9] presents a general theory relating stress and strain­

concentration factors for shear-strained prismatical bodies and 

arbitrary stress-strain jaws. Starting from the observation that 

1%> KT,> 1% (6) 

Neuber postulated the existence of a function, which was neither stress
 

6r strain, but a certain combination of both with the characteristic
 

that its concentration factor had the same value for all stress-strain
 

laws and therefore was equal to KT. This function was called the
 

"leading function" N(T) and was defined by
 

N K) (7)
 

N(rN) 

where T and TN are local and nominal shear stresses respectively.
 

The leading function was determined from the assumption that the
 

curvature of the notch root remained unchanged for both elastic and
 

general stress-strain behavior. This approach resulted in
 



1(r) = (8) 

where F(T) was a strain function. From equation (7)and the
 

definitions
 

K *Max
 
K= 

C TN)
F(Tmax)

K%= F(rWN) 

Neuber rewrote (8) as 

KT= V 

For an evaluation of the leading-fumction method Neuber [16] applied 

equation (8) to determine stress-concentration factors for sharp 

notches in pure shear and compared these results with an exact 

solution. Satisfactory agreement was shown. 

Neuber extended the leading-function method to cases of plane
 

stress in [17] through the use of the deformation theory of Nadai [18] 

to express the strain function for shear by the strain function for 

tension. To demonstrate the accuracy of the leading function procedure 

for plane stress, Neuber applied this method to determine stress­

concentration factors at a circular hole in a sheet subjected to uniform 

radial tension. For comparison, Neuber followed the approach of 

Budiansky and Mangasarian [19] to obtain an exact solution for this 

problem corresponding to several levels of strain hardening. For all 
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cases, the values obtained by the leading-function method were very 

near to those obtained for the exact theory, demonstrating the accuracy
 

of the leading-function procedure for plane stress.
 

The Neuber equation (9) was first applied in cyclic loading by
 

Peterson 20] and later by Dolan E21. These authors as well as Manson
 

and Hirschberg E22], Topper, Wetzel, and Morrow [23] and Wetzel E4] 

have used the Neuber equation in fatigue studies of notched specimens.
 

These papers will be discussed in the literature review of fatigue
 

prediction methods, and are listed here to demonstrate the wide use
 

of equation (9) in applications with cyclic,loading.
 

Crews L5j rewrote equation (9) in terms of local stress and
 

strain as
 

Au= (I Ls! (10) 
Aci E 

where Ai and Aci are the local stress and strain excursions
 

corresponding to the ith nominal stress excursion ASSi. Equation (10)
 

was used to calculate limiting conditions for each cycle of local
 

stress and strain, and unnotched specimens were cycled between these
 

limits to determine the local stress-strain curves. This procedure
 

will be described in detail in Chapter 3.
 

Dixon and Stannigan [25] and Dixon [26] experimentally investi­

gated,the elastoplastic conditions around crack tips for loading and 

unloading using a photoelastic coating technique. As a result of these 

studies, they constructed expressions for stress and strain around the 

4 ­
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crack tip during the first load cycles. For the case of notched
 

specimens
 

would be given, where Aco is the stress excursion corresponding to
 

completely elastic behavior. Since
 

and
 

As
 

equation (Il) can be rewritten as
 

(KT AS) 2 

AeE
 

Although developed by an entirely different approach, this expression 

is identidal to equation (10), developed from the Neuber equation. 

The close correlation found in [25] and [26] for results obtained by 

equation (1i) and by photoelastic methods further demonstrated the 

accuracy of the Neuber equation. 

2.3 Methods for Predicting Crack Initiation in Notched Specimens
 

2.3.1 General 

Fatigue prediction methods for notched specimens can be classified
 

into two general categories. The first of these is based upon constant
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stress amplitude tests to generate a series of S-N curves for
 

specimens with various stress-concentration factors. To estimate
 

the fatigue behavior for a given 'specimen configuration, the stress­

concentration factor must be calculated or determined experimentally
 

and a constant stress amplitude fatigue life is obtained from the 

family of S-N curves by interpolating for the desired KT value. 

The second basic approach is based on the assumption that a stress­

concentration site and an unnotched tensile specimen experience
 

fatigue cracks in the same number of cycles, if they are each cycled
 

through the same stress-strain history. Thus, once local cyclic
 

stress-strain conditions are determined for a stress-concentration
 

site, unnotched specimens can be used to estimate the fatigue crack­

initiation period for the stress raiser. The fatigue behavior of
 

unnotched specimens can be characterized by a family of S-N curves. 

The fatigue tests for the various KT levels required by the 

first approach may be quite expensive and time consuming in contrast to 

simple laboratory tests of unnotched specimens used in the second 

approach. Furthermore, loading sequences in variable-amplitude tests 

affect fatigue behavior of notched specimens and, as a result, a 

family of S-N curves for various KT values, in general, apply only 

for a single loading sequence. On the other hand., the effects-of
 

loading sequence could be incorporated in the analysis of local stress
 

and a single family of S-N curves for unnotched specimens could be used 

for all types of loading. For these reasons the local stress analysis 

approach will be followed in this study and will be reviewed in the 

following sections. 



Because of simplifying approximations that can be made for local 

conditions corresponding to tension-tension and completely reversed
 

loading, the following fatigue prediction methods are grouped according
 

to type of loading. 

2'.5.2 Prediction Methods for Tension-Tension Loading
 

Gunn L27i applied the modified Stowell equation (5) together with
 

.amonotonic stress-strain curve to estimate the maximum stress at a
 

stress raiser. Gunn assumed that the local stress range was elastic
 

after Ithe first cycle, that isj tA = T S. From the estimates of 

maximum local stress and a, Gunn predicted the manner in which 

yielding lowered the local mean stress for cases of tension-tension 

loading. By these estimates of local stress behavior, Gunn predicted 

aiternating-mean fatigue diagrams for notched specimens from similar 

diagrams for unnotched specimens. Although no provisions were made to 

account for reversed yielding or variations in cyclic material behavior, 

qualitative agreement was found between predicted and experimental 

fatigue lives.
 

Independently, Smith [28] developed a similar method for consider­

ing the effect of plasticity on life predictions. Smith assumed that
 

the strain at the concentration site was proportional to nominal
 

stress and calculated the strain from c = KTS/E. The corresponding
 

notch-root stresses were found from a monotonic stress-strain curve.
 

Residual stress was taken as the difference between the maximum local
 

stress and the elastic local stress range, as in [27]. However, to
 

produce agreement with life predictions based on these results, the
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residual stresses were multiplied by an assumed ratio between
 

plastically and elastically deformed material. Local stresses found 

,-by this procedure were use together with an S-N curve for unnotched 

specim&ns to predict fatigue lives of notched specimens under several 

levels of reversed (R'=.o) loading. Miner's linear cumulative damage 

theory [29]' was used to combine these estimated lives for predictions 

of fatigue behavior under two-level loading. In addition, Smith [30] 

applied the linear strain theory from [28] to predict fatigue lives 

for notched specimens under repeated (R = 0) block loading and 

demonstrated that the highest load level in the spectrum determines 

the magnitude of the residual stress to be used in estimating the 

fatigue lives at all other load levels. 

Ripp, Gomza, and Adee [31] presented a procedure similar to those 

of Gunn and Smith, however, the Neuber stress-concentration factor 

KN [32] was used instead of KT . 

KN = 1 + KT - 1 (12)+A
 

where A' is a material constant, p is the notch-root radius, and w 

is the flank angle of the notch. Because K. < KT, the notch-root 

strains estimated by Ripp et al. were lower than those obtained by 

either Smith or Gunn. The comparisons of predicted and observed 

fatigue lives in [32] reflected the large errors in strain based upon 

equation (12), especially for the low-life range. 
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Each of the preceding methods is based upon the assumption of 

elastic cyclic behavior at the notch root for cycles beyond the first. 

For R > 0 and for low nominal stresses this assumption is justified. 

However, for R = 0 and moderately high nominal stresses, reversed 

yielding occurs upon unloading (see [15]). Consequently,, the fatigue 

prediction procedures for tension-tension loading must be restricted 

to low nominal stress rangps for best results. 

2.3.3 Prediction Methods for Completely Reversed Loading
 

Peterson [20] modified the generalized Stowell equation (3) for 

the fatigue problem by replacing KT by Kf 

Ka= I + (Kf - i)ES (13) 

E 

where Kf is the fatigue notch factor, obtained as the ratio of
 

fatigue limits for unnotched and notched specimens. Peterson used
 

equation (13) together with a cyclic stress-strain curve to estimate
 

local stresses corresponding to specific levels of reversed (R = -1)
 

nominal loading. Starting with an S-N curve for unnotched specimens 

under reversed loading, Peterson constructed an S-N curve for notched
 

specimens in the following manner. The fatigue life was found for 

each calculated a (where a is local stress) from the S-N curve
 

for unnotched specimens and the S used to calculate a was plotted 

at this new fatigue life. The procedure was repeated for a range of 

S to obtain the S-N curve for notched specimens. The procedure was
 

applied for edge-notched sheet specimens of SAE 4130 (normalized) 
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steel with elastic stress-concentration factors of 2 and 1. Close
 

correlati6n was found between calculated diagrams and the observed 

S-N curves in E33]. 

D6lan [21] suggested a procedure for estimating fatigue lives for 

notched members based on the Neuber equation (9). Dolan rewrote
 

equation (9) in terms of cyclic amplitude of elastic strain as
 

KE___ = [Ace Act]1 =Act 	 Axe Act F (1i) 

Act 

where AEe and At are, respectively the -elastic and total ranges 

v17  of local strain and F = 1 t-. For given KT and M the left­

side of equation (14) can be evaluated. The right side of equa­

tion (14) can be found by successive approximations from a hysteresis 

loop for the material. The 	estimate of fatigue life corresponding to
 

,6Et can be found from a strain-life fatigue diagram for unnotched 

specimens. Dolan did not investigate the accuracy of this procedure 

in E21]. 

Manson and Hirschberg [22] presented an approximate analysis to 

estimate the number of cycles required to initiate a crack and the 

number of cycles required to propagate the crack,to failure for 

notched specimens. Cracks were assumed to occur at the root of a 

notch after a certain number of cycles dependent only on the localized 

surface strain as in the previously described methods. After the 

crack reached an "engineering size" it was assumed to propagate in a
 

manner similar to those in unnotched specimens. The number of cycles 
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to initiate a crack was designated No and was calculated for unnotched 

specimens using 

No = - ° 6 (15) 

from [34], where Nf is the total life to fracture. Manson and 

Hirschberg estimated the local strain range using the Stowell equation 

in the form suggested by Peterson equation (13) and Neuber's equa­

tion (9) after replacing KT by Kf. 

'Y= V'WT (16) 

Local strain estimates were used for establishing predictions of crack
 

initiation at stress concentrations. Life estimates for crack
 

propagation were also made with the assumption that crack growth 

depended only on the nominal strain range and not on the strain­

concentration factor for the notch. Total fatigue life of a notched
 

specimen was the sum of the crack-initiation period and the propagation 

period. To evaluate this procedure Manson and Hirschberg calculated
 

crack-initiation and propagation periods using equation (16) and compared
 

their results with the observed behavior of 7075-T6 aluminum alloy and 

AISI 4130 steel specimens having stress-concentration factors of 2 and 3. 

Close correlation was found between calculated and observed results. 

