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I. INTRODUCTION AND SUMMARY

T. Vrebalovich, L. D. Jaffe, and S. E. Dwornik

Surveyor III soft-landed on the Moon at 00:04 GMT on April 20, 1967. Data

obtained have significantly increased our knowledge of the Moon.

The Surveyor III spacecraft was similar to Surveyor I (Refs. I-1 and I-2);

the only major change in scientific instrumentation was the addition of a soil

mechanics surface sampler. This device replaced an approach television camera,

which was carried but not used on Surveyor I. The soil mechanics surface sampler

is essentially the instrument described previously by Scott (Ref. I-3), but without

strain gages, accelerometer, or position potentiometers. It consists primarily of

a scoop about 12 cm long and 5 cm wide, mounted on a pantograph arm that can be

extended about 1.5 m, or retracted close to the spacecraft, by a motor drive. The

arm can also be moved in azimuth and elevation by motor drives, or dropped onto the

lunar surface, under force provided by gravity and a spring. A door on the_coop

can be opened and closed by a motor. The soil mechanics surface sampler can

manipulate the lunar surface material in a number of ways, and the results can be

observed by the Surveyor television camera. Figure V-2 of the following section by

Scott, Roberson, and Clary shows the spacecraft configuration with this instrument

aboard.

A minor difference between Surveyors I and III was that Surveyor III carried

two auxiliary mirrors, attached to the spaceframe, to permit better survey of

selected areas below the spacecraft in its landed position, where interaction between

lunar surface and spacecraft might occur. Some small modifications were made in

the television survey camera itself. Television was treated as a scientific experi-

ment on Surveyor III.

The spacecraft was launched from Cape Kennedy, Florida, at 07:05:01 GMT

on April 17, 1967. An Atlas/Centaur launch vehicle placed the Surveyor into a

parking orbit at 165-kin altitude and, after a coast of 22 rain, 9 sec,injected it into a

trajectory intersecting the Moon. The spacecraft mass at injectionwas 1040 kg;

after final touchdown, 302 kg. A midcourse maneuver was performed on April 18.

The center of the aiming ellipse chosen for this maneuver was selenographic latitude

2.92°S, longitude 23.25°W. Surveyor llI landed at 2.94°S, 23.34°W, within 2.8 km

of the aiming point.

| I-1
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The landing site is the southeast portion of Oceanus Procellarum, about 370 km

south of the crater Copernicus. The spacecraft rests in a subdued, rounded crater

about 200 m in diameter and is inclined 12 to 15 ° to the horizontal on the eastern

slope of the crater. The crater was identified, and the location of Surveyor III

within it was determined by comparing features visible from the Surveyor with those

found in high-resolution Lunar Orbiter III photographs.

As in the Surveyor I landing, strain gages recorded the loads in each shock

absorber during the landing events. Interpretation of these records and other data

received from the spacecraft showed that, because the vernier engines did not shut

wn at the planned height of 4 m above the surface prior to the first touchdown,

three separate touchdowns on the lunar surface took place. Since the spacecraft had

a lateral velocity of about 1 m/sec, the distance between the first and second touch-

down events was about 20 m, and between the second and third impact about 11 m.

A final translational movement of about 30 cm occurred following the third touchdown.

The vernier engines, which had maintained a stable spacecraft during all of the

landing events, shut down prior to the third touchdown.

The marks of the footpads on the lunar surface in the second touchdown, though

not in the first, have been identified in the post-landing pictures. Their position

correlates with the interpretation of the landing dynamics. There may have been a

small amount of soil erosion by the vernier engines during the second touchdown.

Lunar r_aterial disturbed by the vernier engines during the unique landing

may have coated part of the mirror of the television camera or abraded it, causing

the glare evidenced in portions of many television pictures. Temperature measure-

ments indicate no dust layer on Surveyor's thermal compartments.

The television camera could not view the lunar surface outside the crater

within which Surveyor III landed, but the sloping walls of the crater allowed it to

ew nearby features more clearly than would have been possible on a flat terrain.

The spacecraft took 6315 pictures from April 20 to May 3, 1967.

Data on the mechanical properties of the lunar surface material were

obtained from examination of the depth of the footpad imprints, strain gage records,

and computer simulation of the landing, as well as by the soil mechanics surface

sampler. The surface sampler made 8 bearing tests and 14 impact tests on the

lunar surface, and dug four trenches; it picked up three objects on the lunar sur-

face. One o[ these, a small rock, was gripped in the surface sampler scoop, which

exerted a pressure of at least 107 dynes/cm 2 (10 z psi) on the rock without

apparently crushing or breaking it.
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In general, the character and properties of the lunar surface at the

Surveyor III site seem very similar to those at the Surveyor I site. The position

inside or outside a crater or in different mare locations does not seem to make a

gross difference in surface characteristics. This similarity includes the mechanical

properties of the soil. The static bearing strength, on bearing widths of Z to Z0 cm,

is about Z x 105 to 5 x 105 dynes/cm z (3 to 8 psi), the cohesion 103 to 104 dynes/cm z

-Z -1
(10 to 10 psi), and the angle of internal friction roughly 35 ° The elastic

rigidity modulus of the top Z0 cm or so, as indicated by the frequency of vibration of

the spacecraft on the surface, is about 5 x 106 dynes/cm z. This is much lower than

Otis typical for loose sand, and may represent fine, loosely packed particles.According to present measurements, the penetration of the footpads into the surface

material during touchdown did not exceed 5 cm.

I The distribution of craters and rock-like features near Surveyor III is not much
different than that observed by Surveyor I. Large blocks were more frequent around

I some of the 10- to 15-m-diameter craters near Surveyor III. Blocks up to 4 m long
were visible from the spacecraft; some of these were angular or flat, others were

more rounded. Sizes of individual visible particles extended down to the 0.5-ram

I limit of camera resolution; over 85% of the exposed surface consisted of unresolved

finer material., The surface retained a clear imprint of the bottom of a foot%'pad,

which had of the order of 60 microns high. The surface material probablyridges

contains a considerable fraction of material smaller than 60 microns in diameter,

I and an appreciable fraction smaller than 10 microns. The fine matrix tends to pile
up slightly on the uphill side of the larger blocks, suggesting that it slowly moves

t downhill.
Television observations with color filters indicate a gray Moon even in

disturbed areas. The determinations of photometric functions of the footpad imprints,

areas exposed or disturbed by the soil sampler, and selected areas nearby were

considerably uncertain because of glare from the dust or abrasion on the mirror.

I The local undisturbed surface is estimated to be 8.5albedo of the fine-grained,

:kZ%. The larger blocks generally have a higher albedo. The material beneath the

l surface exposed by the action of footpads and surface sampler is generally darker
than the undisturbed surface material. This is also true for disturbed material, as

l was observed for Surveyor I.
The higher albedo at the surface extends to only a very small depth, perhaps

less than the limit of resolution of the Surveyor camera. The surface sampler

!
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results show that the material is appreciably stronger at depths of about 10 cm or

so than at the surface, although granular material extends to depths of at least 15 cm

with no obvious change in particle size. The shapes of small craters suggest that

the surface layer has a depth of several meters; the material below is probably

more cohesive.

Thermal properties of the lunar surface surrounding Surveyor IH differ

somewhat from those obtained with Surveyor I and also with those from Earth-based

observations in that Surveyor III measurements showed a higher thermal inertia

during a solar eclipse; the thermal parameter was about 400 cgs units. Some direc-

tionality was noted in thermal emission from the sunlit surface; this disappeared

rapidly during the eclipse.

Electrical properties of the surface, as determined from Surveyor III radar

measurements, did not differ appreciably from the Surveyor I results.

In addition to lunar observations, color pictures of the Earth were taken

during the eclipse and some time after the eclipse. The eclipse pictures should

provide data on scattering of sunlight in the terrestrial atmosphere. A picture of

Venus was obtained.

The following sections list the scientific groups most concerned with

Surveyor III and give preliminary findings by some of the groups. These sections

have been written essentially independently of each other; little effort has been made

to resolve differences in interpretation that may exist among them.

Individual pictures taken by Surveyor, and presented in this report and else-

where, are best identified by the day of the year and Greenwich Mean Time at

which _hey were taken. April 20, 1967, was Day 110; May 3 was Day 123. Mosaics

are best identified by catalog number.

I-4

g

I

I

II

l
l
I

II

i

II

I
l

I
I

I

I

I
I
l



i

I

|-

!

I

l

l

I

!

I
I

I-I.

I-_o

1-3.

JPL Project Document 125

REFERENCES

Surveyor Scientific Evaluation'Advisory Team, "Surveyor I: Preliminary

Results," Science 152, pp. 1737-1750, 1966.

Jaffe, L. D. "Lunar Surface Exploration by Surveyor Spacecraft: Intro-

duction," Journal of Geophysical Research 72, pp. 773-778, 1966.

Scott, R. F. "Soil Mechanics Surface Sampler Experiment for Surveyor,"

Journal of Geophysical Research 7Z, pp. 827-830, 1967.

ACKNOWLEDGMENT

Special appreciation is extended to Robert Steinbacher for valuable

assistance in organizing and carrying out the scientific effort for Surveyor III;

and to Stephen Gunter for responsibility in video data handling for the

scientific groups associatedwith Surveyor 111, and providing photographs ih

the various forms needed for analysis.

I-5



I JPL Project Document 125

!
II. SCIENTIFIC PERSONNEL

I The following groups were cognizant of various scientific aspects of the

I Surveyor III mission:

A. Surveyor Scientific Evaluation Advisory Team
L. D. Jaffe, Chairman Jet Propulsion Laboratory
S. A. Batterson Langley Research Center

i W.E. Brown, Jr. Jet Propulsion Laboratory
E. M. Christensen Jet Propulsion Laboratory
S. E. Dwornik NASA Headquarters
D. E. Gault Ames Research Center

_-- J.W. Lucas Jet Propulsion Laboratory
R. H. Norton Jet Propulsion Laboratory
R. F. Scott California Institute of Technology

I E.M. Shoemaker U.S. Geological SurveyG. H. Sutton University of Hawaii
A. Turkevich University of Chicago

Television Investigators

I E.M. Shoemaker,Principal Investigator
R. A. Altenhofen

I R.M. BatsonH. E. Holt

G. P. Kuiper
E. C. Morris

I J.J. Rennilson
E. A. Whitaker

U. S. Geological Survey

U. S. Geological Survey
U. S. Geological Survey
U. S. Geological Survey
University of Arizona
U. S. Geological Survey
Jet Propulsion Laboratory
University of Arizona

Soil Mechanics Surface Sampler Investigators

I

I

I

I

R. F. Scott,

Principal Investigator
R. Haytho rnthwaite
R. Liston

California Institute of Technology

University of Michigan
Detroit Arsenal

Do Luna r Mechanical Properties Working Group

E. M. Christensen,
S. A. Batterson

H. E. Benson
L. D. Jaffe
R. H. Jones

R. F. Scott

E. N. Shipley

Chairman Jet Propulsion Laboratory
Langley Research Center

Manned Spacecraft Center
Jet Propulsion Laboratory

Hughes Aircraft Company
California Institute of Technology
B ellcomm, Inc.

| II-1
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R. L. Spencer
F. B. Sperling
G. H. Sutton

Jet Propulsion Laboratory

Jet Propulsion Laboratory

University of Hawaii

Luna r Thermal Properties Working Group

J. W. Lucas, Chairman

J. E. Conel
R. B. Erb
R. R. Garipay
W. A. Hagemeyer
H. C. Ingrao
B. P. Jones
J. M. Saari

Jet Propulsion Laboratory
Jet Propulsion Laboratory
Manned Spacecraft Center

Hughes Aircraft Company
Jet Propulsion Laboratory
Harvard College Observatory
Marshall Space Flight Center
The Boeing Company

Luna r Electrical Properties Working Group

W. E. Brown, Jr.,

R. A. Dibos
G. B. Gibson
D. O. Muhleman
W. H. Peake
V. 5. Peohls

Chairman Jet Propulsion Laboratory

Hughes Aircraft Company
Manned Spacecraft Center
Cornell University
Ohio State University
Ryan Aeronautical Company

Lunar Theory and Processes Workin_ Group

D. E. Gault, Chairman
R. J. Collins
T. Gold

J. Green

G. P. Kuiper
H. Masursky
J. A. O'Keefe

R. A. Phinney
E. h/I. Shoemaker

Ames Research Center

University of Minnesota
Cornell University

Douglas Aircraft
University of Arizona
U. S. Geological Survey
Goddard Space Flight Center
Princeton University

U. S. Geological Survey

Astronomy Working Group

R. H. Norton, Chairman
J. E. Gunn

W. C. Livingston
G. A. Newkirk
H. Zirin

Jet Propulsion Laboratory
Jet Propulsion Laboratory
Kitt Peak National Observatory

High Altitude Observatory
Mr. Wilson and Palomar Observatories
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Program and Project Scientists

S. E. Dwornik

L. D. Jaffe

T. Vrebalovich

R. H. Steinbacher

S. Z. Gunter

Program Scientist
Project Scientist

Associate Project Scientist
Assistant Project Scientist
Assistant Project Scientist

Cognizant Scientists and Scientific Staff

F. I. Roberson

T. H. Bird
J. 3. Rennilson
J. A. Dunne

D. L. Smyth
D. E. Willingham
A. L. Filice
C. H. Goldsmith

Cognizant Scientist, Soil Mechanics
Surface Sampler Experiment

Cognizant Scientist, Television Experiment
Television Experiment

Television Experiment
Television Experiment
Landing Sites and Television
Landing Sites

Surveyor Experiment Test Laboratory

Instrument Development

D. H. Le Croissette
M. I. Smokler

L. H. Allen
C. E. Chandler
E. Rouze

M. C. Clary

Manager, Surveyor Instrument Development
Supervisor and Cognizant Engineer,

Television Experiment
Television Experiment

Supervisor, Surveyor Instrument Group
Cognizant Engineer, Soil Mechanics Surface

Sampler Experiment

Soil Mechanics Surface Sampler Experiment

Space Science Analysis and Command

3. N. Lindsley
D. D. Gordon

R. C. Heyser

T. H. Bird

F. I. Roberson

Director

Assistant Director

Director, Television Performance Analysis
and Command

Director, Television Science Analysis and
Command

Director, Soil Mechanics Analysis and
Command

II-3
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iT/. LUNAR SURFACE ELECTRICAL PROPERTIES

W. E. Brown, R. A. Dibos, G. B. Gibson, D. O. Muhleman,

W. H. Peake, and V. T. Peohls

Radar (Radar Altimeter and Doppler Velocity Sensor, RADVS) preliminary
1

results for Surveyor HI indicate that the radar cross sections (rxs) for the 25 °

off-normal and vertical beams were approximately the same as those obtained by

the Surveyor I data (Ref. iLI-1) and Earth-based measurements (Ref. LII-Z). The

rxs values of -lZ db for a Z5 ° angle and -8 to -4 db for the vertical beam yield

an estimate 2 of the relative dielectric constant as e = 3.5±0.7. These values

apply to regions external to the crater in which Surveyor III landed; the echo

data from within the crater have not as yet been related to surface slope variations

and gain switching transient conditions.

The values -lZ db and -4 db for the Z5" rxs and 0 ° rxs, the computed value

of _, coupled with Earth-based measurements of the factors, microwave phase lag

angle (40"), thermal parameter 3 (7= 14Z0) and specific heat (c = 0.Z) allow a

value for the ratio of electrical loss tangent to density to be computed as

tan¢ : 2.5 x 10 -2 ±20%

1The symbol a is used throughout the literature for radar cross section; it is also

used for conductivity, which will be discussed in subsequent reports. In addition,

radar cross section is often confused with reflectivity; therefor%it is considered

worthwhile to designate a separate and less ambiguous symbol, rxs, for radar
cross section.

2The estimate of dielectric constant may be determined by many different methods.

The wide uncertainties (± a factor of Z) in the published values of rxs lead to a

wide range of values for dielectric constant as calculated by any single method.

Thus, the significance of any estimate of dielectric constant (permittivity) from

the r×s is somewhat questionable. This estimate would agree with Ref. III-4 if

the back-scatter gain were about 0.7 rather than unity. Evidence for back-scatter

gain less than unity for a dielectric sphere is given in Ref. III. 5.

3please refer to Section VI of this report for additional definition of this parameter.

TTI-1
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This ratio tends to be invariant with packing factor and could possibly aid _,_

lh_ identification of the surface material. Quartz-like minerals found on the surface.-Z

of the Earth have a value of approximately I. 5 x 10 for this ratio (Ref. III-3).

!

HI- I.

J_-2.

111-3.

J-_- 4,

J-_- 5.
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IV. LUNAR SURFACE MECHANICAL PROPERTIES

E. M. Christensen, S. A. Batterson, H. E. Benson, R. Choate,

L. D. Jaffe, R. H. Jones, H. Y. Ko, R. L. Spencer,

F. B. Sperling, and G. H. Sutton

Interpretation of the lunar surface mechanical properties_ as discussed in this

preliminary report, is based on observations associated with the landing impacts,

telemetry data of Surveyor III, and a comparison with Surveyor I data. The data 1

consist primarily of:

(I) Loads in the landing gear shock absorbers recorded throughout the

entire landing sequence.

(Z) Photographs of the spacecraft, the spacecraft/lunar interactions, and

the lunar surface disturbed by the landings.

(3) Various analytical and laboratory simulations.

The landing of Surveyor J_iIwas different from that of Surveyor I, which landed

on a relatively flat surface with its three landing legs contacting the surface about

the same time, and in which the spacecraft experienced a single landing event

(Ref. IV-l). In contrast, Surveyor HI made three distinct landings on a sloping

crater wall. During the first two landing events the three vernier engines, which

controlled the spacecraft attitude and velocity during its final descent to the Moon,

were in operation generating an upward force almost equal to the lunar weight of the

spacecraft. Prior to the third landing event, however, the vernier engines were

shut down, and the spacecraft contacted the surface in a free-fall condition.

Nominally, the spacecraft should have had a free fall from an altitude of 4 m after
Z

a normal shutdown of the vernier engines.

Figure IV-I is a photograph of a Surveyor Ill spacecraft model showing the

components and structures discussed in this report. The three legs are designed

to rotate upward against the resistance of a shock absorber during a ]anding impact

in order to protect the spacecraft (Figs. IV-Z and IV-3). When the landing loads are

relieved, the shock absorbers return to their pretouchdown position. For additional

1Data obtained from the soil mechanics surface sampler are, in general, not

considered here; see Section V of this preliminary report.

ZValues will be given in the centimeter-gram-second units. To convert to feet-per-

second units, the following factors may be used: 1 m = 3. Z8 ft; 1 cm = 0.39 in.;

1 newton = 0.ZZ5 lb; 1 dyne/cm Z = 1.46 x 10-5 lb/in.Z

IV- 1
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protection, the footpads are made of a crushable material (Figs. IV-4 and IV-5);

crushable blocks are located on the underside of the spacecraft inboard of each of

the legs.

A. Observations

1 • Landing

The spacecraft initially touched down on the inner slope of a crater. Because

}the continued thrusting of the v_rni_r engine and the elasticity of the landing gear,

the spacecraft rebounded off the lunar surface and landed again on the crater slope

24 sec later. The third landing event occurred further down the crater slope (Fig.

IV-6), 36 sec after the initial contact. During these events, the spacecraft main-

tained attitude control and stopped approximately half-way down in the crater. A

comparison of the features of this crater obtained from Surveyor III's camera with

those obtained from Lunar Orbiter III's camera shows that the spacecraft is resting

on the eastern slope of a 200-m crater (see Section VII of this report). The

comparison also indicated that Surveyor III's landing leg 2 is now oriented in the

uphill direction. Consistent with these facts, footpad 2 contacted the lunar surface

first in each of the three landing events. This suggests that, at initial touchdown,

the spacecraft was essentially level with respect to the true lunar vertical and that,

during the interval between landings, the spacecraft flight control system brought

the spacecraft to essentially the same level attitude and also prevented significant

angular motions about the spacecraft vertical axis. After the final landing, the

angle between the spacecraft vertical axis and the true lunar vertical was lZ to 14 °,

the spacecraft dipping approximately in the direction of the downhill slope of

._ crater wall (Fig. IV-7).

The direction of spacecraft travel during landing events can be inferred from

photographs of the imprints of footpads Z and 3 and of the disturbed lunar material

around the footpads (Figs. IV-8 and IV-9). A television search for surface marks

from the first and second landing events was guided by these data. Thesuspected

landing areas are to the east of the spacecraft. Unfortunately, the camera glare

during the lunar morning prohibited obtaining intelligible pictures of these areas

until Day 116 when the Sun angle was 77 ° . Pictures taken on Day 116 revealed

distinctive marks, which are spacecraft imprints (Fig. IV-10) of the second landing
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event. These marks are estimated to be between 11 and 14 m from the spacecraft at

an azimuth of 90 ° (from north). As yet, no other positive indications of a spacecraft

landing have been detected. There areno visible spacecraft-made distinctive marks

between the second landing site and the spacecraft. Yet this area is a relatively

uniform, uncratered slope on which spacecraft marks should be visible if they were

the re.

Figure IV-6 is a sketch of the landing sequence of Surveyor III,as interpreted

from the data available to date. It shows the three separate landing events. Each

event consists of a number of individual impacts of the footpads. Landing Events 1

and Z occurred before the vernier engines cut off; during these events they were

providing a lift equivalent to about 0.9 of the lunar spacecraft weight. In addition,

the engines reoriented the spacecraft vertical parallel with the lunar vertical after

Landing Events 1 and 2. The vernier engines were shut down before Landing Event

3. Using an estimated horizontal velocity of 0.9 m/sec, the distances between the

three landing areas would be 22 m (between Landing Events 1 and 2) and 11 m

(between Landing Events 2 and 3). However, the estimate of the horizontal velocity

between Landing Events 1 and 2 is tentative at present. The rebound heights attained

by the spacecraft are difficult to estimate, since the lift applied by the vernier engines

is not well defined.

Figure IV-11 shows the complete time records of the landing forces, as

measured by an axial strain gage on each landing leg shock absorber, from the time

of initial surface contact until the spacecraft came to rest. It is an accurate record

of the times between the first, second, and third landings.-During most of the time

between landings the axial loads were zero, indicating that the spacecraft was not in

contact with the lunar surface. Following the last landing, the magnitude of the axial

loads was consistent with the value required to support the static weight of the space-

craft. This indicates that the spacecraft came to rest on its three footpads after the

third landing, and that no thrust was being developed by the spacecraft vernier

engines.

Figure IV-12 shows an expanded time scale record of the shock absorber axial

loads developed during the first landing event. It indicates that footpad 2 impacted

first and then rebounded clear of the surface. The next footpad to impact was footpad

3, which occurred about 260 msec after the initial impact of footpad 2, and then leg 1

touched down about 290 msec after initial impact. The load on footpad 2 was

completely relieved for about 150 msec and then built up again. The second load
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indication of footpad Z started at about the time the loads on the other two footpads

were near their maximum values. Loads on all three footpads reached a zero value

at about the same time, indicating that' the spacecraft was normal to the lunar

surface at the instant it lifted off.

The time records of the axial loads in the shock absorbers during Landing

Event Z are shown in Fig. IV-13 and are quite different in character than those

obtained during the first landing event. Again, footpad Z made contact first and

remained on the surface for about 200 msec; footpad 3 made contact about 370 msec

after the initial footpad X contact, and after footpad Z had left the surface. Footpad 1

contacted 440 msec after initial footpad Z contact, and about 50 msec before landing

gear 3 experienced its maximum axial load. It can be seen that the maximum axial

load in leg 1 was considerably less than the other initial loadings. The second

impact of footpad Z occurred 900 msec after its initial contact, and footpads 1 and 3

were clear of the surface for about 300 msec prior to this impact.

The axial loads developed in the shock absorbers during the third landing

event are shown in Fig. IV-14. They are similar in character to those observed

in the first landing, although the maximum loads are somewhat higher. Again,

initial surface contact occurred on footpad Z, followed by the impact of footpad 1

240 msec later; footpad 3 contact occurred about Z70 msec after the initial impact

of footpad Z. The surface contacts of footpads 1 and 3 occurred during a short

period in which there was no axial load measured in the shock absorber of leg Z.

The second impact of footpad Z occurred when the axial loads in leg 1 and leg 3 were

at about their maximum value. All three footpads then left the surface at about the

same time, and a much smaller impact was recorded between 400 and 500 msec

later. This final rebound was clue to the landing gear elasticity. A similar rebound

was experienced by Surveyor I.

Table IV-I gives the maximum axial forces in each shock absorber for all

three events as well as the initial contact times, as reduced from the data recorded

at Deep Space Station 14 (Zl0-ft antenna) at Goldstone, California.
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Maximum shock absorber axial forces for the

three landing events

Axial force, newtons;
initial contact time, min/sec/msec, GMT

Leg
Event 1 Event Z Event 3

1

Z

3

2970

04:18. 36

3060 (1820)
04:18.07

3680

04:18. 34

1420

04:42.51

2800 (930)
04:42.07

2350

04: 42. 45

3860

04:54.66

2440 (I950)
04:54.42

4120

04:54. 70

Note: Values in parentheses are peak forces of the second impact of leg
2 within each landing event. Due to considerable noise in the data, 6he
peak force readings are considered accurate within 4-20%. Times are
accurate within ±10 msec.
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Following the last impact of Landing Event 3, a small amplitude oscillation,

visible for about Z cycles and with a frequency of about 6.5 Hz, can be observed in

the three strain gage records. The peak-to-peak amplitudes of these oscillations

are on the order of 450 newtons. Several similar, but considerably larger oscilla-

tions (over 1000 newtons) were observed on the landing of Surveyor I. For both

landings, these oscillations are interpreted as a vertical mode of oscillation of the

spacecraft, which is related to the elastic properties of the spacecraft and is

also influenced by the elastic properties of the lunar surface material. This is

further discussed in Section IV-B.

A narrow-angle mosaic of the second landing event area of the spacecraft is

shown in Fig. IV-10. Imprint 1 was made by footpad 1. Footpad Z touched down at 2

and then at 2'. Imprint 3 was made by footpad 3. A trench-like mark can be

observed at V. It has been verified that 1, 2, 2', and 3 correspond to the relative

positions of the spacecraft's three footpads, and that item V lies in the area under

vernier engine 3 during that landing. The spacecraft's azimuth position, as defined

by 1, 2, 2', and 3, is very nearly the same as that of the spacecraft's final position.

In identifying the landing event which produced surface marks at 1, 2, Z', and 3, the

following factors were considered:
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(ll Spacing between points 2 and 2' (considered to be two footpad Z imprints)

in 0.6 to 1 m. During the first landing event, the time between the two

contacts of footpad 2, from load relief to load buildup, was approximately

0.15 sec. To travel 0.6 m, a horizontal velocity of about 4 m/see would

have been necessary during Landing Event 1. It is unlikely that the

horizontal landing velocity was this high.

12) Time separation between the two contacts of footpad Z during the second

landing event was 0.7 sec. The resulting horizontal velocity for this

period would have been between 0.9 and 1. Z m/see, a more reasonable

value.

(3) The time interval between Landing Events Z and 3 is 1Z sec. Thus,during

this time a horizontal velocity of approximately 1 m/see would be

required if the spacecraft were to travel between 11 and 15 m. The

footpad Z off-the-Moon time between the second and third impacts of the

third landing event is 0.5 sec; the footpad 2 travel distance from its

second impact to its final position is 33 to 35 cm. Thus, the average

horizontal velocity during this interval was less than 0.7 m/see. The

spacecraft was being slowed down during this interval, and it is reasonable

to expect that the velocity could have been 1 m/see prior to the third

landing.

(4) The distance from the marks 1, 2, 2', and 3 (Fig. IV-10) to the

spacecraft was computed by triangulation. The footpad impressions are

calculated to be between 11 and 14 m from the spacecraft.

:_,_te considerations lead to the conclusion that Fig. IV-10 shows the second landing

0:;e of Surveyor HI.

", .F°°tpad/Surface Interactions

The direction and distance of the lateral displacement during the third touch-

'_"_._ event has provided some very good photographic data on the interaction between

':'_ foot pad_ and the lunar surface material.

The inaprint area in front of footpad 2, formed during the third touchdown landing

*,¢.'.t, ii seen in Figs. IV-15 and IV-16. The imprint is composed of two truncated

'_'_:::cal depressions superimposed one on another, the bottom of the imprint being
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quite flat. Based on the dimensions of the imprint at the bottom, which correspond

to the dimension of the bottom of the footpad (20 cm), and of the imprint at the rim,

the depth of the imprint is estimated to be between 1 and 3 cm. The distance between

the center of the imprint and the center of footpad 2 is estimated to be about 33 to

35 cm. Results of simulations of this geometry are given in Section IV-B-3.

Figure IV-15 shows that the pushed out and thrown out material displaced by

footpad 2 during the third landing event has a darker appearance than the undisturbed

material. The rather wide distribution of this material, extending for a meter or so,

is the combined displacement from all of the impacts of footpad 2 during the third

event.

In afternoon pictures of the imprint area (Fig. IV-16), a feature not apparent

from the morning pictures is found. The edge of another imprint is noticed just

beyond and to the right of the center of the top of the footpad. The top of this imprint,

which is located in the thrownout soil of the first imprint, is a few centimeters from

the edge of the footpad. It appears from strain gage data that footpad 2 made four

distinct impacts with the lunar surface during the third landing event. The imprint

seen over the top of the footpad could then be the one made by the third impact. The

first two imprints, which are superimposed on one another, and the fourth imprint

underneath the footpad at its present position fall more or less on a straight line,

whereas the third one appears to be offset a few centimeters from this line. The

movement of the footpad is further complicated by the stroking of the shock absorber

on the leg of the spacecraft. The throwout pattern of the disturbed soil is unsymmet-

rical, with more soil deposited to the right of the footpad and its imprints, indicating

that footpad _ was moving with a lateral velocity in the direction toward the right.

This observation is further supported by the smoothness of the top edge of the first

imprint at a position corresponding to the lagging edge of the footpad. The scalloped

top edge of the left side of the two first imprints are estimated to be 7 to 10 cm apart,

but there is no distinction between these two imprints on the right side. These

factors indicate that the spacecraft was not moving along a straight line during this

third landing event.

In general, the soil near footpad 2, both disturbed and undisturbed, looks

generally similar to that found near footpad 2 on Surveyor I. The disturbed soil

consists of irregular-shaped clods of materials plus a spray of fine particles:

however, the clodsLappear to be somewhat more flat-sided than those in the Surveyor

I pictures. In the pictures of the Surveyor III footpad 2 imprint, taken in the early

IV-7



JPL Project Document 125
!

