Electron Fractography Used to Examine Nickel-Base Alloys

The problem:
To establish the causes of metal fatigue and stress failures in nickel-base alloys tested at temperatures ranging from room temperature to 1800°F. Previous methods such as radiographic, ultrasonic, and the use of penetrant dyes did not yield the detail required to reveal the temperature effects on granular structure.

The solution:
An atlas of electron fractographs (microscopic reproductions at high magnification of fractured surfaces) from fatigue specimens of several nickel-base alloys where the test conditions were closely controlled. The technique produced surface features at magnification as high as 9000X with excellent resolution.

How it's done:
An electron fractograph is prepared by making an impression of the surface of the fatigue fracture with a thin plastic or carbon film. By casting or pressing the film against the fracture surface, its details are transferred to the film which may then be reviewed and/or photographed by means of an electron microscope. Contrast is enhanced by highlighting the film with metal vapors after the transfer and prior to observing.

Notes:
1. This method permits observation of features with dimensions of only 50 Å.
2. Failure of all test specimens at room temperature was transgranular; at temperatures above 1468°F, the failure mode was intergranular.
3. Requests for further information may be directed to:
 Technology Utilization Officer
 Marshall Space Flight Center
 Code A&TS-TU
 Huntsville, Alabama 35812
 Reference: TSP70-10571

Patent status:
Inquiries about obtaining rights for the commercial use of this invention may be made to NASA, Code GP, Washington, D.C. 20546.

Source: R. P. Jewett of North American Rockwell Corp. under contract to Marshall Space Flight Center (MFS-18649)