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ANALYSIS OF THE MIXING REGION FOR  A TWO-DIMENSIONAL 

JET IkJECTED  AT AN ANGLE TO  A MOVING  STREAM 

by Wi l l is   Braun  and  Marv in  E. Goldstein 

Lewis  Research  Center 

SUMMARY 

An analysis is made of the  laminar  and  turbulent  mixing of a two-dimensional jet 
issuing  from  an  orifice  whose two walls are  parallel  to  the  free-stream  velocity  but not 
necessarily  coplanar with  each  other.  The  difference of total  pressure  between  the jet 
and the  stream is assumed  small  compared with the  dynamic  pressure of the  stream. 
The  results of previous  inviscid  analyses a r e  used  to  obtain  the  velocity  profiles  in  the 
mixing  region  and  the  thickness of the  region  for jets which are  separated  from  the 
downstream  wall  and  for  those which a r e  attached.  Results show that, when the  orifice 
walls are coplanar,  the  attached jet has  higher  velocities  than  the  separated jet as it 
turns  into  the  stream;  therefore,  the  attached  jet  has a thinner  mixing  region. 

INTRODUCTION 

The  flow  field which results  from  the oblique  injection of a jet into a moving stream 
is of considerable  interest  in a number of fluid  mechanical  devices. Among these are 
ground-effect  machines, jet flaps, wing fans on VTOL aircraft, fuel  injection  systems  in 
combustion  chambers,  and air curtains. 

In references 1 and 2, the  two-dimensional,  incompressible  inviscid flow of a jet 
from an orifice  into a flowing stream is described. In reference 1, the  particular  con- 
figuration  in  which  the jet separates  from  the  leeward  surface of the  orifice  and a con- 
stant  pressure wake forms,   as  shown in  figure l(a) is treated. On the  other  hand,  in 
reference 2 the jet is attached  to  the lee surface of the  orifice,  and  the wake  region  does 
not occur. This situation is illustrated  in  figure l(b). 

Of course,  viscous effects can  be  quite  significant  in real fluid  flows. For  example, 
since,  according  to  the  inviscid  solutions,  there is, in  general, a jump  in  the  velocity 



(a) Separated. 

+- Orifice  angle 

(b) Attached. 

Figure 1. -Je t  configurations. 

across  the  slip  line, a mixing  region  will  be  established which may  be  either  laminar  or 
turbulent. In the  present  report,  the  results  obtained  in  references 1 and 2 will  be  used 
to  perform  an  analysis of this mixing  region. It will  be  assumed, as is usual,  that  the 
mixing  region  can  be  described by the  boundary layer equations  and  that  the  external  in- 
viscid  flows  calculated in references 1 and 2 can  be  used  to  determine  the  pressure  gra- 
dient  in  the  mixing  region.  The  effect of viscosity at the  second  surface of the jet (the 
free  streamline  or  the  downstream  lip of the  orifice, as the  case  may  be) is not analyzed 
here. 

Since  the  analyses in references 1 and 2 assume  that  the  difference in the  pressure 
between  the  jet  and  the  main  stream is in a certain  sense  (discussed  more  fully  later) 
small,  the  same  approximation will be  made  in  the  present  analysis.  This  allows  the 
equations  for  the  mixing  region  to  be  integrated  directly,  and  thus a simple  closed-form 
solution is obtained. 

ANALYSIS 

Configuration  and  Notation 

The  notation which will  be  used  in  the  analysis of the  mixing  region is illustrated  in 
figure 2. The  slip  line S defines  the  boundary  between  the jet and  the  stream.  The 
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Figure 2. - Notation for mixing  region  analysis. 

velocity of the  stream  along  the  slip  line is designated V i .  The  velocity of the jet along 
the  slip  line is, in  general, not the  same as V i  and is designated V i .  The  distance 
along  the  slip  line  measured  from  the  upstream  lip of the  orifice is 8. The  width of the 
jet far from  the  orifice is 
and  the  velocities in it a r e  
ference of total  pressures 

H .  The  conditions which determine  the  boundaries of the jet 
the  jet  orifice  angle,  tan-l(B/A),  and  the  dimensionless  dif- 