!
lunar morning, a honeycomb or waffle pattern is seen on the bottom of the depression

(Fig. IV-8). This indicates that at least some particles in the lunar soil are quite I

fine-grained. The waffle pattern is an impression of the bottom of a typical footpad

(Fig. IV-5). The depressions between the ridges shown in Fig. IV-5 are slight

deformations of the bottom skin, which was made of 25-micron-thick aluminum alloy
g

sheet. The ridges are the edges of the aluminum alloy honeycomb that constitutes the

interior of the footpad. The ridges are spaced about 1 cmapart, are 0.5 to 1 mm I

wide, and are estimated to be 40 to 80 microns high. (See Section IV-B-3 for a

'ldiscussion of the imprint simulation. )

The ridge of soii between the second and the third imprints appears to have

crumbled slightly; on the flat bottom of the second imprint of footpad 2, there appear

to be some soil particles near the footpad. During the third impact, if the touchdown
u

was very close to the second imprint then some of the material on the common ridge I

could have been displaced onto the second imprint. The nature of the imprints and g

the disturbance of the lunar material indicate that the lunar material is not very

compressible. I
.1

A footpad imprint was alsofoundnear foot-pad 3, as shown in Fig. IV-9. Figure

IV-17 is
a narrow-angle view of a section of the footpad 3 impression. The pattern

of throwout material resulting from the impacts of footpad 3 is shown in Fig,. IV-18.

The relative directional position of this imprint with respect to footpad 3 is the same

as that of the first imprint of footpad 2 with respect to footpad 2. From leg 3 strain

gage data of Landing Event 3, it appears that footpad 3 slightly lifted off the ground

after the first impact and that, after the second impact, it oscillated without leaving J

the ground again. This means that footpad 3 moved directly from the position of its a

imprint to its final current position, while footpad 2 was making four distinct impacts

not on a straight line. This would indicate a slight roll in the motion of the space-

craft during this touchdown event.

The small leg 1 shock absorber force during the second landing event can be

explained by the fact that the inner edge. of the pad hit on the inner slope of a small
e

crater, which resulted in a smaller horizontal constraint than for a flat surface (Fig.

IV-10, item 1). Note that the imprint (Fig. IV-19) is flat with no ridge on the edge

away from the spacecraft centerline. a

There is no evidence that footpad 2 or 3 crushed during the landing sequence I

(Figs. IV-8, IV-9, and IV-16). For the low landing velocities, which were encoun- I

tered during all three landing events, no crushing would be expected as long as the

!
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I
footpad loading was uniform, based upon landing analyses and tests• The footpads

i are designed to crush at a loading greater than 6.9 x (Analyses of105 dynes/cm 2

footpad imprints are discussed in Section IV-B-4 and IV-B-5. )

I 3. Effects of Vernier Engine Firings

I The vernier engines continued to operate throughout the first and second landing

events and near to touchdown of the third event. A trench-like mark on the lunar

IO surface has been tentatively identified as a disturbance caused by vernier engine 3
during the second landing event (item V, Figs. IV-10 and IV-20). The bottom of this

I is elongated in the general direction of the spacecraft movementshallow trench

when in close proximity to the Moon. The bottom of the trench is lighter or brighter

in appearance than the surrounding material. This appearance could be analogous

to that of the compressed or packed material in the bottom of the footpad imprints

made during the third landing event (see Section IV-B-3).

During the second landing event, the crushable block 3 could have been contacted,

disturbed, and imprinted the lunar surface in the area of the trench. However, the block

imprint would probably be approximately 30 cm in length (footpad 3 was in contact

wi_hthe lunar surface for only 300 msec), whereas the trench appears to be over

1 m in length. If the block did make an imprint, the latter might have been erased

by the erosion as the vernier engine moved over the block imprint area. The

material ejected by the block impact could be blown away by the vernier engine

exhaust gases, while the engine itself was also causing erosion of the lunar surface.

Darker thrownout material was observed next to the trench on the uphill side

and to the left. Other erosion features from the second landing are not yet clearly

defined.

Potential soil erosion marks under the spacecraft, created during the third

landing event, as yet have not been detected. Difficulty was experienced in

searching for under-the-spacecraft lunar surface disturbances created during

the third touchdown event because of the television camera glare, limited camera

operation, and the high Sun illumination angles when pictures were taken, thereby

resulting in many spacecraft shadows. The estimated height (75 to 105 cm) above

the Moon of the vernier engine nozzle at the time of engine cutoff may have caused

shallow marks that would be difficult to photograph at high Sun angles.
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Apparently, some contamination or degradation of the spacecraft surface

• finishes occurred during the lunar landing. This is evident by the glare effect caused

by a fogging of the television camera mirror which was positioned facing footpad 3,

the particles of material observed on footpad 2 (Fig. IV-21), and a suspected fogging

of the auxiliary mirrors. Suspected visible lunar material on the side of Compart-

ment A near a vernier engine was proved by comparison with photographs of a

duplicate spacecraft on Earth to be a sunlight reflection from the specular finishes on

nearby spacecraft components. There appears to be no significant amount of particle.,

on the Surveyor Ill thermally sensitive mirrors on top of Compartments A and B.

D Had large amounts of material been deposited on the compartment tops the spacecraft

thermal balance would have been destroyed.

The contamination or degradation of the television camera mirror might be

due to impingement by lunar material carried by exhaust gases from vernier

engine 3. This material, however, could originate either from the erosion by the

vernier engine or from the disturbance caused by the crushable block or both. The

contamination could also be due to deposition of vernier engine exhaust gases. If

lunar material has been deposited on the spacecraft; it is expected much of it would

be a thin coat of fine material below the resolution capability of the television

camera.

Prior to the flight, it had been anticipated that the firing of Surveyor vernier

engines as close to the lunar surface as occurred during the first and second touch-

down events might deposit lunar material on the spacecraft and that potentially the

spacecraft operation could be jeopardized. The fact that Surveyor Ill survived

suggests that the erosion hazard during a lunar landing of future spacecraft is not

as severe as had been anticipated.

Auxiliary Mirrors

Some of the lunar surface areas under the spacecraft that might have been

disturbed by the crushable blocks and/or by the operation of the vernier engines

cannot be seen directly by the television camera. To provide some visibility of

these areas, two auxiliary mirrors were mounted inside the spaceframe on

Surveyor III opposite to the camera mounting position. The large mirror provides

a view of the bottom portion of crushable block 3, the lunar surface area directly

below block 3, and the surface area directly below vernier engine 3. The smaller

mirror gives a view of the surface area below vernier engine Z.

I¥-I0

I

I

I

I
I

I
g

I

i

|

g
a
g

@

0

B

0

a
g



I

I

|

I

I

I

I

I

II

I

I

I

II

il

g

II

i

$PL Project Document 125

As part of the camera calibration and alignment testing performed at Cape

Kennedy, Florida, before the launch of Surveyor HI, both wide- and narrow-angle

pictures of the mirrors were takenby the spacecraft camera. Figure IV-ZZ is a

wide-angle view of the mirrors on Surveyor HI. The positions of the imprint areas

and the scale on the surface are indicated by the floor pattern of lines and circles.

Figure IV-Z3 is a wide-angle picture of the same area, taken by Surveyor III

after landing on the Moon. The glare present in many of the mission pictures is

also noticeable here. However, the various imprint areas can be located by com-

paring these two wide-angle pictures. A series of narrow-angle pictures was also

taken to permit a more detailed study of the several potential imprint areas.

Preliminary studies have not shown conclusive evidence of surface disturbance by

the crushable blocks. However, there may be no block imprints under the space-

craft, because the crushable blocks normally would not contact a flat, hard landing

surface that is level during a landing at the estimated third event touchdown

velocity of approximately 1.5 m/sec.

5. Attitude Control Jet Experiment

Prior to launch it was planned that an attitude control jet would be operated

after the spacecraft was on the Moon in an attempt to determine lunar soil erosion

characteristics. This experiment was unsuccessfully conducted with Surveyor I

(Ref. iV-Z). The experiment requires good pictures, possibly at low Sun angles,

of the lunar surface area beneath the jet prior to and after operation of the jet,

because the soil disturbance might be small. It was almost lunar noon before clear

pictures, but with small contrast, were obtained of the potential impingement area

under the Surveyor III attitude control jet on leg 2. At that time the probability of

detecting a jet-created soil disturbance was small because of the lack of lunar sur-

face shadows. Within 48 hr, the shadow of leg 2 would cover the area for the

remainder of the lunar day. Because of these reasons and the undesirability of

firing the jets when the flight control electronics were overly hot, the jets were

not fired during the first lunar day.
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Analyses and Simulations

Simulated Landing Studies

Computer landing simulation studies are being performed to estimate

mechanical properties of a surface material that will yield surface penetrations and

shock absorbeY axial loads similar to those obtained during the Surveyor III landings.

In the first two landing events, with the vernier engines thrusting and the flight

control system in operation, the simulations also will establish time histories of

thrust levels and surface proximity of the vernier engines.

Preliminary computer simulations have been made of the third landing event,

and reasonable correlations between analysis and flight data have been achieved.

Representative analytical shock absorber force/time histories for a landing on a

rigid surface are compared with Surveyor III flight data in Fig. IV-Z4. The impact

velocities used in the three analyses conducted to date were 1.5 m/sec vertical and

0, 0.6, and 0.9 m/see horizontal. {Figure IV-Z4 shows a landing with 1.5-m/sec

vertical and 0.6-m/sec horizontal initial velocities. ) Although the comparison is

fairly good, further simulations are being conducted in order to obtain a better fit

to the data.

The 0.9-m/sec horizontal velocity is consistent with the contention fhat the

distance between the second and third landing events is 11 m, since the time duration

between these events is 12 sec. From the computer simulations to date, it is

considered that, during Landing Event 3, the maxirnumnormal force exerted against

the lunar surface by a spacecraft footpad was approximately 1450 newtons. Based

on a measured surface penetration of approximately Z. 5 cm, this force would

correspond to a pressure level of approximately Z. 8 x 105 dynes/cm Z.

The landing simulation program was used to establish the relative angle

between the spacecraft x-y plane {horizontal plane with respect to the spacecraft}

and the ground (the plane established by the three footpad/ground contact points}

for all three landings; and also the roll orientation.f the spacecraft was determined

with respect to the direction of ground slope. The spacecraft is nominally close to

level at the time of initial impact, and the attitude control system retained this

attitude throughout the landing sequence except for transients during the actual

touchdowns• Thus, the calculated angles constitute approximations to the lunar

surface slopes at the three landing sites. The numerical values obtained are:
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Landing Event

1

Z

3

Surface slope,
deg

Angle between leg 7 and

uphill direction, deg

I0.2

14.9

10.4

+4.5

+7.4

-9.Z

With respect to the uphill direction, the angle is defined positive if leg 2

deviates in a clockwise direction, looking down at the spacecraft.

Landing simulations of Surveyor III have indicated that the landing legs have

not stroked sufficiently for the body blocks to make contact with a planar landing

surface in all three landing events. It can therefore be assumed that the body blocks

never touched the lunar surface, unless a local surface protuberance was encountered.

Most landing simulations performed so far assume a rigid surface, i.e., a

static bearing strength larger than 6.9 x 10 5 dynes/ca z. Various bearing strength

values and profiles, as well as various effective friction coefficients will be inves-

tigated until an optimum match with the flight data is achieved with respect to axial

shock force histories and footpad penetrations. However, a preliminary evaluation

of these data indicates that the conclusions regarding mechanical properties of the

lunar surface material are likely to be similar to the conclusions obtained from the

Surveyor I touchdown data (Ref. IV-3).

Z. Elastic Properties of Lunar Soil

Oscillations on the strain gage records following the final impact were

observed on Surveyors I and HI. In both cases, the observed frequency was near

6.5 Hz. An approximate analysis of the effective spring constant for the unstroked

Surveyor landing legs indicates Chat the spacecraft oscillates at a frequency of 8.0

Hz {with an uncertainty of about ±0.8 Hz) in a vertical translational mode when

supported by its landing legs on a rigid surface. The fact that the ring-out observed

on the Moon is at a lower frequency indicates that the elastic properties of the lunar

surface material are affecting the oscillations. Assuming that the equivalent springs

of the spacecraft and of the lunar surface are acting in series and using 8 Hz and the

observed 6.5 Hz, the effective spring constant of the lunar surface material averaged

over a depth of the order of the footpad diameter is K_-4.9 x 10 8 dynes/cm. From
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Timoshenko and Goodier (Ref. IV-4), the effective stiffness K for an isotropic

medium uniformly loaded over a circular area is

K = _ZEr/4(1 - v Z)

where

E = Young's modulus

r = radius of loaded area (12.7 cm)

v = Poisson's ratio

From the preceding equation and relations among elastic constants

4K/=Zr = El[1- v2) = Z_/(1 -v)

where _ = rigidity modulus. Using the value obtained for K and taking various

values for ,, we can determine a range of values for _. Further taking a range of

values for the bulk density, p, of the lunar surface material, we can obtain a range

of values for the shear wave velocity, V s, and the compressional wave velocity, Vp.

Table IV-Z is a summary of results of these calculations.

It is seen from the table that this type of observation provides a rather

narrow range of rigidity modulus and, for a given assumed density, a ra_her narrow

range of shear wave velocities and a lower bound for the compressional wave velocity.

The shear wave velocities are about an order of magnitude lower than those obtained

on Earth in loose sand; they are near the values found for fine ocean bottom sediments

near the water-sediment interface. It is planned to obtain more precise estimates of

the resonant frequencies of the spacecraft and to obtain more reliable estimates of

the possible ranges of average shear and compressional wave velocities of the

upper Z0 crn or so of the lunar surface material. The above estimates are for

• lunar surface loaded by the approximate 3.4 x 10 4 dynes/cm g static pressure

exerted by the Surveyor footpads.

_- _Footpad Imprint Simulations

Preliminary measurement of the depth, attitude, and position of the landing

_,_.prints of footpads Z and 3 during Landing Event 3 has been performed with the aid

_! a lull-scale Surveyor spacecraft model. This model, located at JPL's Surveyor
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Experiment Test Laboratory {SETL), was operated in conjunction with a collimated

light source simulating the Sun. Television pictures that reasonably duplicate n

the shadow patterns and footpad imprints seen in Surveyor III pictures have been

madebyuse of this equipment. Figures IV-25, IV-Z6, and IV-27 are pictures
U

of footpad 2 imprints simulated in three soils with different ranges of particle size.

The simulated imprints of footpad 2 best duplicate Surveyor III pictures at a location

g35 cm out from the present position of footpad 2, along the centerline of leg 2; and 2

to 3 cm perpendicular to the leg 2 centerline (toward footpad 3). Because small

Uvariations in imprint location (±0.5 cm) can be observed in the television pictures,

f_he above dimensions are considered accurate within ±3 cm.

The simulated imprints of footpad 2 in Figs. IV-25 to IV-27 are all made with W

crushed basalt. Soil particle size ranges in the soil models are: Fig. IV-25, clay-

size particles; Fig. IV-26, a mixture of 50% clay-size particles and 50% sand-size

particles; and Fig. IV-27, sand-size particles 3. The 14 ° illumination angle in Figs.
U

IV-25 to IV-27 duplicates the lunar morning Sun/Surveyor III landing site conditions

Uat 08:00, Day 110. All three simulations reproduce the honeycomb texture of the

bottom of the footpad as seen in Fig. IV-8; however, at a 14 ° light source elevation

angle, f_his pattern shows up clearly only in the pictures of the clay-size and the H

sand/clay-size models. Of these two models at that Sun angl%the mixed particle

size soil reproduces the light reflecting characteristics seen in Surveyor III pictures g

i

better than the clay-size soil. In Surveyor III pictures, the observed brightness of

the bottom surface of the footpad imprint is somewhat greater than that of the
Jundisturbed lunar surface at this lighting angle. In the simulated models {Figs.

IV-25 and IV-26_the observed brightness of the imprint in the sand/clay mixture is

Bslightly greater than that of the undisturbed surface, whereas the brightness of the

imprint in the clay-size soil is much greater than that of the undisturbed surface at
am

the same lighting angle. It is recognized that other phenomena besides grain-size H

variation may explain the above described brightness effects on the Moon.

The irlaprint of footpad 3 from Landing Event 3 is shown in Fig. IV-9. Television

pictures of simulated footpad imprints indicate that the centerpoints of the present

location of footpads 2 and 3 are both 30 to 40 cm from the first imprints of Landing
U

Event 3 and in the same direction. Lines connecting the centers of the initial

93In the MIT system of grain-size classification, clay-size particles are <0.002 ram;

silt-size particles have diameters >0. 002 and <0.06 ram; and sand-size particles
have diameters >0.06 and <2.0 ram.
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impacts and those of the final positions of footpads 2 and 3 point along an azimuth

of 280 ° from north. This azimuth should represent the general direction of space-

craft movement during Landing Event 3_ If so, then Landing Event 2, and possibly

Landing Event I, should have occurred along an azimuth of I00 ° from the Surveyor III

present position. This value compares well with the estimate of due east obtained

from the photographs of the second landing event.

Depth of footpad 2 and 3 penetrations during Landing Event 3 have been obtained

from measurements of the model imprints at SETL that best duplicate Surveyor Ill

pictures, as well as from measurements on Surveyor III pictures. The most'accurate

measurement of penetration could be made for footpad 2 because of better picture

quality and more photographic coverage of imprint area. Model imprint simulations

indicate that the depth of penetration across each imprint was not uniform. The foot-

pads can rotate during the landing about a horizontal axis perpendicular to the space-

craft leg. Pictures indicate that the at-rest orientation of the footpads, relative to

the spacecraft x-y plane, are:

(1) Footpad 2: outer edge tilted downward 12 ±2 °.

{2) Footpad 3: outer edge tilted downward l0 ±2 ° .

From simulation studies, a preliminary estimate of the average depth of

penetration of footpad 2 in making the dual imprint is between 1 and 3 cm; for footpad

3_the imprint is approximately 3 to 5 cm deep.

4. Analysis of Footpad Imprint Pictures

Analysis of pictures of footpad imprints has included a study of the spacecraft

shadows on the lunar surface material. Using the size and location of spacecraft

features and the direction of the Sun, calculations can be made about the footpad

penetrations and about the topography of the disturbed material around the footpads.

Preliminary results have indicated that the average footpad penetration for

footpads 2 and 3 in their final resting positions is less than 2.5 cm. However, both

of the footpads appear to be tilted, outward edge down, to an angle of 8 to 12 ° These

results are in good agreement with those obtained in the simulations (Section IV-C-3).

The imprint produced by the first two impacts of footpad 2 during Landing

Event 3 has an estimated average depth of 2. 5 cm. The deeper imprint caused by

footpad 3 is surrounded by some of the ejected material that forms a sloping wall

IV-17
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,everal centimeters high. The depth below the original level is estimated to be

about 5 cm. The extent of the area over which the material was ejected indicates

_hat much of the material was removed from the impact hole. The relative height

of footpad 3 in its final position indicates that possibly it is resting on a patch of the

throwout material. Some of the clumps of soil beyond the footpad form a ridge a

feb. centimeters lower than the top of the footpad.

Figure IV-19 shows a narrow-angle view of the imprint formed by footpad 1

during Landing Event Z. The depth of penetration at the left edge is 4 cm; the angle

of the left imprint edge to the horizontal is about 60 °

5. Estimations of Soil Parameters

Because of the horizontal velocity and surface slope associated with the

landing of SurveyorlII, the vertical loads on the surface during landing are more

difficult to estimate than for Surveyor I, which landed nearly vertically on a near

horizontal surface. However, it is quite certain that the vertical dynamic loads

developed during Landing Event 3 were lower than those for Surveyor I. Prelimi-

nary estimates of the vertical landing loads when compared with estimated footpad

penetrations indicate that, at least as far as dynamic penetration of the material is

concerned, the soils at the two Surveyor landing sites are similar. For Surveyor IlI,

a maximum dynamic pressure level of Z. 8 x 105 dynes/cm Z was estimated from the

simulated landing studies (Section IV-B-l).

The imprint in front of footpad Z (Figs. IV-16 and IV-8) is estimated to be

Z. 5 cm deep. If the material were completely frictionless, then the cohesion

required to support the 45 ° slope edge of the imprint would be at least 30 dynes/cm z.

If the material were cohesionless, its angle of internal friction would be at least 45 ° .

The left rim of the impression attributed to footpad 1 during Landing Event Z (Fig.

IV-19) is estimated to have a slope of about 60 ° to the horizontal with a height of

about 4 crn. If the material were frictionless, the cohesion would be at least 10 Z

d)'nes/crn z to support this slope under lunar gravity; if the material were cohesion-

l*ss. then its angle of internal friction would be at least 60 ....

An upper bound for the cohesion can be obtained from the bearing strength.

For a frictionless material the contribution of cohesion to bearing strength is

approximately six times the cohesion if soil failure is by general shear and four

',_r=_,s the cohesion if failure is by local shear. Thus, with a bearing capacity of
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where PZ is the soil density after local shear. During the initial stages, with an

assumed initial velocity of 150 cm/sec, then Pi < 7 x 104 dynes/cm z, h = 0, and

_2 = Z. Z5 x 104 cmZ/sec 2, so

PZ p 7 x 104
< = 3.1 g/cm 3 (3)

P2 -p Z. 25 x 104

If it is assumed that the density of the compressed soil after failure is Z g/cm 3, the

density of the undisturbed material at the surface is 1.2 g/cm 3 or less. Or if it is

assumed that the density of the compressed soil after failure is 1.7 g/cm 3, the

density of the undisturbed material at the surface is 1.1 g/cm 3 or less. This

analysis applies only to the top 0.5 cm of the lunar surface material, and is

sensitive to the assumed initial velocity. Somewhat lower limits were estimated

earlier for the Surveyor I site (Ref. IV-7).

Particle size of most of the lunar soil beneath and close to the spacecraft is

less than [he resolution of the television camera (approximately 1.0 mm at footpad

distance). For rock particles larger than 1.0 mm seen throughout the entire field

of view of the television camera, particles appear to be relatively well graded,

i.e., the particles have a continuous size gradation from the 1.0-ram minirnum

resolution up to [he maximum size present. It is expected, therefore, that particles

with diameters less than 1.0 mm are also well graded.

As with Surveyor I, the appearance of the disturbed lunar material in the

vicinity of the footpads is suggestive of material similar in mechanical properties

to a moist terrestrial soil containing a fair amount (>10%) of fine silt or clay-size

particles (less than about 10 microns).

6. Strength Estimate of Lunar Rock

Figure IV-28 is a photograph of a rock fragment of about 1.2 cm in diameter

held in the jaws of the surface sampler. Scott, Roberson, and Clary (Section V) give

dimensions and applied forces and pressures for the rock fragment. During this time:

the rock fragment apparently popped out of the jaws of the surface sampler between

television picture frames and was not subsequently located on the ground. The

maximum force available (Z5 newtons) was applied to this rock fragment in an attempt

to determine its strength. Maximum force was applied to the rock fragment for

IV-ZO

I

I

I

I

I

I

I

I

n

II

I

I

I

g

I

I

if

g

i



I

I

I

I

I

I0
I

I

I

I

g

I
io
I

I

i
!

I

JPL Project Document 125

10 to 15 minbefore it was lost. Therefore, the breaking strength was equal to or

greater than the stress applied. Maximum pressure was applied to the rock frag-

ment along the edge of the sampler scoop (1 mm thick). Assuming a contact length

of 1.Z cm, Scott et al, estimated a pressure of about 2 x 10 7 dynes/cm 2. This is in

the range of crushing strength for rather weak rocks such as some tufts, siltstones,

and claystones. Thus, the rock fragment must be at least as strong as these types

of terrestrial rocks.

Rocks are generally an order of magnitude (or more) weaker in tension than

in compression. Their shear strength is also generally much lower than their

compressive strength. Therefore, it is possible that local tensile or shear stresses

developed in the rock fragment were large enough to fracture stronger rocks than

the terrestrial rocks mentioned above. Analyses will continue on the stresses

developed in the rock fragment, and experiments will be conducted with a model of

the surface sampler jaw using various rock types in order to improve the estimate

of minimum strength for the rock fragment.

D. Surnrnar 7

In addition to the expected data, the unplanned triple landing of Surveyor ILI

provided other unique information. Based upon these preliminary data, the mechan-

ical properties of the lunar surface at the Surveyor iii landing site appear to be

similar to those at the Surveyor I site. The fact that the estimates are similar,

although derived from two different landing conditions (lunar mare vs lunar crater)

lends credence to these estimates.

The three landings were progressively further down into a crater, the last

two separated by a distance of 11 to 14 m. Footpad imprints of the second landing

have been detected and verified by various techniques.

The preliminary estimate of the lunar soil static bearing capability, as

determined by the Surveyor III spacecraft landing interactions with the Moon, appears

to be in the same range as that of Surveyor I, i.e., Z x 10 5 to 5.6 x 10 5 dynes/cm Z

(3 to 8 psi) for a depth of penetration of 2.5 to 5 cm and for an area equivalent to

that of a footpad. This range of values will be narrowed as the computer simula-

tions of the landing are refined. However, there appears to be a difference in

bearing capability of the lunar soil between the locations of footpads Z and 3.

A trench-like disturbance in the second landing event area is attributed to the

vernier engine erosion of the lunar surface. The small amount of lunar material

IV-Z1
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deposited on the spacecraft and the fogging of the television camera are possibly the !

effects of such erosion, which did not result in serious mission operational limitations

or failure. I

Pictures of the areas around footpads 2 and 3, in the final resting position,

show several imprints and skid marks which afford the following interpretation of I
soil properties:

(1) Footpad imprint simulations suggest that the lunar surface material I
contains a substantial amount of particles finer than sand size (0.06 ram).

The particle size distribution appears to be relatively well-graded for

sizes above the camera resolution (1.0 ram); therefore, it should be i

reasonable to extrapolate this size distribution down to 0.01 ram.

(Z) Imprints and soil throwout patterns suggest a low compressibility of the I

lunar surface material.

(3) Difference in footpad 2 and 3 penetrations may be the result of the
complex landing dynamics or of soil inhomogeneity.

(4) An upper bound can be determined for the lunar soil cohesion from the I
bearing strength by assuming that the material is frictionless. For a

5. 6x105 dynes/cm 2 (8 psi) static bearing capacity on the surface, the

average cohesion down to a depth of about 20 cm should be less than I

lo4X105 dynes/cm 2 (2 psi). A lower bound for the average cohesion

for the top few centimeters of soil obtained from the height of standing I

slopes of imprints is 102 dynes/cm 2 {1.5x10 -3 psi), assuming the

material is frictionless. If it were cohesionless, an angle of internal I
friction of at least 60 ° is indicated.

Preliminary estimates of the minimum strength of a lunar rock fragment
picked up by the surface sampler indicate that it is at least as strong as weak

terrestrial rocks, such as some ruffs, siltstones, and claystones.

Ranges for the elastic moduli of the upper few centimeters of the lunar surface B

were obtained from analysis of spacecraft oscillations following the landing, These

preliminary estimates indicate a rigidity modulus and a shear wave velocity lower !

than those for loose terrestrial sand.

!

!
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HIGH- GAIN ANTENNA.

COMPARTMENTA_ _ _L'_; ' _;

SOLAR PANEL

FOOTPAO |

VERNIER ENGINES (3)

SHOCK ABSORBER 2

'._, SURVEY TV CAMERA

_= _L" LEG 2 CRUSHABLE BLOCK (3) (SMSS)

ECTIONAL

ANTENNA B

FOOTPAD 2

FOOTPAD 3

MECHANICS
SURFACE SAMPLER

Fig, IV-I. Surveyor III spacecraft model
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Fig. IV- 2.
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Dimensions of landing gear assembly
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(a)
STRAIN GAGE

ATTITUDE

_____RGET

(b)

(c)

\\

Fig. IV-3. Sequence of landing gear positions during

a landing. Assembly is shown fully extended in (a);

during landing, the shock absorber compresses and

the footpad moves up and away from the spaceframe,

as shown in (b); assembly is shown re-extended after
landing in (c).
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|

Fig. IV-4. Photograph, taken before launch, of footpad 2.

Ballast weights are visible on top of footpad.
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°

_ INCHES .... • '

]

' i

Fig. IV-5. Photograph of bottom of a Surveyor footpad.

Footpad has been lightly loaded in vertical compression,

thereby exposing the honeycomb pattern.
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Fig. IV-6. Sketch showing events during landing of
Surveyor III on the Moon
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FOOTPAD

VECTOR OF FOOTPAD 3"_' \

MOVEMENT _

\

/
DIAMETER OF CIRCLE THROUGH /

FOOTPADS = 3.8

FOOTPAD I "J

(FOOTPAD DIAMETER = 30 cm)

FOOTPAD 3 IMPRINT:

PENETRATION = :3 TO 5 cm

,,,..,.,.

OF IO0-_'j

_._ 14 °

(FOURTH IMPACT) -_ y

0 30 (SO 90 IZO
I,,,,I I I I

CENTIMETERS

Fig. IV-7. Preliminary evaluation of relationships during

and after Landing Event 3
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r

i ._ .

Fig. IV-9. Lunar surface near footpad 3, with portions of

Surveyor III spacecraft. Image of footpad top is white

ellipse at left center. Imprint attributed to first impact of

footpad 3 during third landing event is to lower right of

footpad, below boom of omnidirectional antenna (Day 120,
13:42:24 GMT).
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Fig. IV-11. Histories of the axial forces in the shock

absorbers of the three landing legs o£ Surveyor III during the
entire landing sequence, touchdown to final rest
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Fig. IV-12. Histories of the axial forces in the shock

absorbers of the three landing legs of Surveyor III during the

first landing event. (Time proceeds to the right.)
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Fig. IV-13. Histories of the axial forces in the shock

absorbers of the three landing legs of Surveyor III during the

second landing event. (Time proceeds to the right.)
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Fig. IV-14. Histories of the axial forces in the shock

absorbers of the three landing legs of Surveyor III during the
third landing event. (Time proceeds to the right.)

IV- 38

g

g

I

I

!

l[

I



I

I

I
I

I

!

!

!

!

!

I"
I

I

!

II

e

_p

0

,? - _

IP

f

L , . _,

/

k

°,-4

"0

.,..._[-I

"_ o

_o
,o

t""

i,-,-4 o,

_o

,-,-4

0
>,

u RI

d_
0

70

IV- 39



Fig. IV-16. Narrow-angle mosaic of footpad 2 and of the

imprints made during the third landing event (Day 116,
between 07:06:46 and 09:27:06 OMT).

!

|

|

IV-40



I

I

I

I

I

I
I

I

I

I

|

I"
!

!

|

!

I

JPL Project Document 125

_ .• o

Z

• •

• • •

8
O

_ r

Fig. IV-17. Narrow-angle view of a portion of the imprint

attributed to footpad 3. Imprint is at lower right. This

photograph shows part of the area covered in wide angle by
Fig. IV-9 (Day 120, 14:56:04 GMT).
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Fig. IV-18. Wide-angle view of surface area looking over
leg 3. The clumps and pattern of darker material indicate

the extent of the throwout around footpad 3, •which can be

seen at lower right (Day 121, 12:12:09 GMT).
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Fig. IV-20. Narrow-angle mosaic of lunar surface that was

exposed to erosion by vernier engine 3 during the second

landing event. This is an enlargement of a portion of Fig.

