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SOME RESEARCH ON THE LIFT AND STABILITY OF

WING-BODY COMBINATIONS1

By Paul E. Purser and E. M. Fields

SUMMARY

The present paper summarizes and correlates broadly some of the
research results applicable to fin-stabilized ammunition. The discussion
and correlation are intended to be comprehensive, rather than detailed,
in order to show general trends over the Mach number range up to 7-0-
Some discussion of wings, bodies, and wing-body interference is presented,
and a list of 179 papers containing further information is included. The
present paper is intended to serve more as a bibliography and source of
reference material than as a direct source of design information.

INTRODUCTION

A large part of the research conducted by the National Advisory
Committee for Aeronautics on the lift and stability of body-wing combina-
tions has been aimed primarily at the problems of airplanes and missiles.
Many of the programs, however, have been broad enough to encompass con-
figurations of interest to designers of fin-stabilized ammunition. It is
the purpose of the present paper to summarize and correlate broadly some
of the research information obtained by the NACA and other research organ-
izations. The discussion and correlation are intended to be comprehensive,
rather than detailed, in order to show general trends over the Mach number
range up to M = 7-0- The paper is thus intended to serve more as a
bibliography and source of reference material than as a direct source of
design information.

References 1 to 69 and a bibliography listing 110 additional papers
present information on the subject of wings and bodies and interference
effects. The type of information to be found in each paper is indicated
in table I.

information presented herein was previously made available to
the Fin-Stabilized Ammunition Committee, Picatinny Arsenal, Dover, N. J. ,
July 20/1955-
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Briefly discussed in the present paper are some interference effects,
some effects-of 'geometric changes in isolated wings, and some isolated body
effects. A comparison between theory and experiment is presented for some
complete configurations wherein the interference effects are combined with
isolated wing and body effects.

SYMBOLS

aspect ratio,
Sw

a body radius, ft

c wing chord, ft

cr wing root chord, ft ps

IJ 0 c2dy

c wing mean aerodynamic chord, -- - -, ft

/
Jo

c dy

CL lift coefficient, -|- or
^ '

increment in C^

CT lift-curve slope per degree,
oa

d body diameter, ft

K distance from configuration center of gravity to trailing
edge of basic wing, ft

L . lift, Ib

L lift of isolated body due to angle of attack a, Ib

IW lift of isolated wing due to angle of attack a, Ib

L , . lift of wing in presence of body, Ib

) lift -of body in presence of wing, Ib
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AÎ , , ̂  interference lift on body in presence of wing, Ib
j3^wj

- -i-nterference iift-on-wi-ng-in-presence of body, Ib

I length of fuselage, ft

Zc length of cylindrical part of body behind nose, ft

Zn length of nose, ft

y
M Mach number, —

Vvc

1 ? /q. dynamic pressure, ±pV , Ib/sq. ft

s ' wing semispan, ft

Sy. wing plan-form area, sq. ft

SB body cross-sectional area, sq. ft

t wing maximum thickness, ft

V velocity, ft/sec

Vc velocity of sound, ft/sec

xcp when used alone, distance to wing center of pressure measured
from wing leading edge or apex, ft

xcp—— configuration center of pressure measured from nose, expressed
- in body lengths

Axcri— . body center of pressure rearward movement due to addition of
cylinder, expressed in body diameters (fig. 15)

XCT)-XC distance from configuration center of gravity to center of
pressure, ft

y spanwise distance, ft

a angle of attack, deg

p density of air, slugs/cu ft
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DISCUSSION

STATEMENT OF PROBLEM

In order to study the lift and stability of wing-body combinations,
the complete configuration must be broken down into its component parts.
Figure 1 shows such a breakdown for the lift. First, there is the isolated
lift of the wing or fin L, and that of the isolated body L_ . When the

wing is in the presence of a body which is at an angle of attack, the up-
flow around the body induces an "interference" lift Ale- f-o\ on the wing

such that the total lift on the wing (interference plus angle of attack)
is -f-D f similarly, the lift on a wing at angle of attack induces a

lift AL^ / x on the body such that the total body lift is 1^ / % . The

total lift is then the sum of the components In , ̂  + ICCT,/ \ •

Each component lift has its center of pressure, and the center of
pressure of the total configuration is found by proper summation of the
moments of the component lifts about some reference point such as the
center of gravity. This center of pressure of the total configuration is
rearward of the center of gravity for a s'table configuration, and the
greater this distance, the greater the stability for a given lift.