P. - Po3 
J 
1 2  
2 
- PV- 

(All symbols  are  defined  in  the  appendix. ) 
The  analyses  in  references 1 and  2 are  restricted  to conditions  for which E is a 

small  parameter: 

( E l  << 1 

In both of these  references,  the  quantities V i  and are given to  f irst   order in E in  
t e rms  of a parametric  variable q by 

and 



A 1 

The  functions G?*(q), So($, S l ( q ) ,  and Vso(q) are given  explicitly  in  the  cited  references. 
The  velocity  along  the  slip  line when the  total  pressure of the  jet is equal  to  that of the 
s t ream (E = 0) is Vso(v) and is the  same  in  the  stream as in  the jet. The  parameter 77 
ar ises   in   references 1 and 2 as a coordinate  in a convenient  mapping  and  has  the range 
0 5 q 5 n-. A useful result from  references 1 and 2 for both the  attached  and  separated 
jets which  will  be  used  here is that 

2 

2 2  
+ - l V *  

vso 
fi -fi =” (3) 

Viscous  mixing. - According  to  the  inviscid  solution,  there is, in  general, a jump 
in  the  velocity  across  the  slip  line.  Consequently, a mixing  region will be  established 
which may  be  either  laminar  or  turbulent. For the  present,  laminar  mixing only is con- 
sidered,  and  subsequently  the  analysis is modified to apply to  the  turbulent  case. 

Let N be a coordinate  normal  to  the  slip  line  with  positive  direction  into  the  free 
1 

stream,  and  let  u  and  v  be  the  velocities  in  the  mixing  region in the S- and 
N-directions,  respectively. It is assumed  that  the  boundary  layer  approximations for 
curved  flow  (ref. 3) hold  within  the  mixing  region.  Then  the  equation  for  the  momentum 
in  the  direction of the  slip  line is 

and  the  boundary  conditions  for  u are 

fo r  fi N / H ~  + 03 1 

Equations (2a) and (4b) show that  the change  in  velocity across  the mixing  region is of 
order E .  Hence,  to  zeroth  order  in E ,  the  velocity  in  the  mixing  region is just  the 
zeroth  order  inviscid  velocity. Now, according  to  the  boundary  layer  assumption, vari- 
ations of velocities  in  the  N-direction  in  the  mixing  region  occur  over a small  distance 
compared  with  the  length  scale  for  variations  in  the  external  flow.  Since  the  normal 
velocity at the jet centerline is zero and  the  changes in velocity a r e  of order E ,  the  nor- 
mal velocity in the  mixing  region  can only be of order E .  Hence,  to within te rms  of 
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order E ,  the  velocities  u  and  v  can be written in the  form 

v = EVsoV1(;,N) + O ( E  2 ) 

Now, in  view of equation (2a), the  boundary  conditions on u are given  in t e rms  of the 
parametric  variable q, whereas  the  differential  equation  for  u is in   terms of the  vari- 
able S. Equation (2b) allows  transformation  from  one of these  variables to the  other. 

' However, this  transformation  involves  the  small  parameter E .  Hence,  in  order  to  make 
the  various  orders of E explicit  in  the  differential  equation, it is convenient  to  make  the 
change  in  variable S So in  the  equation,  since  the  mapping q - so does not involve 
E .  Thus,  using  equation  (2b)  results  in 

A 

A *  
* A  

dSo a 
($)N = = dgl (gl 1 

l + € -  
dS 0 

" 

+ 0 ( E 2 )  

and 

In view of these  remarks,  introducing  equations (5) and (6) into  the  inertia  terms of 
equation (4a) yields 
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* 

+ 0 ( E 2 )  

and 

au 2 v - = O(E ) 
aN 

Because  the static pressure is constant  across  the  slip  line,  the  Bernoulli  equation  gives 
the  pressure  gradient  along  the  slip  line as 

dVsO 
= vso 

= VS0"+ dVsO €[& (Q+v:o)-:vsoT dS 1 + O(E ) 

dSO dSO dvsOl dSO 

When equations  (2a), (5), (7), (8), and (9) are substituted  into  equation  (4a)  and  the  bound- 
a r y  conditions  (4b),  the  zeroth  order  terms  vanish  identically  in  equation (4a) and  the 
boundary  conditions  (eq. (4b)) are satisfied  by  the  zeroth  order  terms.  This,  inciden- 
tally,  merely  verifies  that  equations (5) and (6) were  chosen  in  the  appropriate  form. 
The  first-order  terms  yield 

a u1 

asO aN2 

2 

7 a (.,v:,) = a (. + 2  vso) + "Vs0 - 

with  the  boundary  conditions 

fo r  N/HO - +m } 
for  6 N / H ~  - -00 

6 



(Notice  that if b is a dimensionless  quantity of order one; = 1 + f b + .O(E ). ) 2 