IV-10 (Day I16, 08:37:36).
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Fig. IV-21. Narrow-angle view of the top of footpad 2. Small particles

of lunar material can be seen on the pad surface. The two disks and

lockwires are part of the ballast weight assembly, attached to the foot-

pad at Cape Kennedy, Florida, before launch (Day IiI, 07:39:59 GMT}.
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Fig. IV-22. Wide-angle view of the two auxiliary mirrors mounted to

the spaceframe of Surveyor III. The dark circles overlain by grids
indicate the surface areas directly below crushable block 3 and vernier

engines 2 and 3. This picture was taken before launch using the space-
craft television camera.
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Fig. IV-23. Wide-angle view of the auxiliary mirrors on Surveyor
III. The shadowed areas under crushable block 3 and the. vernier

engines are visible in this frame (Day i17, 11:17:45 GMT).
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Fig. IV-24. Comparison of histories of axial forces in the three

landing legs of Surveyor Ill during the third landing event, with

corresponding data obtained from an analytical landing simulation.

Conditions for the simulated landing are: horizontal landing velo-

city, 0.6 m/sec; vertical landing velocity, 1.5 m/sec; landing
surface slope, 10.4 °; effective friction coefficient between

ground and footpads, 1.0.
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Fig. IV-25. Laboratory simulation of footpad and imprint, made on

Earth with full-scale model of Surveyor. Surface material: finely

crushed basalt, particle size in clay range. Lighting angle similar

to that in Fig. IV-8.
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Fig. IV-26. Laboratory simulation of footpad and imprint, made on
_arthwith full-scale model of Surveyor. Surface material: crushed
basalt, 50_/0fine particles (in clay range) and 50"/0coarse (in sand
range). Lighting angle s_milar to that in Fig. IV-8.
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Fig. IV-27. Laboratory sin_ulation of footpad and imprint, made on

Earth with full-scale model of Surveyor. Surface material: crushed

i basalt, particle size in sand range only. Lighting angle similar tothat of Fig. IV-8.
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Fig. IV-28. Narrow-angle photograph of lunar rock in jaws of

surface sampler (Day 121, 15:21:05 GMT)
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N69 - 786 T

V. SOIL MECHANICS SURFACE SAMPLER: LUNAR
SURFACE TESTS AND RESULTS

R. F. Scott, F. I. Roberson, and M. C. C lary

I
I

I

I

I

I
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After the success of Surveyor I in meeting the objectives of the engineering

flight series, selection from among candidate experiments led to the inclusion of

the Soil Mechanics Surface Sampler (SMSS)on the payload• Though originally

planned for later Surveyors, the SMSS was modified to fit the reduced telemetry and

commanding capability of the earlier spacecraft• Specifically, the SMSS was adapted

to the mounting location and the electronics interface of the approach television

camera. This required a concentrated, short-term effort to modify, build, and

test the SMSS to meet the demanding interface requirements•

Modifications to the SMSS included removal of the strain-, acceleration-, and

position-measuring systems originally planned, and incorporation of a means for

measuring current drawn by the motors during operation. A description of the

modified device, its performance on Surveyor III, and some conclusions regarding

the lunar surface material drawn from the experiment are presented•

A. Subsystem Description

The SMSS subsystem consists of a mechanism, an electronics auxiliary,

installation substructure, and wiring harnesses. The mechanism is an electro-

mechanical device that can pick, dig, scrape, and trench the lunar surface, and

transport lunar surface material. The electronics auxiliary provides command

decoding, data buffering, power management, squib firing, and control of the

mechanism, motors, and clutch. The installation substructure supports the

mechanism and the auxiliary on the spacecraft, while the wiring harnesses provide

the electrical interconnections with the spacecraft and between units within the

subsystem•

• Extension/Retraction Mechanism

The extension/retraction mechanism is designed to support and to position the

scoop and to permit operations within the space envelope shown in Fig. V-1. The

V-1
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mechanism rotates about azimuth and elevation pivot points so as to provide

movement in spherical coordinates.

|
!

I
2. D rive System I

Three electrical motors operating through appropriate drive trains furnish

mechanical energy to manipulate the SMSS in extension/retraction, azimuth, and

elevation. An electromechanical clutch disengages the elevation drive train upon

Earth command, allowing the mechanism to be impelled downward by a pretensioned

elevation torque spring to strike the lunar surface. A fourth electric motor opens

and closes the scoop. The motors and clutch draw electrical power from the space-

craft unregulated bus through the electronics auxiliary, which also provides switch

control.

I

I
I

I
3. Scoo R

The scoop consists of a container, a Sharpened blade, and an electrical motor

to open and close the container. A small footpad is attached to the scoop door to

present a flat surface to the lunar surface. The scoop is capable of holding solid

I

!

lunar material up to approximately 3.2 cm (1.25 in. ) in diameter, and up to 100 cm 3 g
{6 in. 3) of granular material.

Before the flight of Surveyor III, an SMSS motor current versus force calibra-

tion test was performed on the spacecraft at Cape Kennedy, Florida. The test was

performed under ambient temperature conditions at an unregulated voltage of _. v..

The purpose of this test was to accumulate information that would be used to draw

conclusions regarding the lunar surface mechanical properties. The results of this

test are not tabulated, since a spacecraft malfunction prevented measurement of

• motor currents on the Moon.

4. Motor Control

I

I

!
I

I

II

i

Either a 2-sec or a 0.1-sec period of operation of any of the motors can be

selected by Earth command. The angle or distance through which the Sh/ISS mo-_es

by these commands depends on the motor involved, its condition, temperature,

voltage, and the working load.

v-z |
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B. Functional and Operational Description

The SlkdSS, as modified for Surveyor I/I, is mounted in the location formerly

occupied by the approach television camera. This position lies below the survey

television camera, between the auxiliary battery and leg 2, as seen in Fig. V-Z.

The area of operation, for a nominal surface plane through the three footpads, is

shown in Fig. V-1. Since the azimuth axes of the SMSS and the camera are not

collinear, the viewing angle, through the television system, of the scoop varies with

the scoop's position. When the scoop is positioned near footpad Z, the camera looks

directly down the extension arm, which largely obscures the scoop itself. When

positioned near the auxiliary battery, a slight side view of the scoop is afforded.

As the SMSS is extended, the angle that the scoop makes with the test surface

varies. The extension arm drawing in Fig. V-1 illustrates the effect; the photo-

graphs of the scoop in contact with the surface [Fig. V-3(a) and (b)] show the

resulting angle for two extension positions on a nominal, flat surface. The flat

surface of the scoop door is normal to the tangential elevation motion at maximum

exte ns ion.

To make optimum use of operating time during a mission, a standard sequence

of testing events has been established. Automatic, taped sequences of spacecraft

commands have been prepared and provide the proper motion based on preflight

tests to accomplish the planned operations. Corrections for variations in motion

sizes occurring on the Moon are provided by manually commanding the mechanism

after a given taped sequence is complete. Table V-I lists the size of each of the

motions indicated by preflight calibration. These motion increments occurred at a

motor voltage of 22.0 v and a motor temperature of 70°F. For comparison, the

size of motion increments estimated during Surveyor III lunar operations also are

listed. More precise calibrations will be made later.

The originally planned initial standard sequence of tests included six static

bearing tests and a single trench. Provisions were made for performance of

optional tests, based on decisions made during lunar operations. Such optional

tests were to include: impact tests, picking up rocks, trenching deeper, and bearing

tests on subsurface material.

A static bearing test is performed by exercising the extension and azimuth

motions until the scoop is positioned above the desired surface point, then, with the

scoop door closed to provide the flat surface for contact, driving the scoop downward

V-3
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Table V-1. SMSS motion increments (no load)

I

!1

I
Motion, sec

2.0 (.extend)

Z. 0 (retract)

Test value a

8.6 cm (3.4 in.)

8.1 cm (3. Z in.)

b
Value on lunar

surface

4.4 cm (1.75 in.)

3.8 cm (1.5 in.)

O. 1 (right azimuth)

O. 1 (left azimuth)

z. o (up)

2.0 (down)

1. 5 °

1.5 °

6 °

9"

l,o 5 °

1.5 °

6 °

9 °

aNominal value, based on unit and system level tests at three extension
distances.

bpreliminary estimate based on television observation.
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with the elevation motor until the desired penetration is achieved, or until the motor

is stalled. An open scoop static test can also be carried out.

For an impact test, the scoop is again positioned above the desired surface

point, and the elevation drive clutch is actuated, allowing the scoop to drop to the

surface, accelerated by gravity and the torque spring attached at the elevation axis.

An impact test can be performed with the scoop open or closed, as desired.

A trenching operation is performed by driving the scoop down into the surface

with the door open, then drawing it toward the spacecraft with the retraction motor.

Material can be removed from the trench by retracting the scoop until it is clear of

the surface, forming a pile of soil at the foot of the trench, or by closing the scoop

and lifting the material out of the trench.

The operations of the SMSS experiment must be closely monitored by the

survey television camera, since position-indicating telemetry is not available.

Sequences and priorities for tests are therefore dependent upon viewing conditions,

spacecraft shadow patterns, and the performance of the television system.

C. Mission Description

1. SMSS Engineering Performance

During the flight phase of Surveyor III, a heater was employed in the SMSS

electronics auxiliary, in spite of which the temperature of the auxiliary reached

-33°F. The designed survival temperature for the unit was -67°F.

After touchdown, during the spacecraft assessment period, the heater

remained off for Z. 5 hr, allowing the electronics auxiliary temperature to drop to an

estimated -130°F. Thermal power was restored, and the temperature of the

auxiliary remained within operating limits from initial turn-on on Day 111 (GMT) 1

until operations were concluded on Day lZZ.

During the 18 hr, 22 min_of total "on time" for the SMSS auxiliary in the first

lunar day, 5879 spacecraft commands were sent to it. All commands were correctly

coded, and 1898 SMSS commands were generated. The SMSS and its electronics

auxiliary responded correctly to each throughout this period.

All times of SMSS events are given in Greenwich Mean Time. All SMSS experiments
were performed during periods of lunar visibility from the Deep Space Station at
Goldstone, California.

V-5
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Following touchdown, it was found that some of the Surveyor III telemetry was

not reliable so that no valid SMSS motor current data could be obtained.

I

I

I
. Lunar Surface Operations I

Determination that the temperature of the SMSS electronics auxiliary was high

enough for operation occurred late in the Goldstone view period of Day 111. The

decision to turn on the SMSS power was followed by a short series of tests to assess

the condition of the electronics and to attempt a solution of the spacecraft telemetry

problems. This section will briefly describe SMSS operations on Day 111 and

subsequently. The locations of all tests are shown in Fig. V-4.

l
l

I
a. Day 111. Initial operations began according to the standard sequence, and

included firing of the pyrotechnic locking device (to release the SMSS from its stored

position) and transmission of four commands to extend in the 2-sec timing mode. A

television picture to verify operation of the extension motor showed that extension

had occurred, but that the distance extended was less than expected.

The sequence of four commands was repeated, and television verified that the

S]VISS scoop was then at the originally intendcd position. A standard sequence was

next initiated and included commands to extend; retract; move right, left, up, and

down. Completion of these motions showed other SMSS motors to behave as specified.

The scoop door motor and the clutch actuator were not tested at this early time.

Glare in the television optical system due to Sun angle had prevented a complete

television survey of the area of SMSS operations. Since narrow-angle coverage was

available only for the area near the auxiliary battery, a departure from the standard

sequence was decided upon, and the scoop was next extended and positioned above

the surface near the auxiliary battery, in preparation for the first static bearing test.

The Goldstone view period ended as the bearing test sequence was being

initiated, with the result that the SMSS scoop did not contact the surface. The final

position of the deployed mechanism on this day is shown in Fig. V-5.

b. Day 112. It had been intended at the end of Day 111 operations that the first

bearing test would be performed on Day 11Z at the final Day 111 position of the SMSS.

Prior to further SMSS operations on Day 112, television surveys were conducted,

including a narrow-angle survey of the SMSS operations area. However, during the

l
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television operations, a malfunction occurred in azimuth stepping whenthe camera

was stepping clockwise, or to the right azimuth. Accordingly_ it was decided to move

the SMSS into the field of view of the TV camera and to start testing the lunar surface.

The SMSS was stepped right twelve 0.1-sec steps, extended five 2-sec steps, and

down two 2-sec steps to locate it at the surface. Another 2-sec down command

drove the closed scoop into the surface at Bearing Test 1, shown as point A in

Fig. V-4. After elevating the scoop clear of the surface, it was moved right and

extended, in preparation for a trenching operation. The scoop was opened for the

first time and driven down into the surface, using three 2-sec lower commands. A

total of sixteen 2-sec retract commands, with television observation verifying per-

formance, were used to drag the scoop in forming Trench 1, located at point B in

Fig. V-4.

Because of the difficulty encountered in the camera stepping, it was positioned

at +1 5 ° azimuth, and the SMSS was moved left to this position, near the auxiliary

battery. There the camera could follow the retraction motion of the SMSS by

stepping its mirror in elevation only. Atrench was started by lowering the scoop

(door open) into the surface, and retracting eighteen 2-sec steps, allowing the

camera to record the operation without use of the aximuth stepping drive.

At the completion of this trenching operation, which constituted the first pass

through Trench 2, shown at point C in Fig. V-4, the SMSS was elevated, extended to

the head of the trench, and driven down into the surface in preparation for the second

pass through the trench. After 18 retract commands, television observation

revealed that the scoop had traveled only 10 cm (4 in. ), indicating that it was stalled

near the head of the trench.

A narrow-angle survey of Trench 2 completed the activities for the Day 112

period. Figure V-6 shows, in a wide-angle photograph, the condition of the

operation at the end of the pass, with Bearing Point 1 and Trenches 1 and 2 visible.

I

I
I

g

l

c. Day 113. Objectives for this day's operation of the SMSS experiment were

to continue in Trench 2 to the maximum depth possible.

To clear the scoop of the stalled condition at the head of the trench, it was

extended once and elevated twice, all in the 2.0-sec timing mode; then, two

retraction and two down commands placed the scoop back in the trench, on the

spacecraft side of the point of obstruction. Eighteen 2.0-sec retract commands

were transmitted; after a television survey, twelve additional transmissions

completed the second pass through Trench 2.

V-7
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A television survey of the trench preceded repositioning of the scoop to the

head of the trench in preparation for the next drag. The scoop was driven down,

again at the head of the trench, and a series of thirty Z.0-sec retraction commands

given. Television observation showed the scoop traveled less than in the previous

trenching pass, indicating loading at the limit of its retraction capacity. The thirty

commands were repeated, followed by an extension step and three 0.1-sec elevation

steps. An additional fifteen 2.0-sec retraction steps brought the total to 75 retrac-

tion commands for the third pass through the trench. The Goldstone view period

ended with narrow-angle television surveys of the trench_and the SMSS remained in

position at the foot of Trench 2.

d. Day 114. A survey of Trench 2 was the only operation related to SMSS.

Solar eclipse studies were made.

e. Day I 15. High temperatures precluded SMSS operations during this

Goldstone view period.

f. Day 116. It was decided to restrict SMSS operations to the area near

footpad 2 to avoid unnecessary stepping of the camera mirror.

Study of pictures from the Day 113 survey of Trench 2 revealed a solid object

(contact 1, point D, in Fig. V-4), felt possibly to be a rock, directly beneath the

scoop in its last position. Some experiments with a full-scale model spacecraft with

an SMSS attached provided a workable sequence of commands to pick up the object

without the aid of television, since the camera position precluded narrow-angle

viewing of 1:he scoop. The scoop was visible in wide-angle television without

violating the stepping constraint. Operations for Day 116 began with this sequence,

which resulted in closing the scoop door on the object.

Elevation of the scoop revealed that the object had apparently been crushed in

being retrieved. It was decided, however, to place the material in the scoop on the

surface of footpad 2. The SMSS was extended eight 2.0-sec steps, rotated right

thirty-six 0.1-sec steps, and viewed through the television system. Because of an

uncertainty in the precise extension distance, the scoop was moved left, clear of the

footpad, and lowered to the surface, to make a mark indicating its position. After

elevating the scoop clear of the surface, study of the mark indicated further extension

was required. The SMSS was extended two 2.0-sec steps, moved against the right

V-8
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azimuth stop in five 0.1-sec steps, and lowered to the surface of footpad 2. The

scoop door was opened, the scoop elevated and lowered to jar loose the material,

and the scoop moved up and to the left, "clearing the television view of the footpad.

The position of the SMSS at the end of the operation, as well as the lunar surface

material on the footpad is shown in Figs. V-7 and V-8. A narrow-angle, color

filter survey of the material was conducted before the end of the Goldstone view.

g..Day 117. Operations on Day 117 consisted of moving left from footpad Z

and extending the SMSS. Bearing Test 2 was performed by driving the scoop down

four 2.0-sec steps. Bearing Test 3 was subsequently performed after moving

further right and still further out in extension. These two bearing tests are located

at points E and F in Fig. V-4.

The SMSS scoop was then positioned left, driven into the surface with the scoop

open and Trench 3 was started. This trench, shown at G in Fig. V-4, was dug by

retracting the SMSS in the 2.0-sec modea total of 26 steps. A special series of 26

television pictures was taken during this trenching operation_ one frame after each

retraction step. Figure V-9 shows the completed Trench 3 and Bearing Point 2.

h. Day 118. At the close of SMSSoperations on Day 117, an object of higher

albedo than the surrounding surface was observed near Trench 3, at Contact Point 2

(item H in Fig. V-4). Operations for Day 118 began by placing the scoop with the

door open, over the object (Fig. V-23), and with close coordination between narrow-

angle television viewing and SMSS commanding, the object was picked up in the

scoop.

After positioning the scoop over footpad 2, and opening the scoop door, a short

series of O. l-sec elevate and lower commands were issued to ensure that the object

was freed from the scoop. This motion freed a portion of soil that had remained in

the scoop since the last trenching operation. Subsequent television observation of

the footpad showed the pile of material with the deposited object apparently covered.

Attempts to uncover the object, byplacing the scoop tip on the footpad and

retracting it, succeeded in removing some material from the footpa d , leaving an

object on the footpad tentatively identified as the one picked up.

Items J and Kin Fig. V-4 represent further trenching operations at Trench 3.

The scoop was positioned near the head of the trench, to the left, and retracted,

widening the trench to three scoop widths. Figure V-10 shows the widened trench,

V-9
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just prior to conducting Bearing Test 4, shown at item L, in Fig.

l_ttorn of the trench.

V-4, in the

I
I

I
i. Day 119. A series of impact tests, shown as items M through 1_ (Fig. V-4)

were performed starting with a drop from a single 2.0-see elevation above the

surface at Impact Test 1. After assessing the impact result, the tests that followed

were performed by releasing the scoop from higher positions. Impact Tests 2 and 3

were performed by elevating the scoop two 2.0-see steps above the surface; Impact

Tests 4, 5, and 6 were accomplished by elevating the scoop four 2.0-see steps.

At the conclusion of operations, the SMSS was exercised in several of its

operating modes to record the size of motion increments provided by the motors,

to see whether any changes had occurred to this time. There were none observed on

the basis of preliminary estimates.

!
I

!
I

I
j. Day 120. On Day 120, SMSS operations were again shifted to the area near

the auxiliary battery. The SMSS was extended to near maximum extension, the

scoop closed, and Bearing Tests 5, 6, and 7 were performed at a single azimuth

position, retracting the scoop between tests. During this bearing test sequence,

contact was made with a small surface object at item T in Fig. V-4, in which the

three bearing tests are shown as items S, U, and V.

By stepping the SMSS right two 2.0-see steps and performing Impact Tests 7,

8, and 9, with extension motions between, the three impact points shown at W, X,

and Y on Fig. V-4 were placed on a line parallel to that of the bearing tests.

Stepping right two more 0.1-see steps, Impact Test 10 was performed. Elevations

of two 2.0-see steps for Impact Tests 7 and 8, and four 2.0:-see steps for Impact

Tests 9 and 10 were used.

..k. Day 121. Initial activities involved coordinating the position of the scoop

through narrow-angle television, and picking up the "rock t' turned up on the previous

day. The "rock" was gripped in the side of the scoop. The scoop was repositioned

to afford the best view of the rock (see Fig. V-11), and a complete color filter

survey was performed. While positioning the scoop to place the "rock" on the

surface nearby (since the camera could not at this time be moved to view footpad 2)

the "rock', slipped out, and thereafter was not visible on the surface in the immedi-

&t_ area.
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!
Three new trenching passes were made through Trench 2, using twenty,

I thirty-three, and twenty-four 2.0-sec retraction commands, respectively. Before

the last pass, four impacts with the scoop open were performed in the trench floor

I to loosen the material. Figure V-1Z shows the SMSS with the "rock" in thescoop

door, as well as Bearing Tests 5, 6, and 7 from previous operations.

I 1. Day 122. Sun angles for Day 122 dictated moving of SMSS operations to the

right, where available light permitted tests, and minimum camera stepping would be

required to follow sunset shadows. The television camera was moved successfully.

Impact Test 11 at position b in Fig. V-4 was performed on the undisturbed

surface with the scoop open, following a 2-sec elevation movement. Another test

from the same height, Impact Test !2, was repeated at position c because material

I from the the surface in Test 11 obscured the surfacedeposited scoop on Impact at

point b. A short trench was dug at point d, followed by Impact Test 13 at location e

I in the trench floor on subsurface lunar material. Final position of the SMSS, with
Trench 4 and several impact points visible on the surface below, is shown in Fig.

I V-13.

I D. Tests on Luna.__.________..___rSurface Material

Results of tests performed by the SMSS on the lunar surface and conclusions

I on the mechanical properties of the surface material, as deduced from the test

results, are presented here.

1. Tests Performed

Using the SMSS, many mechanical tests were performed from which calcula-

I tions of varying degrees of refinement can be made. In this report only the most
preliminary estimates of material properties are given, based on a very brief

I evaluation of the SMSS behavior and the photographic results. A summary of thetests from which mechanical properties can be derived is given in Table V-2.

!

|
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Test

Bearing 1

Bearing 2

Bearing 3

Bearing 4

Bearing 5

Bearing 6

Bearing 7

Bearing 8

Impact 1

Impact Z

Impact 3

Impact 4

Impact 5

Impact 6

Impact 7

Impact 8

Impact 9

Impact 1 0

Impact 1 1

Impact 1Z

Impact 1 3

Impact I4

Table V-2.

Time (GMT)

Summary of SMSS bearing and impact tests

Scoop

Force, closed (c)

dynes x 10 5 open (o)

Day 112, 05:07:01

Day 117, 08:45:20

Day 117, 09:21:55

Day 118, 13:32:44

Day 120, 15:35:31

Day 120, 15:45:42

Day 120, 15:48:50

Day 120, 15:59:18

Day 119, 09:27:02

Day 119, 09:42:02

Day I19, 09:49:04

Day I19, I0:08:29

Day 119, 10:16:45

Day 119, I0:26:40

Day 120, 16:17:06

Day 120, 16:24:57

Day 120, 16:32:45

Day 120, 16:41:30

Day 122, 12:38:33

Day 122, 13:63:40

Day 122, 13:30:37

Day 122, 14:07:29

49

27

22

27

27

4.5to9

27

29

, Penetration,

cm

c

c

C

C

C

c

C

c

C

c

C

c

C

C

C

C

C

C

O

O

O

c

,5

Z.5

1.9

O. 6

2.2

Compressed
clod

2.9

1.9

1.3

3.3

2.5

3.8

4.3

3.8

1.3

1.6

1.6

1.6

6.3

6.3

1.3

5.1

Drop height,
cm

(in trench
bottom.)

15

30

3O

6O

6O

6O

3O

30

60

60

15

15

15

78

V-12
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I 2. Bearing

There were eight bearing tests made with the SMSS door in the closed position

I so that an area 5 by Z.5 cm was to the lunarpresented surface. As seen in Fig.

V-3(a) and (b), the angle that the flat base of the scoop makes with the lunar surface

I varies with the extension distance of the sampler. Only in the extreme extension

position is the flat base aligned approximately parallel to the surface. Consequently,

as the scoop is pushed into the surface in the bearing tests, the material under the

scoop is forced down and the surface toward the spacecraft is observed to rise as the

soil is displaced, as shown in Fig. V-14(b).

When each trench was begun, the scoop was pushed into the lunar surface

I with the door wide open so that a much smaller area was presented to the surface;
consequently, greater penetration depths were obtained. These tests have not been

i analyzed, and no results from them are shown in Table V-Z, although general
penetrations of 3.8 to 5 cm (1.5 to Z in.) were obtained.

As a result of varying temperatures during the lunar day and different distances

I of extension of the SMSS, a range of forces can be applied to the lunar surface by the

tip of the scoop. It was originally intended that these forces be obtained directly by

I measuring the motor currents and using the preflight calibration data. However, the

lack of usable telemetered information on spacecraft motor currents precluded this.

I No temperature sensors were provided on the motors, and it was necessary to
estimate their temperatures from those measured on the spacecraft and temperature

differences assumed from preflight tests. The information on forces in the bearing

tests shown in Table V-Z was obtained from such estimates of motor temperatures

and the known extension distances of the sampler.

After each test of the SMSS scoop in the lunar surface and of the disturbed

surface upon removal of the scoop, pictures were obtained by the television camera.

Other pictures were obtained of each disturbance at various Sun angles on succeeding

days. These photographs have been used to obtain the penetration distances given in

I Table V-2 for both bearing and impact tests.
Prior to some bearing and impact tests, the SMSS was lowered to the lunar

surface by means of 0. I-see down commands to determine the surface location at

J the point. The commands were repeated until no downward motion was detected

after several 0.1-see commands. Although these operations imposed loads of 10 5

I dynes on //he surface, only a small amount of disturbance caused by the blade tip was

observed.

J V-13
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3. Trenching

Three trenches were dug in the lunar surface with the S1VISS. The first trench

was excavated with only a single pass of the sampler, whereas Trenches 2 and B

were subjected to repeated passes. Abearing test was made on the floor of Trench

3. A fourth small trench was performed for the purpose of carrying out an impact

test at a depth of 5 to 7.5 cm (2 to 3 in.) below the surface.

In general, the first pass of the sampler across the lunar surface for the

purpose of making a trench produced an excavation about 5 to 7.5 cm deep; the

second pass deepened the trench to a depth of 10 to 12.5 cm(see Fig. V-15}, and

a hhird pass produced a trench 15 to 17.5 cm in depth. The motion increments

produced by a Z-sec retraction command of the surface sampler vary with the load

acting on the sampler. When the force reaches a limit determined by temperature

and spacecraft voltage, the retraction motor stalls and no retraction is obtained.

It was found that the first pass in a trenching operation produced a trench of B8 to

50 cm long with about twenty 2-sec retraction commands. In the second (see Fig.

V-16) and third pass in each trench stalling of the motor was observed, and as

many as 75 commands were required to complete the third pass through Trench 2,

for example. There are two reasons for this behavior:

(1) When a trenching operation is begun at the surface, the material is free

to displace sideways out of the way of the advancing scoop. When the
F _

trench has been excavated to a depth of several inches, the soil scraped

from the trench floor accumulates and is not easily able to get out of the

way of the advancing fully-packed scoop, as can be seen in Fig. V-15.

(2} There is a possibility that the lunar material becomes stronger or

denser with depth.

Two tests were specifically designed to clarify this latter reason. In the first,

a bearing test was performed on the material at the bottom of Trench 3 at a depth

of 5 to 7.5 cm below the surface (Bearing Test 4}. In the second, two open-scoop

impact tests were performed on the undisturbed lunar surface adjacent to a trench

(Impact Tests 11 and 12), and an open-scoop impact from the same drop height above

the impact surface was made in the bottom of the trench at a depth of 5 to 7.5 cm

below the lunar surface (Impact Test 13).

V-14
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It is not possible at this time to make calculations regarding the lunar material

properties based on the trenching operation. Further evaluations of the lunar data

must be carried out in combination with laboratory tests with the SMSS. The reason

for the small motion increments of the retraction motor observed under no load

must be underslx_od before the retraction forces can be estimated.

4.

The bearing tests provide information on the static strength properties of the

lunar soil, and thus involve primarily its shearing strength in which the soil's

density plays a part. Impact tests were conducted in an attempt to obtain further

information on the density of the soil in the absence of the motor current data which

would have enabled the weight of a scoopful of soil to be measured. In such tests,

the penetration of the surface sampler into the lunar soil is resisted by both the

static strength of the soil and by the density of the material. The contribution of

the soil's density is greater as the impact velocity increases.

The SMSS is a flexible arm whose vibrations are excited both by the release of

the clutch which initiates an impact test and by the impact itself, so that a complete

analysis of the motion of the SIVISS during impact is Complicated. At this time, only

approximate comparisons with terrestrial laboratory experiments can be employed

to evaluate the soil's density from the impact tests. Fourteen impact tests from a

variety of drop heights were carried out at different locations within the reach of the

sampler on and below the lunar surface. The results of those tests are presented

in Table V-Z; their location is shown in Fig. V-4. The drop height given in Table

V-2 is at present approximate. For illustration, the result of Impact Test 3 is

shown in Fig. V-17.

5. Material Handling and Dumping

Following a trenching operation, it was frequently found that some of the lunar

soil remained adhering to the inside of the SMSS even when the soilwas considerably

disturbed. On occasion, this material fell out unintentionally on the undisturbed

lunar surface leaving patches or trails of excavated material as seen in Fig. ¥-18.

In the process of excavating the second trench, a lump of lunar material was

found below the scoop, whose door was closed on the lump in order to find out if

¥-15
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the material was solid or composed of an aggregate of finer particles. Since the

scoop door closed through the material with no observable difficulty 3 it was concluded

that the lump was in fact an aggregate. As a check, that portion of the lump pinched

off and enclosed in the scoop was transported to footpad Z and dumped on the footpad

for television observation. The material disaggregated on dumping, as seen in

Figs. V-7 and V-8.

At another location as shown at point H on Fig. V-4, a small object about 1 cm

in diameter with higher albedo than the lunar surface was picked up and transported

to footpad 2 in order to determine whether it was solid. During the dumping

operation on the footpad, more soil fell out of the scoop and buried the object, which

was, however, subsequently identified on the footpad. A third object, also of higher

albedo and approximately 2.5 cm in diameter, was located embedded in the lunar

soil adjacent to the head of the second trench. It was excavated and picked up in the

left side of the scoop, as shown in Figs. V-10 and V-11. In clasping it, the scoop

door exerted a force of about Z. 5 x 106 dynes (6 lb) on the object, which was restrained

by the edge of the scoop, which is 0.1 cm thick. If it is assumed that the bearing

area on the object was 1.2 cm long by 0.1 cm wide, then the scoop door exerted a

stress in the order of 2 x 107 dynes/cm 2 (300 lb/in.2) on the object. More of the

lighter surface of the object was apparent after it was picked up than when it was

embedded. The lower surface, as seen in Fig. V-11, is darker. The scratch in this

lower surface was probably made by the scoop in excavating the object and may

indicate that the lower surface is covered with the darker soil.

6. .Homogeneity of Lunar Soil

It can be seen from penetrations •recorded during the bearing tests that,

considering the probable variation in the force applied to the lunar surface, the

lunar material appears relatively homogeneous over the test area of 1.9 m z (2.0 ft2),

as seen, for example, in Fig. V-19.

However, with reference to the impact test data, it appears that somewhat

less penetration occurred for Impact Tests 7 through 10 in the vicinity of the

auxiliary battery than took place in Impact Tests 1 through 6 at similar drop heights

in the area closer toward footpad 2, as seen in Fig. V-20. It should be pointed out

that this variation may be due to changes in the drop heights caused by surface

sampler elevation motor changes and due to the spacecraft attitude, rather than

V-16
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developing as a result of differing lunar surface properties. In addition, Impact

Test 4 may have been too close to a previous test. However, if differences result

from the properties of the soil, they can be effected by either a change in the

strength or the density of the material.