Topper, Wetzel, and Morrow [23] wrote equation (16) in the form
 

Kf( e E)h/2 = (Aa A E)l/2 (17Y 
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where he is the nominal strain range. Equation (17) relates the 

nominal cyclic stress-strain behavior of notched specimens to the 

local cyclic stress-strain behavior. For completely reversed constant­

amplitude tests detectable cracks were assimed to form in notched and
 

unnotched specimens in the same number of cycles provided
 

hS E)1/2
Kf (,S se E)l/2 for the notched specimens was equal to (ht 

for the unnotched specimens. To apply this assumption, Topper et al. 

used unnotched specimens to produce a "master curve" relating 

AE E) 1 / 2 (; and fatigue lives for unnotched specimens. The life 

(initiation phase) can be predicted for a notched specimen by entering
 

KT(AS ne E)1/2

the master plot at the value of (Ac Ae E)

1/2 equal to 


for the notched specimen test condition. Life predictions were made by
 

this procedure and compared with observed fatigue lives for edge-notched 

7075-T6 aluminum alloy specimens reported in [33]. The close correlation 

indicates that for this material the crack propagation phase can be 

neglected. 

All four of the preceding methods apply, in general, only to
 

constant-amplitude completely reversed loading. For this special type
 

of loading, local stresses and strains can also be assumed '(see [15]) 

to experience complete reversals and, as a result, local mean stresses
 

are zero. Because of this simplification, maximum and minimum values 

of local stress and strain can be calculated directly from a cyclic 

stress-strain curve (generated also by reversed loading) by either the 

modifiedStowell or the Neuber equation. Although not mentioned in [21], 

this assumption was'implicit in the procedure suggested by Dolan. 

I * 
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2.3.4 Prediction Methods for Arbitrary Loading 

To predict fatigue of notched specimens under arbitrary types of 

loading using the local stress analysis approach, local cyclic stresses 

and strains must be determined, in general, for each loading cycle.
 

This procedure is complicated by the inherent history dependence of local 

plasticity and by cyclic variations in stress-strain properties. 

Efforts to simplify this complex problem have led to the approximate 

analyses and experimental .studies reviewed in this section. 

The Ranlli method was described in [35] by Silverman, Hooson, 

and Saleme. This procedure is an extension of Peterson's method [20] 

to the case of nonfully reversed loading and is based upon semi-empirical
 

methods for determining the strain amplitude and mean stress at the notch 

root. An equivalent fully reversed strain amplitude giving the same
 

fatigue ,damage was determined and a fatigue life estimate was obtained 

for the equivalent strain amplitude from fully reversed constant strain 

amplitude fatigue curves. 

The Ranalli method was applied to estimate fatigue lives for
 

constant-amplitude tests and for simple spectrum loading. The linear
 

damage theory (Miner's Rule) was used for the spectrum loading tests 

to account for fatigue damage at each stress level. Although based upon
 

semi-empirical methods for analyzing local behavior, the Ranalli method 

was generally concluded to be of considerable value as a practical 

fatigue design method. 

Wetzel [24] applied equation (9) to calculate control conditions 

under which unnotched specimens were made to simulate fatigue behavior 
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of material at- a notch root. This procedure was similar to that used
 

by Ctews [15] However, Wetzel replaced KT by Kf in the Neuber
 

equatioh to calculate the control conditions. This substitution improves
 

ithe fatigde-preaiction results for constant-amplitude loading, but 

could result in large errors for local stress-strain calculations, 

especially for high KT, values where KT and Kf are usually quite 

different.- -Endpoint conditions for each half-cycle of local stress­

strain behavior were calculated from equation (9) and an unnotched 

specimen was suscessively cycled between the limits. This procedure 

can be applied for complicated types of loading, since each half-cycle 

of loading is handled separately. Wetzel applied the procedure to 

simulate local fatigue behavior for R = 0 loading, and close correla­

tion was found between calculated and observed results. 

In [1], local stress conditions were determined by a numerical 

elastoplastic analysis but, in addition, experimental methods were used
 

to find local stresses for constant-amplitude R = 0 loading.
 

Unnotched specimens were cycled between these experimental limits and 

the resulting fatigue lives were compared with lives found from fatigue
 

tests of notched specimens. For the two test conditions considered,
 

close correlation was found.
 

A more extensive experimental study of local stress behavior was
 

presented in [I3]. Local strains were measured while notched specimens
 

were loaded cyclically and these measured strains were reproduced in 

tests of unnotched specimens to determine the corresponding local stress
 

histories. For the 2024-T3 aluminum alloy investigated, local stresses 
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were found to reach stabilized levels. Fatigue lives for notched
 

specimens were estimated from these stabilized local stresses and
 

fatigue data for unnotched specimens.
 

2.4 Analysis of Crack Propagation Near Stress Concentrations
 

Crack initiation may occur in the early stages of fatigue life with 

the result that the crack propagation phase must be considered for 

accurate estimates of total fatigue life. Fatigue cracks initiate at 

areas of high stress concentration and grow away from these areas as
 

cyclic loading is continued. The initial stage of this crack propagation
 

is influenced by the stress field due to the stress raiser, but as the
 

crack grows it gradually escapes this influence and propagates solely
 

under the influence of the applied nominal stress. The behavior of
 

fatigue cracks under.applied nominal stress has received much attention
 

in the literature (for example, [36], 371, and [38]) and, as a result, 

was not dealt with here. On the other hand, fatigue crack growth near 

stress concentrations has received only limited attention.
 

Manson and Hirschberg [22] discussed the transition period between
 

crack initiation and crack propagation under nominal stress. This 

peridd was included in their analysis by defining No, not as the number 

of cycles to form a microcrack, but rather as the number of cycles to
 

form an engineering size crack according to the equation (15). While 

Manson and Hirschberg recognized that this simplification was highly
 

questionably, the results associated with this assumption were compared
 

with observed behavior to assess its validity. In general, the 
I ,
 

comparisons made in [22] supported their simplifying assumption,
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however, the validity of this approach is contingent upon the appropriate
 

selection of the engineering size crack.
 

Because this transition phase of crack growth depends upon the
 

stress distribution around the stress concentration, loading sequences
 

that alter this stress distribution through the creation of residual
 

stresses also influence this initial phase of crack growth. While
 

several studies have been conducted to establish the effects of prior
 

loading on fatigue crack initiation or total fatigue life (for example, 

[39] and [49]), the effects of this loading on crack propagation have 

not been analyzed. Taira and Murakami [41] measured crack growth from 

V notches in plates that had been statically loaded in tension prior
 

to fatigue testing.
 

Prior tensile loading was found to suppress the initial stage of
 

crack growth. This decrease in crack growth rate was attributed to
 

compressive residual stresses produced by the prior loading. However,
 

no analysis of this effect was presented.
 

In summary, although several investigators have mentioned the 

transition phase of crack growth from a stress raiser, no deliberate 

study has been made of this phase of fatigue. For some applications 

this phase may represent a significant part of the fatigue life, and, 

as a result, should be considered in fatigue predictions. 



3. ANALYSIS OF LOCAL CYCLIC STRESS AND STRAIN
 

3.1 General
 

The present study of local stress and strain -as undertaken to
 

demonstrate a procedure for estimating local conditions and to 

establish the adequacy of this procedure by comparison of calculated 

and experimental results. In addition5 the local stress-strain 

results developed in this study were used in the next chapter, which 

deals with crack-initiation behavior at stress-concentration sites. 

The present interest in the analysis of local stress and strain 

stems from the fact that fatigue is a very localized process. Without 

adequate procedures for calculating the loaal conditions at the 

fatigue critical sites of a structure, predictions of fatigue life 

are impossible. For weight critical structures, the analysis of local 

cyclic behavior is quite complicated. The history dependence of local 

' plasticity combined with the cyclic strain hardening or softening
 

experienced by most materials virtually preclude exact solutions for
 

local stress and strain beyond the first few loading cycles.
 

For the purposes of this study the problem of local stress 

analysis was simplified by considering the specimen configuration shown 

in figure 3.1. (This specimen will be referred to herein as the 

"notched" specimen.) Because this specimen was thin and was stressed
 

by inplahe loading, a plane stress condition"existed. The elastic 

stress distribution [42] oh the transverse axis is shown in figure 3.2 

for the specimen dimensions given in figure 3.3. The fatigue critical 

-points for this configuration lie on the boundary of the hole at
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Figure 3.1 - Notched specimen configuration, loading, and coordinate 
system.
 



27
 

3.0 Infinite sheet 

Finite sheet with 
(Howland (423) 

W/p = 6 

c, 

'2.0 

(.r 

H 

,1 .0 . . . . 

Figure 3.2 

02 -4 6 

Distance from.hole, r/P 

- Elastic stress distributions on,transverse axis.,. 



28 

11.90 

I Material: 2024-T3
 

Thickness:, 0.156 in.
 

Cp = 1.000, 

IIO 

4)-®- - - _ 
I I eIn 

w7 

-igr3- - Nc t 

Figure 3.3 - Notched test specimen dimensions., 

, * 

4' * I 



29
 

e = 0 and iT. Because these points were on the stress-free boundary 

of the hole, they were in a uniaxial state of stress which leads to 

significant simplifications in this study of cyclic behavior.
 

Throughout the remainder of this chapter, attention will be restricted
 

to these points and conditions at these critical points will-be
 

referred to as "local" conditions. Based on net-section nominal stress, 

the elastic stress-concentration factor for these points is 2.57 [42]. 

In addition, the comparison in figure 3.2 illustrates no effect on 

local conditions by the finite specimen width shown in figure 3.2. 

As a result of the uniaxial stress state at the local points, the
 

local cyclic conditions can be simulated in simple unnotched uniaxial 

-specimens. Local behavior was determined using this procedure. 

Two methods were used to control the simulation. In the first method,
 

referred to here as analytical-control method, limiting conditions 

involving local stress and strain were calculated and the unnotched
 

uniaxial specimens were cycled between these limits. The second method
 

was entirely experimental in nature, and was used to establish-the
 

accuracy of the analytical-control method. This experimental method,
 

called the companion-specimen method, was based upon the experimental
 

determination of local cyclic strain limits and the cyclic testing of
 

unnotched companion specimens between these limits.
 

Two types of cyclic loading were considered in this investigation.
 

To demonstrate the variations in local stress and strain due to cyclic
 

strain hardening and to establish the ability of the analytical-control
 

method to account for this material behavior, tests and analysis were
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conducted for constant-amplitude cyclic loading. The effects of
 

loading sequences on local behavior were studied for several simple 

cases of variable-amplitude loading. 

Details of procedures and apparatus are presented in the following 

sections. Discussions and comparisons are made between the calculated 

End experimental results for an evaluation of the analytical-control 

procedure. 

3.2 Anabtical-Control Method 

The procedure described in this section is based upon the simula­

tion of local behavior in unnotched specimens. Because the fatigue 

critical points for the notched specimen configuration considered in 

this study experienced only uniaxial stress, unnotched specimens under 

simple uniaxial loading were used for the simulation of local stress 

and strain. These plain specimens were cycled between calculated 

limits, involving local stress and strain, to perform the simulation. 

Two equations are currently available for calculating the limiting 

conditions for local stress and strain. These are the generalized
 

Stowell and the Neuber equations.
 

The Stowell relationship given in the literature review as
 

equation (4)
 

- 1 E 

was rewritten in terms of Li and ni as 
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Ae i 63~i 

A!i - (KT -
E
 

Similarly the Neuber equation was written as
 

(KT !ASi)2i : (10)

' .E A~i 

For the ;purpose ,of establishing the extreme values of local stress and 

strain for the analytical-control method ,either equation (5) or
 

equatioi (16) could have been used. However, based upon the simplicity
 

of equation (10) and upon the evaluation of the analytical-control
 

procedure for constant-amplitude loading performed by the author in
 

[is], equation (10) was selected for this study. 