Taking  into  account  the  fact  that Vso and Sl* are independent of N permits  one  to 
write  the  equation of motion  in  the  form 

2 

a 2 

v~~ - [ v ~ o ~ l  ago - a+)]= v" aN E".(ul - a+)] 

Introduce  dimensionless  variables s and K defined by 

so v dg,, 

.=[ v,o 
and 

2 
K(s, N) = - vso (ul - a+) 

2 v, 

Then  equation (loa) assumes  the  form of the  canonical  diffusion  equation: 

aK - a2K 
" - 

And, in view of the condition  (eq. (3)), the  boundary  conditions  (eq. (lob)) become 

K(s,N) - -- 
2 
1 for N/H - +w 1 

K(s, N) - 0 for $G N/H - -03 J 
In equation (12) , the  upper  limit  can  be  taken as the exact position on the slip line S 

rather  than its zero-order  approximation go, and  any  correction  due  to  this  interpreta- 
tion of s will appear only in a subsequent  equation  for  second-order  quantities.  Hence, 
to  within a n   e r r o r  which will  appear  in  the next order  of the  system of equations fo r   u ,  
equation (12) can  be  replaced by 

A 
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The  solution  to  the  problem  defined by equations (14a) and (14b), which'has  the  cor- 
rect  behavior at s = 0, is 

or,  using  equations (1 3), (2a),  and (5) 

S 

Finally,  equations (2a) and (3) can  be  used  to  write  the  velocity to order E as 

The  second term  in equation (17) is the  velocity  profile  in  the  mixing  region  along  the 
slip  line.  The  profile  shape is similar  for all attached  and  separated  jets,  and only the 
velocity  and  length scales  vary with E and  orifice  angle.  The  solution  shows  that 6 
is a measure of the  mixing-region  thickness at any  station on the  slip  line. 

Turbulent  mixing. - If the  mixing is turbulent,  equation (loa) can  be  used  with v 
replaced by an eddy  diffusivity.  Prandtl's  hypothesis  (ref. 4) as applied  to  parallel 
streams  (ref. 5) implies  that  the  shear  stress is of the  form 

where K is a dimensionless  constant. In equation  (18),  the  effects of curvature are as- 
sumed  to  be  negligible.  Using  equations (2a), (2b), (3), and (5) in equation (18) leads  to 
the  expression 

8 



2 
"-s"" 7 - KE A v, au - KE 2 aul 3 2 0 .  

sov, - + 1 
P 2 vso aN 2 aN 

which appears  to  be of one  degree  higher  in E than  the  terms  retained  in  the  equation of 
motion (eq. (loa)). However, it has  been found experimentally  (ref. 5) that,  even  when 
parallel  streams  move  with  relative  velocity  corresponding to E < 0.2, the mixing  can 
still be  turbulent. 

In any case, KEV,S can  easily  become  large  compared  with v even  for  very  small 
. E, which means  that  the  stress  term  in  the  turbulent  case  can  be  even  larger  than  in  the 
laminar  case  even though it contains  an extra factor of E.  Hence,  retaining  the  factor 
of E in this  term  results  in,  analagous  to  equation (loa) for  viscous  mixing, 

o r  

a 
ago 
- 

Once  again,  the  canonical  form of the  diffusion  equation can be obtained by introducing 
a new streamwise  coordinate: 

The result is 

9 



which,  along  with  the  boundary  conditions (eq. (10(b)), has  the  solution 

1 

L 

which is the  same as equation  (17a) for  laminar  mixing with s replaced  by st. Hence, 
the  procedure  used  to  obtain  equation (17b) from  equation (17a)  can be applied  to equa- 
tion  (20a)  to yleld 

The foregoing  analyses  for  laminar  and  turbulent  mixing  apply  to both the  separated  and 
attached jets. It is only necessary  to  introduce  the  appropriate  values of Vso and So. 

distance  along  the  slip  line  to  zeroth  order  in  terms of the  parametric  variable q as 

A 

Separated jet. -When  the jet is separated  from the lee surface,  .reference 1 gives  the 

where 

with 

and 
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The  parameter A is given as a function of the  orifice  angle tan-.' B/A in refer- 
ence 1. 