No substantial differences were observed in the resistance of the soil

encountered in the different trenching operations.

7. Depth Variation of Lunar Soil Properties

In the bearing tests, the SMSS was lowered by one 2-sec command into the

lunar soil in general; it was then given successive 2-sec commands, which resulted

in small additional penetrations. When the movement ceased, the bearing test was

terminated. In the absence of motor current measurements, a detailed evaluation

of the force versus depth relation is not possible. Characteristicallya penetration

of 1.9 to 2.5 cmwas achieved in a bearing test at the lunar surface. However, a

bearing test (4) carried out at the bottom of the third trench at a depth of approxi-

mately 5 to 7.5 cm below the lunar surface, and probably somewhat in disturbed

soil, gave a penetration of about 0.6 cm as shown in Fig. V-21. This fact, together

with the difficulties observed in making the second and third passes through a trench,

even considering the effect of trench confinement mentioned above, appears to

indicate that the lunar soil is firmer or denser below this depth. The comparison

of the open-scoop Impact Tests 11 and 12 on the undisturbed surface with Impact

Test 13, carried out on the material at a depth of 5 to 7.5 cm below the surface,

confirms that the material is indeed stronger or denser below a depth of 5 to

7.5 cm.

When the scoop was rested on the lunar surface under a vertical force of an

estimated 4.5 x 105 to 9 x 105 dynes (1 to 2 lb), little penetration was observed, so

that it appears that an extremely soft upper layer does not exist in the immediate

vicinity of Surveyor III. Under the high Sun at lunar noon, the detailed texture of

the rough surface is no longer visible, and a clear picture of the distance to which

the soil is disturbed by a bearing test can be obtained, as seen in Fig. V-22. The

cracks that appear in the ground surface are the surface manifestations of the under-

ground displacement caused by the test. They are not the result of the presence of

a surface crust of stronger or more brittle material.

V-17
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The higher albedo of the undisturbed lunar surface compared to that of the

disturbed material in trenches appears to be an extremely shallow effect as seen in

Fig. V-Z3(a) and (b).

As far as can be determined from the Sk4SS operations, any change in the soil

grain size with depth takes place below the resolution of the camera. There is no

obvious albedo change with depth, once the lighter surface material has been

disturbed. The albedo of the smoothed surface caused by Bearing Test 4 on the

undisturbed surface in a trench floor will be studied.

8. Properties of Lunar Soil

a. Bearing tests. Excluding Bearing Test 1, which was carried out at an

unfavorable angle to the lunar surface, all other SMSS bearing tests appear to

indicate a failure of the surface material to a depth of 5 to 7.5 cm at a pressure

of about Zxl05 dynes/cm 2 (3 psi) on the 5 by 2.5-cm size of the flat base of the

SMSS. This value is consistent with the size of the SMSS bearing area and with the

lunar soil properties, which were postulated to, explain the data observed in the

Surveyor I landing, i.e., material with a cohesion of about lxl03 to 3x103 dynes/cm z

(0.0Z to 0.05 psi) an angle of internal friction between 30 and 40 °, and a density

about 1.5 gm/cm 3 (3 slugs/ft3).

In bearing tests of this type, the soil is typically uplifted and disturbed on the

surface to a distance that depends on the angle of internal friction of the material.

For the 2.5-cm (1-in.) width of the SMSS base, a material with an angle of friction

of 30 ° would be disturbed to a distance of about 7.5 cm (3 in.) from the edge of the

base, and a material with an angle of friction of 40 ° to a distance of about 17.5 cm

(7 in.). It is observed in the SMSS bearing tests under high Sun angle (Fig. V-ZZ)

that soil disturbance takes place to a distance of 10 to 17-.5 cm (4 to 5 in.), indicating

an angle of internal friction of about 35 ° . The nature of the displacement phenomenon

observed in the bearing tests seems to indicate that the soil does not change

appreciably in density during the test. Below a depth of 7.5 cm (3 in.), the lunar

soil is considerably stronger or denser, but no calculation of its properties has yet

been made. They willbe estimated from the SMSS tests.

b. Impact tests. A complete analysis of the impact tests is lengthy and cannot

be given at this time. However, the velocity of the surface sampler at contact with

the lunar surface from a drop height of 60 cm (corresponding approximately to four
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2-sec elevation steps) can be estimated to be about 2.1 to 2.5 m/sec (7 or 8 ft/sec).

Laboratory tests have been carried out on Earth with a prototype sampler striking

various soils at a range of velocities. For a slightly higher impact velocity than

_hat given above for the SMSS Moon impacts, laboratory tests on densely packed

dry sand (density about 1.7 to 1.8 gm/cm 3) with the scoop closed have given

penetration depths of 1.6 to 1.9 cm (5/8 to 3/4 in.). Such a soil has a friction

angle of about 40 ° and is essentially cohesionless. Comparison of the SMSS lunar

impact tests with the terrestrial tests indicates that the material densities are

comparable, although preliminary analyses indicate that penetration depths at these

impact velocities are not very sensitive to density. Such a density (about 1.5

gm/cm 3) would be compatible with the static test results described above. The

effect of the stronger or denser lunar soil layer below a depth of 5 to 7.5 cm on the

impact test results remains to be investigated. It would tend to lessen the penetra-

tions.

c. Material handling. Since the disturbed lunar soil remains in the open

SMSS scoop above the lunar surface, it can be calculated that it possesses a cohesion

greater than about 3 x 102 dynes/cm 2 (0. 005 psi) for an assumed density of about 1.5

gm/cm 3. Since the walls of the trenches have not collapsed at a depth of 15 to 17.5

cm, it appears that the cohesion may be at least 1 x 103 dynes/cm 2 (0.02 psi). In

one impact test carried out with the scoop open, a quantity of soil was dumped on the

lunar surface almost equal in volume to the capacity of the scoop as best as can be

estimated. In such an impact test, the maximum deceleration is in the range of 5

to 10 Earth g so that the upper limit of the cohesion of the disturbed soil to the

scoop can be estimated as being about 1 x 104 dynes/cm 2 (0.2 psi).

In one bearing test, an object [see Fig. V-I9(b)] resting on the lunar surface

was depressed and found to crumble under a relatively gentle pressure (contact 3,

item T in Fig. V-4). It is concluded that this naturally occurring object was an

aggregate of smaller particles as was the clod of material broken by the scoop

door at the foot of Trench 2. One of the objects of higher albedo picked up seemed

to have a substantially grea_cer strength than these clods, and may be termed a

rock.
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Fig. V-2. Surveyor spacecraft, showing SMSS mounted

at approach camera location
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IMPACT A BEARING TEST I L BEARING TEST 4BEARING B TRENCH I M IMPACT TEST I

i O CONTACT D CONTACT I 0 IMPACT TEST 3
C TRENCH 2 N IMPACT TEST 2

I E BEARING TEST 2 P IMPACT TEST 4F BEARING TEST 5 Q IMPACT TEST 5

G TRENCH 3 R IMPACT TEST 6

H CONTACT 2 S BEARING TEST 5
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I

!

V BEARING TEST 7

W IMPACT TEST 7

X IMPACT TEST 8

Y IMPACT TEST 9

Z IMPACT TEST I0
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b IMPACT TEST II

c IMPACT TEST 12

d TRENCH 4

e IMPACT TEST 13
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I
Fig. V-4. Plan view of SMSS area of operations, showing location of all

surface tests performed during first lunar day of Surveyor ILI mission.

Angles are referenced to SMSS axis in stowed position.
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Fig. V-5. SMSS deployed and ready for bearing test as

Goldstone view ended on Day Ill (Day Ill, I0:43:30 GMT)
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Fig. V-6. Final picture of SMSS at completion of operations f'or Day I12.

Trench 1 is visible at right edge of photograph, and Trench Z is directly

below SMSS mechanism (Day If2, II:34:29 GMT).
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Fig. V-7. Wide-angle view of SMSS and footpad 2. Note pile of lunar

surface material on top of footpad (Day ll6, II:53:Z6 GMT).
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O

Fig. V-8. Material dumped on footpad 2 by SMSS. The color

calibration chart is in foreground (Day 116, 12:00:54 GMT).
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0

Fig. V-9. Wide-angle view of SMSS at end of Day 117
operations. Trench 3 and Bearing Test Z are visible
on the surface (Day 117, 10:34:53 GMT).
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Fig. V-10. Trench 3, widened, with SMSS scoop poised

and ready for Bearing Test 4 in trench bottom. SMSS

appears blurred due to motion when picture was taken

(Day 118, 13:21:33 GMT).
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Fig. V-ll. Close-up picture of "rock" extracted from

lunar surface and being held by SMSS {Day 121, 15:18:39

GMT)
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Fig. V-I2. SMSS with small "rock" in scoop. Rock was

picked up_)n Day 121. On the surface below, several bearing

test points are visible (Day 121, 14:56:38 GMT).
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Fig. V-13. Final position of SMSS at conclusion of lunar

operations. Trench 4 and several impact points are visible

once lunar surface (Day 122, 14:20:II GMT).
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Fig. V-14. Photograph showing SMSS on Day 112 (a) before
(05:07:01 GMT) and (b) after completion of first lunar surface

bearing test (05:17:27 GMT)
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Fig. V-15. Second pass of sampler in Trench 2. Note

material ahead of scoop as it is drawn toward spacecraft

(bottom of picture) (Day I13, 07:22:04 GMT).
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Fig. V-16. Mosaic of Trench 2

after sampler has been removed

following stalling at far end, where

material from scoop has been

dumped (Day ll3, Catalog No.91SI.

06:39:01, 06:40:05, 06:40:38, and

06:41:08 GMT)
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Fig. V-17. SMSS scoop is shown embedded in the lunar soil following a

drop from aheight of about 30.5 cm in Impact Test 3. A previous SMSS

impact impression is shown in top left corner of picture (Day I19,

09:49:45 GMT).
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Fig. _-18. Sampler in position to begin picking up object. In moving

sampler to this position, material from a trenching operation has fallen

from scoop to leave a dark trail across the lunar surface. Bearing

Tests 2 and 3 are seen to the right of the SMSS; Trench 3 is obscured

by it (Day 118, 09:48:08 GMT).
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Fig. V-ZI. Bearing Test 4 impression in bottom of Trench 3 at a depth

of 5.1 to 7.6 cm below lunar surface. Depth of impression estimated from

shadow. Broken-up soil from trenching operation is visible (Day 118,
13:35:22 GMT).

V-40

I

|

!

I

I

I

I

I

!

t3

I

I

I

g

I

l

g

g
it



I

i

I

I

I

I

I

I

l

I
I

I

|

!

JPL Project Document 125

Fig. V-22. Imprint of Bearing Test Z observed at high Sun.

The cracks caused by the test and extending to the surface

of the soil are clearly seen (Day I17, 08:56:45 GMT).
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VI. LUNAR TEMPERATURES AND THERA.

I 69- 7863 .

CHARAC TERIS TICS

$. W. Lucas, J. E. Conel, W. A. Hagemeyer, C. B. Jones,

J. M. Saari, and J. T. Wang

Data on lunar surface temperatures and thermophysical characteristics, and

on spacecraft thermal performance on the lunar surface were provided by Surveyor

III. This spacecraft carried no instrumentation, as such, to measure lunar surface

temperature and was, like Surveyor I, designed to be thermally independent of its

environment, both in flight and when landed. Following the Surveyor I analysis,

outer canister temperatures of electronic Compartments A and B were used to

estimate average brightness temperatures of portions of the surface viewed by the

compartments.

The spacecraft landed at 00:04 OMT on Day II0 (April 20), 1967, at the

coordinate 2.94°S latitude, 23.34°W longitude. Temperature data for Compartments

A and B were obtained until 23:45 GMT on Day 130 (May 3) or about 2 hr after sunset

at that longitude. Temperature records during the eclipse of Day 114 (April 24),

which occurred between 09:48 and 14:06 GMT, were also obtained.

A. Thermophysical Properties of the Surveyor III Site as Determined From
Earth-Based' Data

Thermal measurements on the lunar surface were made from Surveyor III

under three conditions: (1) during the day, (2) during the total eclipse of Day 114,

and (3) until shortly after sunset. For comparison, results from Earth-based

measurements are available for conditions (1) and (2) for the Surveyor HI site.

During lunar daytime, the observed lunar surface temperature is dependent

on Sun angle, surface albedo, and directional effects in infrared emission. The Sun

angle can be calculated exactly for a level surface; however, because Surveyor III

rests in a shallow crater, the temperature may be expected to vary from place to

place in the depression due to variations in topography. The total solar albedo,

i.e., the fraction of solar insolation reflected into space, is required for calculating

daytime temperatures. This quantity may, in principle, be obtained by integration

of the photometric function (scaled by the normal albedo) over a hemisphere, and

with wavelength throughout the solar spectrum; a simpler method is to use the
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simultaneous infrared and photometric scan data of Shorthill and Saari (Refs. VI-I

and VI-Z). Of particular interest is the scan made over the full Moon (phase angle

of -2 °) just prior to the December 19, 1964, eclipse. For _his scan, the change in

brightness temperature with change in photometric brightness, B, has been studied.

One can write

4
• T L = (l-A) S sin _b (I)

where a is the Stefan-Boltzmann constant, T L is the Lambertian temperature of the

surface, A is the total solar albedo, S is the solar insolation, and %bis the elevation

angle of the Sun to f_he surface. For a full Moon scan, the observed brightness

temperature, Tb, differs from the Lambertian temperature because of directional

effects (discussed later) such that

Tb(%b) = D(_b) T L (2)

where D(#), the directional factor, is defined by this equation. Assuming that the

total solar albedo of a small element of surface is proportional to the full-Moon

brightness of the same element, one can write

A : KB (3)

where K is a constant to be determined. If measurements are made on two areas,

1 and 2, of differing albedo at the same

and

T 4/-b2_
\o(_)1

(I-KBI) S sin

(I-KB2) S sin #

(4)
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Eliminating D(#) between these two equations and solving for K,

T4 _ T 4
b, Z b, 1

K = T4 T4 (5)
B1 b,Z - B2 b,l

|

Since K could possibly be a function of #, a large number of pairs of points of

different brightness was measured over the disk; the results showed that k was

independent of #. The photometric brightness of the Surveyor IiI site was measured

on this full-Moon scan; multiplying by the constant K determined as above, gave a

value of 7.6% of the total solar albedo. Since the telescopic measurements were

made to a resolution of 10 sec of arc (18 km at the center of the lunar disk), the

local albedo of the Surveyor Ill site may depart considerably from this value.

Predicted lunar surface (Lambertian) brightness temperatures, (shown in

(Fig. VI-1), were computed using the program described in Ref. VI-3 for an

equatorial site and several different values of the thermal parameter. The thermal
-l/Z

parameter, gamma, equals (kpc) , where k is thermal conductivity, p is density,

and c is specific heat. The total solar albedo was taken equal to 0. 076. Note that,

during the day, surfaces with a gamma greater than 500 have essentially the same

tempe ratures.

Thermal measurements were made with Surveyor IlI during the Day 114 total

eclipse. Figure VI-Z shows a predicted eclipse cooling curve for the site based on

measurements obtained by Saari and Sh0rthill (Refs. VI-4 and VI-5) during the

December 19, 1964, eclipse. By assuming that directional effects persist during

totality to the same degree as observed just prior to the start of the eclipse, it was

possible to infer from the telescopic data a value for gamma of 1420 (cgs units)

using the theoretical eclipse cooling curves for a homogeneous model (Ref. VI-6).

This is close to a value of 1350 obtained in the same manner for the Surveyor I site.

Values of gamma in this range are representative of the highly insulating material

that Characterizes much of the lunar surface. The warming curve in Fig. VI-E

represents calculated equilibrium surface temperatures corresponding to the

insolation at each time.

Infrared measurements made during the December 19, 1964, eclipse showed

that the lunar surface exhibits a great deal of thermal inhomogeneity (Ref. VI-4).

Because extensive spatial temperature fluctuations were found on features as small
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as 4 km, it would not be surprising if they would exist to a scale comparable to that

of the Surveyor IH site. Thus, the thermal characteristics of this site may be con-

siderably different than observed from Earth with a resolution of 18 kin. Isothermal

contours of the Surveyor Ill site obtained during totality of that eclipse are shown

in Fig. VI-3. The region is relatively bland; the nearest hot spot is associated with

Fra Mauro C at about Z1.65_r and 5.4°S. A very mild enhancement is noted closer

to the site at Z4°W and 3.5°S.

B Directional Effects of Lunar Infrared Emission

I

I

I

I

I

I

It has been determined (Ref. VI-7) that, when l/he lunar surface is illuminated I

by the Sun, the observed brightness temperature is not constant for different angles

of observation; i.e., the surface does not behave like a Larnbertian surface. This U

effect, ascribed to surface roughness, causes the brightness temperature to be

higher when the phase angle is small (i. e., when the Sun-surface-compartment angle
u

is small) than when it is large. Qualitatively, the emission is greater in the direc-

tion of the Sun. It is clear that such directionality will have an effect on the
iradiation received by the compartments on Surveyor.

To correct for directional effects, measurements from over the lunar disk for U

three Sun angles were used. For a Sun elevation angle of 90 ° , we take the measure-

ments of Sinton (Ref. VI-8, p. 409), which give the variation in radiance from the
Ilk

subsolar point as a function of the elevation angle of the compartment. I

For the two other Sun angles of 30 and 60 °, the infrared scan data for different

phases made by Shorthill and Saari were used. For _hese scans, each made at a I

different phase angle, t_e brightness temperature was determined at points where

fhe Sun elevation angle was 30 and 60 ° (Ref. VI-7) and every 10 ° in thermal longitude.
U(With reference to a latitude/longitude system where the subsolar point is the north

pole and the terminator the equator, thermal longitude is measured from the great M

circle passing through the subsolar point and the disk center. ) Albedo corrections

for each point were made from the full-Moon photometric data. The directional

factor was calculated from Eq. (Z) using calculated values of Lambertian tempera- I

tures at each point.

Directional factors obtained in this manner were referenced to a local I

coordinate system with azimuth and elevation angles for the direction of observation

defined as follows. Azimuth angles are measured from the normal projection of the

VI-4
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Sun direction onto the surface. Elevation angles are measured from the surface in

the plane of observation. Directional factors obtained over the globe were referenced

to this azimuth/elevation angle system. A least-squares spherical harmonic fit,

symmetrical with respect to plus and minus azimuth angles, was then computed for

the data. A contour plot of the directional factor for a Sun elevation angle of 60 °

is shown in Fig. VI-4. The spherical harmonic fit was then used to compute the

directional factor for elements of the scene viewed by the compartments for the cal-

culation of an effective Lambertian temperature. Directional factors were, of

"necessity, obtained from global measurements made on a variety of features. It is

possible, therefore, that a small area such as the Surveyor III site could have different

directional effects than the "average" surface if local roughness or surface configura-

tion differed significantly from the average.

C. Spacecraft View of Lunar Scene

The assumed orientation of Surveyor III with respect to lunar coordinates is

given in Fig. VI-5. The azimuth of leg 1, the Y axis, is given as 46.1 ° southwest

($46.1 °W); the -Z axis is taken to be tilted 12.4 ° from vertical in an azimuth

direction of 6.4 ° northwest (N83.6°W). The normal to the Compartment A outer

canister face lies in a vertical plane of azimuth 9 ° southeast (S9°E) and is inclined

at an angle of 65 ° to local vertical. The normal to the Compartment B outer canister

face has an azimuth 16 ° northwest (N74°W) and is inclined at an angle of 81 ° to local

vertical. If the spacecraft -Z axis approximates the direction of the local surface

normal, both compartment normals are inclined at 69 ° to this direction.

The landing site of Surveyor ILI (about 45 m southeast of the crater center } is

depicted in Fig. VI-6. The general sectors of lunar surface viewed by each compart-

ment are indicated. Compartment A views a scene to the southeast of the spacecraft

where the horizon is -5 to +lZ ° (with an approximate average of 0 °) above a flat

Moon from a level spacecraft (Fig. VI-7). Compartment B looks generally to the

northwest, where the horizon is 2 to 12 ° (with an approximate average of 11 °) above

the horizontal. The portions of surface viewed by both compartments overlap in a

65 ° sector looking southwest.

The surface area viewed on each compartment is limited by the canister face

orientation and crater rim. On this basis, Compartment A views a maximum pro-

jected surface area of 1 3x10 4 Z 2• m , and Compartment B an area of 2.6x10 4 m .
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In Fig. VI-6, the region enclosed by a dotted line is either totally or partially

obscured by the spacecraft structure in television coverage of the surface. Detailed

descriptions of observable portions are given in Section VII.

D. Spacecraft Description

For the purposes of this preliminary report, the description of Surveyor I

given in Ref. VI-9 applies because, from a thermal standpoint, Surveyors I and III

were essentially identical at launch. As with Surveyor I, the telemetered tempera-

tures of the center of the outboard face of Compartments A and B (Fig. VI-8) are

used to compute lunar surface temperature.

E. Spacecraft Raw Data

The following environmental parameters and spacecraft thermal properties are

significant to compute lunar surface temperatures by the methods used:

(1) Spacecraft landing site: 2.94°S latitude, 23.34°W longitude.

(2) Angle between normal to outboard face and -Z axis: 68 ° 30' ±30"for

Compartment A; 68 ° 40' _30' for Compartment B.

(3) Compartment canister properties

(a) Infrared hemispherical emittance: • = 0.87±0.02.

(b) Solar normalabsorptance: a S = 0.20 ±0.02.

(4) Temperature data accuracy: further engineering analysis of telemetry

data is necessary because of nonstandard behavior of the spacecraft

data system.

The angle between a normal to the canister outboard face and the direction of

the Sun is presented in Figs. VI-9 and VI-10. It should be noted that, for the

computations shown, the Sun was assumed to move in a plane passing through the

landing site and tilted 3 ° to the north.

Representative raw temperature data for the lunation are plotted in Figs. VI-

II and VI-12. Expanded temperature data for the eclipse are plotted in Figs. VI-13

and VI-14. All data given has been corrected on the basis of preliminary calibration

curves furnished by Hughes Aircraft Co., E1 Segundo, Calif.
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F. Shading Effects on Compartments

On Day 116 (April 26) stepwise solar panel and planar array positioning

maneuvers were conducted to determine the effects of shading on Compartment B

temperature measurements (Fig. VI-15). Conduction heat transfer effects between

elements of the compartment canister, aswell as radiation heat transfer between

the canister and the RADVS antenna, were obtained from differentially shading these

elements.

The solar panel and planar array positioning sequence was performed on

Day 116 (April 26), as listed below:

Phase Time (GlVIT) Expe rime nt

04:03 to 04:23

II

III

IV

V

I

04:23 to 12:18

12:18 to 12:55

12:55 to.14:00

14:00 to 14:30

14:30 to 16:00

16:00 to 16:10

16:10 to 18:00

18:00 to 18:07

18:07 to 20:00

Unshade RADVS, face and top of
Compartment B

Hold

Shade RADVS, face and top of

Compartment B [Fig. VI-15(c)]

Hold

Unshade RADVS [Fig. VI-15(b)]

Hold

Unshade face of Compartment B
[Fig. VI-15(a)]

Hold

Unshade top of Compartment B

Hold

I

g
g

I

Experimental Results

Results of the thermal experiment are shown in Fig. VI-16. Initial

temperature, with Compartment B and RADVS antennas unshaded (Phase I), was

found to be 324°K (124°F). Shading Compartment B and RADVS antennas (Phase II)

introduceda AT of -6.7°K (-12°F). Unshading the RADVS (Phase III) raised the

Compartment B temperature 0.6°K (1.0°F). The rise in the curve between C and D

is accounted for by a temporary unshading of the Compartment B outboard face

during the positioning maneuvers necessary to unshade only the RADVS antennas.

Unshading the compartment outboard face (Phase IV) introduced a aT of 6. I°K (11 °F).

VI- 7
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t'nshading the top of Compartment B (Phase V) resulted in a AT of 0.8°K (I.5°F) in

t_.ecanister sensor temperature. The 1.7°K (3°F) increase in base temperature

(an,haded) from Point A, beginning of shading, to 20:00 GMT end of experiment, is

d_e to the grea1:er Sun angle incident to the canister outboard face at the end of the

experiment.

The thermal experiment provided excellent data for evaluating shading effects

on the spacecraft thermal compartments. The measured temperatures indicate that

heat transfer effects between the center of the outer face of the compartments and

o_her elements of the spacecraft are negligible. The observed changes in tempera-

ture agreed very well with predictions, although the absolute temperatures predicted

_ere slightly lower (Fig. VI-16). Since the predictions were based on preliminary

calculations as to spacecraft orientation, these differences in absolute temperatures

are not felt to be signifi6ant. Because of the excellent data received for Compart-

ment B, it was decided not to duplicate the experiment with Compartment A.

G. Lambertian Lunar Surface Temperature Calculations

I

l

I
I

I
i
I

I

i

Calculations were performed using the following equation [taken from Ref.

vl-9,Eq. (Z)].

4

4 UTl FI3 4 alsS

aTz = 'Z (FI2 - FI3) - FIZ - FI3 aT3 - 'I'Z (FI2 - FI3)

D

I

!

iJ

_here

T I

T z

T 3

x FIZ - FI3) PZ sin ¢ + cos 'IrZ (FIz - FI3)

compartment surface temperature

lunar surface brightness temperature

lunar surface brightness temperature in shadow,

as sumed

4
T 3

4
<< T z is

(6) I

I

11
g
|
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S

FIZ

FI3

U

z1

zz =

alS

¢ -

PZ --

1386 w/mZ(440 Btu/ftZ-hr)

geometric view factor from 1 to Z

0.31 for Compartment A for 0 ° horizon (Sect. VI-C of this report)

0.41 for Compartment B for 11 ° horizon (Sect. VI-C of this

report)

geometric view factor from 1 to 3

conduction heat flux between inside and outside of compartment

wall

3.5 w/m z

Stefan- Boltzmann constant

5.675 x 10 -8 w/m 2 °K 4 (1.713 x 10 -9 Btu/ftZ-hr °F 4)

compartment surface emittance

0.87 ±0.0Z

lunar surface emittance

1.0

compartment surface solar absorptance

0. Z0 ±0.0Z

angle between direction of Sun and normal to compartment surface,

from Figs. VI-9 and VI-10

Sun angle (between lunar surface and direction of Sun)

A = 0. 076 = lunar reflectivity to solar irradiations

The view factor FI3 from Compartment B is plotted in Fig. VI-17; F13 from

Compartment A is negligible.

Figure VI-18 represents the lunar surface brightness temperature for the

lunar day as calculated using Eq. (6) from Compartment A and Compartment B

telemetered temperatures. It is suggested that Compartment B indicates a higher

lunar surface temperature early in the day than Compartment A because

Compartment B senses (1) a higher lunar surface temperature on the western

portion of the crater due to relatively greater Sun elevation angle there and (Z) a

higher directional lunar surface temperature at that time, since Compartment B

views the lunar surface more directly along the Sun line direction. In the afternoon,

the reverse is true.

In Figs. VI-19 and VI-20, lunar surface temperatures indicated by

Compartments A and B are shown separately. Also shown are the computed curves

VI-9
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previously given in Fig. VI=I, but shifted to the right 10 ° in Sun angle to account for

local lunar surface tilt toward the west at the Surveyor III landing site (see Sect. VII

of this preliminary report). There is fair agreement in the morning, good agreement

at noon and fair agreement in the afternoon with predicted Lambertian temperatures.

Lunar surface brightness temperatures derived from Compartment B data on

Surveyors I and III are compared in Fig. VI-21. The curves are plotted for corre-

sponding Sun angles_but with the Surveyor I curve shifted to the right by 10 ° for

the reason given previously. The strong correspondence between the two curves

shows thatessentially identical lunar surface brightness temperatures were observed

for Sun elevation angles above 30 ° . This is not surprising since a wide range of

gamma values yield the same daytime temperatures. The correspondence indicates

no thermally significant dust on either Surveyor I or III compartment faces.

Figure VI-22 represents the lunar surface temperature data indicated by

Compartments A and B during the eclipse. Except for the initial portion of the first

penumbral stage and the final portion of the second penumbral stage, both compart-

ments sensed the same lunar surface temperatures during the eclipse. This indicates

that (differing) directional lunar surface temperatures, which are sensed by the two

compartments when under full illumination, are not present at low, as well as zero,

insolation. Note also that both compartments sensed the same lunar surface tempera-

ture when communication with the spacecraft was terminated shortly after sunset

(Figs. VI- 19 and Vl- 20).

Also included in Fig. VI-Z2 is the predicted lunar surface temperature during

the eclipse given in Fig. VI-Z. The spacecraft sensed a lunar surface temperature

that lagged and did not fall as low as predicted. Using eclipse cooling curves of

Jaeger (Ref. VI-6), it is estimated that a lunar surface with an effective gamma of

about 400 would exhibit the observed cooling curve. It was determined that the heat

capacity of the compartment cover could contribute a negligible portion of the observed

lag between compartment temperatures and expected lunar surface temperature.

It should be noted that the cause of the elevated cooling curve cannot be

accounted for by a heat transfer cavity effect in the crater. A possible cavity effect

was assessed using the curves in Ref. VI-10 and found to be negligible. If the crater

were flattened, the observed cooling curve would remain.
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H. Directional Lunar Surface Temperature Calculations

Surveyor III Compartment A and B outboard surface temperature profiles

during lunar day were predicted on the basis of the Earth-based observed directional

lunar surface temperature data described previously. The observed temperature of a

specific area on the lunar surface is dependent on the Sun and elevation and azimuth

angles of the observer (Fig. VI-Z3). When the azimuth angle is small, the compart-

ment, looking into the Sun, sees higher temperatures; when the compartment looks

against the Sun, lower temperatures are seen. In the mathematical model, 45 nodes

were used. They were the compartment, the RADVS antennas, the cold space, the

spacecraft shadow on the lunar surface and the sunlit lunar surface [Fig. VI-Z4(a)].

The lunar surface was divided into 41 nodes, each assumed to be flat and isothermal

[Fig. VI-Z4(b)]. The JPL Thermal Analysis System computer program (Ref. VI-II)

was used for the calculation. The spacecraft shadow on the lunar surface was

neglected in this directional analysis.

The lunar surface form factors and associated directional temperatures

(Tables VI-I and V[-_.) were computed for a horizontal, flat lunar surface with the

spacecraft -Z axis tilted 0 ° toward the lunar surface for Compartment A and I] o

toward the lunar surface for Compartment B.

Predicted compartment temperature profiles for Sun angles from 30 to 150 °

are plotted in Figs. VI-Z5 and VI-Z6. Comparison with the telemetered compartment

temperatures indicates good agreement for both compartments between 30 and 90 °

Sun angles. During the lunar afternoon, both compartment temperatures are some-

what higher than predicted.