The cycle-by cycle procedure for applying the analytical-control 

method can be explained with the aid of figure 3.4. An arbitrary 

nominal stress cycle has been divided into monotonic excursions in 

figure 3.4(a), and the corresponding estimates for the local stress­

strain behavior are presented in figure 3.4(b). To illustrate the 

procedure, equation (10) has been evaluated for a given KT and E
 

and plotted in the first quadrant of figure 3.4(b) for ASi . This 

curve for equation (10) represents the locus of maximum values of 

local stress and strain for tSi. An unnotched specimen was loaded 

in uniaxial tension to obtain the stress-strain curve OA. Point A 

corresponds to the intersection of the curve for equation (10') and the
 

stress-strain curve, and, as a result, represents the only solution
 

(to1 and Acl) of equation (10) consistent with the material 
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stress-strain behavior OA. Thus point A represents the estimated
 

maximum values for local stress and strain during the first quarter 

cycle.
 

For the second excursion of nominal stress AS2 point A was
 

taken on the initial state. Correspondingly, equation (10) was plotted
 

relative to point A for AS2. This curve for equation (10) lies in
 

the third quadrant. The unnotched specimen was unl6aded from point A
 

and loaded into compression until the resulting stress-strain curve
 

intersected the limiting curve for AS2 . This intersection point C
 

represents the estimate for the minimum values of local stress and
 

strain for this cycle of nominal stress.
 

Point B in figure 4(b) represents the half-cycle residual stress­

strain state and was found by plotting equation (10) relative to A -for 

the removal of AS1 from the specimen. Point D, representing the full­

cycle residual condition, was found in a similar manner. 

The local stress-strain curves for cycling beyond the first cycle
 

were found by repeatedly applying the procedure used to find the
 

extreme points A and C.
 

Because this procedure was applied in a continuous cycle-by-cycle 

manner, the history dependence of local behavior was automatically 

simulated in these tests with unnotched specimens. In addition, the 

influence of the cyclic strain-hardening behavior for the material used 

in this study was inherently incorporated into the local stress-strain 

results.
 

The unnotched specimen configuration shown in figure 3.5 was used 

throughout this study. These specimens were made from 2024-T3 aluminum 
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alloy sheet, and were all oriented such that their longitudinal axes
 

were parallel to the rolling direction of the sheet stock.
 

The hydraulic closed-loop, servo-control testing system shown in
 

figures 3.6 and 3.7 was used for cycling the unnotched specimens between
 

the calculated limits for local stress and strain. While this system
 

was capable of controlling either load or strain,'neither control mode
 

was used for this phase of the study. Flow control Valves were
 

adjusted to limit the strain rates in the specimens, and the loading
 

controls were first set for capacity tensile loading. Because of a
 

limited strain rate, the stress-strain curve was slowly generated.
 

When this curve intersected the limiting curve for maximum local stress
 

'.and strain (see fig. 3.4) the loading controls were manually reversed.
 

Similarly the loading controls were manually reversed when the stress­

strain curve intersected the limiting curve for minimum local conditions.
 

This procedure was repeated-for each half-cycle throughout the analyti­

cal'cohtrol test. 'Guideplates shown in figure 3.8 were used to prevent
 

buckling during the compressive loading.
 

The stress-strain curves obtained in this phase of the study were
 

recorded using an x~y recorder shown in figure 3.7. The load (stress)
 

input to this recorder was taken from the dynamometer shown in
 

figure 3.7. The strain input was provided by the strain-gage exten­

siometers also shown in this figure. The pair of extensiometers, shown
 

again in figure 3.8, were used to determine the average strain over the 

1-inch test section of the specimen. In addition, to reduce strain
 

errors due to bending, an average output from the two extensiometers
 

was used.
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(a) Completely reversed (R =-i) loading
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-(a (b) Repeated (R = ) loading 

Figure 3.11 -- Constant-amblitude nominal stress conditions. 
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Guideplates shown in this figure were used to prevent specimen
 

buckling under compressive loads.
 

3.4 Test Program 

As previouslymentioned, the objective of the local stress-strain
 

phase of this study was twofold. An evaluation of the analytical­

control technique was sought, and, in addition, 'the local stress-strain
 

results from this evaluation were to be used in the analysis of crack­

initiation lives. Loading sequences were selected with these objectives
 

in mind.
 

To investigate the adequacy of the analytical-control method in
 

accounting for cyclic strain hardening, two types of constant-amplitude 

loading were considered. Simple two-level loading and a random sequence 

of loading were selected as examples of variable-amplitude loading. To 

demonstrate the use of local stress and strain for analysis of crack
 

initiation, the loading sequences and magnitudes were selected to
 

produce effects on initiation behavior due to local residual stresses.
 

Details of these loading conditions follow.
 

3.4.1 Constant-Amplitude Loading
 

Two types of constant-amplitude loading were studied. The first 

of these, shown in figure 3.11(a), was completely reversed (R = -1) 

loading. For the notched specimen configuration and materials 

investigated, this 'loading produced local inelastic behavior for both 

tensile and compr ssive loading. The repeated (R = a)loading shown 

in figure'3.11(b), created only elastic stresses throughout the notched 

specimen. As a result, this loading condition was of little interest 

A 
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in this phase of the study but played an important role in the fatigue
 

crack-initiation study and therefore was included here for completeness.
 

3.4.2 Variable-Amplitude Loading
 

The above mentioned two types of loading were combined in two-level
 

ioading sequences shown in figure 3.12. For these conditions residual
 

stresses are produced during load reversal. These residual stresses
 

-affect the fatigue resistance of the notched specimen during the second 

level of loading. 

The fatigue behavior corresponding to these two types of loading
 

will be discussed in the next chapter. In this chapter these loading
 

sequences were used to demonstrate the role of high stresses in creating
 

local residual stresses that alter subsequent local stress-strain
 

conditions and to demonstrate the accuracy of the analytical-control 

method for calculating these effects. The random stress sequence in 

figure 3.13 was also investigated to illustrate the adequacy of the 

analytical-control method for arbitrary loading sequences and magnitudes.
 

Local stresses and strain were found for each of the loading 

conditions in figures 3.11, 3.12 and 3.13 by both the analytical­

control and the companion-specimen methods. These results are 

presented and discussed in the following section.
 

3.5 Experimental Results 

The strain-coupled servo-control system was used to conduct
 

companion-specimen tests for each loading condition. A typical
 

recording from the dual channel x-y recorder is shown in figure 3.14. 

Local stesss and strain are plotted in figure 3.14(a) corresponding to
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Figure 3.12 - Two-level nominal stress sequences. 
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the nominal stress and local strain in figure 3.14(b). Recordings 

were made throughout the first 50 load cycles. Maximum, minimum, and 

residual stresses and strains were determined from these recordings 

for each type of loading. These salient local stresses and strains
 

were plotted for 50 cycles of loading and will be discussed in the
 

following sections.
 

In addition, elastic stress-concentration factors were determined 

experimentally for each test specimen. Prior to the strain-coupled 

operation, strain-gage readings were taken at each of 10 nominal 

stress levels, as each notched specimen was loaded to 80 percent of 

the local yield stress. The experimental elastic stress-concentration 

factor Kep for each specimen was the average of the 10 values found 

for each case. These average values based on net nominal stress varied 

from 2.54 to 2.59 with an overall average value of 2.57 which agreed 

with the value given by Howland [42] for this specimen configuration 

(fig. 3.3).
 

3,5.1 Constant-Amplitude Loading
 

Maximum, minimum, and residual stresses and strains for the two 

cases of constant-amplitude loading are presented in figures 3.15, 

3.i7, 3.18, and 3.19. The dashed curves also shown on these figures 

will be discussed later. 

The lodal stress of 51 ksi shown in figure 3.15 for S = 20 ksi-

I equals the monotonic yield stress for 2024-T3 aluminum alloy as 

illustrated in figure 3.16. Consequently the local stress-strain 

behavior was initially elastic for this loading condition. 
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Figure 3.16 - Cyclic and manotonic "stress-stra-n curves for 2024-T3 

aluminum alloy. 
I 



Furthermore, the cyclic stress-strain curve, also presented in 

figure 3.16 (from E15]) indicated this local behavior to be stable 

for repeated cycling, which agrees with the results presented in 

figure 3.15. These results could have been calculated directly from, 

figure 3.16. However, the companion-specimen test was conducted in 

the interest of completeness and also to assess the performance of the
 

strain-coupled servo-control system. In addition, this local stress
 

history for S = 20 ksi will be used as a reference in subsequent 

sections to describe the local effects of prior high loading on
 

subsequent load cycling at S = 20 ksi. The local effects will in 

-turn be,used to explain the crack-initiation behavior during fatigue 

tests of the notched-specimens.
 

The application of S = 40 ksi produced local reversed plasticity
 

during each cycle as shown in figure 3.17. The cyclic strain-hardening 

behavior shown in figure 3.16 for 2024-T3 aluminum alloy was also 

evident in figure 3.17. The maximum and minimum local stresses 

increased initially with cycling but stabilized in about 10 cycles. 

Residual stresses decreased in magnitude corresponding to the increases 

in maximum and minimtm stresses. 

The strain history in figure 3.18 again illustrates that the local 

behavior for S = 20 ksi was both elastic and stabilized. The strain 

range in figure 3.19 for S = 40 ksi, however, decreased rapidly for
 

the first few cycles before approaching, a stabilized condition in 

about 10 cycles.
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3.5.2 Variable Amplitude Loading 

As previously mentioned in the discussion of the test program, the 

two constant-amplitude conditions were combined to form two distinct types 

of two-level loading. The high loading (S = 40 ksi) was applied first and 

was followed by load cycling at S = 20 ksi. The local plasticity pro­

duced by the high load cycling resulted in the creation of residual
 

stresses that altered the local stress-strain conditions for subsequent
 

low load cycling. The high loading was applied for 10 cycles and ended 

on both tensile and compressive half-cycles to produce, respectively,
 

*beneficial (compressive) and detrimental (tensile) residual stresses.
 

For the case of beneficial two-level loading a compressive residual
 

stress of 30 ksi-was left at the end of the high loading phase
 

figure 3.20. This residual stress acted as the minimum local stress 

during the second phase of loading' and decreased slightly during the
 

first 40 cycles of loading at the low stress level. The maximum local 

stress corresponding to the loading at S = 20 ksi was initially 22 ksi,
 

but also dedreased slightly as the cycling was continued. This decrease
 

in maximum and minimum stress shown in figure 3.20 was believed to be the
 

result of strain-gage zero shift, and thought not to be representative
 

of actual local stress behavior. This will be further discussed later
 

in this report.
 

A tensile residual stress is shown in figure 3.21 for high loading 

ending in compression. For this case the minimum local stress was 7 ksi 

and the maximtum local stress was 58 ksi for the cyclic loading at 

S = 20 ksi. Again for this case, a slight decrease occurred in extreme 

stresses as the cycling continued. 
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The local strain histories for the two types of two-level loading
 

are presented in figures 3.22 and 3.23. The local strain ranges 

decreased during the 10 cycles of high loading, but remained virtually 

unchanged for load cycling at the low stress level. The tensile
 

residual strain at the end of 10 cycles in figure 3.22 produced the
 

compressive residual stress shown in figure 3.20. Correspondingly, the
 

compressive residual strain from figure 3.23 caused the tensile
 

residual stress in figure 3.21.
 