It follows  that,  for  laminar  flows,  the  modified  streamwise  coordinate  equation (12) 
is given  by 

where 

For  turbulent  flows,  equations (19) and (21) yield 

Attached  jet. - In this  case,  reference 2 shows  that  the  distance  along  the  slip  line 
is again  given by equation (21) with 

I e-iY 

and  with  J(y)  defined as in equation (22c). As  before, A is related  to  the  orifice  angle 
tan-l(B/A) by a relation  given  in  reference 2. The  modified  streamwise  coordinates  for 
laminar  and  turbulent  mixing a r e  given  by  equations (23) and (24) with  equation (25) sub- 
stituted for VsdVm. 

Mixing-zone characteristics. - Equation  (14a) for  viscous  mixing  has  already  been 
noted as the  canonical  diffusion  equation.  Thus,  for  an  observer  moving  along  the  slip 
line  with  velocity Vs0, the  mixing  region  appears (with e r r o r  of O(E))  to grow by a sim- 
ple  diffusion  process. . 

11 



The  thickness of the  mixing  region 26 is defined by putting 

V + - U  
6 =  N for  = 0.99 S 

v; - vi  

and 

vi  - u 

v, - vi  
-6 = N for  = 0.99 

Then, for  laminar  mixing,  equation (17) shows  that 

erf (2) = 0.98 

o r  

6 = 3.29& 

Similarly,  for  turbulent  mixing 

G t =  3 

It  can  be shown using  equation (17b) thal 

. 2 9 6  

t if N < 0, u - vfs as s - o or, equivalently, 
A 

as so - 0; and  that if N > 0, u - V i  as s - 0. Hence, a t  s = S - 0, there is a dis- 
continuity  in  the  tangential  velocity of the  amount V i  - V i .  This  shows  that  the  solu- 
tion  (eq.  (17)) satisfies the  appropriate  initial condition at the  lip of the  orifice. 

0 -  

The  question of the  third  boundary  condition which arises  in  most mixing  problems 
(ref. 6) is not relevant  for  the  present  solution  since  the  linearization  has  the  effect of 
reducing  the  order of the  differential  equation.  The  significance of this  development is 
that  the  displacement of the  curve N = 0 from  the  zero-order  slip  line is a quantity of 
second  order  in E and  can  be  neglected  in  the  present  linearized  analysis. 

12 



An easy  calculation  shows  that,  along  the  line N = 0, 

v i  + v, 
U =  

2 
= Vso + O(E) 

RESULTS AND  DISCUSSION 

Equation (17b) shows  that  the  dimensionless  velocity  profiles  in  the  laminar  mixing 
region a r e  given  by a single  universal  function of the  variable N/(2 fi), whereas  equa- 
tion (20b) shows  that  the  dimensionless  velocity  profiles  in a turbulent  mixing  region 
are given by the  same  universal  function of the  variable N/(2 6). This  function is plot- 
ted  in figure 3. The  laminar  and  turbulent  mixing-region  thicknesses (6 and tjt, re- 

2. O r  

Figure 3. - Relative velocity between mixing 
region and jet. 

13 



spectively are defined to be the  normal  distance  from  the  mixing-region  centerline at 
which  the  velocity  difference Vi - u  for  N > 0 (or Vi - u for N < 0) has  reached 
99 percent of its free-stream value.  The  thicknesses 6 and 6t are given  in  terms of 
the  laminar  modified  coordinate  function s and  the  turbulent  modified  coordinate  func- 
tion st, respectively,  by  equations (26) and (27). The  normalized  values of 6 and 6t 
are also shown in  figure, 3. Notice  that  the  velocity at N = 0 is equal  to  the  average of 
the  velocities  which  occur at the  edges of the  mixing  region. 