Also plotted in Figs. VI-Z5 and VI-Z6 are predicted compartment temperatures

assuming increased solar absorptance, alS, values of 0.3 and 0.4. A value of

approximately 0.35 brings Compartment B predicted and observed temperatures into

reasonable agreement. However, this is not the case for Compartment A, which sees

little Sun in the afternoon. This indicates that changing ,IS is not the explanation

for the somewhat higher afternoon temperatures observed by both compartments.
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F(I.x) _ = 30"
Node x(5_45)

$ 0.012 116

6 0.005 38

? 0.005 40

8 0.010 48

9 0.010 00

!0 O.OOS 60

I1 0.005 62

lZ 0.010 67

13 0.010 90

14 0.005 75

15 0.005 76

16 0.010 80

17 0.010 97

18 0.005 88

19 0.005 09

ZO 0.010 92

21 0.010 103

Z2 0.005 101

23 0.005 lOZ

Z4 0.o10 103

25 0.010 I11

aB&a_d on R_f. VI-0.

JPL Project Document 125

Table VI-1. Compartment A directional temperatures a

Directional temperature. "F F(l,x) Directional temperature, *F
= 60" _ = 90" _ = IZ0" _ = 150" Node x(5_45) _ = 30" _ = 60" _ = 90" _ = 120" ÷ = 150"

186 189 186 116 26 0.005 114 185 193 187 119

161 199 226 201 27 0.005 114 106 201 189 119

163 2Z4 Z27 Z00 20 0.010 115 191 214 194 120

168 246 Z30 195 29 0.010 118 211 244 el3 121

191 256 230 170 30 0.005 126 190 193 102 108

168 194 Z19 183 31 0.005 126 192 Z02 184 108

170 Z07 219 182 3Z 0.010 126 197 Z16 109 109

175 223 223 178 33 0.010 125 216 244 209 114

196 249 233 158 34 0.005 143 199 193 178 94

173 193 211 166 35 0.005 143 200 Z03 179 94

174 203 212 166 36 0.010 142 205 Z17 184 97

17_ 217 216 163 37 0.010 135 221 Z47 Z05 106

200 247 229 140 38 0.005 164 210 194 173 77

176 193 203 151 39 0.003 163 211 207 175 77

177 ZOZ Z04 150 40 0.010 160 Z14 223 180 8Z

183 216 208 148 41 0.010 147 228 249 200 98

203 244 224 139 42 0.005 192 223 199 165 50

180 193 194 133 43 0.005 191 223 Z24 167 52

182 201 195 133 44 0.010 186 Z26 246 17Z 58

187 ZI4 200 133 45 0.010 164 236 256 194 85

207 244 el8 129

F,I.x,t_ _ = 30"
Node x(5_45)

5 0.005 116

6 0.005 143

7 0.000 14Z

0 0.ooi 139

9 0.003 129

10 0.005 163

11 0.005 161

12 0.004 154

13 0.003 135

14 0.010 186

15 0.010 183

16 0.011 173

17 o.010 143

10 0.014 ZOO

19 0.016 196

zo 0.016 185

21 0.015 148

22 0.015 202

23 0.018 190

24 0.019 186

25 0.019 149

abased on Ref. VI-B.

a
Table VI-Z. Compartment B directional temperatures

Directional temperature. *F F(I,x) Directional

= 60" _.= 90" i _ = 120" _ = 150" Node x(5_45 ) ÷ = 30" _ = 60"

186 180 186 116 26 0.015 193 223

199 194 170 94 Z7 0.018 189 225

20Z el0 18Z 96 28 0.019 179 231

21Z 233 193 101 29 0.019 145 Z37

228 255 216 113 30 0.014 173 214

209 194 173 78 31 0.016 170 Zl?

212 210 177 81 32 0.016 162 224

220 Z33 189 89 33 0.015 138 233

Z3Z 255 21Z 109 34 0.001 147 201

2ZO 194 167 57 35 0.010 145 204

22Z 210 171 61 36 0.011 14Z 213

229 233 183 74 37 0.010 130 228

236 255 208 104 38 0.005 lZl 188

226 194 162 40 39 0.005 121 19Z

228 210 166 46 40 0,004 122 203

233 Z33 178 6z 41 0.003 122 223

230 255 205 101 42 0.005 99 179

226 194 161 37 43 0.000 101 183

220 Zl0 165 43 44 0.001 I05 195

Z34 233 177 60 45 0.003 114 217

239 255 205 100

temperature, "F
= 90" _ = lZ0" _ = 150"

194 165 49

ZlO 169 54

233 180 68

Z55 207 102

194 171 70

210 175 73

233 186 83

255 210 I07

194 177 91

210 181 93

233 19Z 99

255 Z15 112

194 184 112

210 188 113

Z33 199 115

255 2Z0 119

194 195 136

210 199 135

233 209 133

Z55 226 126
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Comparison of Surveyor l, III, and Earth-Based Lunar Surface T_mperatures

From the analysis the following tentative conclusions may be drawn:

Lunation data

(1) Predicted and observed lunar surface temperatures from both compart-

ments are in good agreement around noon and are compatible with the

homogeneous surface model with thermal inertia, y, greater than 400.

Sunset data are not inconsistent with this picture.

(2) Differences in Compartment A and B temperatures during the morning

may be explained by different local lunar surface Sun phase angles and

by directional (non-Lambertian) thermal emission from the lunar

surface.

(3) Correspondence in lunar surface brightness temperatures measured by

Surveyors I and III indicates lack of any thermally significant dust on

compartment face s.

(4) During the afternoon, compartment temperatures, especially that of

Compartment A, are somewhat higher than expected from Earth-based

data. Increased solar absorptance of the compartments does not account

for the discrepancy. This is consistent with no thermal indication of

dust on the compartment faces.

Ec)ipse data

(1) Compartments A and B saw the same lunar surface temperature through-

out all of the umbral and almost all of both penumbral phases. This

indicates Lambertian (i. e., nondirectional) lunar surface emission at

low insolation.

(Z) During both penumbral phases, observed lunar surface temperatures

lagged those predicted from Earth-based data; umbral lunar surface

temperatures were 50°K above those predicted. Both suggest an

effective 7 near 400.

VI-13
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(Surveyor I curve adjusted time-wise to Surveyor Ill)

w
o.
:E

VI- 34

I

I

I

I

I
i

g

il

g

O

I

II

g

g

g

g
g

|
II



I

I

I
I

I

I

I

I

I

I

I

I
I

II

g

g

5PL Project Document IZ5

O

n-
W

400

37_

_L
35(

START

325

22..,

200

175

150

125

O DERIVED FROM COMPARTMENT A DATA

X DERIVED FROM COMPARTMENT B DATA

_L

START

UMBRA

/---PREDICTED FROM
TELEMETRY
MEASUREMENTS

/ ,,%N MBRA--/ U
/

/
/
/
! -

//
!

EARTH-BASED

MEASUREMENTS

I
I
I

END

UMBRA

I0:00 I I:00 12:00 13:00 14:00

DAY 114 (APRIL 24)

ZOO

tO0

tOO

u -200

Fig. VI-22. Lunar surface brightness temperatures during eclipse

VI- 35

Q

J
ae

a_
W

W
h-



_,mmm_l_ SUN//_-PLANE OF SUN'S MOTION

_'t* •

aF_II._ /_PLANE OF SUN'S MOTION

/ / qP_ y _/-COMPARTMENT

SUN ANGLE

I_lT_ _IZ AZIMUTH ANGLE

_EL ELEVATION ANGLE

Fig. ¥I-23. Definition of angles

I

I

I

I

I

O

g

I

!

|

I

_";_- VI-24. (a) Mathematical model;
_"')4_Icretized lunar surface

(o)
(_ COMPARTMENT

(_) RADVS ANTENNA

(_) SHADED PART OF
LUNAR SURFACE

(_) COLD SPACE

@--@ DtSCRET,ZED
LUNAR SURFACE

AREA TO HORIZON

(b) _ 5

54

1 (COMPARTMENT)

58

I

I

|

g

g

g

|
VI-36 g



JPL Project Document 125

I 400

,_ 300

(2:

_g
W
I1.
:E

200

100

al$ = ABSORPTANCE

SUN ANGLE = 0 deg AT SUNRISE

90 deg AT NOON

180 deg AT SUNSET

J I I I I I I I ! l I I I i l
18 19 20 21 22 23 24 2,5 ;>6 27 28 29 :50 ! 2 3

108 109 I10 III 112 11:5 114 115 116 117 118 119 120 121 122 123

GMT: DATE (APRIL/MAY); DAY

I I I I I I I I I 1 I I I I' I I I I
0 I0 20 30 40 50 60 70 80 90 I00 I10 120 130 140 150 160 170

SUN ANGLE, deg

Fig. VI-Z5. Directional predicted and measured
temperatures of outboard face of Compartment A

200

I00

o
Jr"

-I00

bJ
I-

)-200

-3OO

¥I- 37



400,

300

u.i
rr"
::)

n"
hi
0..

__.200

100

I
JPL Project Document 125

!

• I

]

I

'- I

_ '°°-._ go _

alS = ABSORPTANCE

SUN ANGLE = 0 deg AT SUNRISE

90 deg AT NOON

180 deg AT SUNSET

DIRECT SUNLIGHT

ON COMPARTMENT
/

t I i i i i _ i i , i n i n n

IB 19 20 21 22 23 24 25 26 27 28 29 30 I 2 3

108 109 I10 III 112 115 114 115 116 117 118 119 120 121 122 123

GMT: DATE (APRIL/MAY); DAY

I I f m I m i I I i i i _ i I I I i
0 I0 20 30 40 50 60 70 80 90 I00 I10 120 130 140 150 160 170

SUN ANGLE, deg

-aoo
:S
bJ
I,--

Lmo i
--300 I

I
I

Fig. VI-Z6. Directional predicted and measured
temperatures of outboard face of Compartment B |

I

|

O

|
Vl- 38 H



VII.

JPL Project

TELEVISION OBSERVATIONS FR(. M SURVEYOR ILl

E. M. Shoemaker, R. M. Batson, H. E. Holt, E. C. Morris,
J. J. Rennilson, and E. A. Whitaker

Surveyor III landed on the lunar surface at 00:04 GMT, on Day 110 (April 20),

1967, approximately 23 hr after local sunrise on the Moon. The first pictures were

taken by the television camera at 01:02 GMT. The camera was operated extensively

for the first period of lunar visibility from the Goldstone Tracking Station of the

Deep Space Network and, except on Day 115 (April 25), on each successive Goldstone

pass of the Moon until the Sun set over the Surveyor Ill landing Mte on Day 1Z3

(May 3). During this period, the Sun rose from an elevation angle of 11 * in the east

to within 3* of the zenith and then sank almost due west of the spacecraft. Many

pictures were obtained of the illuminated eastern horizon in the period immediately

preceding sunset. In addition to those received at the Goldstone Station, some were

obtained at the Canberra, Australia, Station of the Deep Space Network. There

were 6315 television pictures taken during the first lunar day of the Surveyor III

mi s sion.

The television camera on Surveyor ILl is closely similar to the survey camera

carried on Surveyor I (Ref. VII-I). In the Surveyor survey camera, images are

reflected from a rotatable mirror through a zoom lens onto the active element of a

vidicon tube. The mirror can be rotated in azimuth and elevation relative to a line

through the center of the vidicon tube and the zoom lens axis, which remain fixed

in attitude. This rotation provides the capability of scanning the lunar scene and sky

over a vertical angular range of 100" and a horizontal range of nearly 360*. The axis

of the camera is inclined 16" to the nominal vertical axis of the spacecraft, which

causes the horizon to vary in camera elevation angle as a function of the azimuth

angle, when the spacecraft lands in an approximately level attitude. The variation

of the horizon for a flat surface is very nearly a sine function of the azimuthal

angular position and has a half amplitude of 16 °

The camera is normally operated with the zoom lens positioned for focal

lengths at either the extreme long (100 rnm) or short (Z5 mm) focal length.

At the long focal length, or narrow-angle mode of operation, the field of

view is 6.4*; at the short focal length or wide-angle mode, the field of

view is 25.3*. The Iens is capable of being set at varying focal positions, which

are required in order to obtain focused pictures of parts of the lunar surface near
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_he spacecraft in the narrow-angle mode. In this mode, the camera has a calibrated

angular resolution of 0.5 milliradian at 1 5_0 relative response. This resolution

permits discrimination of objects on the lunar surface slightly less than 1 mm in

diameter at the distance of the spacecraft footpads from the camera (I. 6 m).

Between the zoom lens and the rotatable mirror is a filter wheel that may be

positioned in four discrete positions. In one position, the optical path is intercepted

by a clear piece of glass; in the other three positions, there are three color filters.

Within the zoom lens is a variable iris aperture that provides nominal focal

Ltios ranging from f/4 to f/ZZ. The iris can be operated by command to six distinct

calibrated positions. It can also be operated in an automatic mode in which the iris

position is controlled by the integrated scene luminance detected by a photocell in

the lens.

A focal plane shutter between the zoom lens and the faceplate of the vidicon

tube provides exposures of 150 msec and l.X sec to many minutes. The camera

is normally operated at the 150-msec exposure, which is calibrated for each camera

and which is reproducible within about Z_0. Long exposures are obtained by command-

ing the shutter open and later commanding it closed. This mode of operation is

referred to as the integrating mode and was used to take pictures of faint objects,

such as Venus and the spacecraft and lunar surface illuminated by refracted sunlight

during an eclipse.

With a given aperture and filter position and 150-msec exposure, the dynamic

range of the camera is approximately 25 to I. The linear part of the function of

the logarithm of video voltage versus logarithm of lunar scene luminance is some-

what less for the Surveyor IIl camera than for the Surveyor I camera. By combined

e of variods filters, apertures, and exposure times, the total range of response

the Surveyor IIl camera, like that of the Surveyor I camera, is about I, 000,000

to I.

The image on the vidicon target can be scanned in two different modes: one

produces a 200-1ine picture; the other produces a 600-1ine picture. The 200-1ine

scan mode is employed when the video signal must be broadcast over the omni-

directional antenna and must be accommodated to the low bandwidth achievable

during transmission from the omnidirectional antenna. The 600-1ine picture is

transmitted over the planar array high-gain antenna after this antenna has been

oriented so that the main beam from the antenna is intercepted at tracking stations

on the Earth. The 200-1ine pictures are, therefore, usually taken shortly after
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landing, before the planar array antenna has been oriented. For the remainder of

the mission, the television pictures are normally taken and transmitted in the

600- line mode.

I The principal differences between the Surveyor III camera and the Surveyor I

camera are in the use of different colored filters, the different response of the

I vidicon tube, and the addition of a small visor attached to the hood of the camera.

" New color filters were use::: toh:sSU;u:ey:r IiI ca_era to obtain a closer match of

the camera-filter spectral p e ct'ons to t e standard CIE color-matching

unctions than was achieved with the filters used on Surveyor I. As shown in Fig.
_--VII-I, a close match was achieved.

I Because of technical difficulties involved in manufacture, each vidicon tube

of the type employed in the Surveyor camera differs slightly from the others in

I sensitivity, dynamic erasure characteristics or retentivity of the image,range,

shading, resolution, and imperfections which produce minute bright spots on the

I mage. In addition, it is possible for dust to settle on the faceplate of the vidicon
-- tube. The dust particles produce dark spots in the image. The vidicon tube

i mployed in the Surveyor III camera displayed a higher retentivity of the image
• than that employed in Surveyor I and has a higher number of imperfections, which

_ produce small bright spots. Slightly less dust appeared to be present on the

I vidicon faceplate of the Surveyor III camera after landing on the lunar surface than

in the case of Surveyor I.

I to reduce veiling glare, a visor was to cameraIn order added the hood of the

to reduce the amount of sunlight falling directly on the mirror and inner parts of

I he camera optical train. The hood carries the mirror and is an integral part of

-- the mirror rotation system, so thatthe visor maintains a fixed position in azimuth

_elative to the mirror, of the surface of the mirror lunarDegradation during

• landing so greatly increased the veiling glare, however, that the addition of the

I visor was of relatively little value.
During operation of the Surveyor HI camera after touchdown, problems were

encountered that may be attributed to the unusual circumstances of landing.

I Normally, the camera mirror is capable of being rotated in elevation to a position

which essentially closes or seals the hood. The torque required to rotate the mirror

I to an open position after closure was close to the torque generated by the mirror

elevation stepping motor on the Surveyor III camera, however. For this reason, the

I camera was flown to the Moon with the mirror open. The spacecraft touched down
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I

!
three different times during landing on the lunar surface; during the first two touch-

downs, the vernier engines, which control the descent of the spacecraft, continued i

to fire. After the first series of pictures was received from the television camera,

it was found that many were partially or completely obscured by strong veiling glare. R
i

Evidently, the mirror and possibly other parts of the optical train of the camera were

either partially coated with particles or rocket effluent or pitted by impact of particles i

entrained by the rocket effluent. If the glare is caused by deposited particles or pitting

or both, we estimate that between one-half and two-thirds of the area of the mirror

was significantly degraded. The particles or pits responsible for degradation of the

D mirror surface were too small to be detected by direct observation of the mirror at

the 25-ram focal length (smaller than 0.5 mm).

Because of the glare, usable pictures could be obtained in only limited ranges

of azimuth during the early lunar morning and late lunar afternoon. Whenever R

D
sunlight fell directly on the mirror, the image of the lunar surface was completely

obscured where reflected through the directly illuminated part of the mirror. In

maddition, considerable glare is present in other pictures taken when the mirror is

averted from the Sun, owing to light scattered from the lunar surface.
m

Because of operational difficulties in rotating the mirror, the camera was

operated over an azimuth range extending only to one side of the +3 ° azimuth

position during most of the lunar day. Because of requirements for time to B

operate the surface sampler on the spacecraft and for other experiments, limited

time was available for systematic lunar surveys during each Ooldstone pass. Much
U

more time would have been required for the completion of systematic surveys than

in the case for normal operation, and only a fraction of the planned operation of

Uthe camera was executed during each Goldstone pass.

The camera operated best during high Sun angles, but under high Sun the m

U_" htp o ometric conditions are less favorable for detecting relief features on the

lunar surface. Craters and subtle relief features were almost impossible to

observe at high Sun, although blocky fragments could be observed because they

differ in albedo from the rest of the lunar surface material. Most of the details

of the topography and geology of the Surveyor HI landing site are extractable from
U

the pictures only with considerable difficulty.

Of the 6315 pictures taken with the television camera, about 45_0 of the pictures

were taken in the narrow-angle mode at sequential camera azimuth and elevation

settings to provide high-resolution coverage of the entire area visible to the

• |

VII-4 I



JPL Project Document 125

camera. The wide-angle mode was used to take 8% of the total number of pictures,

providing panoramas of the landing site at lower resolution than that of the narrow-

angle pictures, but with one-tenth the number of frames. Immediately after touch-

down, before the high-gain antenna had been oriented, 55 wide-angle pictures were

taken in the 200-line, low-resolution television mode.

Special sequences of pictures were taken for a variety of purposes. Pictures

were taken in wide- and narrow-angle modes, and with color filters of photometric

and color target areas as well as other areas of special interest for photometric

or color studies. Surveys were made along certain azimuths in which pictures were

taken at several different focal settings at each elevation step. These pictures will

be used to determine distance to points on the surface, from optimum focus, and

will be used to construct focus ranging profiles out to about 10 m {33 ft} from the

spacecraft. Other special surveys were obtained at varying Sun angles of the areas

close to the visible footpads of the spacecraft and of areas directly beneath the

crushable blocks of the spacecraft. In addition, special surveys were made of parts

of the spacecraft itself to search for particles and possible structural damage.

A unique sequence of pictures was obtained of the Earth during an eclipse on

Day 114 {April 24). During the eclipse, a picture was also obtained of Venus, and

an attempt was made to photograph stars to gain precise information on the orienta-

tion of the camera and the spacecraft. All attempts to obtain pictures of stars both

during the eclipse and later were unsuccessful, however, because of difficulties in

commanding the camera mirror to rotate and because of the high background of

veiling glare produced by scattering of light from the lunar surface onto the mirror.

The special surveys account for about 25% of the total number of pictures

taken during the first lunar day; the remainder were taken in support of operations

of the surface sampler experiment,

The television pictures have provided new information on the location

of the landing site on the lunar surface, on the lunar surface itself, and on the

appearance of the Earth as seen from the Moon, during eclipse and partial direct

illumination by the Sun. Calculation of the trajectory of the spacecraft by the

Flight Performance and Analysis Group, from information obtained by tracking

the spacecraft on its translunar trajectory, led to a determination of the location

of the spacecraft on the lunar surface, with an uncertainty of a few kilometers. By

close comparison of the detailed features of the surface observed by the television

camera on Surveyor LII with features observed from lunar orbit in pictures acquired
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by Lunar Orbiter HI, it was possible to determine the precise location of the

Surveyor iT/ spacecra/t with respect to the pictures shown in the Lunar Orbiter

photographs. The evidence by which the location of Surveyor HI has been deter-

mined and its relation to the larger features of the lunar surface are described

by Whitake r.

Many kinds of new information on the small details of the lunar surface and

the specific topographic and geologic features of the landing site are contained in

the television pictures, as discussed in the sections on topography and geology by

Oemaker, Morris, Ba.tson, and Holt. Some of the photometric observations of
lunar surface at the Surveyor III landing site have been reduced and are des-

cribed in this report by Holt and Rennilson. In addition, preliminary evaluation

of the color of various features on the lunar surface at the Surveyor III landing

site is presented here by Rennilson.

Observations of Earth during the eclipse of the Sun by the Earth have pro-

vided the first direct observations of the distribution of refracted sunlight that

weakly illuminates the lunar disk during this type of eclipse. The distribution

and color of light in the refraction halo surrounding the Earth during the eclipse

are described by Remailson, Shoemaker, and Whitaker. Finally, the observations

of the crescent Earth illuminated directly by the Sun are described by Whitaker

and Rennilson. The pictures obtained from Surveyor HI are the first that have

been taken of the Earth from the distance of the Moon by methods permitting

reproduction of pictures of the Earth in color.

A. Location of Surveyor III on Moon

The nominal target for Surveyor III was 3°S latitude, 23°W longitude, which

is in a small but telescopically relatively crater-free part of the Oceanus

Procellarum about 120 km (75 mi) southeast of the crater Lansberg and due north

of the center of Mare Cognitum (Fig. VII-Z). The area is crossed by the weak

south end of a ray from Copernicus, and contains two very low segments of mare

ridges (Figs. VII-3 and VII-4). The whole region is well covered by Lunar Orbiter

III photographs, which reveal a fairly low density of sub-telescopic craters, closely

resembling those observed around the Surveyor I landing site.

The best estimate of the position of the landing site obtained from pre-landing

tracking data was Z.99 "S, 23.37 °W. This position was plotted on ACIC lunar chart

AIC 76A, and the point transferred to Lunar Orbiter III medium-resolution photograph
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M154 (Fig. VII-5), from which it was further transferred to high-resolution photo-

graph H154. Noting that Surveyor I and Rangers VII through IX landed somewhat

to the east of, and in three cases to the north of, the positions derived from tracking

data, it was considered that Surveyor III would probably be located in the central

third of HI 54.

A study of preliminary mosaics of wide-angle Surveyor III pictures showed

that the spacecraft had landed on a west-facing surface sloping about 10" to the

horizontal; the average level of the horizon was about 5 ° higher than nominal for a

at surface. These data implied that the spacecraft was situated on the inner east
ope of a shallow crater.

A comparison with Surveyor I panoramas of narrow-angle surveys of areas to

the north and south of the spacecraft suggested that the horizon lay at least 50 m

away, indicating the crater in which the spacecraft landed had a diameter of 100 m

or more. These surveys also showed several small, but distinct, craters and a

number of blocks, estimated to be large enough to be visible on Lunar Orbiter III

photograph H154. A rough plan of the crater and its details was drawn and

memorized, and the general pattern searched for in all craters 50 to 250 m in

diameter in the central third of HI 54.

A crater was found that seemed to have the correct disposition of small craters

and rocks; measurements of azimuths of these features confirmed the identification.

Figure VII-6, an enlargement of a part of H154, illustrates this crater and its

immediate surroundings. The crater has a diameter of approximately 200 m, and

a depth of the order of 15 m. The selenographic coordinates of Surveyor III deter-

mined from the Lunar Orbiter III photograph and the ACIC map are 2.94°S latitude,

23.34°W longitude.

_. Topography of Surveyor III Landing Site and Attitude of Spacecraft

The crater in which Surveyor III landed is one of a family of craters of

subdued topographic form that occupies more than 50% of the surface of this part

of the Oceanus Procellarum. The rim of the crater is low and gently convex up-

ward; the position of its precise crest is difficult to define. Slopes within the

crater' range between about 10 and 15 ° on the steepest parts of the crater wall,

exclusive of the walls of smaller superposed craters. The floor of the crater is

gently concave upward and merges imperceptibly with the sloping walls. Aprofile
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across the center of the crater shows a reversal of curvature approximately half-

way between the center of the crater and the rim crest, both in vertical and radial

positions (Fig. VII-7).

Photoclinometric profiles across the crater in which Surveyor Ill landed

were derived from the Lunar Orbiter III high-resolution photograph III P-9C,

HI 54, EI 79W, 'framelet 027. The photometric method of deriving a surface

profile utilizes variations in scene brightness and an adopted mean photometric

function of the lunar maria for determining components of slope in the phase

plane. Scene brightness was measured from the photograph along phase plane

traces with a microdensitometer. Digital density measurements were converted

to normalized luminance by use of a luminance factor derived from comparison

of the computed luminance to the measured density of several areas whose orienta-

tion was determined by means of subjective photointerpretation. A slope element

was then computed from the normalized luminance for each image element along

the phase plane traces, using the terrestrially measured mean lunar photometric

function for the maria. Finally, the slope elements were connected to form

profiles. Two profiles across the central part of the crater {shown in Fig. VII-7)

exhibit local slopes as high as 16 °. The crater depth {20 m) derived by the photo-

clinometric technique is somewhat greater than that found directly by use of

vertical angle measurements from Surveyor III.

About 100 small craters resolved in the Lunar Orbiter III pictures are

scattered over the floor, inner slopes, and rim of the larger crater in which the

spacecraft is located. These small craters range in diameter from 1 to 25 m.

Many of them are subdued in form with gentle interior slopes and rounded rims,

but a few have sharp, raised rims and steep inner walls. In addition, the inner

surface of the main crater is sparsely strewn with coarse blocks, most of which

are spatially associated with three Of the largest superimposed small craters.

By close comparison of the Survep_r ILl pictures with the Lunar Orbiter III

photograph of the Surveyor III landing site, it is possible to identify more than 100

craters and large blocks that are recognizable in both the Surveyor and Lunar

Orbiter pictures. Because the number of these features is so large, it was

possible to use the information obtained from the two different sets of pictures

to produce a topographic map of the crater by methods analogous to ordinary field

surveying, after a solution was obtained of the orientation of the Surveyor HI

camera. The planimetric position of the camera was located by resection within
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the main crater in which the spacecraft landed to within 0.5 m, relative to the

objects identifiable in the Lunar Orbiter ITI photographs; the azimuthal orientation

of the camera and the spacecraft was found to within 1 °. Distances from the

Surveyor III camera to objects identifiable in the Lunar Orbiter photographs were

obtained directly from a Lunar Orbiter high-resolution photograph that was taken

when the optic axis of a high-resolution Lunar Orbiter camera was pointed within

about Z ° of the vertical. Vertical angles from the Surveyor HI camera to the

objects identified in the field of view were then obtained from the camera mirror

azimuth angle and elevation angle telemetry and from positions of objects within

the Surveyor pictures. From these data, elevations of points on the lunar surface

relative to the Surveyor camera were obtained by elementary trigonometry. A

preliminary contour map prepared by this method is illustrated in Fig. VII-8.

Surveyor III landed on the west-facing east wall of the main crater southeast

of the center of the crater. It lies almost half-way between the center of the crater

and the rim crest; the mean elevation of the footpads is about 7 m below the mean

elevation of the rim crest.

The attitude of the spacecraft has been estimated by three independent methods:

(1} Adjustment of the position of the planar array antenna of the space-

craft so that it provides the maximum signal transmitted to the Earth

and fJle solar panel so that maximum rate of change is obtained. The

attitude of the spacecraft can be estimated with the aid of the known

radiation pattern of the antenna. The antenna was adjusted slightly from

time to time to compensate for libration of the Moon, and the solar panel

was adjusted to track the Sun. Several estimates of position were

obtained. Observational data on fine adjustment or "tuning" of the

antenna and the solar panel indicate the spacecraft is tilted 12.5 ±2 ° in
1

a direction 6.6 ° north of west.

(2) Preliminary reduction of the observations of the position of the Earth

and Venus in the television pictures by Rennilson indicates the space-

craft is tilted 13 ±1.5 ° in a direction 6 ° north of west.

(3) Assumption that the rim crest of the crater in which the spacecraft

is located is, on the average, horizontal. Observations of the lunar

horizon as seen from the Surveyor III camera can then be reduced to

1Computation of attitude of spacecraft from orientations of planar array antenna was

carried out by Robert Lackman at the Hughes Aircraft Company.

¥II-9



ffPL Project Document 125

an attitude for the spacecraft, after corrections have been made for

the departure of the horizon from the rim crest. These observations,

as reduced by Shoemaker, indicate the spacecraft is tilted 14. 8 ° in

a direction 6 ° north of west.

The azimuth of tilt by all methods is found to be very nearly west. Observa-

tions of the position of the shadow of the western rim of the crater on the spacecraft

and on the eastern wall of the crater, near the time of lunar sunset, provide a very

sensitive test of the orientation of the spacecraft. Predictions of the tlmes at which

the shadow would be seen at various positions on the spacecraft, derived from obser-

vations of the horizon and the attitude derived by Shoemaker, were found to be

accurate within about I0 to 15 rain. The western component of tilt of the spacecraft

was found to be 14. 7 ±0. 1° from observations of the shadow of the western rim.

Thus, the spacecraft is tilted very nearly toward the center of the crater at an

angle somewhat steeper than the mean local slope of the crater wall, which is I0 °.

The legs of the spacecraft appear to straddle a shallow crater about 2 m {n

diameter, tentatively identified in the Lunar Orbiter iT/ photographs of the site

(Fig VII-9); footpad I, on the downhill side of the spacecraft, lies in a shallow north-

trending trough.

Because of the convexity of the crater rim, only the western half of the crest

of the rim of the crater in which the spacecraft is located is fully visible from the

camera. The eastern horizon, as seen from the camera, lies 35 m from the

camera and is about 1 m below the eastern rim crest. The trace of the horizon is

approximately an ellipse tilted to the east; the horizon rises from a point nearest

the camera on the eastern crater wall both to the north and to the south and approxi-

mately coincides with the rim crest west of the camera. The camera is inclined

_23.5 ° in a direction 47 ° north of west; the horizon varies in angular elevation 24 °

above and 20 ° below the plane normal to the camera axis. Vvrhen plotted on a cylin-

drical projection about the camera axis, the trace of the horizon in camera

coordinates is very nearly a smooth sine wave of 44 ° amplitude and 360 ° wavelength

(Fig. VII-10). The maximum of the sine wave lies approximately in the direction

of maximum tilt of the camera.