Maximum and minimum local stresses and strains for the random 

stress sequence in figure 3.13 were determined by the companion­

specimen method and& are presented in figure 3.24. The notched specimen 

buckled under the first application of -50 ksi, in spite of the guide 

plates. For this reason the stress and strain histories were terminated 

after six cycles. Nevertheless, these experimental results are pre­

sefit6d and will be used in the next section to assess the accuracy of
 

the analytical-control method for random loadings.
 

3.6 Comparison of Calculated and Experimental Results 

For an evaluation of the analytical-control method, this method 

was applied for each previously discussed loading condition to calculate 

the local stress-strain behavior from unnotched specimens. A typical 

recording of local stress-strain curves obtained by this approach are 

shown in figure 3.25. The calculations of local behavior by analytical 

control were continued for 50 cycles as in the companion-specimen tests. 

The calculated results are presented as local maximum, minimum, and 

residual stresses and strains for comparison with similar experimental 

data.. The analytical-control results are represented by the dashed 
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curves plotted together with the companion-specimen results in 

figures 3.15 and 3.17' through 3.23. 

3.6.1 Constant-Amplitude Loading 

' Thecalculated local stress history for S = 20 ksi was entirely 

elastic, as expected-, and agreed very closely with the corresponding 

experimental results in figure 3.15. This case, of course, did not 

represent a critical evaluation of the analytical-control method, but 

was studied to obtain a reference for local conditions for an evalua­

tion of loading sequence effects during two-level loading. The constant­

amplitude loading at S = 40 ksi provided a better test of the 

analytical-control approach. The calculated results for this case 

also correlate very Well with data in figure 3.17. This correlation 

demonstrates the ability of the analytical-control method to account 

for 	local cyclic plasticity and to inherently incorporate the cyclic
 

strain-hardening behavior in calculations of local cyclic stress. 

As expected, the calculated and experimental strain histories 

for S = 20 ksi agreed closely, as illustrated in figure 3.18. In 

contrast, the calculated local strains in figure 3.19 for S = 40 ksi 

were 	somewhat in error.
 

3.6.2 	Variable-Amplitude Loading
 

Local stress histories calculated for both types of two-level
 

loading correlated remarkably well with the experimental results in 

figures 3.20 and 3.21. The stabilized calculated results for S = 20 ksi 

support the assumption that the slight decreases in local experimental 

stresses were due to small strain-gage errors. As in the case of 
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constant-amplitude loading, the calculated local strains were noticeably 

larger than the experimental values in figures 3.22 and 3.23. The 

maximum and minimum stresses and strains for the random loading sequence 

are presented in tables I and II. The corresponding experimental 

results from figure 3.24 are also listed in these tables and agree very 

well with the calculated results. 



TABLE I.- COMPARISON OF CALCULATED AD EXPERIMENTAL 

LOCAL STRESSES FOR RANDOM NOMINAL STRESS SEQUENCE 

Maximum local stress, Minimum local stress, 
ksi ksi 

Cycle 
Number Analytical- Companion- Analytical- Companion­

control specimen control specimen 
method method method method 

1 54.1 53.8 -55.3 -54.1 
2 50.8 50.0 0.0 -2.0 
3 
4 

56.1 
58.1 

55.8 
58.6 

-19.4 
-37.1 

-19.8 
-34.8 

5 38.7 41.2 -64.6 -63.9 
6 -11.3 -10.9 -37.5 -37.7 
7 48.8 48.3 -67.0 (specimen 
8 
9 

55.6 
11-.7 

-67.0 
-67.0 

buckled) 

10 21.0 -67.0 
11 65..o -10.5 
1213 15.3581 -69.0-41.2 
14 63.0 -64.6 
15 67.0 -50.0 
16 50.0 -75.1 
17 69.4 -77.1 
18 58.1 -64.6 
19 67.0 -75.9 
20 47.2 +21.0 
21 70.2 -61.3 
22 70.2 -72.6 
23 69.4 -73.0 
24 29.9 +4.0 
25 71.0 -46.0 
26 29.9 -67.0 
27 70.2 -67.8 
28 52.5 +26.6 
29 70.2 -71.8 
30 48.4 -o.8 
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TABLE Ii.- COMPARISON OF CALCULATED AND EXPERIMENTAL
 

LOCAL STRAINS FOR RANDOM NOMINAL STRESS SEQUENCE
 

Maximum local Minimum local 
stress stress 

Cycle 
Number Analytical- Companion- Analytical- Companion­

control specimen control specimen, 
method method method method 

1 1.07 0.89 -i.o6 -1.01 
2 0.47 O.40 -0.03 .­ 0.ll 
3 1.00 0.189 0.25 0.13 
4 1.57 1.75 0.49 o.65 
5 1.24 1.42 -1.80 -1.66 
6 -1.33 1.19 -1.56 -1.42 
7 -0.38 -0.36 -2.37 (specimen 
8 -0.50 -2.37 buckled) 
9 -1.64 -2.37 

10 -1.55 -2.37 
11 1.54 0.75 
12 1.00 -1.71 
13 0.11 -0.95 
14 o.6o -1.23 
15 1.92 o.54 
16 1.57 -2.55 
17 1.914 -2.50 
18 -o.81 -2.11 

.19 0.29 -2.60 
20 -1.31 -1.55 
21 1.67 -0.10 
22 1.67 -1.23 
23 1.69 -1.22 
24 -0.20 -o.45 
25 2.98 -1.61 
26 2.37' 0.70 
27 2.99 0.73 
28 2.07 1.82 
29 3.13 0.28 
30 1.57 1.04 



4. CRACK TITIATION AT STRESS CONCENTRATIONS 

4.i General
 

The analysis of fatigue in service is usually extremely complex as
 

a result of the very localized nature of fatigue. Fatigue cracks
 

initiate at the most severely stressed area of a machine part or
 

structure and this area of high stress concentration is characteris­

tically very small. A prediction of fatigue behavior must be based 

upon the fatigue behavior of this highly stressed local zone. In 

addition, fatigue predictions must account for the growth behavior of 

cracks that originate and grow from this local zone, but in this chapter 

attention is focused on crack initiation. 

In principle, fatigue crack initiation at a stress concentration
 

can be predicted by calculating local stresses for each cycle of loading
 

and by estimating the corresponding "local" fatigue damage from a 

cumulative damage theory and a fatigue crack-initiation diagram for 

unnotched specimens. This approach is complicated by local plasticity 

and attendant residual stresses, by interactions of one local stress
 

level with the damage caused at another local stress level, and by a
 

size effect.
 

Local plasticity and the resulting residual stress behavior were 

illustrated in figures 3.20 and 3.21 and discussed in the previous 

chapter. From a fatigue point of view, residual stresses influence 

local damage-accumulation rates by altering local mean stresses. 

Because fatigue damage increases with mean stress, the prior loading 

in figure 3.21 should have a detrimental influence on the local fatigue 
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behavior under S = 20 ksi loading. On the other hand, the prior 

loading for figure 3.20 should improve the fatigue performance under 

the low level. These nominal stress-interaction effects may be accounted 

for only by accurate calculations for local stresses. As indicated 

in Chapter 2, such calculations are quite complicated and as a result, 

approximate methods are usually required.
 

In addition to the stress interaction due to residual stresses, a 

second type of stress interaction is produced by damage acceleration. 

Dolan and Corten [43] and Manson, Freche, and Ensign [144] described 

damage acceleration in terms of microscopic crack initiation caused by
 

a high stress level that enabled low stress cycles to readily propagate
 

the initiated microcrack. A considerable fraction of the life would be
 

required in constant-amplitude cycling at the low stress level to
 

create a similar microcrack. Consistent with this explanation, a few
 

high stress cycles,have been observed to noticeably accelerate the
 

damage accumulation for subsequent cycling at a lower stress level.
 

Freudenthal and Heller [4515 described damage acceleration in terms of 

the increased crack-propagation rate at each stress level caused by
 

interaction with all higher stress levels. In both explanations
 

damage acceleration was related to microscopic plastic deformation at
 

the high stress that enabled the lower stresses to do more damage than
 

they could otherwise do.
 

Both types of stress interaction were simulated in unnotched
 

specimens by the analytical-control procedure from Chapter 3. By
 

continuing an analytical-control test until fatigue cracks initiate,
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these interaction effects can be automatically incorporated into the
 

resulting estimate for fatigue crack initiation. Furthermore, the
 

fatigue damage accumulation in the unnotched specimen simulates that
 

for the material at the notch root, eliminating the need for a cumula­

tive fatigue damage theory. Estimates of crack-initiation periods were 

found by this analytical-control approach and are compared with data 

in this chapter.
 

The analytical-control procedure for estimating crack initiation 

does not account for the size effect that causes Kf < KT. This size
 

effect results from the fact that when local stress is simulated in
 

unnotched specimens, a large volume of material is highly stressed,
 

although only a small volume is similarly stressed at the actual stress­

concentration site. From a statistical point of view., the large volume
 

of material in the unnotched specimens contains a larger microscopic
 

flaw than the smaller volume at the stress-concentration site. This 

larger flaw in the unnotched specimen grows to a macroscopic size faster 

than the smaller flaw at the stress concentration and, as a result, 

for the same stress history' the crack-initiation period for the 

unnotched specimen is shorter than for the stress concentration. 

Wetzel [4] replaced Kf by KT in-the Neuber equation t(9) to account 

for this size effect and consequently, to improve fatigue estimates. 

Although for cases of coistant-amplitude, Wetzel has improved estimates 

of crack initiation. This appr6ach leads to large discrepancies 

between simulated and actual local stresbes, especially for high 

stress-concentration factors where Kf is usually significantly smaller 

14 I 
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than KT. These discrepancies in local stress would alter both of the
 

previously explained stres interactions for variable-amplitude loading.
 

For this reason no correction was made,for size effect in the present
 

study.
 

4.2 Observed Crack-Initiation Bdriods
 

The sheet specimens containing a central hole from Chapter 5 were
 

tested under fatigue loading until fatigue cracks developed at the
 

stress-concentration site. Tests were conducted for the two levels of
 

constant-amplitude loading and the two combinations of two-level loading
 

considered in Chapter 3.
 

Microscopic cracks usually develop at an early stage of fatigue
 

life. However, a considerable fraction of the total fatigue is often
 

required to propagate these small cracks to a macroscopic size. From an
 

engineering point of view, very small cracks (that do not alter the load
 

carrying capacity of a structural member) may be ignored. From this
 

point of view, the crack-initiation life is often defined as the number
 

of cycles required to produce a macroscopic crack, detectable by con­

ventional inspection methods. For the present study, crack-initiation
 

life was defined as the number of cycles necessary to create a
 

0.03-inch crack at the stress-concentration site. This "initial" crack
 

size of 0.03 inch was selected from crack propagation considerations
 

(see section 5.2), but nevertheless is representative of the minimum
 

size detectable by inspection methods currently in service.
 