The  results  presented  in  figure  3  can  be  used  to  determine  the  mixing-region  velocity 
profiles  and  thicknesses as a function of the  distance  along  the  mixing-region  centerline 
8 once  the  modified  coordinate  functions s and st a r e  known in  terms of this  distance. 
The  functional  relation  between s (or st) and i depends  on  the  particular  jet  configura- 
tion. Thus,  for  the  separated  jet, s and st a r e  given  parametrically  in  terms of 
by  equations (21) to (24).  (See  discussion  preceding  eq. (15).) For the  attached  jet, s 
and st a r e  given as parametric  functions of by  equations  (21), (22c), (23),  and (24) 
with  equation  (25)  substituted  for V s d V m .  These  equations  were  used  to  calculate s 
and st as a function of i. The  complex  quantities  were  calculated by performing  com- 
plex  arithmetic on a digital  computer. 

The  laminar  modified  coordinate s is given as a function of distance S in  figure 4 
and 5 for  the  separated  and  attached jets, respectively.  The  turbulent  modified  coordi- 
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0 . 4  .8 1.2  1.6  2.0  2.4  2.8  3.2 3.6 4.0 

Dimensionless  distance  along  jet  boundary, SIH 

Figure 4. - Coordinate  function  for  laminar  mixing of stream  and separated jet. 
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Figure 5. - Coordinate function for laminar  mixing of stream  and  attached  jet. 

72r / 
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0 

0 . 4  .8 1.2  1.6  2.0  2.4 2.8 - 3 . 2  3.6  4.0 
Dimensionless  distance  along  jet  boundary, SIH 

Figure 6. - Coordinate  function  for  turbulent  mixing of stream  and separated jet. 
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nate st is presented as a function of for  the  separated  and  attached jets in  figures 6 
and 7, respectively. In each of the figures, curves are given for various orifice angles. 
The  more  complicated  behavior of the  attached jet curves at the  larger  orifice  angle is 
the  result  of the  complicated  behavior of the  slip  line  velocity  which  occurs  in  these 
cases (ref. 2). 

Perhaps  the  most  interesting  quantities  which  can be obtained  from  the  calculations 
are the  mixing-region  thicknesses 6 and et. The  thicknesses  for  laminar  mixing of 

7r 

. Dimensionless  distance-along jet boundary, S/H 

Figure 7. - Coordinate  function  for  turbulent  mixing of stream  and  attached  jet. 

the  separated  and  attached  jets are shown  in  figures 8 and 9. It can be seen  from  these 
figures  that,  at  negative  orifice  angles  for which the boundary  between  the  jet  and  the 
the  mainstream is nearly a straight  line  and  the flow in  the jet and  in  the  mainstream 
are almost  parallel,  the  mixing-layer  thickness  grows as the  square  root of the  distance 
g. (Actually, it is easier to  verify  from  figs. 4 and 5 that s varies  linearly with S for  
negative  orifice  angles  and  then  use  eq. (26) to  establish  that 6 varies as the  square  root 
of g. ) This  behavior  agrees with  the  well-known result  that  the  thickness of the  laminar 
mixing  region  between two parallel  streams  grows as the  square root of the  distance 
(ref. 6). Notice  that 6 also  depends on  the  square  root of the  Reynolds  number  which is 
characteristic of laminar  flows. 
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Jet orifice  angle, 
tan-l(B/A), 

deg 

12 - 

10 - 

'I 
0 . 4  .8 1.2 1.6 2.0  2.4  2.8  3.2  3.6  4.0 

Dimensionless  distance  along jet boundary, ^S/H 

Figure 8. - Mixing-region  thickness  function for laminar  mixing of stream  and 
separated jet. 

8 6L-L-lu, 
0 . 4  .8 1.2 1.6 2.0  2.4  2.8 - 3 . 2  3.6 4.0 

Dimensionless  distance  along  jet  boundary, S/H 

Figure 9. - Mixing-region  thickness  function  for  laminar  mixing of stream  and 
attached jet. 