The remainder of this discussion considers the various component
lifts and centers of pressure and shows the degree of success achieved
by some investigators in using such component data to calculate the lift
and stability of wing -body combinations.

INTERFERENCE LIFT

The "interference" lift components are the interference wing lift in
the presence of the body AL, /~\ and the interference body lift in the

presence of the wing AÎ , . .. Figure 2 presents values of these lift

components calculated by linear theory and expressed as ratios of the
total wing or body lift (that is, the lift due to both interference and
angle of attack) to the isolated wing lift L . The horizontal scale

is the ratio of body radius to wing semispan, defined as shown in the
sketch on the right. As the relative body radius is increased both lift
ratios increase.
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The increase in 1^. /R\ is due to the upvash at the surface of the

body. This upvash has a value equal to twice the angle of attack at the
body surface but decreases in the spanwlse direction. Thus, as the body
is made larger relative to the wing, a larger proportion of the wing is
immersed in regions of large upflow angles and the value of 1̂ , x/^x.

approaches 2.0 as the body radius approaches the wing semispan.

The increase in L, / s is due to the increase in body area on which

the lifting-pressure carryover from the wing to the body can act as the
relative body size is increased. Of course, the limiting values of 2.0
for 1^ , X/IH and I^/ \/*t<. are in themselves meaningless, since at

a relative body radius of 1.0 there is no wing and thus no value for L, .

The optimum value of relative body radius exists when the increase in
interference lift is balanced against the decrease in isolated wing lift.
For rectangular wings this radius is approximately OA semispan and the
total lift is approximately 1.2 times the isolated wing lift, if the
effects of decreased fin aspect ratio that occur as the body size is
increased are not considered. For the more practical case in which aspect
ratio must be considered, the optimum body radius would approach zero for
the case of fins having aspect ratios of about 2 or less, where CT

varies almost directly with aspect ratio. For very high aspect ratios or
very high Mach numbers, where CT does not vary rapidly with aspect

ratio, the optimum body radius might approach the value of O.U semispan.

See table I for papers containing additional information on wing-
body interference.

ISOLATED COMPONENTS

Wings

Wings or fins may have an almost infinite variety of both plan-form
and cross-sectional shapes. Three simple plan forms are used for illus-
tration: the rectangular, the untapered sweptback, and the delta (or
triangular) plan forms. Some effects on Cr of aspect ratio, cross-

sectional shape, and end plates are discussed. The static stability of
the complete configuration, as affected by the addition of wing chord,
is discussed briefly. See table I for papers containing information on
wings.
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Effect of aspect ratio and plan form.- Figures 3 to 5 present plots
of the variation with Mach number of the lift and center of pressure of
rectangular,, swept., and delta wings for aspect ratios of 1/2 to k. The
lift-curve slope is per degree, and the center-of-pressure locations are
expressed as distance in fractions of the root-chord length behind the
apex of the wings. The curves represent linear-theory (zero-thickness)
values of CT and xc_/cr, and the test points represent various experi-

mental data presented to show the general level of agreement with the
linear theory. Because lift curves for low aspect ratios are generally
somewhat nonlinear, the experimental slopes have been taken over an angle-
of-attack range of ±4°. The experimental data are generally for wings
having curved airfoil-section profiles and low values of thickness
ratio (t/c between 0.03 and 0.10). Some of the experimental data in
figures 3 to 5 represent an average of a number of test points, and some
of the experimental data in figure 4 are for a wing having a taper ratio
of 0.6.

The most important points to be noted on the theoretical curves for
all three plan forms are the peak in lift-curve slope CT at Mach

numbers near 1.0, the marked decrease in C^ as the aspect ratio is
a

reduced at the lower speeds, the decrease in CT as the Mach number is

increased above 1.0, and the general rearward movement of the center of
pressure at supersonic speeds as compared with subsonic speeds. For the
two untapered plan forms the center of pressure tends to move forward at
Mach numbers near 1.0, and decreases in aspect ratio tend to move the
center of pressure forward at all Mach numbers. For the delta wings,
decreases in aspect ratio tend to move the center of pressure rearward
at subsonic speeds and have no effect on center of pressure at supersonic
speeds.

