
The electrical characteristics of the oxygen electrode in a hydrogen–oxygen fuel cell are improved by use of an iodine-iodide couple. This concept for a new type of fuel cell is based on association of three facts: (1) the iodine-iodide reaction has a very high exchange-current density; (2) iodide ions are very sensitive to oxidation, especially when exposed to light; and (3) a fuel-cathode-reducing iodine has a good chance of success.

A fuel cell has been proposed which uses a porous cathode through which is fed a solution of iodine in aqueous iodide solution; the anode is a hydrogen electrode. The electrolyte coming from the cell is fed to a chemical reactor where iodide ions are oxidized by oxygen in the presence of light; the iodine in solution, formed in this reactor, is then fed to the cathode. The chemical reactions occurring are:

Anodic \[2\text{H}_2 \rightarrow 4\text{H}^+ + 4e^- \] (1)
Cathodic \[2\text{I}_2 + 4e^- \rightarrow 4\text{I}^- \] (2)
Chemical \[4\text{I}^- + \text{O}_2 + 2\text{H}_2\text{O} \rightarrow 4\text{OH}^- + 2\text{I}_2 \] (3)
Overall \[2\text{H}_2 + \text{O}_2 \rightarrow 2\text{H}_2\text{O} \] (1+2+3)

This proposed system has two advantages:
1. No activation polarization appears on the cathode, as on commonly used oxygen electrodes, because of the very high exchange-current density of the iodine-iodide electrode.
2. Oxygen and hydrogen, the fuels for the two electrodes, are advantageous in the matters of weight, price, and availability; the water produced by the cell reaction is easily removed.

Notes:
1. This development is in a conceptual stage only; at the time of this publication no model or prototype has been constructed.
2. Requests for further information may be directed to:
 Technology Utilization Officer
 Headquarters
 National Aeronautics
 and Space Administration
 Washington, D.C. 20546
 Reference: B70-10246

Patent status:
No patent action is contemplated by NASA.

Source: P. Javet et al. of The University of Pennsylvania under contract to NASA Headquarters (HQN 10379)