17 



28 r 

Jet orifice angle, 
tan-l(BIA), 

deg 
26.4 / 

I ai -45.1 
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Figure 10. - Mixing-region  thickness  function  for  turbulent  mixing of stream 
and separated jet. 
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In  most  cases of interest,  the  mixing  region  between'the jet and the stream  will  be 
turbulent.  The  turbulent  mixing-region  thickness 6t is shown  in figures 10 and 11 as a 
function of the  distance  along  the  slip  line  for  the  separated  and  attached  jets,  respec- 
tively.  Again it can  be  seen  from  the  figures  that, at negative  orifice  angles  for which 
the flow  in  the jet and  in  the  main  stream  are  nearly  parallel,  the  mixing-layer  thickness 
grows  linearly with distance  along  the  slip  line.  This  behavior  agrees with  the well- 
known result that  the  thickness of the  turbulent  mixing  region  between  two  parallel  streams 
grows  linearly with  distance. At positive  orifice  angles, the strong  variations  in  veloc- 
ity due to  the  bending of the  streams  cause  the  mixing-layer  thickness  to  have a more 
complicated  behavior.  Notice  that,  just as in  the  case of parallel-stream  mixing,  the 
mixing-layer  thickness is independent of Reynolds  number  and  depends  only  on  the 
parameter G, where K is an  empirical  constant  related  to  the  structure of the  turbu- 
lence.  A  specific  example of the way  in which the  velocity  distribution  along  the jet 
boundary  can  affect  the  mixing-layer  thickness is given  in  figure 12. In this  figure, it 

1 . 6 r  

I 
16 - 

a- - 

v) z 8- 
Y 
c 

0 . 4  .8 1.2  1.6  2.0  2.4  2.8  -3.2  3.6  4.0 
Dimensionless  distance  along  jet  boundary, S/H 

Figure 12. - Centerline velocity and breadth of turbulent  mixing region.  Jet 
orifice  angle,  tan-lIBIAI, 0. 
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has  been  assumed  that  the  value of K is the  same as that for the  mixing of parallel 
streams.  The  velocity  ratio on  the  mixing-region  centerline  and  the  mixing-region  thick- 
nes s   a r e  plotted  against  distance  along  the  slip  line  for both  the  attached  and  separated 
jets at zero  orifice  angle.  Since  the  attached jet must  turn  much  more  abruptly  than  the 
separated jet, the  velocity  along  the  mixing  region  must  attain  much  higher  values  in  the 
former  case.  In  fact, f u r  the  attached  jet,  the  centerline  velocity  reaches a peak value 
in  the  region 1 < @H < 2, which is considerably  higher  than  the  final  jet  velocity far 
downstream. In addition,  the  figure  shows  that,  for  the  attached  jet,  the  slowest  rate of 
increase of mixing-layer  thickness  with  distance  also  occurs  in  the  region 1 < $/€I < 2. 
The  connection  between  these two phenomena  can be  explained  in  the  following way. It 
has  already  been  pointed  out  that  for  an  observer  moving  with  the  centerline  velocity of 
the mixing  region,  the  mixing  layer  grows by a pure  diffusion  process.  The  diffusion 
ra te  is proportional  to  the  velocity  difference  which  in  turn is inversely  proportional  to 
the  centerline  velocity  across  the  mixing  region  (Prandtl's  hypothesis). On the  other 
hand, the  distance  moved  by  the  observer  along  the  slip  line  in a given  time is propor- 
tional  to  the  centerline  velocity.  Hence, if the  centerline  velocity of the  mixing  region 
is low, at a given point along  the  mixing  region  more  outward  diffusion  will  have OC- 

curred  than if the  centerline  velocity  were high. 

n 
0 1 2 3 4 

Dimensionless  coordinate, X/- 

Figure 13. - Turbulent  ion of attached jet and free  stream. Jet orif ice angle, tan-l(B/A), 0; 

In figures  13  and  14,  the  mixing-layer  thicknesses  for  the  attached  and  separated 
jets,  respectively,  have  been  superimposed on plots of the  jet  contours.  The  centerline 
of the  mixing  region is taken  to  be  the  slip  line  obtained  in  references 1 and 2. (In ref .  5, 
comparison of theory  and  experiment  shows  that K ranges  from 0.00139 to  0.00251, so 
intermediate  value K = 0.002 was chosen for  the  present  calculations. ) 