Because of difficulties in direct detection of small cracks
 

(0.03 inch) at the stress-concentration site for each fatigue test, an
 



71
 

indirect approach was used to establish crack-initiation lives. The 

total fatigue life, Nf, of notched specimens was assumed to consist of 

two parts: the number of cycles required to produce the 0.03-inch crack, 

No and the number of cycles necessary to propagate this crack to 

failure, Ncp. As part of the crack propagation study in Chapter 5, 

Ncp was experimentally determined for the notched specimen configura­

tion for each loading sequence used in the present study of crack
 

initiation. For each fatigue test in this chapter, the crack-initiation 

life, NO) was found by subtracting tlhe corresponding constant value of 

Ncp from the observed total life, i.Nf. These Ncp values were: 

4000 cycles for the case of no prior loading.(S = 20 ksi), 34,000 cycles 

for beneficial prior loading, and'3000 cycles for detrimental prior 

loading. "Errors associated with the assumption of a constant Ncp 

value for each test condition were believed to be small, since for all 

test conditions th~se Ncp values'were less than 5.6 percent of the 

corresponding geometric mean values of, .Nf. 

Total fatigue lives and the corresponding crack-initiation periods 

are presented in table III and fig e 4.1 for each of the four test 

conditions. In all tests cracks are initiated at the zone of highest 

stress concentration. In addition to 12-inch-wide specimens, 4-inch­

wide specimens were used as indicated in table III and illustrated in 

figure 4.1 by open symbols. The constant-amplitude loading conditions 

resulted in initiation lives with geometric means of 331 cycles for
 

-
S = '40'ksi and 129,000 cycles for S 20 ksi. The high-low combina­

tions of these two stress levels produced different fatigue lives.
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TABLE III. - FATIGUE CRACK- ITIATION DATA FOR NOTCHED SPECIMENS
 

Notdhed Fatigue Crack Geometric mean 

Nothedinitiaton 
Test condition specimen life, Nf, if biao of crack initiation 

number(a) cycles cycle lives, No, cycles 

s =4o ksi 
R=- , 

,io8-1 
98 
7-2 

300 
312' 
427 

288 
300 
415 

531 

(Ncp = 12 cycles) 

S = 20 ks 

93 
105 
1681i2 

94,700 
78,000

%i44, 79011 81,300. 

90,700 
74,000

140, 700114,300 129,000 

R = 0 

(Ncp = 4000 cycles) 

93-1 
'103-1 
103-3 

189,6oo 
157,900 
190,000 

185, 6oo 
153,900 
186,000 

Beneficial 
prior loading 

(Ncp = 34,000 cycles) 

100 
02 
93-3 
112-3 
93-4 
97-4 

108-2 

267,300 
303,100 
590,-200 
910,000 

1,3 003, 100 
1,063,000 
1,071,000 

253, 300 
269,10O 
556 200 
'876,000 
969,100 

1,029,O00 
1,037,000 

610,ooo 

Detrimental 
prior loading 

(Ncp = 3000, cycles) 

97-1 
lo9 
108-4 
112-1 
93-3 

54, 200 
65,0o0 
66,000 
77,300 
78,000 

51,200 
62,000 
63,000 
74.,300 
75,000 

65, 400 

(a)Hyphenated numbers indicate 4-inch-wide specimens with 0.672-inch­
diameter hole.
 

(b)Crack-initiation lives found by subtracting, crack propagation period-
Ncp (see first column) from total life Nf. 
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As expected from the analysis of local stress-strain conditions, the
 

loading sequence in figure 3.12(a) resulted in a fatigue life larger
 

than the reference case of constant-amplitude loading, while the
 

sequence in figure 3.12(b) produced a shorter life. That is, the prior
 

loading in figure 3.12(a) was beneficial and the prior loading in
 

figure 3.12(b) was detrimental. To emphasize this stress interaction
 

the linear cumulative damage rule (ref. 29)
 

M 

i=1
 

was applied where M is the number of stress levels, is the
ni 


number of applied cycles for the ith stress level, and Ni is the
 

constant-amplitude fatigue life for that stress level. For the case
 

of beneficial prior loading
 

2 

ni " + n2 0 + 610,000 4.y7 
Ni N2 31 129,000
N1 


and for detrimental prior loading
 

n + n2 .lO + 65,400 =0.53 
N1 N2 331 129,000 

These results illustrate the nonlinear damage accumulation caused
 

by residual stresses not accounted for by the linear cumulative damage
 

rule. The difference in the last half-cycle of prior loading for these
 

two cases (compare figs. 3.12(a) and 3.12(b)) caused approximately an
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order of magnitude difference in crack-initiation lives. For service
 

loading sequences, which in many cases are similar to the random
 

sequence of loads in figure 3.13, residual stresses are being created
 

and eliminated throughout the entire crack-initiation life. Fatigue
 

predictions for such cases must be based on the analysis of local
 

stress-strain conditions to account for the complex residual stress
 

effects. The application of the linear cumulative damage rule based 

on nominal stresses leads to meaningless results for these service 

loading conditions.
 

4.3 Prediction of Fatigue Crack Initiation
 

To obtain estimates of crack-initiation periods for the notched 

specimen, the anaslftical-control procedure presented in Chapter 3 was 

continued until the nnotched specimens failed in fatigue. As 

previously illustrated (figs. 3.17, 3.20, and 3.21), local stress-strain 

conditions stabilize f6r repeated load cycling. For convenience,
 

after stabilization occurred the testing procedure was changed from
 

analytical control to stress control and continued in the stress
 

control mode until failure :occurred. Since crack-initiation life for
 

the notched specimehs was'defined as the number of cycles required to
 

produce a 0.03-inch crack, these tests with unnotched specimens should
 

have been continued until a crack'of this same size developed. However,
 

preliminary tests showed that these unnotched specimens failed statically
 

for small crack lengths, comparable to the 0.03-inch "initial" size
 

crack. Consequently, for convenience crack propagation was not
 

monitored in these tests, and the estimates for crack-initiation lives
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were taken as the number of cycles for complete failure of the 

unnotched specimens. 

The errors introduced in No predictions by these simplifying 

assumptions were believed to be small compared to the effects of load 

interaction. Both the residual stress and the damage acceleration
 

stress interactions were accounted for by the analytical-control
 

fatigue tests. It is believed only the unaccounted for size effect
 

resulted in significant errors. 

Analytical-control tests were conducted for the four test condi­

tions and resulting estimates for No are presented in table IV 

and figure 4.2. The beneficial and detrimental effects of residual 

stress are reflected by the results' in figure 4.2. These results are 

further discussed in' the next section and are compared with the observed 

crack-initiation periods.
 

4.4 Comparison of Predicted and Observed Results
 

For an assessment of the accuracy of the analytical-control method 

for estimating fatigue, the observed and predicted results from 

figures 4.1 and 4.2 were combined in figure 4.3. The predicted crack­

initiation periods reflect the general trends displayed by the observed 

results, however, the previously mentioned size effect and stress
 

interactions combine to produce conservative predictions. These effects 

are each briefly discussed in the following analysis of the discrepancies 

between predicted and observed crack-initiation periods. 

The analytical-control method as presented in this report does not 

account for the size effect on the fatigue crack-initiation behavior.
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TABLE IV.- PREDICTED CRACK-INITIATION PERIODS FROM 

ANALYTICAL-CONTROL TESTS WITH UNNOTCHED SPECIMENS 
I I 

Fatigue life
Test condition Unnotched from analytical- Geometric mean 
for notched spec.ien control tests, of fatigue lives, 
specimen number cycles.
 

B53 96 
ES1 166 155 

S 40 ksi D52 232 
R -1 

G.53 19,200 
G51 22,700 

S = 20 ksi N53 43,500 35,100
R - 0 112-A 48,100 

L51 58, 40o 

M51 140,000 
A53 181, 000 191,000 

Beneficial F53 273, 300 
prior loading 

C51 17,300
Detrimental D51 23,100 22,1400 
prior loading F51 28,800 
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The unnotched specimehs used to estimate No contained a much larger 

volume of highly stressed material than notched specimens with the
 

result that observable fatigue cracks initiated earlier in the 

unnotched specimens, as previously explained. This effect is attenuated 

somewhat by local plasticity because a larger volume of material 

(within the local plastic zone) experiences the high local stress. 

This trend was present in the predicted No values in figure 4.3 for 

constant-amplitude loading. The estimate of for = 20 ksi wasNo S 


approximately one-fourth the corresponding observed value (see
 

tables III and IV for actual values). In contrast, the estimate for
 

S = 40 ksi, which produced local plasticity, was nearly one-half the 

observed No . To illustrate the effect of plasticity on the size of 

the highly stressed local zone the elastic stress distribution in 

figure 3.2 was used in equation (11) together with the stress-strain 

curve in figure 3.16 to obtain the stress distributions in figure 4.4. 

The stress distributions in figure 4.4 for prior loading show that the 

size effect should also be diminished for both cases of two-level
 

loading. For these two test conditiond the predicted values were
No 


approximately one-third as large as the observed No values (see
 

fig. 4.3 and tables III and IV). 

The size effect is usually expressed in terms of Kf, the ratio of 

fatigue stresses for unnotched-and notched specimens at a given fatigue 

life. Auxiliary fatigue tests were conducted with unnotched specimens 

to establish the value of Kf for this study. Results from these tests 

are listed in table V and are plotted in,figure 4.5 to create a segment 

I I 



TABLE V.- FATIGUE LIVES FOR CONSTANT-AM>LITUDE TESTS
 

OF UNNOTCHED SPECIMENS
 

Constant-amplitude
 
test conditions for
 
unnotched specimens 

Maximum Minimum 


stress, ksi stress, ksi
 

40.0 0 

45.o 0 

51.5 0 

215K53 

-21-3- 30. !J53 

61.1 +10.5 

Unnotched 
specimen 
number 


C53 

K52 
112-B 

M53 
153 
163-B 

G53 

G51 


N53 
112-A 
L51 

151 

H51 
J51 

152 


Fatigue 
life, 
cycles 


166,6oo

187, 000 
293,200 

83,800
128,8o0 
137,000 

19,200
 
22,700 

43,500
 
48,i00 
58,400 

270, 900 

276, 900 
361,700 

28,300 
32,400 
34, 600 

Geometric mean
 
of fatigue 

lives, cycles
 

211,000
 

-15,000 

35,100 

302,0oo 

31,600 
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of the S-N curve for unnotched specimens. On -this curve a stress of 

43.5 ksi corresponds to the geometric mean of the lives for notched 

specimens at S = 20 ksi. The ratio of stresses at this life yields 

Kf = 2.18 in contrast to KT = 2.57 from Chapter 3. This value 

of Kf could have been used in equation (lO) in place of to
KT 


improve estimates of No for constant-amplitude tests as suggested by
 

Wetzel [24], however, this substitution would have introduced noticeable
 

errors in the local stress-strain calculations for the cases of two­

level loading. These errors probably would not have seriously affected
 

the No estimates for the present study because the above Kf is
 

85 percent of KT . However, for high KT values, the difference
 

between Kf and KT is usually quite large and Wetzel's 4pproach 

would be unacceptable for variable-amplitude loading, because of 

inappropriate stress-interaction effects.. A general correction
 

procedure for the size effect must be accomplished through appropriate
 

adjustments of theestimated No found by cycling unnotched specimens 

through the most accurate local stress (or strain) sequence obtainable. 

To enable an evaluatioh of the effects of stress interactions on
 

the analytical-control tests, additional constant-amplitude test results 

in table V and figure 4.6 were obtained. These tests were designed
 

to illustrate separately the residual stress effect and the damage
 

acceleration effect. Unnotched specimens were cycled between the
 

constant-amplitude local stress limits corresponding to S = 20 ksi
 

for the two-level tests to directly assess the effects of residual
 

stress. These stress limits were determined from analytical-control
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results in figures 3.20 and 3.21. The analytical-control estimates. 

for NO fiom table IV were also presented in figure 4.6 for compari­

son. These analytical-control results reflect the effects of both
 

types of stress interaction. Consequently, the difference between
 

these results and the constant-amplitude results is a measure of the
 

damage acceleration effect for each test condition. For comrarison the 

analytical-control results corresponding to constant-amplitude S = 20 ksi 

are also pi esented in figure 4.6. 