C. Geology of Surveyor III Landing Site

Small morphologic elements of the landing site include small craters, linear

ridges and troughs, and fragmental debris. Small craters account for the
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_ irregularities of largest relief on the inner surface of the main crater in which

i Surveyor III landed; they are, however, difficult to observe in the pictures because

of glare and because the best pictures were obtained under conditions of high Sun.

I A well developed system of low amplitude ridges and troughs was found on the walls

of the main crater and is well portrayed in the Lunar Orbiter III photographs of the

landing site. These ridges and troughs are part of the patterned ground charac-
I 1 C a

teristic ofth's part of the O e nus Procellarurn and are probably related to a set

I of subsurface fractures. The relief of the ridges and troughs is so small, however,

I graphs and the Surveyor pictures of the landing site. Blocks ranging from half a

meter to several meters across are detectable in the Lunar Orbiter III photographs,

I and grains and lumps as small as 1 mm are observable close to the spacecraft in

the Surveyor III pictures. The most easily extracted information about the geology

I of the landing site in the Surveyor III pictures is related to the distribution and

characteristics of the fragmental debris and of the layer of this debris, or regolith,

I which is inferred to underlie the observed surface.
The craters observed in the Surveyor ITI pictures range in diameter from about

I 10 cm to about 16 m. Most of the craters smaller than 3 m in diameter are relatively
shallow and nearly rimless or have very subdued raised rims. Approximately 25%

of the craters that range from 3 m to approximately 12 m in diameter have distinct-

I ly raised rims and relatively steep walls; the other craters in this size range are

of subdued form. The rims of most craters are composed of material similar in

I texture to of the surface between the craters. It be inferred that mostparts may

of the small craters have been excavated in fragmental material similar to that

exposed at the surface.

Most craters have a normal cup shape, with walls and floors concave upward;

I however, one prominent crater over Z0 m across, located near the center of the
main crater, is dimple-shaped. Most of the craters appear to be irregularly or

nearly randomly distributed over the rim, walls, and floor of the main crater, but

I some of the very shallow rimless craters tend to be aligned approximately in the

north-south direction, parallel to one of the major lineation directions of the

I patterned ground. These aligned craters are probably related in origin to the

patterned ground; they may have been formed by subsidence or by drainage of

J fragmental debris into fractures or fissures. A few irregular, elongated
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i
depressions up to 5 m long are present on the east wall of the main crater where the

small craters are most easily observed. These irregular depressions are not I

parallel with the major lineation directions and are inferred to be of secondary
m

impact origin, i
The size/frequency distribution of craters on the rim and within the main

crater in which Surveyor III landed has been estimated by combining data obtained

from the Surveyor IX][ pictures and from the Lunar Orbiter HI photographs. The

frequency distribution of craters ranging in size from Z5 cm to 4 m was estimated

from one sample area (Area 1, Fig. VII-11) on the northeast wall of the main 'i"

crater for which usable Surveyor pictures were obtained in the early lunar morning.

In an area of 450 m Z, 79 craters were counted. From the Lunar Orbiter photograph, B
Z m

95 craters ranging in diameter from 4 to 25 m were counted in an area of 49,000 m .

The combined distribution is compared in Fig. VII-1Z with the mean crater frequency i

distribution obtained from Ranger VII through IX pictures and the crater distribution m

obtained from Surveyor I pictures. It can be seen that the crater size/frequency m
distribution of the Surveyor III landing site is closely similar to the mean distribu-

tion observed on lunar plains by Rangers VII through IX in the size range of 1 to
Hi

16
m. The low frequency observed for the Surveyor III site in the size range of g

25 cm to 1 m probably is due to incompleteness of the observational data rather

than to an actual crater deficiency at the Surveyor HI landing site. An unusually B

large number of craters was observed per unit area at the Surveyor I landing site
I

in the crater size range of 25 cm to 4 m. The difference in the observed distribu- •
D

tions may be related primarily to the ease of recognition of very shallow craters in

the Surveyor I pictures, as compared with Ranger and Surveyor III pictures. I
Lunar patterned ground consists of one or more sets of parallel ridges and i

troughs, which generally have amplitudes of a few tens of centimeters and wave-

lengths on the order of 5 to 10 m. This pattern is well developed at the Surveyor III g

landing site, where the long axes of the ridges and troughs trend in two dominant

directions, one slightly west of north and the other about 30 ° east of north. The i

intersectio_ of these two ridge and trough sets gives a corrugated appearance to
i

the surface when it is illuminated at very low angles by the Sun. The east wall

of the crater was illuminated in such a manner at the time that Lunar Orbiter III m

photographs were taken; only in this part of the crater is the pattern detectable. !
Certain rows of subdued craters and more pronounced troughs are oriented parallel

with the north-trending element of the patterned ground at the Surveyor landing site.

I
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The pattern is inferred to be controlled by underlying fractures or joints; it may

have been developed and sustained by mass movement of fragmental material on

the surface, perhaps during seismic agitation, and by drainage of surficial frag-

mental debris into open joints. A majority of craters aligned in rows parallel with

the pattern are inferred to have developed either by subsidence of joint blocks or,

like the troughs in the patterned ground, by drainage of surficial debris into fissures

that are opened and closed from time to time by shaking caused primarily by nearby

impact events.

Bright angular-to-rounded pieces of fragmental debris are the most conspicuous

features in the Surveyor ILl pictures. The observed fragments, which range in size

from about I mm to 4 m in longest dimensions, are scattered somewhat irregularly

and, in most places, sparsely over most of the visible parts of the lunar surface.

Except in two prominent strewn fields of coarse blocks, the resolvable fragments

occupy no more than about 14% of the surface.

Most of the observed fragments are relatively angular, but some well-rounded

fragments are also present which, in most places, appear to be fairly deeply buried

in the lunar surface. On the whole, the fragments tend to be equant in shape, but

some are distinctly tabular and a few have the form of sharp, narrow wedges. In a

few cases, the edge of a wedge-shaped fragment protrudes from the surface in such

a wa 7 as to resemble a spike or hatchet blade protruding from the lunar surface

(Fig. VII- 13).

All of the recognizable fragments are conspicuously brighter at high Sun than

the rest of the lunar surface. Although the brightnes§ is, in part, dependent upon

the orientation of the surface of the fragments, it is clear that the fragments have a

higher alhedo, in some cases perhaps as much as 50% higher than the average

albedo of the rest of the surface.

Over much of the surface, the distribution of fragments appears to be nearly

random; locally, however, strewn fields of blocks are present, and at least two

examples were found of aligned rows of fragments. In one of these rows lying

northeast of the camera, a conspicuously rounded group of fragments trends

approx/mately east-west. These aligned groups of fragments may represent

small elements of rays of nearby or distant craters.

The fragments exhibit all variations of apparent position with respect to the

surface, from pieces that appear to rest almost entirely on top of the surface

(Fig. VH-t4) to pieces that appear to be almost completely buried, with only a
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small part showing, From qualitative examination of the pictures, the impression

is gained that, in the average case, about half of the fragment is buried beneath

the surface and half protrudes above it. Rounded blocks, in most instances, seem

to be more deeply buried than average.

As in Surveyor I, no examples were found in which a fragment seemed to be

perched on a pedestal, as reported from the Luna IX pictures by Lebedinskiy

(Ref. VII-Z). We believe the pedestals reportedly observed in the Luna IX pictures

are an illusion that is, in part, due to the lower resolution of the Luna IX pictures

to the particular conditions of illumination under which they were taken. This

illusion can be experienced in observing some fragments in the Surveyor HI pictures

by viewing the pictures at certain angles and under poor conditions of lighting.

Most of the fragments close to the spacecraft have a peculiar grainy or knobby,

or in some cases, pitted texture. The resolvable pits are generally shallow, but on

at least one fragment (Fig. VII-15) close to the spacecraft they are nearly as deep

as those observed in Rock B at the Surveyor I landing site. On this fragment, the

pits may indicate the presence of vesicles in the fragment. Some fragments, notably

pieces associated with a strewn field of blocks to the northeast of the spacecraft,

have smooth, nearly planar, faces as though they were broken along pre-existing

joints or fractures. A number of large blocks, most of which are tabular in form,

appear to be laminated or contain planes ofweakness parallel to the long dimensions

of the blocks. The apparent lamination is expressed as grooves and ridges along the

narrow sides of the blocks (Fig. VII-I6).

The coarsest blocks scattered about the surface of the Surveyor HI landing

site occur mainly in two distinct strewn fields. One field (Area B, Fig. VII-I 7)

is associated with a sharp,raised rim crater about 13 m across on the northeast

of the main crater, and the other field (Area A, Fig. VII-18) with two adjacent

subdued craters high on the southwest wall of the main crater. In the case of the

strewn field associated with the crater to the northeast (Area B), the majority of

the blocks are clearly related to the crater, as there is a rapid increase in spatial

density of blocks toward the crater. The crater is also occupied by blocks. The

blocks outside are inferred to have been ejected from this crater and to have been

derived from material that underlies the rim of the main crater at depths only Z or

3 m below the surface. The observed blocks are strikingly angular and range from a

few centimeters (the limit of resolution) to more than Z m across. Blocks

associated with the more subdued craters to the southwest (Area A) show a similar
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range in size_but are more rounded in appearance. The largest of the two south-

westerly craters with which these blocks are associated is about 15 m in diameter;

it is inferred that most of the blocks were ejected primarily from the larger crater.

In the northeastern and southwestern strewn fields, the size/frequency dis-

tribution of the blocks per unit area lies well above the size/frequency distribution

for the more normal surface (Fig. VII-19). Because of the relatively large size

and number of blocks in each strewn field that could be studied in the Surveyor ILl

pictures, it has been possible to conduct a preliminary statistical investigation of

the roundness and degree of burial of these blocks, and the relationship of roundness

and burial to the characteristics of the principal crater associated with each strewn

field.

In order to obtain a measure of roundness that could be used for statistical

studies, a descriptive parameter, here called the roundness factor, was devised

that may be obtained from the pictures as follows: Circles are fitted to all of the

corners or curved parts of the outline of each block that occult the more distant

lunar scene (Fig. Vll-20). The geometric mean of the radius of curvature of these

corners is then divided by the radius of that circle which just encloses the outline

of the block. This ratio is the roundness factor, and, for blocks that are not

deeply buried in the surface, it will vary between the limits of 0 and I. For very

round fragments whose tops are just exposed above the surface, it is possible to

obtain values of the roundness factor larger than I, although no values this high

were observed for the blocks measured in the strewn fields.

The roundness factor was measured for 25 blocks located within a confined

area in each strewn field (Fig. VII-Z1 ). Blocks associated with the sharply formed

crater to the northeast exhibit a mean roundness of 0.17 with a standard deviation

of roundness of 0. ] I. The blocks associated with the more subdued, rounded-rim

crater to the southwest exhibit a mean roundness of 0.33 and a standard deviation

of roundness of 0.17. The difference in roundness between these two samples

of blocks is significant, by Student's t__test, at the 0. 999-probability level.

A measurement of degree of burial of blocks in the lunar surface was obtained

by the following method. The angle between a line parallel with the horizon that

meets the block, where its outline against the more distant lunar scene comes to the

surface, and the tangent to the outline ot the block at this point was measured on

each side of each block {Fig. VII-22). The sum of these two angles for each block

divided by 2w radians, here defined as the burial factor, can vary between 0 and 1.
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l
Rounded fragments whose tops just barely show above the surface have burial factors

that approach 1, whereas rocks that sit up on the surface and exhibit overhanging

sides have burial factors that approach 0.

Measurement of the burial factor for the same 25 blocks in each strewn field I

that were studied for roundness gave the following results: The mean burial factor

of blocks associated with the sharply formed crater to the northeast is 0.6Z with a
W

standard deviation of burial factor of 0.09 (Fig. VII-23). The blocks associated with

the more subdued, rounded-rim crater to the southwest have a mean burial factor 'M

Wof 0.69 with a standard deviation of burial factor of 0.07 (Fig. VII- 23). The differ-

ence between these means is significant, by Student's t test, at the 0.995-
N

probability level. U

No significant correlation was found between roundness and burial of individual

blocks within each strewn field. The linear correlation coefficient between the N

roundness factor and burial factor for the blocks in the strewn field around the

northwest crater is -0.07 and, fdr the blocks in the strewn field associated with
mthe southwest crater, -0.16. Both of these coefficients are well below the 95%

confidence level. If the blocks in both the strewn fields are examined as a single

t)sample, the linear correlation coefficient between roundness factor and burial

factor is +0.13, which is also below the level of significance. Examination of the

scatter diagram (Fig. VII-Z4) of burial factor versus roundness factor shows that, 3

while there is no significant linear correlation, there are relatively few blocks in

the strewn fields that tend to have high roundness but a low burial factor.

While there is no significant linear correlation between roundness and burial

for blocks in a given strewn field of presumably one age, it may be expected that, H
m

as individual fresh pieces are added to the regolith of the lunar surface, they start

out with relatively high angularity and tend to be perched on top. In time, the W
Ufragments tend to become rounded and from time to time will show varying degrees

of burial. Thus, for fragments generally mixed together in the debris layer or I

regolith, there should be a correlation between the roundness and degree of I

burial. Further studies of the Surveyor pictures will be: required to confirm this

hypothe sis.

In summary, the blocks associated with the more subdued craters have twice

as high a mean roundness factor as those associated with the crater with a sharp N
g

raised rim, and the blocks around the subdued crater are significantly more buried

in the lunar surface than those around the crater with the sharp raised rim. These n

|
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results suggest that blocks freshly exposed on the lunar surface tend to be rounded

off in the course of time by solid particle bombardment and possibly by evaporation

of material by the solar wind or other high-energy radiation. Initially, the ejected

blocks tend to be shallowly embedded in the lunar surface, but in time

may become partly or completely covered up by ejecta arriving from other parts of

the lunar surface. Progressive burial of blocks may take place also as a result of

downhill movement of the debris layer by creep.

The size/frequency distribution of fragmental debris at the Surveyor III landing

site was studied both in the strewn fields of blocks just described and in four sample

areas that lie close to the spacecraft [Area C, Fig. VII-17; Area D, Fig. VII-25(a);

Area E, Fig. VII-2S(b); and Area F, Fig. VII-25(c)] These sample areas were

chosen so that the resolution and area covered would provide particle counts spanning

different, but overlapping, parts of the particle size range. All sharply formed,

bright fragments recognizable in the relatively high Sun pictures in each sample area

were measured and counted. A total of 2205 fragments and grains, ranging in diam-

eter from 1 mmto more than 1 re,were measured.

The integral size/frequency distribution of measured fragments, normalized

to an area 100 m E for each of the sample areas, is shown in Fig. VII-19. Fragments

in the strewn fields associated with the northeast and southwest craters are, on the

whole, an order of magnitude coarser than the fragments observed on the more

characteristic parts of the landing site. The size distribution of the fragments in

each strewn field resembles the size distribution of fragments ejected from impact

craters formed in strong rock, such as at Meteor Crater, Arizona (Fig. VII-26).

The integral frequency of fragments for the average surface, outside of the

strewn fields of blocks is approximately a simple power function of the grain size

with an exponent of about -2.6. This distribution may be compared with a revised

size/frequency distribution of fragments observed in the Surveyor I landing site

(Figs. VII-Z7 and VII-28}. The power function used to approximate the observational

results for Surveyor HI has a slightly lower exponent than that obtained for the

particles studied at the Surveyor I landing site, which is -2.1. The observed

difference between the size/frequency distribution of fragments in the two areas

may be within the error of measurement.

We have carried out experimental studies of the relationship between the size/

frequency distribution of particles obtained by measuring and counting fragments from

a photograph of the surface of a fragmental debris layer and the distribution found by
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mechanically sieving the entire layer. Among the different materials studied were

samples of the ash and pumice from the volcanic ash flow deposited in the Valley of

I0,000 Smokes in Alaska during the eruption of 191Z (Fig. VII-Zg). The difference

between the particle distribution obtained by measurement and counting of grains

from pictures and by mechanical sieving for this sample is shown in Fig. VII-30.

It may be seen that the number of small particles counted in pictures of the

surface layer of fragments tends to be much lower than the number of small

articles found by sieving the entire layer. A similar difference was observed in the
tudy of fragment size distribution of dolomite ejecta from Meteor Crater, Arizona.

Theoretically, for each decrease by a factor of ten in size, the number of small

fragments per unit volume should increase ten times as much as the number of

recognizable small fragments exposed at the surface per unit area. The volumetric

size/frequency distribution of fragments in the debris layer of the lunar surface can be

represented by a power function with an exponent of approximately -3.

If the volumetric particle size distribution is like the suggested distribution

shown in Fig. VII-Z8, then it follows closely the size distribution of particles that

would be expected to be produced by an incident flux upon the IVioon of meteoroids

with an integral mass frequency distribution which is a simple inverse function of the

mass. The present evidence on the mass frequency distribution of interplanetary

solid particles in the size range capable of producing the observed fragments on the

lunar surface at the Surveyor 1 and lII landing sites indicates that it is very close to

a simple inverse function.

The fine-grained matrix of the lunar surface material at the Surveyor Ill

landing site shows a peculiar patchiness of albedo like that observed at the Surveyor

landing site (see Sect. ill of Ref. VII-l). Dark rubbly patches commonly occupy

mall shallow craters. These patches resemble, in some respects, the dark lumpy

rims surrounding the imprints of the spacecraft footpads and the material disturbed

by the surface sampler. We believe that these patches have probably been formed by

breakup of fresh clots of fine-grained material that have been ejected from nearby

small impact craters, and that the shallow craters they occupy are very young

secondary craters produced by the low-speed impact of these relatively soft clots.

In places, fine-grained material appears to be banked up slightly against the

sides of some of the larger blocks protruding above the lunar surface, both in the

strewn fields of blocks and around blocks elsewhere with the main crater (Fig.

VII-31). Similar banking up of fine material and partial covering of blocks by fine
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material was observed around blocks at the Surveyor I landing site. The steep faces

of coarse blocks can be considered ballistic traps for small particles sprayed out

from nearby parts of the lunar surface, and it is inferred that the banks of fine-

grained material have been deposited particle by particle from the particle spray

from numerous small nearby impact events.

i Imprints in the lunar surface material produced at several of the touchdown
points of the footpads of the spacecraft are visible to the east of the camera

(Fig. VH-3Z) and are of interest to compare with the natural disturbances of the

surface, such as secondary impact craters. These disturbances also provide clues

about the size distribution of fragments beneath the surface. Well developed imprints

i in the lunar surface lie just upslope from the present position of footpads Z and 3.

At IZ, 14.5, and 15 m upslope from the camera are three other well-defined marks

i left at the site of the second touchdown of the spacecraft VII-33). The(Fig. mark

at IZ m was formed by footpad 1 and the two marks at 14.5 and 15 m by footpad g,

i which evidently touched the surface twice before the spacecraft lifted clear of the

surface on its second ascent under power (see Sect. IV, this report). The imprint

i of footpad 3 is not clearly distinguishable at the site of second touchdown, although
its position can be fairly accurately predicted; the position of this imprint is in a

shallow crater, and only a small part of the imprint appears to be visible. The

I imprints left by the first touchdown do not appear to be visible from the present

position of the camera. They lie either beyond the eastern horizon or on a part of

i only at a grazing angle, where the imprints would
the crater wall which is observed

be difficult to detect.

I We have searched for marks produced by the vernier engine effluent at the
" second touchdown sit ...... "e o, the spacecra,t, une sucl_ mark may be present near the

_mprint m, we was produced by footpad Z. It is possible that
at 15 which believe

• this disturbance of the surface was produced by the combined effects of the

effluent from vernier engine 2 and the dragging of footpad Z.

The imprints just upslope from footpads 2 and 3 of the spacecraft are nearly

flat-bottomed depressions, the floors of which lie a few centimeters deeper than the

adjacent undisturbed parts of the lunar surface. Most of the observable parts of the

walls of these two depressions are smooth,conical surfaces that conform approxi-

mately in shape to the tapered or chamfered part of the underside of each footpad.

The wall of the imprint left by footpad Z is not complete, however, and it is offset,

in places, along Short distinctive breaks.
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The imprint of footpad Z is nearly encompassed by a raised rim of lumpy

material with an albedo significantly lower that that of the undisturbed surface. The H

raised rim and dark material are absent along a short sector of the edge of the im-

print onthe upslope side, the side from which the footpad approached the surface. On i

the downslope side, dark lumpy debris is spread out for an observable distance of at
I

least 0.5 m. .Along the east-southeast sector of the imprint, a smooth wall is not n

present, and dark lumpy material extends from the rim of the depression to the floor. U

Presumably a smooth sloping surface was produced during penetration of the footpad '
i

and later either collapsed or was covered over by dark material slumping down i

across it.

The dark lumpy rim of the imprint next to footpad Z resembles the ejected i

dark rim material around footpads Z and 3 at the Surveyor I landing site. Apparently,

the lumps are mostly aggregates of finer particles formed by breakup of the slightly n

cohesive lunar surface debris. The observed lumps range from 1 mm to 5 cm
g

across and have a mean diameter of about 1 cm.

UThe floor of the imprint near footpad Z exhibits a regular series of very low

mounds arranged in a pattern similar to that of a waffle iron. This pattern must

have been produced by the bottom of the footpad, the skin of which was evidently H

pressed slightly into the honeycomb structure of the pad interior. Two s_nall bumps

in the depression probably are either small fragments lying on the floor ofthe imprint n

or reflect dents in the bottom of the footpad that may have been produced by a hard
I

lunar fragment during the first, second, or third touchdown of the spacecraft. The n

breaks in the smooth wall are somewhat similar to chatter marks formed on glacial

pavements and probably have been formed by downslope distortion of the wall as the •

spacecraft footpad pulled away in the downslope direction. |

The smooth walls and floor of the imprint next to footpad Z are different

photometrically from the undisturbed lunar surface, as indicated in the following g

section on photometry. Observations of the imprint on several different days during

the lunar morning and early afternoon indicate this smooth surface is more like a fl

Lambertian surface than is the natural lunar surface. Much more light is scattered

toward the eastward facing camera from the smooth imprint surface than from N

nearby undisturbed parts of the Moon in the early lunar morning, but in the lunar

afternoon the imprint is not brighter than the undisturbed surface. This indicates N

that the very small irregularities between the grains have been partially smoothed H

out or filled in by pressure and by sliding of the smooth metallic footpad.
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Only part of the imprint near footpad 3 is observable from the camera, but it

appears to be somewhat smoother and more regular than the imprint next to footpad

Z. Dark lumpy material also forms a partial rim around the imprint near footpad 3,

and there are dark streaks in the walls of the depression, probably formed by

collapse or drainage of particles downthe upslope side of the depression.

The three clearly visible imprints at the site of second touchdown are much iess

regular in form than those next to the spacecraft. All three are formed on the walls of

small craters. Two imprints were left by footpad Z low on the northeast wall of a crater

about 4 m across. The uppermost, and presumably first formed imprint of these two,

has a well-defined rim on its upslope side, but none is clearly observable on the down-

slope side. The lower imprint looks as though it had been formed simply by dragging

of the footpad along the crater wall during the second ascent of the spacecraft from

the lunar surface. The imprint formed by footpad 1 at the second touchdown site is on

the upper part of the east wall of a crater about 1 m across. This imprint, too, has a

well-defined wall on the upslope side, formed of dark lumpy material, whereas the

downslope side is open toward the center of the crater. The floors of all three of

these imprints are relatively smooth and appear to have anomalous photometric prop-

erties like those of the footpad Z imprint near the spacecraft.

Each of the four well-formed imprints observed is generally similar. It may be

inferred that the mechanical properties of the lunar surface are rather similar at the

positions of all four imprints and that the mechanical properties of the fragmental

material at the Surveyor III landing site are closely similar to those of the material at

the Surveyor I landing site. (For a detailed discussion of the similarities and differ-

ences, see Section IV of this report.)

Disturbances produced in the lunar surface by the surface sampler are similar

in several ways to the disturbances produced by the footpads of the spacecraft. The

disturbed material tends to form lumps or clots a millimeter to a few centimeters

across, like those formed on the raised rims of the footpad imprints, and the dis-

turbed lumpy material has a significantly lower albedo than the undisturbed surface.

Where the surface sampler scoop was pressed into the surface in a bearing test, a

raised ridge of lumpy material was formed around the depression, which has been in-

terpreted (see Sect. V) to indicate thatthe fine-grained material at the lunar surface

is relatively incompressible or only very moderately compressible. Smooth parts

of the scoop left smooth marks or a smooth surface where pressed firmly against

the fine-grained fragmental debris. The photometric properties of these artificially

smoothed surfaces are like the smooth surfaces in the footpad imprints.
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No bright angular hard fragments were uncovered in the trenching operations

with the surface sampler, but they would be extremely difficult to detect, if they are

scattered through the subsurface material as they are on the surface. The fact that

smooth metallic surfaces leave smooth imprints in the lunar fragmental debris does

not mean that coarse particles are absent. They are probably sufficiently well dis-

persed through the finer-grained matrix that they tend to yield when pressed against

and tend to be concealed by the matrix in an imprint area.

From the geological standpoint, the most important conclusions to be drawn

from the footpad imprints and areas disturbed by the surface sampler are that the

lunar surface material is only moderately compressible arid that it has relatively low

cohesion. It is also important to note that all disturbances of the surface produced

by Surveyors I and HI exposed darker material at depths not greater than a few centi-

meters. In all likelihood, the fine-grained fragmental debris of the lunar surface is

20 to 30°7o lower in albedo at depths of only a fraction of a millimeter beneath the

optically observed surface.

D. Interpretation of Geologic Observations

The observations of the lunar surface obtained from the Surveyor III mission,

when combined with results obtained from Surveyor I, Ranger and Lunar Orbiter

Programs, and observations at the telescope, can be used to infer hypotheses or

amplify previous hypotheses about the geologic processes taking place on the lunar

surface. The processes of most immediate interest are those which have produced

the observed craters and the fragmental debris and which control the observed dis-

tribution of craters and fragmental debris. In addition, some inferences may be

about processes leading to the observed variations of albedo of the lunar

surface and subsurface material.

It should be noted that the small features of the Surveyor III landing site are

closely similar, in detail, to the features of the Surveyor I landing site. The

characteristics of the craters and fragmental debris and the processes by which

these features have been formed and modified are probably closely similar. In

short, the lunar surface on the interior of a broad shallow crater on the maria

is much like the surface on a relatively level area between the craters.

We infer that most craters observed at the Surveyor _I landing site are of

impact origin. The size/frequency distribution of the observed craters corresponds
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to that which would be produced by repetitive bombardment of the lunar surface by

meteoroids, a bombardment sufficiently prolonged that the crater population has

reached a steady state or come to equilibrium (Refs. VII-3 through VII-5). In a

steady-state population, old craters of a given size are destroyed as rapidly as new

ones are formed. From investigations of Ranger and Lunar Orbiter pictures, the

upper size limit of the steady-state or equilibrium crater population was found

(Refs. VII-3 and VII-6) to be several hundred meters, much larger than any of the

craters observed at the Surveyor iT/ landing site.

Some direct evidence for the impact origin of two of the larger craters seen

from the Surveyor J/I camera is provided by the size/frequency distribution of the

blocks in the strewn fields associated with these craters. These blocks exhibit

the type of size/frequency distribution that is produced by a single impact or

I explosion cratering event in relatively hard rock.

Some of the craters observed at the Surveyor iT/ landing site are inferred to

I be of secondary impact origin; some apparently are structurally controlled and
probably have been formed either by subsidence or by drainage of fragmental debris

I into cracks or fissures in the subsurface. Most of the shallow craters that contain
patches of dark rubble resemble craters of secondary impact origin investigated by

Moore at the White Sands Missile Range (Ref. III-7), which are produced by weakly

I cohesive clots ejected from primary craters. Some other irregular, elongated

craters at the Surveyor III landing site may also be of secondary impact origin.

I troughs and rows of shallow craters aligned parallel with troughs in theLinear

lunar patterned ground are probably produced by drainage or collapse. At the

I present writing, we have not been able to determine with confidence the number

of craters of each different type and presumed different origin.

_t The observed fragmental debris is inferred to have been derived primarily by
he same process of repetitive bombardment that has produced the majority of the

craters. The fragments at the surface are evidently part of a layer of fragmental
material of low cohesion that is at least as thick as 1 m along the upper parts of the

wall of the main crater in which Surveyor landed and may be much thicker near the

I center of the crater. This layer we refer to as the lunar regolith. The inferred

volumetric size/frequencydistribution of fragments, derived from the observed

size distribution of fragments on the surface, is similar to that which would be pro-

duced by repetitive bombardment of coherent rock by meteoroids with a mass

frequency distribution like that found from observations of meteors and recovered
meteorites on Earth.
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I

i
Observed fragments in the regolith exhibit some diversity of surface texture

and structure and probably have been derived from diverse sources, some nearby i

i

and some relatively distant from the Surveyor III landing site. Most fragments are

massive, but a few are strikingly tabular in shape and appear to be laminated. Many D

fragments are pitted, and some may be vesicular. We infer that the large majority of
I

the fragments have been derived from pre-existing relatively strong rock, possibly i

volcanic flows or lithified volcanic ash flows. B

E_cidence from the Surveyor III pictures suggests the regolith is subject to creep , I

or mass movement down the slopes of the main crater. As observed in the pictures, i

blocks and finer fragments tend to "ride" at different levels with respect to the sur-

face, or, to put it in different terms, blocks seem to be stuck into the surface at i

varying depths. Regardless of apparent depth of burial, the surface is not appre-

ciably deflected as the side of a block is approached. Because of this relationship, i

we were able to obtain relatively unambiguous measurements of the burial factor for

the coarser blocks.

UThe observed relationship of the blocks to the surface is not that which would

be expected if the blocks had been buried to varying depths simply by penetration of $m

the surface on impact or by later covering by fine-grained ejecta from nearby craters. H

In the former case, because the fine-grained material of the region is relatively in-

compressible, a small crater would tend to be formed around the blocks and, in the H

i

latter case, material would tend to be banked up around the blocks. Some banking

of fine material against blocks is observed, but it is a relatively minor effect. H

The varying degree of burial of the blocks is probably significantly influenced
I

by slow or intermittent downhill creep or flow of the entire layer of debris. During

the flow, blocks that are initially deposited on top of the regolith or buried at only B

slight depth will tend to sink, if their density is greater than the bulk density of the I

fine-grained debris and if coarse fragments are not too closely spaced within the B

fine-grained matrix. The surface of the fine-grained matrix will tend to become

smooth during flow; depressions will tend to be filled in_and ridges or banks g

ibm

small

of debris will tend to be flattened out.

The regolith at the Surveyor III landing site can flow under relatively low stress

because it has very low cohesion. This low cohesion is demonstrated by three inde-

pendent lines of evidence:
U(1) Deformation of the lunar surface by the spacecraft footpads, which is

similar to the deformation produced by the Surveyor I footpads, is g

iVII- Z4



I

I

I
I

I

I

I

l

I

I

I
IO
i

i

|

|

|

JPL Project Document 125

consistent with the behavior of a near-surface material that is only

weakly cohesive. A material with a cohesion between 10 3 and 10 4

dynes/cm z has been suggested to give a behavior representative of

the lunar surface deformed by the footpads of Surveyor I {Ref. VII-1}.