The chief differences between experiment and linear theory are
attributable to the effects of finite thickness, and the use of more exact
theory would reduce the differences considerably. At transonic speeds the
finite thickness acts somewhat like an increase in Mach number - in fig-
ure 3, for example, the most forward location of the center of pressure
occurs at a lower Mach number than theory predicts for a thin plate; the
same is true for the lift-curve slope peak. The experimental center of
pressure is generally ahead of the location predicted by linear theory
at supersonic speeds. Except for the region just above M = 1.0, the
experimental lift-curve slope tends to agree fairly well with the linear-
theory value.

Effect of adding chord on configuration static stability.- When the
available wing or fin span is limited, as in the case of ammunition with
fixed fins, there is often a natural desire to increase the wing lift and
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thus the stability by increasing the wing area through increases in the
ving chord. Figures 6 to 8 illustrate the effects of such wing-chord
increases for the three wing plan forms.- considered, with the assumption
that the trailing edge' of the basic aspect-ratio-U wing is at the rear of
the body so that wing-chord increases move the leading edge forward. For
simplicity, an imaginary body having no lift, no moment, and no interfer-
ence is assumed so that only the wing lift and center-of-pressure location
relative to the center of gravity affects the stability. Figure 6 shows
the results of the analysis for rectangular wings. The distance between
the imaginary center of gravity and wing center-of-pressure location is
represented by /xcp - xCgWs, the wing lift is represented by SyCr,

and the wing moment is represented by Ŝ Cr (xcp - xCgWs, all plotted

against wing aspect ratio. Lengths and areas are all referenced to the
semispan and area of the basic aspect-ratio-U wing. Figure 6 shows that
as the wing chord is increased, the moment arm decreases, the lift gener-
ally increases, and the resulting moment first increases and then
decreases but peaks at different aspect ratios for different Mach numbers.
At M = 0.8 the wing stability contribution peaks at A « 1.5 and as
the Mach number is increased the optimum aspect ratio is decreased until
at M « 6 it appears that A < 1/2 is the optimum. Figure 7 presents
similar data for sweptback untapered wings and the general results are
similar to those shown for rectangular wings. For delta wings (fig. 8)
the results are again similar except that the optimum aspect ratio tends
to be slightly higher than for the untapered wings for a given Mach
number.

The specific values resulting from such an analysis will be changed
for other plan forms and when wing-body interference and wing weight are
taken into account. Another factor which would change the specific values
is K/s, the distance from the configuration center of gravity to the
trailing edge of the basic wing expressed in wing semispans. The curves
of figures 6 to 8 are based on K/s = 7-5* and the optimum aspect ratio
would be different for other values of K/s; for example, for the rectangu-
lar wing at M = 6.U (fig. 6) the optimum aspect ratios would be approx-
imately 0.3, 1-lj and 2.1 for K/s values of 10, 2, and 1, respectively.

The general trends, based on the preceding simplified analysis, appear
to be as follows:.

(1) There seems to exist an optimum aspect ratio for any fin plan
form below which the addition of area by increased chord will reduce the
stability contribution of the fin, even though the added area is behind
the center of gravity.

(2) This optimum aspect ratio for the untapered fins seems to be
slightly lower than for the delta fins and also decreases as the Mach
number increases.
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(j) Changing the aspect ratio by changing the fin chord seemed to
have the greatest effect on the fin stability contribution at the lower
Mach numbers.

(k) At the higher Mach numbers the penalty suffered by not choosing
the optimum aspect ratio appears to be reduced.

Since the original presentation of the present paper, a study was
made (see ref . l) of the effects of adding fin chord for rectangular and
delta fins on a body of fineness ratio Ik. In reference 1, body lift and
moment and interference effects were considered, and the results are in
general agreement with the trends previously mentioned except that the
optimum aspect ratio tended to be slightly higher for the untapered fin
compared with that for the delta fin.

Effect of airfoil section. - Some information on the effects of
airfoil-section thickness distribution is shown in figures 9 to 11. The
data of figure 9 show a comparison of the lift and center-of -pressure
location at transonic speeds for tapered wings with NACA OOOJ-63 and
3-percent-thick circular-arc airfoils. The circular-arc airfoil has less
lift and a more forward center-of -pressure location. Although the most
obvious geometric difference between the two sections is the nose shape,
the difference in aerodynamic chract eristics is principally due to the
less obvious difference in trailing-edge angle. The angle included
between the upper and lower surfaces at the trailing edge is about twice
as large for the circular-arc airfoil.