The residual stress effect increased the geometric mean of the
 

estimate for No from 55,100 to 302,000 cycles in the case of bene­

ficial prior loading. However, damage acceleration caused by the 

10 cycles of high load reduced this estimate to 191,000 cycles as shown 

in figure 4.6. The net effect was an increase in life due to the 

decrease in local mean stress caused by the 10 cycles of prior loading. 

These effects agree generally with @esults obtained by Topper and 

Sandor [46] in a parametric study of the effects of mean stress and 

prestrain on fatigue damage accumulation in 2024-T4 aluminum alloy. 

For the case of detrimental prior loading, corresponding constant­

amplitude tests produced a mean life of 31,600 cycles and simulation
 

tests resulted in a mean life of 22,400 cycles. The residual stress 

effect decreased the life estimated from 35,100 to 31,600 cycles, and 

damage acceleration further decreased the simulation results to a 
mean
 

life of 22,400 cycles. These effects are also in general agreement with
 

results obtained by Topper and Sandor '-46j
and, in addition, further
 

illustrate the relative magnitudes of the two stress interactions.
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In summary the role of stress concentrations in stress-interaction
 

effects has been demonstrated in this chapter by crack-initiation tests
 

with notched specimens. The stress interactions considered in this
 

study were shown to be the combined result of residual stress effects
 

and damage acceleration caused by large excursions of local stress and
 

strain. The procedure described for predicting crack-initiation lives
 

accounted for both of these effects and produced estimates that
 

reflected the gener2al stress-interaction effects. However, these
 

predictions were consistently shorter than experimentally determined
 

crack-initiation lives for notched specimens. This trend was attributed
 

to the large difference in volumes of highly stressed material for the 

notched specimens and the unnotched specimens used to obtain the
 

predictions. Additional research is required to assess this size effect
 

and to develop rational procedures for accurately predicting crack
 

initiation at stress-concentration sites.
 



5. CRACK PROPAGATION NEAR STRESS CONCENTRATIONS 

5.1 General
 

The role of a typical stress concentration in the fatigue-crack­

initiation process was introduced and discussed in Chapter 4. Local 

stresses at a stress-concentration site were calculated and used 

together with unnotched specimens to predict fatigue crack-initiation
 

periods. To complete the fatigue analysis for this typical stress 

concentration, the behavior of these fatigue cracks was investigated
 

as the cyclic loading was continued beyond that required for crack 

initiation. The initial stage of growth for a crack emanating from a 

stress-concentration site is influenced by the stress distribution
 

caused by the stress concentration. However, for repeated loading the
 

crack eventually attains a length for which the influence of the 

stresses due to the original stress concentration may be ignored, and
 

the crack then may be assumed to propagate solely under theinfluence
 

of the applied nominal stress. 
This phase of crack growth has received 

much attention in the literature (for example [471, [8], and [49]) and 

was not specifically investigated in this study. Emphasis was placed 

on crack growth under the influence of the stress concentration. This
 

initial phase of crack growth from a stress-concentration site has
 

received very limited coverage in the literature, as indicated in
 

Chapter 2. 

The present study was undertaken to provide an experimental and 

theoretical investigation of the initial stage of crack growth from a 

typical stress concentration. For this purpose, the notched specimen 

88 
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and the fatigue loading discussed in ChapteF 3 (figs. 3.3, 3.11, and 

3.12) were used for convenience and, as a result, the study of crack
 

growth was a logical extension of the fatigue analysis presented in 

Chapter 4. The case of constant-amplitude loading for S, = 20 ksi 

was studied to demonstrate the effect of stress cbncentrations on crack
 

propagation for c6mpletely elastic local conditions and, in addition,
 

this case served as a reference for this evaluation of the stress 

interaction effects on initial crack growth under two-level loading.
 

The theoretical phase of this study resulted in the develolment
 

of a method for calculating initial crack growth for an arbitrary 

elastic stress distribution near the stress concentration. This method
 

was applied for the reference case of constant amplitude, S = 20 ksi
 

loading, and the calculated results were compared with observed crack­

growth behavior. As a more critical evaluation of the method, calculated 

and experimental results were compared for beneficial two-level loading. 

'These calculated and observed crack-growth results are presented and 

discussed in the following sections.
 

5.2 Observed Crack Propagation Behavior'Near a Circular Hole
 

A specimen with a central hole containing cracks is presented in 

figure 5.1 to illustrate typical crack location and to indicate the 

two schemes for defining crack length. Crack propagation tests were
 

conducted by continuing the crack initiation tests from Chapter 4
 

beyond the initiation phase. Crack lengths were measured during these
 

tests with a machinist scale and a low magnification (10X) microscope. 

In most tests, cracks did not simultaneously initiate on both sides of 
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Fi4ure 5.1 - Specimen configutration for crack propagation study. 
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the hole as showmn in figure 5.1. To produce the desired symmetry, after
 

one crack initiated a second crack was simulated on the other side of
 

the hole by a small saw cut with a sharp nick at its root. A jeweler's
 

saw and a sharp razor bladd were used to produce this artificial crack.
 

In all cases a faigue crack promptly initiated at the root of the saw 

cut and symnetrical 'crack',growth followed:. 

The crack-growth durves, including the initiation periods, are 

presented in figure 5.2 for the two constant-bmplitude test conditions.
 

For simplicity, a typical curve was plotted or each test condition. 

Local cyclic plasticity acc'mIpanie& the- initial crack growth for 

S = 40 ksi loading, precluding an analysis of this case. In contrast, 

local behavior at the hole was 6ompletely elastic during the cycling 

at S = 20 ksi, and enabled use of Fracture Mechanics theory. The 

crack-growth curve for S = 20 ksi was used as a reference for 

establishing the effects of two-level loading on initial crack 

propagation. For this purpose this curve will be subsequently replotted 

with an expanded cycles scale. 

Prior loading was demonstrated in Chapter 4 to be either detrimental 

or beneficial to crack initiation, depending on the sense of the 

residual stress at the end of the prior loading. This behavior is 

again displayed by the typical crack-growth curves in figure 5.3 for 

two-level loading. To separate these curves into crack-initiation and 

propagation stages, the initiation period was assumed to equal the 

number of cycles required to produce a crack length of 0.03 inch 

(the smallest crack length for which crack propagation data were 
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obtained for all three loading conditions). The crack lengths beyond 

this initial value were plotted in figure 5.4 against the number of 

cycles for crack propagation Nep. Starting at the same initial length, 

the beneficial prior loading decreased the initial crack-growth rates as 

compared to the reference 'caseof constant-amplitude loading. The
 

detrimental prior loading caused the crack-growth rates to increase.
 

Beyond a crack length of approximately 0.7 inch, crack growth was 

nearly identical for all three cases, indicating the localized nature 

of the influence of the stress concentration. A procedure is presented
 

in the next section for evaluating this influence. 

5.3 Procedure For Calculating Crack Propagation Behavior Near a 
Circular Hole
 

Paris, Gomez, and Anderson [49] postulated the existence of a 

unique relationship between stress-intensity factor and rate of crack 

propagation. Thus crack growth could be predicted from calculated 

stress-intensity factors and "master" crack propagation rate curves, 

characterizing the crack-growth properties of the material. 'Stress­

intensity factors can be calculated from elastic analyses of bodies 

containing cracks. The "master" crack-growth rate curve can be 

established by measuring crack-growth rates corresponding to known 

stress-intensity values using simple laboratory specimens. This general 

approach was followed by Figge and Newman [50] to predict crack growth 

for complex specimen configurations and loadings. A generally close
 

correlation was found between predicted and experimental results.
 

In the present study, this general stress-intensity.approach
 

was used to predict crack-growth curves corresponding to the
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constant-amplitude loading for S = 20 ksi and the case of beneficial
 

prior loading.
 

5.3.1 	 Calculation of Stress-Intensity Factor For Crack Dnanating 
From a Circular Hole 

Bowie [i] developed polynomial mapping functions for use with the 

complex stress function technique to solve the problem of cracks
 

emanating from a circular hole in an infinite sheet. For the case
 

of two cracks emanating from a circular hole (see fig. 5 .1) Paris and 

Sih [52] 	presented Bowie's solution in the form 

k= g \ F) 	 (19) 

where ag is the gross nominal stress and L is crack length. This 

stress intensity is plotted in figure 5.5. The stress,-intensity 

solution 

k = Jg / g V/+ITp 	 (20) 

for a crack of length 2a; without the circular hole, is also plotted 

in figure 5.5 for comparison. Beyond L/p = 0.25, the curves for 

equations (19) and (20) are ih rather close agreement. Consequently
 

for L/p > 0.25 the presence of the hole may be ignored and the
 

crack-growth behavior approximated by that of a simple crack with
 

a = p + L, again illustrating the localized effect of stress 

concentrations.
 

Bowie's solution could have been used to predict the crack growth
 

for the reference case of S = 20 ksi constant-amplitude loading, 

because the local conditions at the hole were elastic. However, for 
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the two-level loading sequence, residual stresses altered the stress
 

distribution around the circular hole, and consequently changed the
 

stress-intensity factors for the cracks growing from the hole, as
 

evidenced by the crack-growth curves in figure 5.4. To account for 

the effects of residual stresses on crack growth from circular holes,
 

a general stress-intensity solution was developed for an arbitrary
 

stress distribution 5(x) along the plane of the crack. This stress­

intensity analysis is presented in the following development and is 

specialized in the next section for the elastic reference case and 

for the case of beneficial prior loading.
 

The analysis. of stress intensity for the cracked specimen and 

loading in figure 5.6(a) was based on the separation of this problem
 

into those given in figure 5.6(b) and fig. 5.6(c). The stress
 

distribution in figure 5.6(b) along the plane of the crack was 

designated a(x). The, superposition of this internal stress a(x) 

from figure 5.6(b) and the -c(x) shown in figure 5.6(c), acting on 

the crack boundary, resulted in the stress-free crack surface shown in 

'figure 5.6 (a). Because the specimen in figure 5.6(b) did not contain 

a crack, the stress-intensity factor for figure 5.6(a) was equal to 

that for figure 5.6(c). The stress-intensity factor for figure 5.6 (c) 

was found by an additional superposition scheme used together with a 

boundary collocation technique. Irwin 53 presented the Westergaard 

stress function 

Pz F,1/2Zl~z) 2
2Pz a - b21 (21) 
2iZt(z - b2 )[2 - a2j 
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for 	th problem shown in figure 5-7 for symnetrical concentrated loads 

on a crack surface. This solution was used to represent the a(x)
 

from figure 5.6(c) by a statically equivalent system of forces shown
 

-	 typically in figure 5.8. -The, radial stresses arr and shear stress 

* ro along.thd circle of unit radius were found for each concentrated 

force from the following equations, developed in Appendix A. 

rr 	 [Rez - y z]cos2e ± BeZ, + y Zj]sin2 

- 2yReZ{ sin 6 cos 6 
(22) 

and
 

Tre = y [2fiz{ sin 0 cos 6 - ReZi(cos2O - sin2 e)] 

The 	arr and Tr, stress components for all concentrated forces were
 

sunned to obtain the stress distributions along the unit circle, 

corresponding t6 the a(x) in figure 5. 6 (c). Following boundarya 

collocation procedure presented by Newman [54], a second set of 0rr 

and 'rre was expressed as (see Appendix B) 

[rr=- r (2n - 1) + pa]2nll cos 

(2n - 1)y sinU2n-2)a+Ol y sin 2n-4)e pjl 
2n y- (rr)3 j-2n-2 


+ 2Bn[ 1 cos 2he 2ny sin(n-l)0+ 1 cos(2n- 2)6]) (23)
h 2n 2n+l 	 r2n J 
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and 

m 

Tr {2n[1 ) cos [(2n 2 )e +01: 
+ - 2 y- 4).o + Pi. + 2c cos(2n -'i)e 

r 2 n (rr) R2n .+j3 

. • (24,, ,

r 2 n 


I . + , 

The err and Tre from equations (23) 'and (24) werd equated :to 

corresponding suna of the stresses from.,equation (22) at discrete points 

on the circular are and coefficients An and Bn were determined from 

the resulting set of equations. Thus by superposition, the two sets of 

radial and tangential stresses cancelled each other at intervals along 

the circular arc of unit radius to effectively create a stress-free 

boundary. This superposition is illustrated in figure 5-9. The crr 

and Tre on the unit circle in figure 5.9(b), due to the concentrated 

loads, opposed the Crr and *re in figure 5.9(c) from equations (23) 

and (24), and, as a result, the stress-free hole with cracks in 

figure 5.9(a) was simulated. 