Christensen et al,{Section IV of this report} conclude that the cohesion

of the lunar soil at the Surveyor III site cannot exceed 7 x 10 4 dynes/cm 2.

{2} Tests of lunar surface material by the surface sampler show that the

behavior of the fine-grained material near _he spacecraft is consistent
2

with a low cohesion, between 1 x 10 3 and B x 10 3 dynes/cm , according

to Scott, Roberson, and Clary {see Section V of this report}.

(3) Presence of raised rims consisting essentially of fine-grained debris

around many of the small craters shows the cohesion is generally low

at most places visible from the camera. Craters of the size observed

with rims of this type can be formed experimentally only in material

with a cohesion of about 10 4 dynes/cm 2 or less.

Because of this low cohesion, creep or flow will take place in the regolith on

sloping surfaces, if it is shaken or agitated (Ref. VII-9). Agitation or shaking must

occur from time to time as a consequence of impact events. Seismic waves are

propagated a considerable distance beyond each impact crater that is formed,

whether it is large or small. From field observations made by Shoemaker at the

Atomic Energy Commission, Nevada Test Site, of mass movement induced by sub-

sequent cratering experiments on the walls of experimental craters formed in

alluvium, we estimate that significant creep of the lunar regolith may be induced on

sloping surfaces at a distance at least as great as 10 times the crater radius, for each

impact cratering event. Most of the seismic shaking that causes creep is probably

due to relatively small nearby impact events; only rarely does a large distant impact

take place that will induce creep at any given locality. The formation of impact

crater present at the Surveyor landing site probably was accompanied by some down-

hill creep of the regolith over a small area surrounding the crater. In addition to

seismic waves produced by impact, seismic waves of sufficient amplitude to cause

creep may be produced by internal tectonic activity of the Moon.

Creep of a very thin layer at the top of the regolith may also take place as a

result of the thermal expansion and contraction induced by insolation. During an

insolation cycle, material tends to expand in a direction normal to the surface and

to contract down the gravitational gradient. Because the thermal wave is damped
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out rapidly with depth on the Moon, significant expansion and contraction are limited

• to a layer at most a few centimeters thick. Thermally induced creep may, however,

tend to make fine debris near the surface flow around and past protruding blocks.

The main crater in which the spacecraft is located probably has been partially

filled in by mass movement of the fragmental debris. The presence of coarse blocky

ejecta from superposed craters on the northeast rim and high on the southwest wall

show that the fine-grained debris layer is at most a few meters thick on or near the

rim of the main crater. No strewn fields of blocks or blocky crater rims occur near

he floor of the main crater, which indicates the base of the debris layer is deeper

any of the craters present there. The main crater probably is an old impact

crater and initially had a significantly higher rim and deeper floor. Bombardment

and mass movement may have reduced the height at the rim by many meters and

filled in the floor with a deposit of fragmental debris several tens of meters thick

at the center of the crater. The blocks in the northeast and southwest strewn fields

are probably derived from the eroded remnants of the original fragmental rim

deposit of the main crater, which evidently lies at shallow depth along the rim crest

and is exposed from time to time by superposed craters. It is of interest that a

relatively large dimple crater is located near the center of the main crater where a

thick deposit of fine-grained debris may be present, a deposit required for a large

crater to be developed by drainage.

On the basis of observations made from Surveyors I and Iii, it is now possible

to draw two tentative new generalizations about photometric properties of material

on the lunar surface: (1) protruding blocks, in all observed cases, have a higher

albedo than the fine-grained matrix of the surface, and (2) freshly exposed fine-

grained material derived from just beneath the surface has a lower albedo than the

disturbed fine-grained material at the surface. We present here a simple

working hypothesis, based on the general model of surface processes given above

and on geologic observations given earlier, which accounts for these two general

photometric relationships.

From the studies of roundness, we concluded that some process or combina-

tion of processes leads to progressive rounding of blocks over the course of time.

It was also noted that the angular blocks associated with a relatively sharply formed

crater northeast of the spacecraft have smooth planar faces, whereas the surfaces

of most other blocks are pitted. This suggests that most of the pits are produced

by impact of small particles and that small particle bombardment may be a significant

VII- Z6

I

I

I

I

I
I

g

g

I

!

I
g

g
O

g

g

U
g

g



I

I

I

I

JPL Project Document 125

process leading to the rounding of blocks. Other processes may also contribute to

rounding. Sputtering of material from the blocks by solar protons may lead to sig-

nificant mass loss and rounding. Professor Charles H. Townes has suggested to

Shoemaker that ultraviolet radiation may cause appreciable evaporation of atoms

from silicates on the lunar surface. We have observed ribs on rounded rocks at

I the Surveyor I landing site that may have been left by selective or different evapora-

tion of the surfaces of these blocks. Whatever the processes contributing to rounding,

it is probably significant that those surfaces from which material is evidently being

orn or evaporated away are the brightest surfaces observed from Surveyors I and

-- _" Th eraI e gen 1 photometric relationships can be explained if it is assumed that

the surfaces of particles in the shallow lunar subsurface tend to become coated with

I a hypothetical substance we will call lunar varnish. On theclark substance. This

surfaces of blocks or coarse fragments that have been exposed to space for some

I time, the lunar varnish is scrubbed off by the processes that produce rounding.

Under this hypothesis, the observed albedo of a large block is essentially the same

i as the albedo that would be observed on a new surface cut through the interior of the
block.

The exposed surfaces of the fine particles on the lunar surface also tend to be

I scrubbed. Because they are mixed fairly rapidly with coated particles just beneath

the surface by mass movement and small cratering events, however, the scrubbing

I incomplete and the fine-grained material at the surface has a lower albedo thanis

the coarse blocks. In order for material just beneath the surface to remain dark

I and not have its albedo raised by mixing with scrubbed fromparticles above,

deposition or coating of particles by lunar varnish must take place just beneath the

_urface. The process of coating may also take place at greater depths as well.

Inasmuch as the particles on the lunar surface are turned over or mixed to depths

on the order of 1 mm in a period of time on the order of 100 to 1000 yr by small

meteroid bombardment, the deposition of lunar varrrish must take place fairly rapidly.

The composition of the lunar varnish and the processes by which it might be

deposited are problems that remained to be solved. Hapke (Ref. VII-9) has suggested

that oxygen-depleted material derived by sputtering may be deposited on the under

sides of grains on the lunar surface and on grains just beneath the surface. It now

appears that the experiments on which this suggestion was based do not show that

the effect can be produced by sputtering. Hapke's experiments did produce a coating

I

i

!

|
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on the grains at very shallow depths, however, as required by our hypothesis. The

lunar varnish may be deposited from gases escaping from depth or generated in the

fragmental debris layer itself by high-energy charged particle radiation, or it may

be deposited by some process or processes that we do not yet have sufficient clues

to discover.

E. Photometric Observations of the Lunar Surface Material

I

!

I

I

I

VII- Z8

m
Several special, as well as general, photometric studies of the local lunar

surface have been undertaken by means of the Surveyor III pictures. Areas of

special interest for photometric study were the footpad imprints and the material !

disturbed by the surface sampler. As in Surveyor I, the landing site was near the
w

lunar equator, and the Sun passed almost directly overhead. The site was, therefore, B
g

suitable for a general study of the local photometric function of the surface.

For the purpose of photometric data collection, several observing programs [_

were planned for the Surveyor III mission. The plan consisted of taking pictures

at selected steps along the east-west line to obtain photometric measurements in

the plane defined by the vectors from the camera to the Sun. Other target areas

for pictures were selected at azimuths of ±45, ±90, and ±135 ° from the east-west

line. Pictures taken at lunar noon were of special interest for study of the B

symmetry of the local photometric function. An additional objective was to

measure the variation of the normal luminance factor {normal albedo) of the lunar B
g

surface from pictures taken of areas adjacent to the camera's shadow as it pro-

gressed (in the lunar afternoon) toward the east. Because of operational constraints
Uand severe scattering of light from the mirror surface, only a small number of

pictures suitable for photometric reduction were obtained. I

Measurements and reduction of photometric data have been carried out in a B

manner similar to that used in the photometric analysis of Surveyor I pictures

(Ref. VII-l). Film negatives from the television Ground Data Handling System

of the Space .Flight Operations Facility, Pasadena, California, were measured with

a Macbeth spot densitometer. The transfer characteristics of the negatives used
U

and the total television transfer characteristic function for Surveyor ILl are illustrated

in Figs. VII-34 and VII-35. Measurements of the film density of each gray level
Uin pictures of the photometric target on leg 2 of the spacecraft were used to deter-

mine the total television transfer characteristic function. This function was

U
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then used to determine scene luminance of areas of interest from the measurements

of film density. The photometric geometry was calculated in terms of the vector

normal to the local surface, the vector to the camera, and the vector to the Sun.

For convenience, these vectors were referred to lunar coordinates.

Several problems were encountered in the reduction of photometric data from

the Surveyor Ill pictures. The most important and the most difficult problem to

evaluate is the large amount of space light that was scattered from the camera

mirror into the television images. The pattern of this scattered light varied as

a function of the mirror azimuth and elevation angles and of the Sun's positions.

Light scattered from the mirror was also present when the mirror was turned away

from the Sun; thus a significant amount of scattered light was derived from the

luminous flux re-emitted by the terrain. As a start toward evaluating the contribu-

tion of scattered light to television images, pictures were taken in wide angle of the

photometric target on the omnidirectional antenna B, after stepping the mirror

in both azimuth and elevation to position the photometric target in various parts of

the pictures. An estimate of the contrast attenuation due to scattered light can be

made from these pictures, if it is assumed that the luminance of the objects in the

pictures remains constant over the short period in which they were taken. This

attenuation is illustrated in a narrow-angle picture of the photometric target on leg 2

of the spacecraft, shown in Fig. VII-36. Measurements of the density of the spacecraft

shadow observed in the lunar afternoon (Fig. VII-37) can also be used to provide

information on the pattern and intensity of the scattered light.

Several areas of special interest were chosen for a preliminary reduction of

film densities to photometric units. These areas include the undisturbed surface

in the vicinity of footpad 2, the footpad imprint next to footpad 2, an area disturbed

by the surface sampler, and the debris deposited on footpad 2 by the surface sampler.

Examination of 14 measurements of the luminance of a small undisturbed

area of the surface in the vicinity of footpad Z indicates the photometric function of

this area is similar to that observed at the Surveyor I landing site and that of other

mare areas observed at the telescope. The estimated normal luminance factor

(normal albedo) of this area is 8. 5%. This calculated value has an estimated

I/ncertainty of at least 25% because of uncertainty in the correction required for light

scatter from the mirror.

Pictures were taken several times during the lunar day of the floor of the

imprint of footpad 2 next to the present position of the footpad; a few photometric
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I
• measurements from these pictures have been reduced. The photometric function of

this smoothed surface is conspicuously different from that of the undisturbed lunar I

surface, but the extent to which the function has been changed has not as yet been

determined. The calculated luminance factor of the imprint floor is 30% greater than I

that of the adjacent undisturbed surface, at phase angles of approximately 40 to 60 ° .

During operation of the surface sampler, a sample of fine-grained material I
from the subsurface was placed on footpad 2. The measured part of the photometric

function of this material does not differ in form appreciably from the function *Imeasured on the undisturbed areas; the normal luminance factor for this material

is estimated to be about 7.6, about 10% less than that of the undisturbed surface.

An area on the lunar surface disturbed by the surface sampler, on the other hand, I

has an estimated normal luminance factor of 6.6, about 20% less than that of the

undisturbed surface. It should be emphasized that these preliminary estimates have D

large possible errors because of uncertainties about the amount of light scattered

from the mirror into the image formed on the vidicon target.

F. Colorimetric Observations of the Lunar Surface |
Color is commonly used in terrestrial geological studies as an aid in discrim-

inating between rock types and in distinguishing the weathering state of rocks. Color I

filters were incorporated in the Surveyor III television camera, essentially for the

same purpose. Because only a limited number of filters could be used in the I

television camera, three-color colorimetry was selected as the best method for

measuring and describing the colors observed with the camera (Ref. VII-10). I

A technique suggested by Davies and Wyszecki (Ref. VII-11) was utilized for

selecting color filters to fit the response of the television camera approximately !
to the x (_), _ (X), z (A) color-matching functions of colorimetry. Two filters are

used in series in the optical train of the camera. The filter glass components had to

be 1 mm or more in thickness in order to withstand the vibration and rigors of space B

flight. Because of weight constraints, the filter pairs were limited to a total thick-

ness of 3. 0 ram. A special computer program was used for determining the ideal

thicknesses and combinations of filters required to fit the Surveyor III camera system

spectral response to the CIE color-matching functions; the fit obtained is fairly

good (Fig. VII-I). The filters were coated with a neutral density deposit of Inconel

so that, without varying the aperture, approximately equal video signals would be
produced by exposure to a daylight source.
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In order to measure color from the television pictures, it is necessary to

I determine the camera tristimulus values, which are proportional to the video

voltage. The proportionality factors may be determined by measuring the video

I signal when the camera is exposed to colors of knownobject spectral radiance.

Tristimulus values for the Surveyor IH camera were determined by observing a

I 3 x 3 matrix of filter-source combinations prior to launch; the proportionality

factors were obtained by least-squares solution. The chromaticity coordinates

L of these nine filter-source combinations were calibrated with a spectroradiometer.

I The spectral response of the vidicon tubes used in the Surveyor television

• cameras is sensitive to temperature. Variation of the spectral response of the

Surveyor III television camera with temperature was not calibrated prior to flight;

thus, tristimulus values obtained from measurements of pictures of calibrated

I color targets, taken on the lunar surface at the operating temperature of the

camera, must be used for accurate calculation of color. The color targets were

I provided as parts of the two photometric targets mounted on the Threespacecraft.

-- colors are present on each target; they were calibrated with a spectroradiometer

I while irradiated by a known spectral source at various angles of incidence. Because

-- of the contribution of scattered light to the Surveyor HI pictures, the measurements

• of the photometric targets in the pictures must be carefully analyzed by computer

• techniques before a final interpretation of color is made.

_ Approximately 50 sets of pictures were obtained for colorimetric measurement

I during the first lunar day of Surveyor III television operations. Each set consists

of multiple pictures taken through each of the three color filters. Experience in

I reducing color measurements from the Surveyor I pictures indicated there were

significant variations between the video signals for pictures of the same scene taken

_in greatest difference occurred between the first and second
succession, The

--pictures. After the third picture the differences were negligible. Therefore, three

I pictures were taken through each color filter on Surveyor III; the first two are not
used for color measurement. All of the pictures in a given set were taken by

positioning the camera at one azimuth and elevation setting and rotating the filter

I wheel through the color sequence in order to avoid incorrect picture registration.

The neutral density coatings on the filters permitted all pictures in a set to be

I change iris, eliminating errors in color measurement due to
taken without in thus

uncertainty in aperture.
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Sets of pictures for colorimetric measurement were taken of various parts of

the lunar surface. Some of the larger blocks and the material disturbed by the

surface sampler were of special interest. A first attempt to look for color differ-

ences has been made by preparing color pictures, by color reconstitution methods,

us*ng the preflight calibration for control. Figure VII-38 shows three black and

_,hite pictures, taken through the x' (red), y' (green), and z' (blue) filters, that were

used to prepare a color picture of the footpad, the photometric target, and the debris

placed on the pad by the surface sampler. The known colors on the photometric

,.arget, the white surface of the footpad, and the gold tip of the attitude control jet

were reproduced fairly well in the reconstituted color picture; the debris is

dark gray in color. Figure VII-39 illustrates three pictures taken through each of

the color filters of a surface sampler trench and the adjacent disturbed fine-grained

material on the lunar surface. The light blue color of the surface sampler was

reproduced well in a reconstituted color picture, although the color is somewhat

washed out because the image of _he sampler was nearly saturated in parts of the

pictures; the disturbed material of the lunar surface is a relatively uniform dark

gray. No demonstrable differences in color have been observed on any of the coarse

blocks so far examined, which are all gray, but lighter than the fine-grained gray

matrix of the surface. It will be necessary to digitize the television pictures and

analyze the color by computer methods to determine whether subtle color differences

are present among the materials observed.

G. Eclipse of the Sun by the Earth as Seen From Surveyor IU

An unusual opportunity occurred late in the lunar morning to observe an eclipse

of the Sun by the Earth, which took place on Day 114 during the Goldstone pass of the

•Moon. Were it not for the fact that the spacecraft was tilted as much as 14. 7 ° to

the west and was oriented favorably with respect to azimuth, it would not have been

t>ossible to observe the Earth from a landingsite at 23°W longitude because of the

limited range of elevation angles through which the mirror can be stepped. In order

to observe the Earth, the mirror was pointed upward, positioned at its highest per-

missible elevation step, and a wide-angle picture of the eclipse was Obtained. The

:_,age of the Earth was reflected from a part of the mirror very close to its upper

e_iSe. During the eclipse, two series of pictures (20 pictures total) were obtained

_'hrough the color filters. The first series of pictures was obtained at approximately
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11:24 GMT; the second set was obtained approximately 37 rain later. The pictures

were taken at two iris positions and multiple pictures were taken through each filter.

During the eclipse, the Sun passed behind the Earth along a path that brought

the position of the center of the Sun, as seen from the Moon, to within 15 rain of the

sublunar point on the Earth (Fig. VII-40). At the time the Sun was most nearly

centered behind the Earth the projected center of the Sun lay northeast of the sub-

lunar point. The sublunar point was at about 172°W longitude and 12. 5°S latitude

at the time the first series of pictures was taken, and at about 179°E longitude and

1Z. 5°S latitude at the time the second series of pictures was taken. These positions

are in the southwest Pacific. The limb of the Earth lay along western North

America, the eastern Pacific, eastern Antarctica, the central Indian Ocean, south-

east Asia, central China, eastern Siberia, and a short arc across the western Arctic

Ocean.

In the first series of eclipse pictures, the Earth is partially surrounded by a

halo of refracted light that varies greatly in brightness from one position to another

along the limb (Fig. VII-41). A very bright region, approximately 60 ° in arc length,

lies along the northern part of the limb, nearest the position of the Sun. In the

majority of pictures taken, parts of the image of the halo in this region are saturated.

On either side of this bright region, the halo has a beaded appearance; small bright

areas of short arc length are separated from other bright areas by sectors of the

halo that are relatively faint. Most of these bright areas or beads are only a few

degrees in length, but one relatively bright sector about 20 ° long is present that

cannot be resolved into separate beads. At least 12 beads can be distinguished in

the halo.

A gap ranging from about 50* to more than 90* is present in the images of the

halo along the eastern limb of Earth. Over most of the arc length of the gap, the

halo was too faint to be detected with the exposures used, but over a short sector

of the gap the image of the Earth may have been cut off by the edge of the camera

mirror.

In the second series of eclipse pictures, the very bright region in the halo

shifted to the northeastern part of the limb, following the Sun (Fig. VII-41). More

of the eastern limb was bright enough to be detected in the second series of television

pictures, and the gap was reduced to an arc length no greater than 40 ° . At least 18

beads can be distinguished in the halo in the best exposed pictures. Many of these

beads occur at nearly the same angular position, relative to the projection of the
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• Earth's axis, as the beads observed in the first series of pictures (Fig. VII-4I).

The beads are clearly related to features in the Earth's atmosphere, in contrast to

the brightest region in the halo, which is related to the position of the Sun.

In order to identify the atmospheric features controlling the distribution of the

beads, each bead's position in the second series of pictures was measured relative

to the projection of the Earth's axis. These positions were plotted on the trace of

the limb on stereographic projections of the northern and southern hemispheres of

the Earth. The plotted positions of the beads were then compared directly with

_tereographic mosaics of ESSA 3 pictures of the Earth taken on the day preceding

the eclipse [Fig. VII-42 (a) and (b)]. Even though there was some shift in cloud

patterns between the time the ESSA 3 pictures were taken and the time of the eclipse,

it can be seen that the beads occur predominantly over clear or largely clear regions

between the clouds. Clouds tend to occult the refracted rays of the Sun, most of which

pass through the low atmosphere at the limb; the beads are localized over clear

areas, which can be considered depressions in the optical silhouette of the Earth.

Preliminary reduction has been started on the colorimetric information con-

tained in the pictures. Six pictures, one taken through each of the three color filters

during each of the two periods of observation (Fig. VTT-43), were digitized using

equipment at the Jet Propulsion Laboratory. The video voltage recorded on magnetic

tape was divided int.o 64 equally spaced levels. For calibration, the preflight

recording of the 3 x 3 filter matrix was also digitized. Equations for computing

tristimulus values were derived from the digital printout of the preflight calibration

tape.

The digitization procedure adopted for the television pictures generates a

arger number of digital picture elements along a scan line than there are scan
ines in the picture; the digital picture is a rectangular matrix of 600 x 684 elements.

In the first series of pictures, the image of the refraction halo is 54 lines high and

61 picture elements wide. The total number of picture elements yielding colori-

metric data in each of the digitized pictures from this series was 644. Chromaticity

coordinates for selected picture elements were calculated, by means of the

tristirnulus value equations, from the digital voltages of corresponding elements in

pictures taken through each of the three color pictures. Because of present

uncertainties about the preflight calibration tapes and because of possible jitter

or other displacement of image points in corresponding pictures, the calculated

chromaticity coordinates may have an error as much as 0.03 in x and y.
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Chromaticity coordinates were calculated for 18 points on the images in the

first series of eclipse pictures and were plotted on a chromaticity diagram (Fig.

VII-44). The location of these colorimetric measurements with respect to the

eclipse images is shown m Fig. VII-4$. Also pIotted on the chromaticity diagram

are the locus of color temperatures for a body which obeys Planck's law (a blackbody)

and the locus of color temperatures for natural daylight as far as 4800°K. Loci of

correlated color temperature (Ref. VII-12) are shown in Fig. VII-44 crossing the

Planckian locus.

Most of the colorimetric measurements were taken in the bright region of the

halo controlled by the position of the Sun. The majority of measurements in this

region have a correlated color temperature close to 4800°K. Beads in the halo

exhibit lower correlated color temperatures. The center of bead G, close to the

bright region, has a correlated color temperature of about 4000°K, and the center

of bead A, which lies over Anarctica, farthest from the projected position of the

Sun, has a correlated color temperature of approximately 2850°K. The correlated

color temperature tends to decrease in directions away from the projected position

of the Sun and also tends to decrease toward the inner edge of the halo. As would

be expected, the color temperature tends to be lower for light that followed paths

of greater atmospheric absorbtion. Most of the colors present in the images had

purities less than 50%.

H. Partially Illuminated Earth as Seen From Surveyor III

During the period from 10:29 to 11:06 GMT on Day 120, 25 pictures of Earth

were taken with the Surveyor ILI camera in the wide-angle mode. The angle of

elevation was too great for pictures of the Earth to be taken in the narrow-angle

mode. The images were obtained using the three color filters (red, blue, green),
a color picture of the Earth has been reconstituted from a selected set of three

i pictures. A diagram of the orientation of Earth and the theoretical position of the
sunrise line and corresponding series of pictures taken through each filter position

are shown in Fig. VII-46. The bright areas in the pictures are cloud covered;

I clouds can be seen to extend over most of the Atlantic Ocean and the northern coast

of South America. Parts of the Caribbean Sea and southwestern Brazil appear to be

I free of clouds.

As the distance between centers of the television lines is about 2.5 minutes of

I arc, the details shown in the Surveyor III pictures of the Earth are comparable to

and

VII- 35



JPL Project Document 125

the details recorded in good quality telescopic photographs of Mars, near opposition,

or observed visually with a telescope of about 8-in. aperture.

A preliminary analysis of the Earth pictures by color reconstitution indicates

the clouds are white, whereas the areas free of clouds vary in hue from greenish

blue to purplish blue. The colors are similar to those recorded and seen by the

Mercury and Gemini astronauts.
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Fig. VII-1. Camera-filter spectral response

functions of Surveyor III camera compared with
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color-matching functions. Camera-filter spectral
response functions shown with solid line. CIE
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Fig. VII-5. Lunar Orbiter III medium-resolution photograph

M154, showing outline of Fig. VII-6
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Fig. VII-6. _xnall part of Lunar Orbiter III high-resolution photograph
H154, showinglo¢_tion of Surveyor III in Z00-m-diameter crater. The
small triangle represents the true size and orientation of the spacecraft.
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Profiles were calculated from photometric measurements of Lunar

Orbiter LII photograph H154, framelet Z7, along lines AA' and BB'

(photoclinometry by H. E. Holt and S. G. Priebe) .....
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Fig. VII-8. Contour map of Surveyor ILl landing site, showing

craters and blocks resolved in Lunar Orbiter Ill photographs, the

local horizon as observed from the Surveyor ILl camera, the rim

crest of the main crater, and areas studied in detail with the

Surveyor IIl pictures. Contours were plotted using information

obtained from Lunar Orbiter ill photographs and from Surveyor Lll

pictures (topography by R. I%/i.Batson and l_aymond Jordan; geology

by E. C. Morris and E. M. Shoemaker).
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Fig. VII-9. Detailed planimetric map of area around Surveyor III space-

craft, showing craters and blocks, the local horizon, areas studied for

size distribution of fragmental debris, the present position of the footpads

and camera of Surveyor III and the position of footpad imprints made

during the second touchdown of the spacecraft. The position of the space-

craft is known to within about 0.5 m (l. 5 ft) relative to craters and blocks

resolved on the Lunar Orbiter III photographs.
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Fig. VII-10. Running average trace of the horizon seen from Surveyor HI
camera, plotted on cylindrical projection in camera coordinates
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Fig. VII-12. Size/frequency distribution of small craters

at Surveyor III landing site compared with the size/frequency

distribution of craters estimated for the Surveyor I landing
site and the mean size/frequency distribution of small

craters on lunar plains determined from Ranger VII, VIII,

and IX pictures. The size/frequency distribution of craters

at Surveyor ILl landing site was measured from Surveyor III

and Lunar Orbiter III pictures.
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Fig. VII-13. Part of narrow-angle Surveyor Ill picture,

showing area on northeast wall of crater in which the space-

craft is located. Two craters about 1.5 and Z m in diameter

and a wedge-shaped fragment protruding 20 cm above the

surface are shown in the picture (Day IZ0, 14:37:00 GMT).
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q

Fig. VII-14. Part of wide-angle Surveyor III

picture, showing rounded fragment 20 cm

across lying on top of fragmental debris

(Day If6, 09:07:06 GMT)
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Fig. VII-15. Part of narrow-angle Surveyor III

picture, showing rounded fragment lying close to

the spacecraft. Fragment is 13 cmhigh and has

small deep pits on the surface. This fragment,

like rock "B" seen at the Surveyor I landing site,

may be vesicular (Day IZ0, 14:51:59 GMT).
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+

Fig. VII-16. Part of narrow-angle Surveyor HI
picture, showing abundant blocky fragments on
north wall of crater in which the spacecraft is
located. Some of the largest blocks shown are
tabular in shape and appear to be laminated
(Day 120, 14:52:35 GMT).
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F Fig. VII-19. Size/frequency distribution g

,, ,o_ of fragments at the Surveyor III landing

E site. Location of Areas A, B, C, D, E, •

o° and F, in which the size/frequency |
distribution of fragments was measured,
are shown in Figs. VII-8 and VII-9. Mean mm

cumulative size/frequency distribution of •

_ E fragments on characteristic parts of lunar
g

,._- surface at Surveyor Ill landing site is
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,, 06y-Z 56 mo plot of the equation N = 3 x 1 ,
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° !m ,o3 fragments and y is the diameter of frag-

z_ AREA ments in millimeters. Fragments in

"'> strewn fields of Areas A and B are larger

than those observed in the more character-
ist[c parts of the lunar surface.

IO2

AREA !

g
IOO

I 2 4

I mm
S 1.6 3.2 6.4 12.8 25.6 51.2 I 2

i o,_ Im
PARTICLE SIZE

g

g

g
VII- 58 |



JPL Project Document 125

l Fig. VII-Z0. Mosaic of two narrow-angle Surveyor IIl pictures, showing

block about 0.5 m across close to spacecraft and position and size of

circles used in measuring roundness factor. Largest circle encompasses
entire block. Smaller circles are fitted to corners and rounded parts of

the outline of block that occults the distant lunar scene. The geometric
mean of the radii of the small circles divided by the radius of the large

circle is defined as the roundness factor (Day 120, 14:54:Z3 and 14:52:22

GMT).

VII- 59



IPL Project Document 125

o

u_
0

w

Z

18

IG

14

12

I0

8

4

_k'x
\\x

0 \\\
0

SOUTHWEST STREWN

FIELD (AREA A)

NORTHEAST STREWN

FIELD (AREA B)

0.2 0.4 0.6 0.8 1.0

ROUNDNESS FACTOR

Fig. VII-Z1 . Histograms showing frequency
distribution of roundness factors for Z5 blocks
in Area A and 25 blocks in Area B. Blocks

in Area A, associated with subdued rim

craters, are significantly more rounded than
blocks in Area B, associated with a sharp
rim c r ate r.
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Fig. VII-22. Mosaic of two narrow-angle Surveyor III pictures, showing

block about 0.5 m across close to spacecraft and angles measured to

determine burial factor. Angles are measured between lines parallel

with the horizon and the tangents to the outline of the block, where the

outline of the block against the more distant lunar scene meets the surface.

The sum of the two angles divided by 2_ radians is defined as the burial

factor (Day 120, 14:54:23 and 14:52:22 GMT).
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Fig. Vli-23. Histograms showing frequency

distribution of burial factors for 25 blocks in

Area A and 25 blocks in Area B. Blocks in

Area A, associated with subdued rim craters,

are significantly more deeply buried in the

surface than the blocks in Area B, associated

with a sharp rim crater.
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Fig. VII-Z4. Scatter diagram of roundness
factor versus burial factor for 50 blocks in
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burial factor have no significant linear
correlation; re-latively few blocks, however,
exhibit roundness and low burial.
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Fig. VII-ZS. Parts of narrow-angle Surveyor IIIpictures,
showing small areas on the lunar surface close to the

spacecraft in which the size/frequency distribution of

fragments was measured. (a) Area D: smallest fragments

resolved in this picture are about 8 mm across; largest

fragments present are 6 to 12 cm across (Day 120,

14:38:45 GMT). (b) Area E: smallest fragments resolved

in this picture are about 2 rnrn across; largest fragments

present are 3 to 4 cm across (Day 120, 14:32:01 GMT).
(c) Area F: smallest fragments resolved in this picture

are about l mm across; largest fragments present are
8 mm across (Day 120, 14:38:08 GMT).
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Fig. VII-26. Sample of ejected fragmental debris collected from the rim

of Meteor Crater, Arizona. Area of floor of box in which sample has been

placed is 1 square meter. Fragments are sandy dolomite from the Kaibab

Formation of Permian age. Coarsest piece is 12 cm across, and finest

grains identifiable in the picture are about 1 mm across. Spacing between

coarser fragments resembles that observed for blocks in strewn fields

around small craters at the Surveyor Illlanding site.
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Fig. VII-Z7. Mean cumulative size/
frequency distribution of fragment on
characteristic parts of lunar surface
at Surveyor I landing site (revised).