The  shaded areas  represent  the mixing  regions.  These  plots  correspond  to a value 
of E of 0.2, which is near  the  upper  limit of validity of the  linearized  theory  presented 
in  reference 2. Because of the  small  value of E ,  the  mixing  region  grows  relatively 
slowly  with  distance  in  the  attached  jet,  but  the  fraction of the  separated jet which is 
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Figure 14. - Turbulent  mixing  region of separated jet  and free stream. Jet ori f ice angle, 
tan-l(BIA1, 9 E - 0.2; K = 0.002; H/{m = 0.3240. 

affected by the  mixing is appreciable. In figure 13, the  peak of velocity on the  centerline 
occurs  near 

X = 1  

In this  discussion of the  mixing of the  jet  and  the  stream, nothing has  been  said of 
the  mixing of the  separated  jet with  the  stagnant wake, o r  the  buildup of a boundary  layer 
on  the  downstream  wall of the  orifice  in  the  case of the  attached  jet. Both of these  situa- 
tions  may  be  treated  by  existing  techniques. In the  case of a separated  jet,  the mixing 
region  between  the  jet  and  the  constant  pressure  wake  region is the  same as the  mixing 
region  between two parallel  streams  (ref. 6) under  the  assumption  that  the  mixing-region 
thickness is always  small  compared  with  the  radius of curvature of the free-stream line. 
The  boundary  layer  on  the  downstream  wall of the  orifice, when the  jet is attached,  can 
be  determined by using  directly  the usual  techniques  for  calculating  boundary  layers  in a 
pressure  gradient (ref. 7). It is only necessary  to know the  velocity V external  to  the 
boundary  layer. But this is given  in  reference 2 as a function of the  distance  from  the 
lip X in   terms of a parameter 5 as 
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The  quantity A is given as a function of orifice  angle  in  figure 8 of reference 2. 

CONCLUDING REMARKS 

An analysis  was  made of the  mixing  region  which  occurs  between a jet  issuing  from 
an  orifice  and a moving s t ream when the  jet is injected  at  an  oblique  angle  to  the  stream. 
The  question of whether  the jet is attached or  separated is beyond  the  scope of the  present 
analysis.  The  results show that,  for  the  same  conditions,  the  mixing  region is thicker 
when the  jet  separates  from  the  downstream  edge of the  orifice  than when it  remains 
attached.  The  analysis is performed by using  boundary  layer  theory  in  conjunction  with 
the  results of inviscid  solutions  obtained  previously. 

Lewis  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Cleveland,  Ohio,  August 26,  1969, 
129-01. 

22 



APPENDIX - SYMBOLS 

A 

B 

H 

HO 
J 

K 

N 

0 

p, 

P 

Re 

S 

* 
S 
* 

* 

s1 
S 

st 
T 

U 

u1 

horizontal  distance  between edges 
of orifice 

vertical  distance  between  edges of 
orifice 

asymptotic  jet width 

value of H to  zero  order  in E 

defined  in  eq.  (22c) 

defined  in  eq.  (13) 

coordinate  normal  to jet boundary 

order  symbol  (see eq. (5)) 

total  pressure of jet 

total  pressure of stream 

static pressure 

Reynolds  number, HOV,/v 

slip  line  between jet and stream 
in  inviscid  solution 

distance  along  slip  line 

value of S to  zero  order  in E 

first-order  contribution  to S 

defined  in  eq. (12) 

defined  in  eq. (19) 

defined  in  eq. (22b) 

velocity  in S direction 

defined  in  eq. (5) 

value of v;S or  VS to   zero 

* 

* 

A 

order  in E 

free-stream  velocity 

velocity  on jet side of mixing 
region 

V 

Y 

A 

6 

E 

17 

K 

V 

P 

7 

a* 

velocity  on stream side of mixing 
region 

velocity  in  N-direction 

defined in  eq. (6) 

Cartesian  coordinates 

variable of integration 

parameter related to  orifice  angle 

half thickness of laminar  mixing 
region 

half thickness of turbulent  mixing 
region 

small  parameter  defined  in eq. (1) 

parametric  variable 

dimensionless  proportionality 
constant  for  Prandtl's  hypothesis 

kinematic  viscosity 

density of jet and stream 

turbulent  shear stress 

first-order  contributions  to Vs f 

(es. ( 2 4 )  
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