The stress-intensity factor for the case presented in figure 5.6(c)
 

and again in figure 5.9(a) was found by superposition of the stress­

intensity factors for figures 5.9(b) and 5.9(c). The stress-intensity 

factor for each concentrated force was given by Paris [57] as 
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k 2P \ (25) 

therefore the stress-intensity factor for figure 5.9(b) was
 

M 

k 2P±F
V(26)
 

t ja 2 
+ ii _ b? 

where M' was the number of concentrated loads. The stress-intensity'
 

factor for the loading shown in figure 5.9(c) was written in terms of
 

'(z) byParis and Sih [52] as 

2 V- /' -a k = -yW (z) (27) 
z -4 a 

Therefore from equations (26) and (27) we obtain,
 

M M2Pi Vra 
.. +2V' (28)k i 2 liam v-a O(z) 

at\/-2b2 z -4a 

which represents the stress-intensity factor for the case shown in
 

figures 5.9(a) and 5.6(c) and consequently for the original case, 

illustrated in figures 5.6(a)and 5.1. 

Equation (28) was evaluated with the aid of a digital computer for 

discrete crack lengths and for the correspondhg values of C(x). The 

stress-intensity factor was plotted for each crack length and a curve
 

was drawn through these points to obtain a curve similar to that 

presented in figure 5.5 but for a general stress distribution, c(x)., 

along the crack plane. For an evaluation of this general approach 
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.aF(x) was specialized for the elastic distribution and the stress­

intensity results were compared with the curve from figure 5.5. The 

close corr6lation in figure 5.10 between these results from equation (28) 

and Bowie's solution demonstrated the adequacy of the superposition and 

boundary collocation techniques applied in the development of 

equation (28).
 

These results, also presented in table VI, show that beyond a
 

crack length of 0.7 inch less than 6 percent difference exists between
 

the stress-intensity factors for the two cases. Consistent with these
 

results, for all loading conditions nearly identical crack-growth 

behavior was observed for cracks larger than 0.7 inch, as shown 

previously in figure 5.4. 

5.3.2 Calculation of Crack-Growth Curves From Stress-Intensity Solutions 

The correspondence between stress-intensity factor and crack-growth
 

rate demonstrated by Figge and Newman [s0] was utilized to calculate 

crack propagation curves. The basic crack-growth behavior of 2024-T3 

aluminum alloy was experimentally established through laboratory tests 

of centrally cracked sheet specimens for which crack-growth rates were 

measured and the corresponding stress-intensity factors calculated 

from equation (20) using the Irwin-Westergaard finite width correction 

from [52]. Experimental results are presented in figure 5.11 to 

characterize the crack-growth behavior for this material. This curve 

in figure 5.11 together with the stress-intensity solution for a
 

given d(x) were used to calculate crack length against cycles curves 

as follows., Stress-intensity factors were found for crack lengths a
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TABLE VI.- CALCULATED STRESS-INTENSITY FACTORS 

Stress intensity factors, k, ksi
 
Crack
length Constant-amplitude Beneficial prior
 
L/p S = 20 ksi loading
 

0 0 0 
0.01 5.970 2.523 
0.02 6.683 2.917 
0.03 8.oo8 3.611 
m0.0 9.284 4.319 
6o06 11.30 5.578 
o.08 i.8o 6.684 
o0.1o13.78 7.694 
0.15 •16.04 10.01 
0.20 l7.30 12.12 
0.30 19.21 15•79 
0.4 20.36 18.02 
0.50
b;.60, 

21.21 
21.93 

9.4o 
20.37 

0. 700.80 225623.14 21.2021.97 

1.00 24.32 23.38 
1.50 , 26.74 26.54 
2.00 ' 29.07 29.28 
3.00 33.33 34.19 

'4.00 37.17 38;39 
5.00 40.68 42.14 
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and a + a and corresponding crack-growth rates were found from the 

master curve in figure 5.11. The number of cycles required to extend 

the crack by ns was determined from
 

d 2a (29) 

da 'NIa+6a 

The total number of cycles required to grow the crack to a given length
 

was found by dividing the crack into intervals a, and by sunning the 

M, from equation (29) associated with each La. For the present study, 

a digital computer was used in this procedure to calculate curves for 

crack length against cycles. These results are presented in the next 

section~and are compared with observed results of Section 5.2. 

5.4 Comparison of Calculated and Observed Crack Propagation Behavior 

Comparisons are made in this section between calculated and 

observed crack-growth results for the reference case of constant­

amplitude, S = 20 ksi, loading and for the case of two-level beneficial
 

prior loading. The stress distributions, a(x). on the transverse axis
 

were found, respectively, by elastic and elastoplastic analyses for
 

these two cases, and the methods from Section 5.3.1 were used to
 

develop stress-intensity factor solutions. These stress-intensity
 

results were then utilized together with the master crack propagation
 

curve in figure 5.11 to calculate crack length against cycles curves 

similar to the experimental curves in figure 5.4. 



5.4.1 Constant-Amplitud4 (S = 20 ksi) Loading 

A system of concentrated forces was developed to simulate the
 

elastic stress distribution on the transverse axis by the procedure
 

presented in Appendix C. This force system was used to develop the
 

stress-intensity curve previously presented in figure 5.10 for an
 

evaluation of the accuracy of the stress-intensity analysis. This
 

stress-intensity solution led to the crack length against cycles
 

curve presented in figure 5.12. Because of the inherent scatter in
 

crack propagation-data in figure 5.11 upper and lower limits were
 

used to characterize this crack propagation behavior as shown. These
 

limits were used to calculate the corresponding range of crack-growth
 

behavior for the case of constant-amplitude, S = 20 ksi loading.
 

This expected range of behavior is indicated by the shaded zone in 

figure 5.12. The solid curve within this shaded zone represents 

average behavior found from the corresponding average curve in 

figure 5.11. 

The symbols in figure 5.12 represent test data. For the two tests
 

conducted with no prior loading (constant-amplitude) one set of test
 

results fall slightly outside of the range of calculated behavior. 

The second set of results is within this range and the average of 

these two sets of data was within the shaded zone. Because of large
 

errors in crack length against cycles behavior that may result from 

rather small errors in stress-intensity factors (and therefore crack
 

propagation rates) for short crack lengths the correlation between
 

experimental and calculated results in figure 5.12 is exceptionally 

close.
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5.4.2 Beneficial Two-Level Loading 

An approximate analysis is presented in Appendix C for the stress 

distribution corresponding to beneficial two-level loading. This stress 

distribution was discretized and also simulated by a system of con­

centrated forces. This force system together with the procedures 

outlined in Section 5.3.1 resulted in the stress-intensity solution 

listed in table VI and plotted in figure 5.10. The low stresses cal­

culated in Appendix C for small values of x produced stress-intensity 

factors that were lower than those for the constant-amplitude case. 

As expected, these low values of stress intensity created a large 

crack propagation life, as shown in figure 5.12. Again the results are 

presented as a range of calculated behavior. For this case, however, 

the single experimental crack length against cycles curve did not lie 

within the calculated range. This discrepancy may have been the result 

of scatter in material behavior (note that data points fall outside of 

the limits used in figure 5.11 to characterize the assumed scatter).
 

Additional tests are required for a critical assessment of this
 

analytical approach, however, the single experimental curve in
 

figure 5.12 illustrates reasonable agreement between calculated and 

observed results. As previously mentioned, small variations in stress­

intensity values for short cracks produce significant changes in
 

predicted crack propagation lives. For this reason, minor refinements
 

in the elastoplastic analysis of the stress distribution or in the
 

simulation of this stress'distribution.by doncentrated forces could
 

noticeably improve the correlation between experimental and calculated 

results in figure 5.12.' 2 

http:distribution.by


6. CONCLUDING BEMARKS 

An analysis of the role of a typical stress concentration in
 

structural fatigue has been presented. The analysis considers the
 

cyclic stress-strain behavior at stress-boncentration sites, the
 

initiation of fatigue cracks, and the initial stage of propagation
 

for cracks growing from the stress-concentration site. The stress
 

concentration dealt with in this study was that produced by a circular 

hole in a sheet specimen under remote load. The behavior of this, 

specimen was investigated for constant-amplitude loading and two-level 

loading, that created stress interactions typical of those experienced
 

by structures in service.
 

For the analysis of stress-strain conditions at the stress­

concentration site, attention was focused on the point of maximum
 

stress concentration, and conditions at this point were referred to
 

as "local" conditions. Cyclic local stress and strain were simulated
 

in simple unnotched specimens by loading these specimens between cal­

culated limits for local behavior. This simulationwas performed on 

a cycle-by-cycle basis and,, as a result, residual stress effects an&
 

cyclic variations in material behavior, that generally complicate 

local conditions, were automatically accounted for in quantitative 

estimates of idcal' stress aid strain, For -an evaluation of the 

simullation procedure, local cyclic stress-strain behavior was experi­

me ntally determined 'by a companion-specimen" method and the two sets 

of results were compared. 
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The simulation procedure was continued until the unnotched
 

specimens failed by fatigue. Because the stress-strain conditions in
 

these unnotched specimens were assumed to be identical to the con­

ditions at the stress-?oncentratidn site, these fatigue lives were
 

used as estimates for fatigue crack-initiation lives for notched
 

specimens. Notched specimens were tested in fatigue to obtain observed
 

crack-initiation lives which were'used for quantitative assessment of
 

stress-interaction effects predicted by the simulation procedure.
 

The effects of prior high loading on cracks growing from stress
 

concentrations were demonstratedby tests with notched specimens.'
 

Crack length against cycles curves were experimentally determined
 

from these tests and were compared with similar predicted curves.
 

Predicted curves were calculated by expressing the state of stress
 

near the crack tip in terms of stress-intensity factors and -byusing
 

these stress-intensity factors together with an experimental curve
 

generally characterizing the crack propagation behavior of the specimen
 

material. -

Based on analytical and experimental results presented in this 

study, the following conclusions are presented.
 