The effects of a more extreme difference in the trailing-edge angle
are shown in figure 10 for subsonic and low supersonic Mach numbers. The
effects on lift are smaller at supersonic speeds than at subsonic speeds.
The effects on center-of -pressure location are somewhat less than shown
in figure 9, but this may be because the critical transonic Mach number
range is not covered by the data of figure 10.

The data presented in figure 11 are for a high supersonic Mach number
(M = 6.86) and show the effects of changing from a double-wedge or diamond
airfoil to a single wedge. The effects on both lift and center-of -pressure
location are appreciable but are reasonably well calculated by shock-
expansion theory. The agreement between experiment and linear theory is
best, of course, at low angles of attack.

Effect of end plates.- Wings or fins have often been equipped with
end plates in order to reduce the tip losses, or increase the effective
aspect ratio, and thus increase the lift-curve slope of the wing or fin.
Figure 12 presents some data showing the effect of an end plate on the
lift of a tapered wing swept back 20° at the quarter chord. The supersonic
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theory for wings with end plates corresponds to the infinite-aspect-ratio
value at and above the Mach number at which the particular end plate con-
sidered completely covers the tip Mach cone.

Although an end plate of reasonable size provides a considerable
increase in CT , the increase is still not a large part of the potential

gain at subsonic speeds. At supersonic speeds the same end plate will
provide a greater percentage of the potential gain but the potential
becomes smaller as Mach number is increased and it would appear not very
worthwhile to consider end plates at the higher supersonic speeds.

Bodies

It is in the field of bodies that the configurations used in basic
research probably bear the least resemblance to practical fin-stabilized
ammunition. Data do exist, however, on certain basic shapes and these
data are roughly correlated herein. Because of the scatter involved in
the various experimental data, the body-characteristics curves to be
presented should be considered to be illustrative material showing general
trends rather than design charts. See table I for papers containing
information on bodies.

Lift of cones and cone-cylinders.- The upper part of figure 13 shows
CL (based on body frontal area) at an angle of attack of ̂ ° plotted
against Mach number for pure cones having fineness ratios from 3 "to J.
The data showed a scatter of approximately 0.02 in C^, and the faired

line is slightly lower (about 7 percent) than the linear-theory value.
The angle of attack of h° was chosen because of the basic nonlinearity
of body lift data and because a considerable portion of the center-of-
pressure data did not extend to lower angles of attack. The lower part
of figure 13 shows the increment in CL at an angle of attack of k due
to the addition of cylinders of various fineness ratios to the cones. In
a number of cases the curves in the lower part of figure 13 were obtained
by subtracting the average value of the cone lift from the lift of the
cone-cylinder combination, and this would account for part of the scatter
of 0.03 to O.OU in CL.

For the pure cones, no consistent effects of cone fineness ratio or
Mach number could be detected in the experimental data for a = U°; at
relatively high angles of attack, this would not necessarily be true.
For the incremental lift due to the addition of a cylinder, the effects
of fineness ratio and Mach number were more apparent. Increasing the
length of the cylinder increased the lift, as might be expected.
Increasing the Mach number increased the lift, except above M » 5, where
the lift began to decrease somewhat.
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Lift of ogives and ogive-cylinders.- Figure lU is the ogive and
ogive-cylinder counterpart of figure 13. The data cover about the same
ranges of Mach number and cylinder fineness ratio and have about the
same scatter in CL as noted for the cone-nose bodies.

The lift of the pure ogives is about 20 percent greater than for the
pure cones and is about 15 percent greater than the linear-theory value.
The incremental lift of cylinders behind ogives is slightly less than
the incremental lift of cylinders behind cones shown in figure 13, and
the data do not cover a sufficient Mach number range to show whether there
is a drop in ACL above M » 5 as was shown for the cylinders behind
cones.

Center of pressure.- The upper part of figure 15 shows the center-
of-pressure locations, at a = 4°, for pure cones and pure ogives. The
lower part of figure 15 shows the increment in center-of-pressure loca-
tion resulting from the addition of cylinders behind cones or ogives.
Center of pressure is difficult to measure accurately, and there was
considerable scatter in the data from which figure 15 was prepared. The
data for the pure cones and pure ogives showed a satisfactorily small
scatter of less than 10 percent of the length (less than 1/2 diameter)
for center-of-pressure location. For the nose-cylinder combinations, the
scatter was generally less than J/k diameter although several data points
showed a considerably larger scatter. The scatter of the data effectively
masked any effects of nose shape and small changes in Mach number, so that
single curves are presented for rather large speed ranges and for both
nose shapes. The curves shown in the lower part of figure 15 should be
considered to be qualitative only.