Heavy solid line represents the general
size/frequency distribution determined
from eight sample areas. This line is

the plot of the equation N = 5 x 105y -2"11,

where N is the cumulative number of

fragments and y is the diameter of frag-
ments in millimeters.
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Fig. VII-Z8. Mean cumulative size/

frequency distribution of fragments on

characteristic parts of the lunar surface

at Surveyor III landing site compared

with mean cumulative size/frequency

distribution of fragments observed at

Surveyor I landing site. The volumetric

size/frequency distribution of fragments

expected to be produced by incident flux

of meteoroids on the lunar surface is

shown with dashed line. The volumetric

fragment size/frequency distribution is

measured to a depth equal to one-half

the diameter of the coarsest fragments.

The volumetric fragment size�distribution

at both Surveyor I and Surveyor III landing

sites probably is close to this predicted

distribution.
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Fig. VII-29. Sample of ash and pumice from volcanic ash flow deposited

in the Valley of 10,000 Smokes, Alaska, during the eruption of 1912.

Area of floor of box in which sample has been placed is 1 square meter.

Coarsest fragments of pumice in sample are 4 to 5 cm across; finest

grains identifiable in the picture are about 1 mm across.
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Fig. VII-30. Size/frequency distribution of particles in sample of ash and

pumice from the volcanic ash flow deposited in the Valley of 10,000 Smokes,

Alaska, during the eruption of 1912. Upper curve shows size/frequency

distribution obtained by sieving the entire sample shown in Fig. VII-29.

Lower curve shows size/frequency distribution of particles identifiable in

Fig. VII-29. The difference in these two curves illustrates the difference

between the volumetric size/frequency distribution of fragmental debris and

the size/frequency distribution of identifiable fragments on the surface of

the debris layer.
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Fig. VII-31. (a) Mosaic of two narrow-angle Surveyor Ill pictures, show-

ing block about 0.5 m across close to spacecraft, and fine-grained material

banked up against side of block. Note nearly horizontal groove in side of

block facing camera. This groove may have been produced by differential

erosion of the surface along a bedding plane or a comparatively easily

eroded layer (Day 120, 14:54:23 and 14:5Z:22 GMT). (b) Portion of

narrow-angle Surveyor III picture, showing angular block close to space-

craft and fine-grained material banked up against the side of the block

facing the camera. Block is 7 cm across. Note small particles 1 to 5 mm

in diameter that can be resolved in the fine-grained debris (Day 118,

14:30:51 GMT).
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Fig. VII-33. Portion of narrow-angle Surveyor III picture,
showing imprint in lunar surface produced by: footpad 1 of the

spacecraft during the second touchdown of the landing sequence.
The imprint occurs on a small crater wall facing the camera,
and the imprint is stepped down along several breaks toward
the camera and toward the center of thesmall crater. The

crater in which the imprint is formed is about 1 m across

(Day ll6, 08:37:36 GMT).
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Figure VII-34. Typical plot of measured film

density versus voltage from electronic gray

scale on negatives produced by Ground Data
Handling System at the Space Flight Opera-

tions Facility in Jet Propulsion Laboratory.
Electronic gray scale is added to each frame

by the Ground Data Handling System to pro-
vide system photometric control.
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Fig. VII-35. Total television system
transfer characteristic function deter-

mined from observation of the photometric
target on the spacecraft leg during lunar
operations. This function is used to con-

vert film density to scene luminance.
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Fig. VII-36. Narrow-angle Surveyor III picture of photometric target on

n leg 2. Note contrast attenuation and additional increase in light level in
the upper half of the picture (Day ll6, 05:59:33 GMT).
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Fig. VII-37. Wide-angle Surveyor III picture,showing shadow of camera

aad solar panel. The shadows are washed out in the upper right half of the

picture because of glare from camera mirror (Day 1_7:, 14:37:01 GMT).
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Fig. VII-38. Narrow-angle Surveyor III pictures showing photometric

target and debris on footpad 2. Target observed on Day 116: (a) through_'

filter (red), 13:00:54 GMT; (b) throughT' filter (green), 1Z:02:14 GMT;

and (c) through"z' filter (blue), 1Z:01:27 GMT.
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Fig. VII-39. Narrow-angle Surveyor III pictures of surface sampler

trench observed on Day ll4:(a) through_' filter (red), 05:19:23 GMT;

(b) y' filter (green), 05:15:18 GMT; and (c)-z' filter (blue), 05:20:20 GMT.
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SUN

+SUBLUNAR
POINT POINT

I

I

I
I 1:24 GMT 12:01 GMT

ORIENTATION OF BOTTOM EDGE OF TELEVISION PICTURE OF ECLIPSE

Fig. VII-40. Diagrams showing orientation of Earth and position of the
Sun, as seen from the Moon on Day 116, at 11:24 GMT and 12:01 GMT.

A series of pictures of the eclipse of the Sun by the Earth was taken with
the Surveyor III television camera at approximately the times
illustrated.
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Fig. VII-41. Superimposed Surveyor III pictures

illustrating distribution of light in the refraction
halo of the Earth at the time the first series of

eclipse pictures was taken and at the time the sec-
ond series was taken. Anec!ipse image taken from

the first series of pictures had been reduced in size
and shown nested within an eclipse image taken

from the second series of eclipse pictures. The

angular orientation of both images is the same.
Line marked N-S shows projection of Earth's

axis on plane of pictures. Eighteen beads, identi-

fied by letters, can be distinguished. Note the
angular position of beads in the refraction halo
tends to remain the same, but the bright region

nearest the Sun changes position between the time
of the first series of pictures and the second

series, following the Sun.
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Fig. VII-42. Stereographic mosaics of ESSA 3 pictures of (a) northern and (b)

the eclipse. Bright areas are clouds and, in mountainous regions and the Arcti

which may be seen in the clear areas on the right-hand side of (a.). The trace o
bright region in the refraction halo of the Earth, observed in the second series

circles that extend from 90°W to 90°E. Beads occur in areas that are largely c
of beads in Fig. VII-41 (mosaic of ESSA 3 pictures provided through the court_
ESSA).
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_u_hern hemisphere_ Of the EartH, +Pictures- taken on the day preceding

snow fields; dark areas are clear. Note position of African continent•

:he limb of Earth, as seen from the Moon, and positions of beads and the

eclipse pictures taken by Surveyor IIl, are shown by the white lines and
:at. Letters beside.-symbols for beads-c-orrespond to letter identification

of Dr. David S. J6-h_is6n, National Environmental Satellite Center•

DAY
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Fig. VII-43. Wide-angle Surveyor III pictures showing eclipse of Sun by

Earth as observed on Day 114 through the filters indicated: (a) _' (red),

11:31:40 GMT; (b) y' (green), II:Z3:06 GMT; (c)_' (blue), ii:24:01 GMT;

(d)_', IZ:0Z:I0 GMT; (e)_', 12:03:10 GMT; and (f) _', IZ:0Z:44 GMT.

(First set of figures includes (a), (b), and (c); second set of figures

includes (d), (e), and (f).)
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Fig. VII-44. Chromaticity coordinates of selected points from the first
series of Surveyor eclipse pictures. For comparison purpose%the
Planckian locus with correlated color temperature lines is shown together

with the locus of natural daylight as measured by Y. Nayatin and
G. Wyszecki (Kef. VII-13).
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Fig. Vli-45. Diagram of the solar eclips%showing positions
of points on the color composite image that were measured
for color. The letters refer to the beads.
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Fig. VII-46. Wide-angle Surveyor III pictures of Earth as observed on

Day 120 through: (a)_l filter (red), 10:39:29 GMT; (b) _' filter (green),•

10:37:18 GMT; and (c)_' filter (blue), 10:38:15 GMT. The lunar libration
had caused a favorable movement of the Earth's position, giving an un-

obstructed view of Earth from Surveyor III. Diagram shows orientation

of Earth when pictures were taken.
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vm. LUNAR THEORY AND PROCESSES

D. Gault, i_. Collins, T. Gold, J. Green, G. P. Kuiper, H. Masursky,

J. O'Keefe, K. Phinney, and E. M. Shoemaker

Some Implications of Surveyor HI Results

"I Significant new information has been provided by Surveyor III's successful

landing and operation on the lunar surface; some of the most significant and

_interesting events are presented here Pending completion of data reduction and

I more detailed analysis of the information available from the Surveyor mission,

only limited interpretive discussion is included at this time.

1. Position of Surveyor IH on the Lunar Surface

!

I The location of the spacecraft is shown in Fig. VHI-1, and discussed in detail

in Section VII of this preliminary report. Features are indicated in this figure for
reference in the following discussion. Approximate crater profiles, based on

photometry of Lunar Orbiter III records, are shown in Fig. VIII-2; approximate

I spacecraft position is indicated on the profile BB' Crater profiles indicate that
1

the crater is Z2 to 25 m deep and that the slope component in the phase plane at the

I position of the spacecraft touchdown point is about 13 ° The latter value corrects to

a true slope of about 14 ° . This value is not consistent with results presented in

I Section VII, and additional analysis is required to resolve the difference. Neverthe-
less, these results indicate that the eye of the spacecraft (rotating mirror on the

elevision camera system) is about 10 to 12 m below the rim crest of the crater and
bout lZ to 13 m above the crater bottom. Figure VIII-3 is a stereoscopic view of

the crater composed of two convergent, high-resolution frames from Lunar Orbiter

III. The right-hand frame is a near-vertical photograph; the other is rectified from

a 37* tilted photograph.

t lphotometric profiles necessary to generate these contours were developed
by G. R. Taylor and J. J. Lambiotte, NASA, Langley Research Center.

VIII- 1
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It is important to note that the rim of the crater is everywhere higher than the

television camera on the spacecraft. Thus, the only lunar terrain visible to the

Surveyor III camera system is restricted to the interior walls of the crater. Dif-

ferences between the Surveyor III site and locations photographed by Surveyor I, as

well as Luna IX and Luna XIII, may be attributed to the landing location of Surveyor

III. Both differences and similarities have fundamental implications in lunar theory

and processes.

Z. Degradation of Pictures

Quality of some pictures, and thus the information obtained during this mission,

has been seriously decreased as a result of the degradation of the pictures due to

scattered light in the optical system. In all cases in which the mirror was exposed

to direct sunlight, the pictures are poor. When the mirror was not exposed to

sunlight, the pictures improve in quality, but still suffer from a general glare,

which results in a severe loss of contrast in detail.

Regions of maximum degradation observed in the pictures appear to rotate

about the center of the frame as the camera is moved in azimuth. In each case,

thisdegradation is oriented on the frame in such a way that it corresponds to a

direction from the camera lens associated with light scattered from the upper half

of the mirror. The direction of the Sun affects the degree of the degradation, but

not its position. The effect is readily apparent in most of the pictures, but is
Z

demonstrated most clearly in Fig. VIII-4, which is a time exposure of the crescent

Earth obtained as part of observations conducted to determine spacecraft orientation.

Figure VIII-4 was taken looking approximately due east with the Sun setting directly

ehind at an angle of approximately 40 ° above the western horizon. The approximate

6 ° field of view is centered about 60 ° above the horizon; the only strong source of

light incident on the mirror is that reflected from the lunar surface and from Earth.

The dark stripe in the upper right-hand corner and the bright stripe in the lower

left-hand corner define the upper and lower edges of the mirror, respectively. The

entire field of view should be dark except for the crescent Earth. The broad diffuse

white band over the upper half of the mirror appears to be consistent with the glare

2This was brought to our attention by R. H. Steinbacher, Jet Propulsion

Laboratory, Pasadena, California.
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i observed in the photographic images, and is apparently the result of either surface
:abrasion caused by the impact of fine particulate material that became entrained in

the vernier exhaust or a deposit of fine particles and/or effluent from the vernier

i engines on the surface of the mirror. No such effect was observed in the case of

Surveyor I.

I It seems reasonable to assume that these effects causedwere by some difference

between Surveyor I and J.i[missions. In both cases, the mirror was open, and thus

xposed to the ambient environment during cislunar flight and touchdown. Exhaust

ases from midcourse guidance and main retro maneuvers are not a likely source of

ontaminant, since the conditions there seem to have been the same as in the case of

Surveyor I. The principal difference between the two missions occurred during the

landing maneuver, when the bipropellant vernier engines (using nitrogen tetroxide

I and hydrazine derivative as fuel) continued to fire after landing and throughout the

time of the first two contacts of the vehicle with the lunar surface. The relatively

i sharp boundary of the degraded region on the mirror does not consistentseem with

deposition of effluent from the vernier engines. The most likely cause of degradation,

i herefore, seems to be fine particulate material from the lunar surface sprayed up

by the vernier engines. Particles dislodged from the surface by the vernier blast

I could either pit the surface of the mirror or adhere to the surface if they were small
enough. The most exposed portion of the mirror was, in fact, the upper half during

touchdown; the glare pattern shown in Fig. VIII-4 is entirely consistent with such

i an orientation of the mirror.

It is possible to estimate the fraction of the surface of the mirror that must be

I covered with small particles in order to the observedproduce degradation. Under

the assumption that the particles on the surface of the mirror have the same albedo

the particles on the lunar surface, preliminary estimates suggest that more than

30% of the surface of the upper half of the mirror is covered with small particles.

More detailed studies of the photometric properties of the diffused light and the

amount of obscuration when the mirror was in the shade are required before more

detailed conclusions can be drawn. It is significant, however, that if fine particles

have adhered to the mirror it is corroborating evidence for the existence of fine

particulate material in the upper surface layers of the Moon.

!

|

|3
Properties of the Lunar Surface Layer

Important new data on the physical and mechanical properties of the surficial

layer of the lunar surface were obtained from two different sources. The principal

VIII- 3
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_ource of new information was the soil mechanics surface sampler experiment

described in Section V of this report. Valuable information was also obtained as a

_esult of the unprogrammed multiple landing sequence. •

Despite the moderate cohesion exhibited by the material of the lunar surface

to a depth greater than 1S cm, there is no conclusive evidence that the lunar material

_dhered to the surface sampler. The material that spilled from the surface sampler

jubsequent to trenching operations may have been "jammed" in the scoop rather than

_ysically adhering to the interior surfaces. Indeed, within the limits of resolution

rnm) of the television camera system, it appears that the external surface of the

j_rnpler remained clean throughout its digging operation. This fact seems at first

d_.fficult to reconcile with the adhesion of small particles to the mirror of the tele-

vision camera. However, it is possible that a layer of fine material such as that

believed to exist on the mirror also existed on the surface sampler. It is significant

that no clots or clumps of surface material adhered to the external surface of the

mampler even though brought into intimate contact during the digging operation. The

absence of adhesion forces was also displayed by the failure of the darker, fine-

_r._ined lunar surface material to adhere to the small white-colored rock excavated

by the surface sampler [Fig. VIII-5(a)].

An additional observation of potential significance, in spite of the limited area

observed and photographed, is the apparent absence of a raisin-bread texture in the

fine particulate material, which was exposed by the soil sampler as it first

p_netrated into the surface. The resultant smooth-textured surface [Fig. VlII-5(b)]

_.ves no evidence for inclusions of rocks or hard grains large enough to be resolved

by the television system.

As described previously, the final landing of the spacecraft was preceded by

other touchdowns (Landing Events 1 and Z), which preceded the final landing by

• _out 36 and IZ sec, respectively. The imprints of landing pads belonging to

!._nding Event 2 have been identified in the pictures.

In addition to providing information on the particle size of the material

_o._.,prising the lunar surface layer, as discussed in Section V, the footpad imprints

_ovide further information on the photometric properties of _he lunar Surface.

_he bright conical rim seen under some li_htin_ conditions on the imprint of footpad

_rnonstrates that the photometric properties of the disturbed surface material

_!-r from those of the undisturbed surface. Photographs of the imprint formed by

f_'-p_d Z for Days 110, 111, 112, and 116 (Fig. VIII-6) show the variation of imprint

I

I

I
i
I

I

I

I

I

I

I

!

!

|
VIII-4 I



JPL Project Document 125

, brightness relative to the background of the undisturbed surface over a large rangeof solar phase angles. Photometric measurements are not yet available, and photo-

graphic records for Days 113, 114, and 115 were not obtained due to operational

I limitations of the spacecraft. However, examination of the pictures in Fig. VIII-6

gives a strong impression that the surface became markedly brighter as the solar

I phase angle approached the angle near that for specular reflection, and thereafter

the brightness decreased after passing through the zero phase angle. A change in

the photometric properties of the imprint area suggests that an important change has

pccurred in the state of the material. The usual photometric law for the Moon has

been attributed to intricate surface structure which casts many shadows. This
• intricate structure has to be at the millimeter, or smaller, scale. The destruction

of the usual photometric properties of the Moon makes it clear that the complex open

I structure has been crushed and the particles packed more densely. The range of

scales between the resolvable millimeter and the wavelength of light (0.5 micron),

I therefore, has to have contained the intricate shadow-casting structure on the lunar

surface. In practice, this cannot be accomplished with particles much larger than

I the order of 10 microns.

4. General Morphology of the Landing Site

I Although landing pad imprints and soil sampler experiments suggest that the

lunar surface layer is composed of very fine particulate material, an inspection of

I the entire Z00-m-diameter (660 ft-diameter) crater bowl shows the presence of

many scattered "rocks". Despite the fact that Surveyor III landed in a crater, the

I general of the surrounding terrain in the of the isappearance vicinity spacecraft

not unlike that revealed by the Surveyor I pictures. The general area for both

anding sites was selected for the apparent smoothness and suitability as a landing

" site for A o11o Jud in from the slmllarxt of th a arc c f tP . g" g " " " y e ppe n e o he mare surfaces

i in Lunar Orbiter photographs, it now appears that most of the upper layers of the
mare surfaces of the Moon have the general character noted at the Surveyor I and

III sites.

I The area surrounding the spacecraft is shown in Figs. VHI-1, _III-7, and

VIII-8. In Fig. VIII-I, the Lunar Orbiter high-resolution frame is displayed at

I a amplifier gain setting was to convert the
"normal" gain; that is, nominal used

magnetic tape record to film. In contrast, Fig. VIII-7 shows the same scene at

I low gain to show detail in the shadows and high gain to show detail in the highlighted
areas.
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Figure VIII-8 is a mosaic of the region to the north of the spacecraft and

illustrates the general types of rocky debris observable inside the crater. Small B

craters, as well as a scattering of rock fragments not obviously associated with

them, may also be seen in this figure. The slopes and rims of these small craters I

suggest that they were formed in essentially homogeneous material presumably
m,

similar in nature to that disturbed by the soil sampler and the footpads of the space-

craft. Crater B of intermediate size (diameter: 5 m; depth: 1 to 1.5 m) appears

also to have been formed in the fine-grained surface material. Two craters 16 m

|north-northeast of crater B (craters C in Figs. VIII-I and VIII-8), each Z m (6 ft)

in diameter, have no rocks directly associated with them. Thus, it would appear m

that the finely particulate surface material extends below the approximately 15 cm I

(5 in. ) excavated by the soil sampling experiment to a depth of as much as 1.5 m

(5 ft). Below this depth, it would seem the consistency of the lunar material changes
W

to one not unlike terrestrial rock that fractures into angular pieces. This result is

essentially the same as that observed at the Surveyor I landing site. B
Q

A crater lZ to 13 m (40 to 43 ft) in diameter (marked A in Fig. VIII-I) may be

seen 80 m (250 ft) due north of the spacecraft. This crater is surrounded by angular

rocks, the largest of which are visible at the scale of the Lunar Orbiter photographs. m

Surveyor images of examples of these rocks are reproduced in greater detail in n

Figs. VIII-9 and VIII-10. Figure VIII-9 is a mosaic of three adjacent frames I

showing crater Aand surrounding area. This small crater is approximately Z to

2.5 m deep, based on estimates from the Lunar Orbiter photograph. The blocky N

rocks on its rim are, by their distribution, clearly ejecta from the crater.

Surveyor pictures show that positions of rocks on the lunar surface vary from

lying almost completely on the surface to being almost completely buried. These

}rocks appear to belong to at least three classes: m

(1) Sharp, jointed, or fractured or angular blocks found principally north B

of the spacecraft in the sector containing crater A. These are m

distinguished from class Z objects by the presence of sharp corners I

and distinctly planar faces. Their association with, and origin from,

crater A is unmistakable, although the more widely strewn fragments
n

found in the area to the west of the crater may come from another

source. Many of the smaller fragments found in this north quadrant N
i

are unmistakably sharp- edged and belong to this population of rocks.

The small-fragments are typically tabular with irregular outlines and m

U
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lie flat on the surface, although the few exceptions are spectacular

[a sharp, tabular stone at least half buried, protruding upward, Fig.

VIII-10(d)]. Among the larger blocks, several appear to be partially

buried in this position. Where visible, the walls and rim of crater A

are composed almost entirely of large angular blocks in a random

jumble.

(Z) Large, subrounded to subangular blocks resting on the surface or

partially buried only [Fig_ VIil-ll(a)] . Despite the lack of clean

fractures and sharp corners, many of these rocks appear to be intern-

ally heterogeneous as evidenced by albedo contrasts, parallel layering

indicated by the projection of more or less resistant edges of layers

[Fig. VJ_il-ll(b)], and poorly developed joints, many of which are

parallel to the layers [Fig. VIll-10(d)] . The larger (non-vesicular)

rock in Surveyor I is, perhaps, a member of _his class. Other rocks

such as the one illustrated in Fig. VIll-I 1 (a) show evidence of pitting

or vesiculation, also similar to an object observed in Surveyor I

pictures.

(3) Low, rounded rocks appearing to be partially to almost totally buried.

Many have a blanket of apparently very fine material built along the

uphill side [rig. vm-,0(c)]. These rocks have a rough, mottled

texture not unlike that of the lunar surface material and give the distinct

impression of being the eroded remnants of blocks (say, population 1

and 2) partially mottledwith fine particulate material from the lunar

• surface.

Type (Z) blocks seem to make up nearly all those visible in the survey, but are

a minority in the area to the north near crater A, since they are outnumbered there

by the type (1) sharp blocks. Type (Z) rocks may be rather uniformly distributed

over the surface on all quadrants, while the type (1) rocks show association with

crater A and a concentration toward it. The more widely strewn material may

have another local source. There is a lack of this angular blanket to the northeast

and east of the spacecraft; it apparently terminates toward the north at 10 to 15 m

(30 to 50 ft) from the spacecraft, since the near surveys show only dark lunar

material.
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5. Evidence for Material Transport

1

!

!
The fine-grained material of the lunar surface shows a remarkable tendency

and maintain a smooth surface. In the case of Surveyor I, the mean I

i

to develop

surface was essentially •horizontal; for Surveyor HI, the mean surface level is

Inclined at an angle of approximately 14 to 15 ° . Most rocks seen in Surveyor I and I
g

III pictures appear to be partly submerged with the contact line between the rock

and the lunar surface, nearly in the same plane as the lunar surface. Thus, if

Qtrenches or craters• were made by the rocks as they fell into their observed

positions, subsequent processes must have been at work to fill in and smooth over I

such scars. On the other hand, _hese processes have not piled up the material in i

the vicinity of the rock so as to produce a raised line of contact. There is at most

a small fillet, centimeters high, that smooths the transition from the general I
i$m

surface to the rock face. The transportation mechanism of the material must be

one that works toward smooth deposition. This transportation mechanism must,

however, be as effective on a sloping surface as on a level surface.

Camera azimui_hs looking north-northeast and south-southwest from Surveyor

iIiI view the wall of the crater across the downhill slope. Thus, rocks viewed in

these two directions permit one to examine and compare the uphill and downhill ends

of the rocks (Fig. VIH-10). There is a definite indication of the downhill movement I

of material comprising _he fine material of the lunar surface layer. A fillet of

material eflcompasses the base of most rocks at the contact line with the fine- i

i

grained surface material; this fillet tends to be higher on the uphill end than on the

downhill end. On some large rocks a well-developed fillet is observed that laps I

,everal centimeters up onto the uphill face of the rock. This enhanced fillet can be
m

-xplained, regardless of the mechanism which sets the particles in motion, only as

"he accumulation of fragments arrested in place during downhill motion.

I6. Lunar Dielectric Constant

The dielectric constant of the lunar surface materials derived from terrestrial I

_bservations, kobs ' lies in the range 1.8 to 2.8 (Kef. VIII-I). This figure refers to

_:_e bulk dielectric constant, including the effects of porosity. To obtain the dielec- [_

_ric constant, k, of the individual grains, • use may be made of the formulas of

Twersky (Ref. VIII-l), Betner (Ref. VIII-Z), and Odelevskii and Levin (Ref. VIII-Z).
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To give an idea of the relative values these formulas provide we find, for kob s = 2.4

and porosity of 0.5, the following: Twersky, k = 5.8; Betner, k = 4.7; and Odelevskii

and hevin, k = 4.4.

Twersky's formula is stated to apply to granular material in which the grains

are well separated; that of Betner to granular material; that of Odelevskii and

Levin applies to vesicular material. Data presented in Ref. VIII-1 support the

formula of Odelevskii and Levin. Data presented by Krotikov (Ref. VIII-2) support

an interpolation formula between the Betner formula and that of Odelevskii and

evin. The Betner formula was adopted for this paper; it appears to give conserv-
ive values (i. e., high values) of the grain dielectric constant.

The formula of Betner is:

kob s - I k - I

3kob s k + 2kob s
(1 - ,7)

where ,/ is the porosity, i.e., the ratio of intergranular void space to total volume.

The formula is presented graphically in Fig. VIII-12.

The data presented in Ref. VHI-3 was used to check Fig. VIII-12; the only

points falling on this plot, and corresponding to known values of the solid dielectric

constant are:

(1) a_.n_d, true dielectric constant of solid material probably 4.2 (handbook

value for crystalline quartz) rather than 3.8 as quoted in Ref. VIII-3;

the latter value is for fused silica.

kobs

Z.9Z

2.68

2.36

Z.19

1.94

1.90

O. 343

0..400

O. 503

O. 560

O. 645

0.637

k of grains, {Fig. Vlll-12)

4.5

4.5

4.5

4.5

5.Z

4.8
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(Z) Plate glass, true dielectric constant of solid material 7.3.

kob s

3.01

2.27

I. 96

0. 559

O.68O

0.739

k of grains, (Fig. VIII-l?)

8.4

8.Z

8.1

It appears fl_at Fig. VIII-12 is conservative.

The minimum value of the dielectric constant for plausible lunar materials in

the solid form is that for clear silica glass, namely 3.8 (Chemical Rubber Handbook

44t/1 edition, p. 2626).

At this writing, data on the porosity are not available from Surveyor HI

measurements of the lunar soil. It is possible to sketch fhe lines of constant bulk

density on Fig. VHI-IZ, using the porosities shown and the accepted values of the

bulk densities of the rocks. These values are indicated by dashed lines. When

reliable values of the porosity and/or density become available, it may be possible

to draw some conclusions about the nature of the lunar surface. It must be kept in

mind, however, that the grains themselves may be vesicular; in this case they may

appear to be more acid than they are. This is more important for basalts than for

chondritic materials; to this date, no cases of vesicular chondritic material have

been pointed out.

7. Concluding Remarks

Surveyor HI results at this preliminary evaluation of data give valuable

information about the relation between the surface Skin of under-dense material

responsible for the photometric properties and the deeper layers of material whose

properties resemble those of ordinary terrestrial soils. In addition, they provide

new insight into the relation between the general lunar surface as seen by Surveyor I

and the interior of a large subdued crater. The new results have also contributed

to our understanding of the mechanism of downhill transport. Many critical questions

cannot, however, be answered until final reduction of experimental data.
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Fig. VIII-l. Portion of Lunar Orbiter ILl, P9, frame H154, showing the

crater in which Surveyor III landed. The approximate position of the

spacecraft is indicated by the triangular spot, and features mentioned in

the text are identified with letters and numbers. The lines AA', BB', and

CC' define the traces for the photometric determinations used to estimate

crater profiles shown in Fig. VIII-2.
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Fig. Vlll-2. Topographic profiles of Surveyor Ill crater drawn

by photometric methods from Lunar Orbiter III, Pg, frame H154

(profiles obtained by O. I_. Taylor and J. J. Lamblotte, NASA,

Langley Research Center).

VIII- 13



JPL Project Document 125

I

|

[

.o

i'

(a) "

!
'_,_,:;._" -_:i_7.;*

' _,. "- . •

70 mm,_- _ -" _ - '"I" .....

Fig. VIII-3. Stereoscopic pair of Lunar Orbiter III photographs

of the crater in which Surveyor III landed: (a) site 9A, frame

H137, rectified byR. A. Altenhofer, USGS; (b) site 9C, frame
H154.
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i

Fig. VIII-4. Time exposure of Earth. The broad

diffuse band of light extending from the lower right

to the upper left is attributed to scattered light

from fine particles adhering to the surface of the

mirror (Day iZ0, ]0:47:0Z GMT).
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Fig. VlII-5(a). View of the small rock-like object that was excavated

from the lunar surface during the course of the surface sampler exper-

Lrnent (Day IZ0, 16:54:48 GMT).
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b
I
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I

I
I

Fig VIII-5(b) Smooth surface that resulted from an initial penetration
of the surface sampler scoop into the lunar surface (Day 120, 14:28:0B
GMT).
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(a)

Fig. VIII- 6.

(a) Day II0,

(b) Day III,

(c) Day llZ,
(d) Day I16,

Photographs of the imprint formed by footpad 2:

09:05:17 GMT; phase angle approximately 134°;

02:39:3Z GMT; phase angle approximately IZ6°;

00:49:30 GMT; phase angle approximately 114°;

05:54:53 GMT; phase angle approximately 66 °.
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Fig. Vl]l-7(a). Portion of photograph from Lunar Orbiter III (site 9C,

frame H154, framelet 27). In contrast to Fig. VIII-I, alow amplifier

gain setting was employed to convert the magnetic tape record to film

(photograph courtesy of I. G. Recant, NASA, Langley Research Center).
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Fig. VIII-7(b). Portion of photograph from Lunar Orbiter III (site 9C,
frame H154, fram_let Z7). In contrast to Fig. VIII-I, a high amplifier

gain setting was employed to convert the magnetic tape record to film
(photograph court,my of I. G. Recant, NASA, Langley Research Center).
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(d)

Fig. VIII-10. Selected rocks on wall of crater with lunar afternoon and

early morning illumination (left and right views, respectively). Note

absence of a filletor accumulation of material on downhill (left)side of

objects: (a) Day 120, ]4:41:09 GMT; Day ill, 05:59:07 GMT;

(b) Day 120, 14:47:03 GMT; Day ill, 05:59:25 GMT; (c) Day IZ0,

15:00:5] GMT; .Day Ill 05:15:03 GMT; (d) Day Ig0, 14:54:23 and
14:52:gg GMT; Day Ill 05:14:55 GMT.
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Fig. VIII-II. Details of (a) Rock 1 (Day 120,

15:07:16 GMT), and (b) Rock Z (Day 120,
14:52:35 GMT).
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Fig. VIII-IZ. Relation between the bulk

dielectric constant, kobs, and the

dielectric constant of the grains, k,

according to the Betner formula.

'Iis the porosity, p is the density.
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ON-LAB DISTRIBUTION LIST

Surveyor Project Distribution List 120, A's and E's only, and the following
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