1. Prior high loading 'on a notched specimen may dramatically 

alter the,local mean strebs corresponding to subsequent loading. Prior
 

loading may be selected to. either'increase or decrease this local mean 

stress. ­

2. The companidn-specimen method together with the strain­

coupled servo-control system presented in this study provide means
 

for experimentally investigating local cyclic stress and strain.
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3. The simulation procedure for approximating local cyclic 

stress-strain behavior adequately accounts for local plasticity.
 

Furthermore, changes in stress-strain properties due to cycling are
 

inherently incorporated in the calculations of local behavior.
 

4. The increase in crack-initiation lives for tensile prior
 

loading on notched specimens is the result of the net effect of
 

beneficial compressive residual stresses and the detrimental effect
 

of damage acceleration caused by large excursions of local strain at
 

the stress-concentration site during prior loading. For compressive
 

prior loading, detrimental tensile residual stresses and damage
 

acceleration combine to decrease crack-initiation lives.
 

5. The simulation procedure for estimating crack-initiation 

lives for stress concentrations using unnotched control specimens 

accounted for the effects of stress interactions and, as a result, 

yielded reasonable estimates. These estimates were, however, conserva­

tive for both constant-amplitude and two-level loading due to a size
 

effect not accounted for in this simulation procedure.
 

6. The initial stage of crack propagation for cracks emanating
 

from a stress-conceitration site may be altered by prior loading during
 

the crack-initiation phase. Prior tensile loading decreases initial
 

crack propagation rates and compressive prior loading increases
 

propagation rates.
 

7. Reasonable predictions of crack length against cycles were 

obtained for the initial stage of crack growth when the stress state 

near the crack t-ips were defined by stress-intensity factors which 

were used to establish crack propagation rates. 



117
 

Although the procedures and conclusions in this study are applicable 

only for sheet specimens with stress concentrations, it is possible that 

they will prove useful in fatigue analysis of more complicated con­

figurations and loading. 
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8. APPENDIX A - DEVELOPMET OF STRESS EQUATIONS 

FOR CONCENTRATED FORCES ON A CRACK BOUNDARY 

Irwin [53] presented the Westergaard stress function
 

1/2

Zz 2Pz a2 bj '(Al)

zj(z) t(z2 - b2)[zT a2] 

.for the problem shown in figure 5-7. The stress components in 

Cartesian coordinates were written as 

=x -ReZ, yIMZj' 

(A2') 

and
 

r -yROZI 

For the purpose of calculating stresses along the circle of unit 

radius equation (A2), was transformed to pqiar coordinates by 

arr = coS2 Gaxx + 2 sin e cos etxy + sin28g y 

and (A3) 

•Tr =-sin 9 Cos Oaxx + (cos2 - sin2 ) xy + sin 9 cos 9a
 

The -substitution of equation (A2,) into equation (A3) yielded
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rr [ReZl - ynzjcOs2 e - 2yReZ' sin e cos e 
+ [ReZ± + yxZmsiin2e 

and 

rre = ys in e os e - ReZI,(cos 2 sin2e)J 



9. APPENDI B - DEVELOPMNT OF STRESS EQUATIONS 

FOR BOUNDARY COLLOCATION PROCEDURE 

Maskhe~lshv-fli [55] -expressed stress components in Cartesian 

coordinates in terms,of the stress functions O(z) 'and *(z) by 

the equations 

'11 1 + 2 2, 2[r(z) +~(z)] 

and -"-IZ 

a12 2 - 11 + 1 2[tt()] +1 

or with . 

O(z) --, , (z),.-- v'(Z)•(B2)
 

Muskhelishvili 'rewrote equations (AL) as 

a1 . + c2 2  2@(z) + 

and (B3) 

a2 2 - all + 2i' 1 2 = 2[zq'(z) + 4(z)] 

The introduction of S(z,) also from [5] 

Q(z) -(z) + Z.t (z) + (z) (B) 

yields 
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al+ a22  2['(z) + 'z 

and (B)5 

a2 2 - al + 2iT- = 2[(Z - z)' (z)- C(z) + 

In cylindrical coordinates equations (B5,) become 

arr + %9a 2[0(z) + T(zY] 

and (36) 

z)01(z) O(z), + U(zj]e21e10 0e- Crr + 2iT,E6 = 2E[-

Subtracting equations (36),yields 

rr" iTre = ((z), + (z- - [z - z)' (Z), - O(z) + U(z)]e2ie (B7) 

Newman presented expressions for O(z),, nd. '(z) in reference54] 

following a general fom developed by Erogan [56] or a plate con­

taining a, crack. From [54-] 

O(z= "_ An + 2k) 

1and-- (B8) 

M'
 

n: tz 
BnQ(Z) 
 z24
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where a is the half crack length and An and Bn are arbitrary
 

constants. For the present study these Muskhelishvili stress functions
 

were substituted into equations (B7) and real and imaginary parts were
 

separated to obtain expressions for Crr and Tre.
 

Equations (B8,) were rewritten in exponential form using a change
 

of variables.
 

i e
 re
 

Z a= rlei1 I (B9)
 

z + a = r2eie2J
 

z = 

as illustrated in figure Bi. From equations (B8) and equations (B9)
 

one ,obtains
 

2

2n -1)e +I- B-e nM An exp i ])

1 + Bn( -z. . 7 -iG(Blo)I (-IL - r 
n=l ,r r . r 

_ 

Differentiating @(z) flom equations (B8) and substituting from
 

equations (B9) yields
 

Ae(- +L)¢'z) 2n ; i2' ,eK+ 201 . 

2n-2 -e plr (rzr 2)3r
 

(BU)
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Y 

• 
 r2
 

ee2 

a a 

Figure B1 - Illustration of coordinate system referenced to crack tips. 
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The conjugate (z) is 

2 i n elAn 21) Bne 

+ - + nle 
exp ,2n-1)0+. t 

n=! r 2?"1""2 

(B12.)
 

and
 

U( = (z) (B13) 

By substitution from equations (B8), (B1O), -(Bll), (B12), and (B13) 

into equation (B7) with the introduction of p, and 02 

e1 +'62 

-2 2 

391 + 312 
02- '2 

one obtains
 

J1 
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M- A rn 1 ex i[(2n -1_)8E)l
 

arr = 
 n . "r l ,,2nn=l % 

exp 2-2iy(2n -J exp{i[(2n -2)8+3]) 

.2n-2 e)3 

r - (rr9 

+ Z1 2 n ,e2ine +e2ine] - r 2 n +! exp {-i:(2n -1)e)
n=l Bn (r 

__2 ex -i(2n - 2)8 (,
2n
 r
 

Separation of'real and imaginary parts of equation 015) leads to the
 

0
following trigometric forms for -crr and, 1r. 

Mr - &os'2 -(2 ,±+~r . - 2K1L)l I))Y?sin (2n + 
arr £tn2n- r2n. PJ­

n=l ,r r 1 r 2 ­

y sin[2nn-4 +02 + cos 2ne 
2
r (rlr2)3 :.1
 

2ny sin (2n- 1)0.+-! - cos(2n- 2)e (B6)

r2n+l r2n
 

and
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rB .= 1'7 cos([(2n 2)E)+ 
 ]
 

TIn=1rlr22n 2 re	 n co 

+ 	 y cos [(2n - 4)e + P2 + 2Bn_2ny -_1)6 
2 2 2n lr n- (rr)3 


+ -L sin(2n - 2)0) 	 (1B17).2n 1)
 

Equations (B16) and (B17) are the expressions for arr and T.0 

used in the boundary collocation procedure. 



10. APPENDI( C - CALJCULITION OF CONCENTRATED FORCE SYSTEMS 

SINRATING STRESS DISTWFBUTIONS ON TRANSVERSE 

AXIS OF SPECIMEN
 

10.1 Elastic Distribution for S = 20 ksi
 

The elastic stress distribution for the specimen configuration 

used in this study was nearly identical to that for an infinite sheet 

as illustrated previously in figure 3.2. Therefore ,for convenience 

the elastic solution [58]
 

e 2 (B )2 +3 )5 cosj (Cl) 

for an infinite sheet with a circulhr hole of radius 6 was used. 

0 0Equation (Cl) was evaluated for ag = 20. ksi and . e 0, and 

was plotted for the full width bf the specimen., As t~pically 

illustrated in figure CI, this stress distribution was divided into
 

discrete segments. The avetage stress (de)i for each segment was 

used to calculate a statiallyjequivalent concentrated force- Pi from 

Pi= Lt,(_aee).i. (C2) 

where t is specimen thickness and Lb = 0.,0025 inch. By this 

procedure a system of concentrated forces was developed to .approximate 

the elastic stress distribution for S = 20 ksi. 

10.2' Elastoplastic Distributipn For Beneficial Prior Loading 

The prior loading produced localized plasticity as previously
 

illustrated in figure 4.4. The procedure used to calculate the stress
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distribution in figure 4.4 is described in this section. The elastic 

stresses corresponding to the prior loading stress level (s 40 ksi) 

were determined from equation (C1) and 

r - ( - - - + ]os 2j} (0) 

along the transverse axis. The effective stress ae corresponding 

to this elastic solution was found from, ± 

- 1/2 

7eo ?o +roaOeo 414) 

An approximate elastoplastic analysis was based on these elastic stresses
 

using the approach presented by, Dixon and Strannigan ,[25]. F-rom 

equation (n1) in Chapter 2 an expression for Tee was written as 

c16&= e0o,T (e5) 

where Es is the secant modulus from the uniaxil stress-strain curve
 

corresponding to the effective stress ae. This,effective stress Ge
 

was found from 

~e=Ueo Es (c6.) 

The elastic effective stress a., was found from equation (CO), but 

because Es depended on re, equation (C6) could not be solved
 

directly for the E. required in equation -(C5). A graphical procedure 
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was used to obtain Es, as illustrated in figure C2. The curve of a 

against Es/E was constructed from the uniaxial stress-strain curve 

for 2024-T3, and equation (06) was plotted for a given Ieo The 

intersection of these two curves represents a simultaneous graphical
 

solution for equation (C6) and the stress-strain relationship. This 

value of -s/E and Jeeo, corresponding to the aeo used in 

figure C2 were substituted into equation (C5) to obtain a... To 

account for the cyclic strain hardening displayed by 2024-T3 (see 

for example fig. 3.20), the cyclic stress-strain curve from figure 3.16
 

was used in this graphical procedure. 

The above procedure was repeatedly applied to construct the 

plastic portion of the stress distribution in figure C3 for
 

S = 40 ksi. Because plasticity.was accounted for by attenuating 

elastic stresses this procedure made no correction to the elastic
 

portion of the elastoplastic stress distribution. "To satisfy equii
 

brium the elastic portion of-this stress 'distribution must be altered
 

to account for the decrease in area under the curve caused by the
 

attenuation of stresses due to plasticity.- For the pres&nt analysis
 

the elastic portion of the curve was raised uniformly until the
 

increase in area under this part of the curve was approximately equal
 

to the above mentioned decrease in area. This minor alteration to the 

stress distribution is shown in figure C3.
 

The residual stress distribution in figure C3 was found by 

subtracting stress range values corresponding to elastic unloading 

from the elastoplastic stress distribution, and by applying the above
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Figure C2 - Graphical procedure for obtaining /Tfj'. 
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procedure to make a small correction for reversed yielding. The 

resultant stress distribution (for application of S = 20 ksi, 

following the unloading from S =,'40 ksi) was obtained by adding 

elastic stress range values for S-.= 20 ksi to'the residual stress
 

distribution.
 

The system of concentrated'forces simulating.this stress
 

distribution was calculated using equation (C2) and'te procedure 

in figure C1. ­

&­
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