The upper part of figure 15 shows that pure cones have more rearward
center-of-pressure locations than do ogives and that neither nose fineness
ratio nor Mach number has a consistent effect on the center-of-pressure
location. Adding cylinders behind cones or ogives moves the center of
pressure rearwardj the increment increases with cylinder length and Mach
number.

Rear end modification.- The following general trends have been noted
for boattails and flares:

(1) Boattailing the rear of the body reduces the lift and moves the
center of pressure forward.

(2) Flaring the rear of the body increases the lift and moves the
center of pressure rearward. A flared rear end has successfully been
used to provide static and dynamic stability in free flight at Mach
numbers up to 10 (ref. 2).
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(3) Increasing the length of the flare "by including more of the
cylinder length without changing the base diameter may reduce the
stability contribution (ref. 3) by moving the center of pressure
forward vhile increasing the lift slightly.

CHARACTERISTICS OF COMPLETE CONFIGURATIONS

Having disposed, however roughly, of the various components of the
lift and stability of body-wing combinations, the complete configuration
may now be considered with particular attention paid to the general degree
of success attained in calculating the characteristics of simple body-
wing combinations. The general procedures used in the calculations were

(1) Use of the theories of Spreiter, Nielsen, Tucker, et al., to
calculate the interference effects

(2) Use of the measured component CL and center-of-pressure values
for the body and fins, or use of interpolation or extrapolation of experi-
mental data (guided by theory), or use of fairly exact theory to calculate
component values

(3) Summation of the component values and comparison with experi-
mental results

Lift

Figure l6 shows a comparison of calculated and experimental values
of CT for simple wing-body combinations. Data for unswept wings

(tapered and rectangular) and delta wings are shown for subsonic (solid
symbols) and supersonic speeds (open symbols)". The agreement between
calculation and experiment is good, with most of the points lying within
10 percent of the line of perfect correlation and there is no variation
in quality of agreement with plan form or Mach number.

Center of Pressure

Figure 17 is the center-of-pressure counterpart of figure l6 and
the data cover the same plan form and Mach number range. The agreement
between calculation and experiment is good, all points lying within
10 percent of the line of perfect correlation, and again no Mach number
or plan-form trends are evident.
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CONCLUDING REMARKS

The present paper summarizes and correlates broadly some of the
research results applicable to fin-stabilized ammunition. The discussion
and correlation are intended to be comprehensive, rather than detailed,
in order to show general trends over the Mach number range up to J.Q.
The present paper is intended to serve more as a bibliography and source
of reference material than as a direct source of design information.

The foregoing discussion represents a brief digest of a large amount
of data. The summary figures presented are considered to be suitable only
for trend studies or first-order calculations of lift and stability of
particular wing-body combinations. Most of the comparisons of experiment
with theory have been based on linear theory for simplicity; improved
agreement will generally be obtained by use of more exact theories.

Langley Aeronautical Laboratory,
National Advisory Committee for Aeronautics,

Langley Field, Va., July 6, 1955.
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Figure 6.- Effect on static stability of adding ving chord when trailing
edge of "basic aspect-ratio-U wing is at rear end of body. Rectangu-
lar wings.
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Figure 7.- Effect on static stability of adding wing chord when trailing
edge of basic aspect-ratio-^ wing is at rear end of body. 45° swept-
back untapered wings.
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Figure 9.- Effect of airfoil section at transonic speeds. A = 3.1;
taper ratio = OA; unswept wing alone. (See ref. 22.)
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Figure 1J.- Cone-cylinder lift. (Basic data for these curves may be
found in refs. 25 to 39.)
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Figure 14.- Ogive-cylinder lift. (Basic data for these curves may be
found in refs. 2?, 31, 33, 3!*, 36, 38, 39, and 40 to 63.)
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Figure 16.- Comparison between measured and calculated lift for complete
wing-body combination. (See refs. 65 to 68.)
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Figure 17.- Comparison between measured and calculated center of pressure
for complete wing-body combination. (See refs. k, 68, and 69.)

NACA - Langley Field, VJ.
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