Single-Level Resonance Parameters Fit Nuclear Cross-Sections

For the first time, least-squares analyses of experimental differential cross-section data for the nucleus U235 have yielded single-level Breit-Wigner resonance parameters that fit, simultaneously, three nuclear cross-sections — capture, fission, and total. Previous measured values of the parameters yielded derived cross-sections that agreed at best with only one or two of the three measured cross-sections.

The resonance-capture and fission integrals calculated from the resonance parameters obtained for neutron energies of less than 63 eV agree within 3% with the corresponding direct numerical integration of the cross-section data. Earlier simultaneous measurements of the fission and capture cross-sections for U235 (ref. 1) were used in the analyses, resolving the discrepancy between measured and calculated values of the quantity \bar{a} ($\bar{a} = \text{ratio of capture-resonance integral to fission-resonance integral}$).

Two sets of resonance parameters have been derived. They differ only in that unit weighting was used in one analyses, while weighting inversely proportional to the cross-section was used in the other. In addition, the effects of fitting only two of the three nuclear cross-sections — total and fission, and capture and fission — were studied.

Two multigroup cross-section libraries for the reaction (neutron + U235) have been generated. Each library treats a different section of the energy range to which the two sets of resonance parameters were applied. The value, 0.51, calculated for the ratio \bar{a} for either library agrees with the accepted value, 0.50 ± 0.02, derived from reactor integral measurements.

The two sets of resonance parameters and the cross-section libraries should be useful in reactor calculations for any nuclear reactor fueled with U235.

Reference:
de Saussure, G.; et al.: Measurement of the Neutron-Capture and Fission Cross Sections and of Their Ratios \bar{a} for U233, U235, and Pu239. Preprint CN23/48, Intern. At. Energy Agency Conference on Nuclear Data: Microscopic Cross Sections and Other Data Basic for Reactors, Paris, 1966.

Note:
Requests for further information may be directed to:
Technology Utilization Officer
AEC-NASA Space Nuclear Propulsion Office
U.S. Atomic Energy Commission
Washington, D.C. 20545
Reference: B70-10686

Patent status:
No patent action is contemplated by the AEC or NASA.

Source: G. Gibson, D. W. Drawbaugh, M. Miller, and S. L. Page of Westinghouse Astronautical Laboratory under contract to Space Nuclear Propulsion Office (NUC-10101)